Metody szacowania zdolności kredytowej klientów indywidualnych. Mateusz Kobos
|
|
- Julian Czerwiński
- 9 lat temu
- Przeglądów:
Transkrypt
1 Metody szacowania zdolności kredytowej klientów indywidualnych Mateusz Kobos
2 Spis treści Czym jest Credit Scoring (CS)? Analizowane dane Zalety i ograniczenia CS CS w praktyce CS jako zagadnienie Machine Learning Dane Trendy w CS Metody klasyczne Linear Discriminant Analysis (LDA) Logistic Regression Inne
3 Czym jest Credit Scoring Definicja Metoda służąca do oceny ryzyka związanego z udzieleniem pożyczki Metoda służąca do przewidzenia, czy osoba składająca wniosek o przyznanie kredytu nie wywiąże się z płatności lub będzie zalegać z płatnością. Wprowadzono w 1950
4 Analizowane dane [4] Co bierze się pod uwagę? np. przychód miesięczny, zadłużenie, posiadane aktywa, długość pracy w tym samym miejscu, czy były problemy ze spłatą poprzedniej pożyczki, czy kandydat posiada dom, typ konta bankowego itp. Przy tworzeniu modelu bierze się pod uwagę zmiennych (a czasami i 1000), w końcowym modelu jest użytych: 12 (Fair, Isaac and Co.) 48 (First Data Resources)
5 Analizowane dane (c.d.) [4] Patrick McAllister i John Mingo szacują, że by stworzyć model predykcyjny do pożyczek komercyjnych, trzeba zebrać ok aplikacji.
6 Zalety i ograniczenia CS [4] Zalety zmniejszenie czasu analizy wniosku Kredyt konsumencki: 9 dni -> 3 dni w jednym z kanadyjskich banków [4] Kredyt dla małych firm: 3-4 tygodnie -> kilka godzin (Barnett Bank) [4] zwiększona obiektywność Przydaje się w przestrzeganiu Equal Credit Opportunity Act (implemented by the Federal Reserve Board s Regulation B) Zakaz dyskryminacji ze względu na: rasę, kolor skóry, wyznawaną religię, pochodzenie narodowe, płeć, stan cywilny, wiek
7 Zalety i ograniczenia CS [4] Ograniczenia i problemy trzeba dbać, by zbiór uczący (przykłady) był zbliżony do zbioru testującego (właściwe zastosowanie) kampania reklamowa może zmienić zbiór testujący samo wprowadzenie nowego modelu zmienia zbiór testujący trzeba często uaktualniać model (np. co 1-5 lat) przy pomocy nowych danych (zmieniające się warunki socjoekonomiczne) przy tworzeniu modelu należy brać pod uwagę nie tylko osoby, którym został przyznany kredyt (i należą do zbioru uczącego), ale również te, które go nie otrzymały
8 Zalety i ograniczenia CS [4] Ograniczenia i problemy c.d. dobry model powinien dobrze działać zarówno w dobrych jak i złych warunkach ekonomicznych należy pamiętać, że nie ma modeli idealnych Przypadek Lawrence Lindsey'a (Federal Reserve System Governor) i jego wniosku o kartę kredytową Toys 'R' Us
9 CS w praktyce Pod uwagę bierze się ankietę wypełnianą przez potencjalnych kredytobiorców oraz dane z biur kredytowych (ang. credit bureaus) (4 w USA)
10 CS jako zagadnienie Machine Learning Zagadnienie klasyfikacji (w klasycznej postaci CS) Należy wziąć pod uwagę różną wagę False Positives i False Negatives Najlepiej, by model potrafił wyjaśnić swoją decyzję
11 Dane B. mało danych Publicznie dostępne: Standardowe zbiory danych : Inne Credit Approval (Australian Credit Approval) 690 przykładów, 15 atrybutów (nominalne i liczbowe), 5% przykładów ma brakujące atrybuty, German Credit 1000 przykładów, 20 atrybutów (7 liczbowych, 13 nominalnych), w wersji numerycznej 24 atrybutów Japanese Credit Screening Database 125 przykładów, 9 atrybutów, przykłady w formacie LISP-owym zawiera reguły decyzyjne stworzone przez ekspertów PKDD'99 Discovery Challenge 8 tabel z bazy danych Czeskiego banku (w sumie 67M danych)
12 Trendy w CS Przejście z szacowania zdolności kredytowej, do optymalizacji relacji z klientem (a nawet jeszcze dalej) Modelowanie ryzyka kredytowego portfela (zbioru) klientów a nie pojedynczego klienta (zgodnie z wytycznymi Basel II) Podział portfela na segmenty
13 Linear Discriminant Analysis (Fisher 1936) Na jakie pytania może odpowiedzieć: Jak wygląda (hiper-)płaszczyzna separująca grupy (klasy) przykładów? Jak zredukować wymiary, by jak najlepiej była zachowana jakość klasyfikacji (z pomocą płaszczyzny decyzyjnej)? Wady: Dla obu zbiorów zakładamy: Intuicyjnie: rozkład Rozkład normalny każdej z Równe macierze kowariancji grup to elipsoida o tym samym kształcie
14 LDA - algorytm Szukamy wektora kanonicznego, po zrzutowaniu na który grupy są jak najlepiej separowalne (w prosty sposób można to zrobić obliczając wektor własny o największej wartości własnej pewnej macierzy W -1 M) Bierzemy płaszczyznę prostopadłą do wektora kanonicznego, przechodzącą przez punkt znajdujący się w połowie odcinka łączącego środki obu grup Z [2] Zła separacja Dobra separacja
15 LDA - modyfikacje >2 klasy: Z [2] 1. bierzemy pod uwagę nie tylko macierz kowariancji wewnątrzgrupowej, ale również międzygrupowej (gdzie pojedynczymi elementami są średnie grup, a wartością średnią - średnia dla wszystkich grup) 2. obliczamy płaszczyzny separujące dla każdej pary grup i za ich pomocą wykrajamy odpowiednie części przestrzeni należące do każdej z grup
16 LDA modyfikacje (c.d.) Wersja kwadratowa zakładamy, że macierze kowariancji są różne => funkcja dyskryminacyjna staje się kwadratowa Z [2]
17 Regresja liniowa Podstawowe wzory: Wzór na prostą regresji: Minimalizujemy sumę kwadratów odchyleń: Za pomocą regresji liniowej można dokonywać klasyfikacji dla 2 grup: Grupa 1 - zmienna objaśniana x=0 Grupa 2 zmienna objaśniana x=1
18 Regresja liniowa (c.d.) Wady: x nie może być interpretowana jako prawdopodobieństwo (wartości mogą być poza przedziałem [0,1]) Stosując metodę najmniejszych kwadratów zakładamy, że błędy mają rozkład normalny z o tej samej wariancji (przy binarnej klasyfikacji jest to niespełnione)
19 Logistic regression Regresja logistyczna to rozszerzona wersja regresji liniowej Podmieniamy zmienną wyjściową x: ln p 1 p =w 0 w 1 a 1... w k a k Gdzie: p : prawdopodobieństwo należenia przykładu do 1 grupy 1-p : prawdopodobieństwo należenia przykładu do 2 grupy Wartość lewej strony równania jest teraz dowolna a p jest z przedziału (0,1) Funkcja ln(x/(1-x)):
20 Logistic Regression Przekształcona zmienna (x) jest aproksymowana przez funkcję liniową Z poprzedniego wzoru można obliczyć: p= 1 1 exp w 0 w 1 a 1... w k a k Punkty spełniające p=0.5 znajdują się na krzywej decyzyjnej => w 0 w 1 a 1... w k a k =0 jest płaszczyzną decyzyjną Przykład takiej funkcji dla 1 wymiaru z wagami w 0 =0.5, w 1 =1 z [X4]:
21 Logistic Regression By obliczyć parametry (wagi w i ) zgodnie z metodą największej wiarogodności maksymalizujemy: N p i i=1 (maksymalizujemy np. za pomocą metod Newtonowskich)
22 Logistic Regression Zalety: Parametry (wagi) modelu są interpretowalne Nie wymaga założeń modelu LDA Wady Parametry trudniejsze w obliczeniu od parametrów LDA Duże błędy przy danych o zależnościach nieliniowych Ciekawostka: Podobieństwo do modelu perceptronu Rozszerzenie Model dla wielu klas
23 Inne metody Sieci neuronowe Drzewa decyzyjne k Nearest Neighbor Programowanie liniowe Support Vector Machines Survival Analysis metaklasyfikatory
24 Przykładowe wyniki Wyniki dotyczące dokładności klasyfikacji z (zebrane z różnych publikacji) testowane na zbiorze testowym Z [5]
25 Przykładowe wyniki (c.d.) Z [7] Wyniki porównujące wydajność sieci neuronowych z innymi metodami - podane są błędy mierzone za pomocą 10-fold Cross Validation Good credit - dobrzy kredytobiorcy sklasyfikowani jako źli, Bad credti - analogicznie
26 Bibliografia [1] Dreiseitl S., Ohno-Machado L., Logistic regression and artificial neural network classification models: a methodology review, Journal of Biomedical Informatics 35, , 2002 [2] Friedman J., Hastie T., Tibshirani R., The elements of statistical learning, Springer, 2003 [3] Koronacki, Ćwik, "Statystyczne systemy uczące się", WNT, 2005 [4] Mester L.J., What's the point in credit scoring, Business review, Federal Reserve Bank of Philadelphia, September/October 1997 [5] Thomas L.C., Oliver R.W., Hand D.J., A survey of the issues in consumer credit modelling research, Journal of the operational research society 56, , 2005 [6] Vojtek M., Kocenda E. Credit Scoring Methods,Finance a Uver - Czech Journal of Economics and Finance, Volume 56, Issue 3-4, , 2006 [7] West D., Neural network credit scoring models [8] Witten I.H., Eibe F. Data mining. Practical machine learning tools and techniques, Morgan Kaufmann, 2005
27 Dziękuję za uwagę!
5. Analiza dyskryminacyjna: FLD, LDA, QDA
Algorytmy rozpoznawania obrazów 5. Analiza dyskryminacyjna: FLD, LDA, QDA dr inż. Urszula Libal Politechnika Wrocławska 2015 1 1. Liniowe funkcje dyskryminacyjne Liniowe funkcje dyskryminacyjne mają ogólną
KLASYFIKACJA. Słownik języka polskiego
KLASYFIKACJA KLASYFIKACJA Słownik języka polskiego Klasyfikacja systematyczny podział przedmiotów lub zjawisk na klasy, działy, poddziały, wykonywany według określonej zasady Klasyfikacja polega na przyporządkowaniu
Klasyfikacja LDA + walidacja
Klasyfikacja LDA + walidacja Dr hab. Izabela Rejer Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Plan wykładu 1. Klasyfikator 2. LDA 3. Klasyfikacja wieloklasowa 4. Walidacja
Zastosowanie modelu regresji logistycznej w ocenie ryzyka ubezpieczeniowego. Łukasz Kończyk WMS AGH
Zastosowanie modelu regresji logistycznej w ocenie ryzyka ubezpieczeniowego Łukasz Kończyk WMS AGH Plan prezentacji Model regresji liniowej Uogólniony model liniowy (GLM) Ryzyko ubezpieczeniowe Przykład
Rozpoznawanie wzorców. Dr inż. Michał Bereta p. 144 / 10, Instytut Informatyki
Rozpoznawanie wzorców Dr inż. Michał Bereta p. 144 / 10, Instytut Informatyki mbereta@pk.edu.pl beretam@torus.uck.pk.edu.pl www.michalbereta.pl Twierzdzenie: Prawdopodobieostwo, że n obserwacji wybranych
Elementy statystyki wielowymiarowej
Wnioskowanie_Statystyczne_-_wykład Spis treści 1 Elementy statystyki wielowymiarowej 1.1 Kowariancja i współczynnik korelacji 1.2 Macierz kowariancji 1.3 Dwumianowy rozkład normalny 1.4 Analiza składowych
Systemy pomiarowo-diagnostyczne. Metody uczenia maszynowego wykład I dr inż. 2015/2016
Systemy pomiarowo-diagnostyczne Metody uczenia maszynowego wykład I dr inż. Bogumil.Konopka@pwr.edu.pl 2015/2016 1 Wykład I - plan Sprawy organizacyjne Uczenie maszynowe podstawowe pojęcia Proces modelowania
Metody scoringowe w regresji logistycznej
Metody scoringowe w regresji logistycznej Andrzej Surma Wydział Matematyki, Informatyki i Mechaniki Uniwersytetu Warszawskiego 19 listopada 2009 AS (MIMUW) Metody scoringowe w regresji logistycznej 19
Ćwiczenie 12. Metody eksploracji danych
Ćwiczenie 12. Metody eksploracji danych Modelowanie regresji (Regression modeling) 1. Zadanie regresji Modelowanie regresji jest metodą szacowania wartości ciągłej zmiennej celu. Do najczęściej stosowanych
Quick Launch Manual:
egresja Odds atio Quick Launch Manual: regresja logistyczna i odds ratio Uniwesytet Warszawski, Matematyka 28.10.2009 Plan prezentacji egresja Odds atio 1 2 egresja egresja logistyczna 3 Odds atio 4 5
Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16
Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego
WYKŁAD I: PROBLEM KLASYFIKACJI POD NADZOREM, LINIOWA ANALIZA DYSKRYMINACYJNA. Wydział Matematyki i Nauk Informacyjnych PW
WYKŁAD I: PROBLEM KLASYFIKACJI POD NADZOREM, LINIOWA ANALIZA DYSKRYMINACYJNA Wydział Matematyki i Nauk Informacyjnych PW Problem klasyfikacji (pod nadzorem) LDA Model sytuacji praktycznej: n par losowych
Wprowadzenie do teorii ekonometrii. Wykład 1 Warunkowa wartość oczekiwana i odwzorowanie liniowe
Wprowadzenie do teorii ekonometrii Wykład 1 Warunkowa wartość oczekiwana i odwzorowanie liniowe Zajęcia Wykład Laboratorium komputerowe 2 Zaliczenie EGZAMIN (50%) Na egzaminie obowiązują wszystkie informacje
Klasteryzacja i klasyfikacja danych spektrometrycznych
Klasteryzacja i klasyfikacja danych spektrometrycznych Współpraca: Janusz Dutkowski, Anna Gambin, Krzysztof Kowalczyk, Joanna Reda, Jerzy Tiuryn, Michał Dadlez z zespołem (IBB PAN) Instytut Informatyki
Metody Sztucznej Inteligencji II
17 marca 2013 Neuron biologiczny Neuron Jest podstawowym budulcem układu nerwowego. Jest komórką, która jest w stanie odbierać i przekazywać sygnały elektryczne. Neuron działanie Jeżeli wartość sygnału
Rozdział 2: Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów
Rozdział : Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów W tym rozdziale omówione zostaną dwie najpopularniejsze metody estymacji parametrów w ekonometrycznych modelach nieliniowych,
Kombinacja jądrowych estymatorów gęstości w klasyfikacji - testy na sztucznych danych
Kombinacja jądrowych estymatorów gęstości w klasyfikacji - testy na sztucznych danych Mateusz Kobos, 25.11.2009 Seminarium Metody Inteligencji Obliczeniowej 1/25 Spis treści Dolne ograniczenie na wsp.
SKORING KREDYTOWY A MODELE DATA MINING
SKORING KREDYTOWY A MODELE DATA MINING Janusz Wątroba StatSoft Polska Sp. z o.o. Przedmiotem rozważań w niniejszym artykule jest problematyka oceny ryzyka kredytowego oraz wybrane zagadnienia związane
Analiza danych. http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU
Analiza danych Wstęp Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Różne aspekty analizy danych Reprezentacja graficzna danych Metody statystyczne: estymacja parametrów
Podstawy sztucznej inteligencji
wykład 5 Sztuczne sieci neuronowe (SSN) 8 grudnia 2011 Plan wykładu 1 Biologiczne wzorce sztucznej sieci neuronowej 2 3 4 Neuron biologiczny Neuron Jest podstawowym budulcem układu nerwowego. Jest komórką,
Oracle Data Mining 10g
Oracle Data Mining 10g Zastosowanie algorytmu Support Vector Machines do problemów biznesowych Piotr Hajkowski Oracle Consulting Agenda Podstawy teoretyczne algorytmu SVM SVM w bazie danych Klasyfikacja
Statystyczna Eksploracja Danych
Statystyczna Eksploracja Danych Wykład 1 - wprowadzenie, metoda LDA Fishera dr inż. Julian Sienkiewicz 22 lutego 2019 Plan wykładu 1 Sprawy organizacyjne Kontakt i forma zajęć Literatura Zasady zaliczania
Modelowanie glikemii w procesie insulinoterapii
Dawid Kaliszewski Modelowanie glikemii w procesie insulinoterapii Promotor dr hab. inż. Zenon Gniazdowski Cel pracy Zbudowanie modelu predykcyjnego przyszłych wartości glikemii diabetyka leczonego za pomocą
Mikroekonometria 5. Mikołaj Czajkowski Wiktor Budziński
Mikroekonometria 5 Mikołaj Czajkowski Wiktor Budziński Zadanie 1. Wykorzystując dane me.medexp3.dta przygotuj model regresji kwantylowej 1. Przygotuj model regresji kwantylowej w którym logarytm wydatków
Kombinacja jądrowych estymatorów gęstości w klasyfikacji wstępne wyniki
Kombinacja jądrowych estymatorów gęstości w klasyfikacji wstępne wyniki Mateusz Kobos, 10.12.2008 Seminarium Metody Inteligencji Obliczeniowej 1/46 Spis treści Działanie algorytmu Uczenie Odtwarzanie/klasyfikacja
Statystyka i Analiza Danych
Warsztaty Statystyka i Analiza Danych Gdańsk, 20-22 lutego 2014 Zastosowania wybranych technik regresyjnych do modelowania współzależności zjawisk Janusz Wątroba StatSoft Polska Centrum Zastosowań Matematyki
Algorytmy metaheurystyczne Wykład 11. Piotr Syga
Algorytmy metaheurystyczne Wykład 11 Piotr Syga 22.05.2017 Drzewa decyzyjne Idea Cel Na podstawie przesłanek (typowo zbiory rozmyte) oraz zbioru wartości w danych testowych, w oparciu o wybrane miary,
Kombinacja jądrowych estymatorów gęstości w klasyfikacji - zastosowanie na sztucznym zbiorze danych
Kombinacja jądrowych estymatorów gęstości w klasyfikacji - zastosowanie na sztucznym zbiorze danych Mateusz Kobos, 07.04.2010 Seminarium Metody Inteligencji Obliczeniowej Spis treści Opis algorytmu i zbioru
10. Redukcja wymiaru - metoda PCA
Algorytmy rozpoznawania obrazów 10. Redukcja wymiaru - metoda PCA dr inż. Urszula Libal Politechnika Wrocławska 2015 1 1. PCA Analiza składowych głównych: w skrócie nazywana PCA (od ang. Principle Component
Wskaźnik kondycji finansowej kredytobiorcy. Aspekty metodologiczne.
Wskaźnik kondycji finansowej kredytobiorcy. Aspekty metodologiczne. dr Anna Nowak-Czarnocka Zastosowania statystyki i data mining w badaniach naukowych Warszawa, 12 października 2016 Pole badawcze Ryzyko
Data Mining Wykład 6. Naiwny klasyfikator Bayes a Maszyna wektorów nośnych (SVM) Naiwny klasyfikator Bayesa.
GLM (Generalized Linear Models) Data Mining Wykład 6 Naiwny klasyfikator Bayes a Maszyna wektorów nośnych (SVM) Naiwny klasyfikator Bayesa Naiwny klasyfikator Bayesa jest klasyfikatorem statystycznym -
KADD Metoda najmniejszych kwadratów funkcje nieliniowe
Metoda najmn. kwadr. - funkcje nieliniowe Metoda najmniejszych kwadratów Funkcje nieliniowe Procedura z redukcją kroku iteracji Przykłady zastosowań Dopasowanie funkcji wykładniczej Dopasowanie funkcji
Inteligentne systemy przeciw atakom sieciowym
Inteligentne systemy przeciw atakom sieciowym wykład Sztuczne sieci neuronowe (SSN) Joanna Kołodziejczyk 2016 Joanna Kołodziejczyk Inteligentne systemy przeciw atakom sieciowym 2016 1 / 36 Biologiczne
WYKŁAD 4. Podejmowanie decyzji dla modeli probabilistycznych Modelowanie Gaussowskie. autor: Maciej Zięba. Politechnika Wrocławska
Wrocław University of Technology WYKŁAD 4 Podejmowanie decyzji dla modeli probabilistycznych Modelowanie Gaussowskie autor: Maciej Zięba Politechnika Wrocławska Klasyfikacja Klasyfikacja (ang. Classification):
Wprowadzenie do uczenia maszynowego
Wprowadzenie do uczenia maszynowego Agnieszka Ławrynowicz 12 stycznia 2017 Co to jest uczenie maszynowe? dziedzina nauki, która zajmuje się sprawianiem aby komputery mogły uczyć się bez ich zaprogramowania
DOKUMENT INFORMACYJNY COMARCH BUSINESS INTELLIGENCE:
DOKUMENT INFORMACYJNY COMARCH BUSINESS INTELLIGENCE: DATAMINING 1 S t r o n a WSTĘP Czyli jak zastąpić wróżenie z fusów i przysłowiowego nosa, statystyką i modelami ekonometrycznymi. Niniejszy dokument,
Scoring kredytowy w pigułce
Analiza danych Data mining Sterowanie jakością Analityka przez Internet Scoring kredytowy w pigułce Mariola Kapla Biuro Informacji Kredytowej S.A. StatSoft Polska Sp. z o.o. ul. Kraszewskiego 36 30-110
Opisy przedmiotów do wyboru
Opisy przedmiotów do wyboru moduły specjalistyczne oferowane na stacjonarnych studiach II stopnia (magisterskich) dla 2 roku matematyki semestr letni, rok akademicki 2017/2018 Spis treści 1. Data mining
WSTĘP DO REGRESJI LOGISTYCZNEJ. Dr Wioleta Drobik-Czwarno
WSTĘP DO REGRESJI LOGISTYCZNEJ Dr Wioleta Drobik-Czwarno REGRESJA LOGISTYCZNA Zmienna zależna jest zmienną dychotomiczną (dwustanową) przyjmuje dwie wartości, najczęściej 0 i 1 Zmienną zależną może być:
dr Anna Matuszyk PUBLIKACJE: CeDeWu przetrwania w ocenie ryzyka kredytowego klientów indywidualnych Profile of the Fraudulelent Customer
dr Anna Matuszyk PUBLIKACJE: Lp. Autor/ red. 2015 naukowy 1 A. Matuszyk, Zastosowanie analizy przetrwania w ocenie ryzyka kredytowego klientów indywidualnych Tytuł Okładka CeDeWu 2 A.Matuszyk, A. Ptak-Chmielewska,
Karta (sylabus) modułu/przedmiotu Inżynieria Materiałowa Studia II stopnia Specjalność: Inżynieria Powierzchni
Karta (sylabus) modułu/przedmiotu Inżynieria Materiałowa Studia II stopnia Specjalność: Inżynieria Powierzchni Przedmiot: Statystyczne Sterowanie Procesami Rodzaj przedmiotu: Obowiązkowy Kod przedmiotu:
Opis efektów kształcenia dla modułu zajęć
Nazwa modułu: Eksploracja danych Rok akademicki: 2030/2031 Kod: MIS-2-105-MT-s Punkty ECTS: 5 Wydział: Inżynierii Metali i Informatyki Przemysłowej Kierunek: Informatyka Stosowana Specjalność: Modelowanie
Komputerowa Analiza Danych Doświadczalnych
Komputerowa Analiza Danych Doświadczalnych Prowadząca: dr inż. Hanna Zbroszczyk e-mail: gos@if.pw.edu.pl tel: +48 22 234 58 51 konsultacje: poniedziałek, 10-11; środa: 11-12 www: http://www.if.pw.edu.pl/~gos/students/kadd
PODSTAWY STATYSTYCZNEJ ANALIZY DANYCH
Wykład 3 Liniowe metody klasyfikacji. Wprowadzenie do klasyfikacji pod nadzorem. Fisherowska dyskryminacja liniowa. Wprowadzenie do klasyfikacji pod nadzorem. Klasyfikacja pod nadzorem Klasyfikacja jest
Mikroekonometria 13. Mikołaj Czajkowski Wiktor Budziński
Mikroekonometria 13 Mikołaj Czajkowski Wiktor Budziński Endogeniczność regresja liniowa W regresji liniowej estymujemy następujące równanie: i i i Metoda Najmniejszych Kwadratów zakłada, że wszystkie zmienne
Informacja z BIK jako podstawa zapobiegania nadmiernemu zadłużeniu konsumentów. Konferencja SKEF 30 listopada 2011 r.
Informacja z BIK jako podstawa zapobiegania nadmiernemu zadłużeniu konsumentów Konferencja SKEF 30 listopada 2011 r. Odpowiedzialne kredytowanie i pożyczanie w UE Odpowiedzialne kredytowanie produkty kredytowe
CLUSTERING. Metody grupowania danych
CLUSTERING Metody grupowania danych Plan wykładu Wprowadzenie Dziedziny zastosowania Co to jest problem klastrowania? Problem wyszukiwania optymalnych klastrów Metody generowania: k centroidów (k - means
Jądrowe klasyfikatory liniowe
Jądrowe klasyfikatory liniowe Waldemar Wołyński Wydział Matematyki i Informatyki UAM Poznań Wisła, 9 grudnia 2009 Waldemar Wołyński () Jądrowe klasyfikatory liniowe Wisła, 9 grudnia 2009 1 / 19 Zagadnienie
4.1. Wprowadzenie...70 4.2. Podstawowe definicje...71 4.3. Algorytm określania wartości parametrów w regresji logistycznej...74
3 Wykaz najważniejszych skrótów...8 Przedmowa... 10 1. Podstawowe pojęcia data mining...11 1.1. Wprowadzenie...12 1.2. Podstawowe zadania eksploracji danych...13 1.3. Główne etapy eksploracji danych...15
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 5
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 5 Analiza korelacji - współczynnik korelacji Pearsona Cel: ocena współzależności między dwiema zmiennymi ilościowymi Ocenia jedynie zależność liniową. r = cov(x,y
Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1.
tel. 44 683 1 55 tel. kom. 64 566 811 e-mail: biuro@wszechwiedza.pl Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: gdzie: y t X t y t = 1 X 1
Analiza korespondencji
Analiza korespondencji Kiedy stosujemy? 2 W wielu badaniach mamy do czynienia ze zmiennymi jakościowymi (nominalne i porządkowe) typu np.: płeć, wykształcenie, status palenia. Punktem wyjścia do analizy
Metody systemowe i decyzyjne w informatyce
Metody systemowe i decyzyjne w informatyce Laboratorium JAVA Zadanie nr 2 Rozpoznawanie liter autorzy: A. Gonczarek, J.M. Tomczak Cel zadania Celem zadania jest zapoznanie się z problemem klasyfikacji
Sieci neuronowe i ich ciekawe zastosowania. Autor: Wojciech Jamrozy III rok SMP / Informatyka
Sieci neuronowe i ich ciekawe zastosowania Autor: Wojciech Jamrozy III rok SMP / Informatyka Klasyczna algorytmika Sortowanie ciągu liczb Czy i ile razy dane słowo wystąpiło w tekście Najkrótsza droga
SPECJALIZACJA BADAWCZA:
Dr Anna Matuszyk - pracownik naukowy. Zajmuje się metodami oceny ryzyka kredytowego, w szczególności metodą scoringową, prowadzi badania naukowe, sensu stricte, związane z tą metodą. Brała udział w projektach
Zmienne zależne i niezależne
Analiza kanoniczna Motywacja (1) 2 Często w badaniach spotykamy problemy badawcze, w których szukamy zakresu i kierunku zależności pomiędzy zbiorami zmiennych: { X i Jak oceniać takie 1, X 2,..., X p }
Agnieszka Nowak Brzezińska Wykład III
Agnieszka Nowak Brzezińska Wykład III Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną niezależność zmiennych niezależnych (tu naiwność) Bardziej opisowe
Optymalizacja ciągła
Optymalizacja ciągła 5. Metoda stochastycznego spadku wzdłuż gradientu Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 04.04.2019 1 / 20 Wprowadzenie Minimalizacja różniczkowalnej
CO WIE SMARTFON? ROZPOZNAWANIE AKTYWNOŚCI CZŁOWIEKA METODAMI KLASYFIKACYJNYMI STATISTICA DATA MINER
CO WIE SMARTFON? ROZPOZNAWANIE AKTYWNOŚCI CZŁOWIEKA METODAMI KLASYFIKACYJNYMI STATISTICA DATA MINER Michał Kusy, StatSoft Polska Sp. z o.o. W bardzo krótkim czasie urządzenia mobilne stały się ogólnodostępne.
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 7
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 7 Analiza korelacji - współczynnik korelacji Pearsona Cel: ocena współzależności między dwiema zmiennymi ilościowymi Ocenia jedynie zależność liniową. r = cov(x,y
Opisy przedmiotów do wyboru
Opisy przedmiotów do wyboru moduły specjalistyczne oferowane na stacjonarnych studiach II stopnia (magisterskich) dla 2 roku matematyki semestr letni, rok akademicki 2017/2018 Spis treści 1. Data mining
Drzewa decyzyjne i lasy losowe
Drzewa decyzyjne i lasy losowe Im dalej w las tym więcej drzew! ML Gdańsk http://www.mlgdansk.pl/ Marcin Zadroga https://www.linkedin.com/in/mzadroga/ 20 Czerwca 2017 WPROWADZENIE DO MACHINE LEARNING CZYM
Wstęp do sieci neuronowych, wykład 13-14, Walidacja jakości uczenia. Metody statystyczne.
Wstęp do sieci neuronowych, wykład 13-14,. Metody statystyczne. M. Czoków, J. Piersa Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Toruń, Poland 2011.01.11 1 Przykład Przeuczenie
SPOTKANIE 6: Klasteryzacja: K-Means, Expectation Maximization
Wrocław University of Technology SPOTKANIE 6: Klasteryzacja: K-Means, Expectation Maximization Jakub M. Tomczak Studenckie Koło Naukowe Estymator jakub.tomczak@pwr.wroc.pl 4.1.213 Klasteryzacja Zmienne
Metody klasyfikacji danych - część 1 p.1/24
Metody klasyfikacji danych - część 1 Inteligentne Usługi Informacyjne Jerzy Dembski Metody klasyfikacji danych - część 1 p.1/24 Plan wykładu - Zadanie klasyfikacji danych - Przeglad problemów klasyfikacji
Agnieszka Nowak Brzezińska
Agnieszka Nowak Brzezińska jeden z algorytmów regresji nieparametrycznej używanych w statystyce do prognozowania wartości pewnej zmiennej losowej. Może również byd używany do klasyfikacji. - Założenia
Klasyfikator liniowy Wstęp Klasyfikator liniowy jest najprostszym możliwym klasyfikatorem. Zakłada on liniową separację liniowy podział dwóch klas między sobą. Przedstawia to poniższy rysunek: 5 4 3 2
KORELACJE I REGRESJA LINIOWA
KORELACJE I REGRESJA LINIOWA Korelacje i regresja liniowa Analiza korelacji: Badanie, czy pomiędzy dwoma zmiennymi istnieje zależność Obie analizy się wzajemnie przeplatają Analiza regresji: Opisanie modelem
Wprowadzenie do analizy korelacji i regresji
Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących
Adam Kirpsza Zastosowanie regresji logistycznej w studiach nad Unią Europejska. Anna Stankiewicz Izabela Słomska
Adam Kirpsza Zastosowanie regresji logistycznej w studiach nad Unią Europejska Anna Stankiewicz Izabela Słomska Wstęp- statystyka w politologii Rzadkie stosowanie narzędzi statystycznych Pisma Karla Poppera
Własności statystyczne regresji liniowej. Wykład 4
Własności statystyczne regresji liniowej Wykład 4 Plan Własności zmiennych losowych Normalna regresja liniowa Własności regresji liniowej Literatura B. Hansen (2017+) Econometrics, Rozdział 5 Własności
Mail: Pokój 214, II piętro
Wykład 2 Mail: agnieszka.nowak@us.edu.pl Pokój 214, II piętro http://zsi.tech.us.edu.pl/~nowak Predykcja zdolność do wykorzystania wiedzy zgromadzonej w systemie do przewidywania wartości dla nowych danych,
WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU
Zał. nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim STATYSTYCZNA ANALIZA DANYCH Nazwa w języku angielskim STATISTICAL DATA ANALYSIS Kierunek studiów (jeśli dotyczy):
Techniki Optymalizacji: Metody regresji
Techniki Optymalizacji: Metody regresji Wojciech Kotłowski Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl pok. 2 (CW) tel. (61)665-2936 konsultacje: piątek 15:10-16:40
Stanisław Cichocki. Natalia Nehrebecka
Stanisław Cichocki Natalia Nehrebecka 1 1. Wstęp a) Binarne zmienne zależne b) Interpretacja ekonomiczna c) Interpretacja współczynników 2. Liniowy model prawdopodobieństwa a) Interpretacja współczynników
1.7. Eksploracja danych: pogłębianie, przeszukiwanie i wyławianie
Wykaz tabel Wykaz rysunków Przedmowa 1. Wprowadzenie 1.1. Wprowadzenie do eksploracji danych 1.2. Natura zbiorów danych 1.3. Rodzaje struktur: modele i wzorce 1.4. Zadania eksploracji danych 1.5. Komponenty
gdzie. Dla funkcja ma własności:
Ekonometria, 21 listopada 2011 r. Modele ściśle nieliniowe Funkcja logistyczna należy do modeli ściśle nieliniowych względem parametrów. Jest to funkcja jednej zmiennej, zwykle czasu (t). Dla t>0 wartośd
WYKŁAD 3. Klasyfikacja: modele probabilistyczne
Wrocław University of Technology WYKŁAD 3 Klasyfikacja: modele probabilistyczne Maciej Zięba Politechnika Wrocławska Klasyfikacja Klasyfikacja (ang. Classification): Dysponujemy obserwacjami z etykietami
Eksploracja danych - wykład IV
- wykład 1/41 wykład - wykład Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska 27 października 2016 - wykład 2/41 wykład 1 2 3 4 5 - wykład 3/41 CRISP-DM - standaryzacja wykład
SAS wybrane elementy. DATA MINING Część III. Seweryn Kowalski 2006
SAS wybrane elementy DATA MINING Część III Seweryn Kowalski 2006 Algorytmy eksploracji danych Algorytm eksploracji danych jest dobrze zdefiniowaną procedurą, która na wejściu otrzymuje dane, a na wyjściu
Ćwiczenie 6 - Hurtownie danych i metody eksploracje danych. Regresja logistyczna i jej zastosowanie
Ćwiczenie 6 - Hurtownie danych i metody eksploracje danych Regresja logistyczna i jej zastosowanie Model regresji logistycznej jest budowany za pomocą klasy Logistic programu WEKA. Jako danych wejściowych
Stanisław Cichocki Natalia Nehrebecka. Wykład 7
Stanisław Cichocki Natalia Nehrebecka Wykład 7 1 1. Metoda Największej Wiarygodności MNW 2. Założenia MNW 3. Własności estymatorów MNW 4. Testowanie hipotez w MNW 2 1. Metoda Największej Wiarygodności
TEORETYCZNE PODSTAWY INFORMATYKI
1 TEORETYCZNE PODSTAWY INFORMATYKI WFAiS UJ, Informatyka Stosowana I rok studiów, I stopień Wykład 16 2 Data Science: Uczenie maszynowe Uczenie maszynowe: co to znaczy? Metody Regresja Klasyfikacja Klastering
Klasyfikatory: k-nn oraz naiwny Bayesa. Agnieszka Nowak Brzezińska Wykład IV
Klasyfikatory: k-nn oraz naiwny Bayesa Agnieszka Nowak Brzezińska Wykład IV Naiwny klasyfikator Bayesa Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną
Prawdopodobieństwo i statystyka
Wykład XV: Zagadnienia redukcji wymiaru danych 2 lutego 2015 r. Standaryzacja danych Standaryzacja danych Własności macierzy korelacji Definicja Niech X będzie zmienną losową o skończonym drugim momencie.
Opis efektów kształcenia dla modułu zajęć
Nazwa modułu: Metody eksploracji danych Rok akademicki: 2015/2016 Kod: OWT-1-607-s Punkty ECTS: 4 Wydział: Odlewnictwa Kierunek: Wirtotechnologia Specjalność: - Poziom studiów: Studia I stopnia Forma i
Analiza niepewności pomiarów
Teoria pomiarów Analiza niepewności pomiarów Zagadnienia statystyki matematycznej Dr hab. inż. Paweł Majda www.pmajda.zut.edu.pl Podstawy statystyki matematycznej Histogram oraz wielobok liczebności zmiennej
Projekt Sieci neuronowe
Projekt Sieci neuronowe Chmielecka Katarzyna Gr. 9 IiE 1. Problem i dane Sieć neuronowa miała za zadanie nauczyć się klasyfikować wnioski kredytowe. W projekcie wykorzystano dane pochodzące z 110 wniosków
Ontogeniczne sieci neuronowe. O sieciach zmieniających swoją strukturę
Norbert Jankowski Ontogeniczne sieci neuronowe O sieciach zmieniających swoją strukturę Warszawa 2003 Opracowanie książki było wspierane stypendium Uniwersytetu Mikołaja Kopernika Spis treści Wprowadzenie
Matematyka finansowa 03.10.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVIII Egzamin dla Aktuariuszy z 3 października 2011 r.
Komisja Egzaminacyjna dla Aktuariuszy LVIII Egzamin dla Aktuariuszy z 3 października 2011 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut
Elementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa
Spis treści Elementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa Romuald Kotowski Katedra Informatyki Stosowanej PJWSTK 2009 Spis treści Spis treści 1 Wstęp Bardzo często interesujący
Rozkłady statystyk z próby
Rozkłady statystyk z próby Rozkłady statystyk z próby Przypuśćmy, że wykonujemy serię doświadczeń polegających na 4 krotnym rzucie symetryczną kostką do gry, obserwując liczbę wyrzuconych oczek Nr kolejny
Komputerowa Analiza Danych Doświadczalnych
Komputerowa Analiza Danych Doświadczalnych dr inż. Adam Kisiel kisiel@if.pw.edu.pl pokój 117b (12b) 1 Materiały do wykładu Transparencje do wykładów: http://www.if.pw.edu.pl/~kisiel/kadd/kadd.html Literatura
Wstęp do sieci neuronowych, wykład 09, Walidacja jakości uczenia. Metody statystyczne.
Wstęp do sieci neuronowych, wykład 09, Walidacja jakości uczenia. Metody statystyczne. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2011-12-06 1 Przykład
Stanisław Cichocki. Natalia Neherebecka. Zajęcia 15-17
Stanisław Cichocki Natalia Neherebecka Zajęcia 15-17 1 1. Binarne zmienne zależne 2. Liniowy model prawdopodobieństwa a) Interpretacja współczynników 3. Probit a) Interpretacja współczynników b) Miary
Ćwiczenia ZPI. Katarzyna Niewińska, ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym 1
Ćwiczenia ZPI 1 W banku A oprocentowanie lokat 4% przy kapitalizacji kwartalnej. W banku B oprocentowanie lokat 4,5% przy kapitalizacji miesięcznej. W banku A ulokowano kwotę 1000 zł. Jaki kapitał należy
Metody systemowe i decyzyjne w informatyce
Metody systemowe i decyzyjne w informatyce Laboratorium MATLAB Zadanie nr 2 Detekcja twarzy autorzy: A. Gonczarek, J.M. Tomczak Cel zadania Celem zadania jest zapoznanie się algorytmem gradientu prostego
BIZNES I RYZYKO NA RYNKU CONSUMER FINANCE
BIZNES I RYZYKO NA RYNKU CONSUMER FINANCE dr Mariusz Cholewa Prezes Zarządu BIK S.A. Grudzień 2016 GRUPA BIK NAJWIĘKSZA BAZA O ZOBOWIĄZANIACH FINANSOWYCH W POLSCE Klienci Indywidualni Przedsiębiorcy Rejestr
Statystyka i eksploracja danych
Wykład XII: Zagadnienia redukcji wymiaru danych 12 maja 2014 Definicja Niech X będzie zmienną losową o skończonym drugim momencie. Standaryzacją zmiennej X nazywamy zmienną losową Z = X EX Var (X ). Definicja