Wstęp do sieci neuronowych, wykład 13-14, Walidacja jakości uczenia. Metody statystyczne.
|
|
- Joanna Marta Romanowska
- 8 lat temu
- Przeglądów:
Transkrypt
1 Wstęp do sieci neuronowych, wykład 13-14,. Metody statystyczne. M. Czoków, J. Piersa Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Toruń, Poland
2 1 Przykład Przeuczenie sieci 2 Problem Walidacja prosta Walidacja krzyżowa Leave One Out 3 Eksperyment myślowy Błędy pierwszego i drugiego rodzaju 4 Regresja liniowa prosta Regresja liniowa wielomian stopnia d
3 Przykład Przeuczenie sieci 1 Przykład Przeuczenie sieci 2 Problem Walidacja prosta Walidacja krzyżowa Leave One Out 3 Eksperyment myślowy Błędy pierwszego i drugiego rodzaju 4 Regresja liniowa prosta Regresja liniowa wielomian stopnia d
4 Przykład Przykład Przeuczenie sieci Rozważmy problem XOR; (Poprawnie) nauczona sieć daje poprawną odpowiedź na wszystkich 4 przykładach, Tablica haszująca da ten sam efekt bez zaawansowanej teorii i przy porównywalnym (albo i mniejszym) koszcie pamięciowym, Ale co się stanie gdy zapytamy się o klasyfikację punktu (1.3, 0.5)?
5 Przykład Przykład Przeuczenie sieci Co się stanie gdy zapytamy się o klasyfikację punktu (1.3, 0.5)? Tablica haszująca: (zależnie od wybranego języka) ArrayIndexOutOfBoundsException, Sieć neuronowa zwróci (jakąś) odpowiedź dla każdego z punktów na płaszczyźnie, np +1 Od czego zależy odpowiedź?
6 Wnioski Przykład Przeuczenie sieci ucząc sieć neuronową nie chcemy w zbiorze treningowym każdej możliwej wartości jaka może paść, chcemy reprezentatywną próbkę przestrzeni o jaką sieć będzie pytana podczas normalnego działania,
7 Przykład Przeuczenie sieci Co to jest reprezentatywna próbka? Co autor może mieć na myśli:
8 Przykład Przeuczenie sieci Co to jest reprezentatywna próbka? Co sieć może z tego zrozumieć:
9 Przykład Przeuczenie sieci jest zdolnością sieci do porawnej klasyfikacji danych, na których sieć nie była uczona.
10 Przykład Przeuczenie sieci Dane uczące:
11 Przykład Przeuczenie sieci Sieć niedouczona:
12 Przykład Przeuczenie sieci Sieć dobrze nauczona:
13 Przykład Przeuczenie sieci Sieć przeuczona:
14 Przeuczenie sieci Przykład Przeuczenie sieci przeuczenie sieci jest sytuacją gdy sieć uczy się przykładów na pamięć, zdarza się to gdy sieć ma zbyt wiele punktów swobody (za dużo neuronów do nauczenia w porównaniu do skomplikowania problemu i ilości danych), przeuczona sieć traci możliwości generalizacji.
15 Systuacja ekstremalna Przykład Przeuczenie sieci Dane uczące:
16 Systuacja ekstremalna Przykład Przeuczenie sieci Wewnętrzna reprezentacja
17 Problem Walidacja prosta Walidacja krzyżowa Leave One Out 1 Przykład Przeuczenie sieci 2 Problem Walidacja prosta Walidacja krzyżowa Leave One Out 3 Eksperyment myślowy Błędy pierwszego i drugiego rodzaju 4 Regresja liniowa prosta Regresja liniowa wielomian stopnia d
18 Przypomnienie Problem Walidacja prosta Walidacja krzyżowa Leave One Out Dana jest próbka losowa x 1,..., x n wartości, losowanych niezależnie z rozkładu X. Średnia z próby definiowana jest jako x = n i=1 x i n Średnia jest (mocno) zgodnym estymatorem wartości oczekiwanej rozkładu X (o ile EX istnieje!).
19 Przypomnienie Problem Walidacja prosta Walidacja krzyżowa Leave One Out Dana jest próbka losowa x 1,..., x n wartości, losowanych niezależnie z rozkładu X. Estymator wariancji (o ile rozkład X posiada wariancję!): ˆσ 2 = 1 n 1 n (x i x) 2 i=1 Estymator odchylenia standardowego: ˆσ = 1 n (x i x) n 1 2 i=1
20 Przypomnienie Problem Walidacja prosta Walidacja krzyżowa Leave One Out Dana jest próbka losowa x 1,..., x n wartości, losowanych niezależnie z rozkładu X. Medianą próbki losowej x i1,..., x in będzie tą próbką po posortowaniu. Mediana jest zdefiniowana jako: jeżeli n jest nieparzyste x i(n+1/2) (element na samym środku posortowanej listy), jeżeli n jest parzyste x i n/2 +x in/2+1 2 (średnia dwóch środkowych elementów)
21 Zagadnienie Problem Walidacja prosta Walidacja krzyżowa Leave One Out Dane nych będzie zbiór punktów uczących wraz z poprawnymi odpowiedziami, Stosując poznane metody skonstruowana i nauczona została sieć neuronowa, Chcemy ocenić jakość klasyfikacji i generalizacji uzyskanej sieci.
22 Proste rozwiązanie Problem Walidacja prosta Walidacja krzyżowa Leave One Out Po nauczeniu sieci sprawdzamy ile z przykładów jest klasyfikowanych poprawnie, Obliczamy ilość wszystkich przykładów, Przypisujemy: jakość uczenia := ilość przykładów sklasyfikowanych poprawnie ilość wszystkich przykładów
23 Proste rozwiązanie Problem Walidacja prosta Walidacja krzyżowa Leave One Out Powyższe rozwiązanie jest aż za proste! powyższa metoda nie mówi nic o zachowaniu się sieci na danych, których nie widziała, test preferuje uczenie się danych na pamięć, ignoruje generalizację, zaletą jest to, że maksymalnie wykorzystuje cały dostępny zestaw danych do uczenia.
24 Walidacja prosta Problem Walidacja prosta Walidacja krzyżowa Leave One Out dane uczące są losowo dzielone na dwa rozłączne zbiory: próbkę uczącą U, próbkę testową T, sieć jest uczona za pomocą próbki uczącej, jakość sieci jest badana tylko za pomocą próbki testowej jakość := ilość przykładów T sklasyfikowanych poprawnie ilość wszystkich przykładów w T
25 Walidacja prosta Problem Walidacja prosta Walidacja krzyżowa Leave One Out
26 Walidacja prosta Problem Walidacja prosta Walidacja krzyżowa Leave One Out Uwagi i niebezpieczeństwa: czasami na wynik większy wpływ ma stosunek zaimplementowany algorytm, U U T, niż rozsądnym minimum dla wielkości U jest około 1 4 całego zbioru, z drugiej strony U nie powinno być większe niż 9 10 całego zbioru, podając wynik walidacji zawsze należy podać proporcje w jakich podzielono zbiór, mamy informację o możliwości generalizacji, ale algorytm uczenia sieci korzystał tylko z ułamka dostępnej wiedzy,
27 k-krotna walidacja krzyżowa Problem Walidacja prosta Walidacja krzyżowa Leave One Out Ang. k-fold cross-validation dane uczące są losowo dzielone na k rozłącznych zbiorów: T 1,..., T k, zbiory powinny być równoliczne (lub różnić się o maksymalnie 1 element, jeżeli nie da się podzielić dokładnie), dla i = 1...k powtarzamy uczymy sieć na zbiorze uczącym T 1...T i 1 T i+1 T k, testujemy tak nauczoną sieć na danych T i (na tych danych sieć nie była uczona), zapamiętujemy rezultat jako r i zależnie od ilości miejsca podajemy wszystkie rezultaty r i, lub przynajmniej ich średnią, medianę, minimum, maksimum i odchylenie standardowe,
28 Walidacja krzyżowa Problem Walidacja prosta Walidacja krzyżowa Leave One Out
29 Problem Walidacja prosta Walidacja krzyżowa Leave One Out k-razy dwukrotna walidacja krzyżowa Ang. k-times 2-fold cross-validation odmiana walidacji krzyżowej, dla i = 1...k powtarzamy: wykonujemy 2-krotną walidację, za każdym razem losujemy zbiory treningowy i testowy od nowa, zapamiętujemy wyniki r i1 r i2 (po dwa na każdą iterację), zwracamy statystyki uzyskanych wyników,
30 Leave One Out Problem Walidacja prosta Walidacja krzyżowa Leave One Out odmiana walidacji krzyżowej, w której k = ilość elementów w T, dla i = 1...n powtarzamy: uczymy sieć na zbiorze uczącym T \T i, testujemy sieć na pozostałym przykładzie T i, zapamiętujemy wynik r i (będzie on albo +1, albo 0), obliczamy średnią i odchylenie standardowe wyników, można stosować w przypadku małej ilości danych w zbiorze T.
31 Eksperyment myślowy Błędy pierwszego i drugiego rodzaju 1 Przykład Przeuczenie sieci 2 Problem Walidacja prosta Walidacja krzyżowa Leave One Out 3 Eksperyment myślowy Błędy pierwszego i drugiego rodzaju 4 Regresja liniowa prosta Regresja liniowa wielomian stopnia d
32 Błędy i błędy Eksperyment myślowy Błędy pierwszego i drugiego rodzaju jeżeli przyjmowana klasyfikacja jest binarna to możemy się pomylić na dwa sposoby: możemy przypadek, który powinien być prawdziwy, ocenić jako fałszywy, (ang. false negative error) możemy przypadek fałszywy ocenić jako prawdziwy (ang. false positive), czasami oba typy błędów są jednakowo złe...
33 Przykład Eksperyment myślowy Błędy pierwszego i drugiego rodzaju egzamin z przedmiotu (np. WSN) powinien testować wiedzę zdających jeżeli zdający zna materiał i dostał ocenę pozytywną, to egzaminator poprawnie ocenił wiedzę, jeżeli zdający nie zna materiału i nie zaliczył, to również ocena jest poprawna, jeżeli zdający umiał, ale mimo tego nie zaliczył, to egzaminator popełnił błąd (false negative), jeżeli zdające nie umiał a zaliczył, to egzaminator popełnił dramatyczny błąd (false positive). ponieważ zawsze przysługuje egzamin poprawkowy, to błędna odpowiedź pozytywna jest znacznie gorsza (w tym przypadku)...
34 Błędy pierwszego i drugiego rodzaju Eksperyment myślowy Błędy pierwszego i drugiego rodzaju klasyfikacja pozytywna klasyfikacja negatywna faktyczny stan poprawna odpowiedź false negative jest pozytywny true positive (błąd II-go rodzaju) faktyczny stan false positive poprawna odpowiedź jest negatywny (błąd I-go rodzaju) true negative
35 Bardziej życiowe przykłady Eksperyment myślowy Błędy pierwszego i drugiego rodzaju filtr antyspamowy, kontrola bezpieczeństwa na lotnisku, diagnoza lekarska, diagnoza usterek technicznych,...
36 Wrażliwość i specyficzność Eksperyment myślowy Błędy pierwszego i drugiego rodzaju wrażliwość testu (ang. sensitivity) jest odsetkiem poprawnych odpowiedzi wśród poprawnych przypadków, test o wysokiej wrażliwości popełnia mało błędów II-go rodzaju TPR = true positives positives specyficzność testu (ang. specificity) jest odsetkiem poprawnych odpowiedzi wśród negatywnych przypadków, test o specyficzności popełnia mało błędów I-go rodzaju TNR = true negatives negatives
37 Wrażliwość i specyficzność Eksperyment myślowy Błędy pierwszego i drugiego rodzaju stuprocentową wrażliwość da się łatwo osiągnąć odpowiadając tak na każdy przypadek, podobnie stuprocentową specyficzność łatwo osiągnie bardzo asertywny test, wysokie oba wskaźniki są cechą dobrych testów (co oznacza: trudne do osiągnięcia), jeżeli projektując test zadany jest cel (np. unikanie fałszywych alarmów), to szukamy najlepszego kompromisu kontrolując ważniejszą statystykę,
38 Reciever Operation Characteristic Eksperyment myślowy Błędy pierwszego i drugiego rodzaju Funkcja wrażliwości testu w zależności od progu przyjmowania odpowiedzi:
39 Regresja liniowa prosta Regresja liniowa wielomian stopnia d 1 Przykład Przeuczenie sieci 2 Problem Walidacja prosta Walidacja krzyżowa Leave One Out 3 Eksperyment myślowy Błędy pierwszego i drugiego rodzaju 4 Regresja liniowa prosta Regresja liniowa wielomian stopnia d
40 Co robić jeżeli wyniki są ciągłe? Regresja liniowa prosta Regresja liniowa wielomian stopnia d błędy można mierzyć jako odległość uzyskanego wyniku od oczekiwanego: ERR = E(t) O(t) t lub kwadrat odległości ERR = t (E(t) O(t)) 2
41 Co robić jeżeli wyniki są ciągłe? Regresja liniowa prosta Regresja liniowa wielomian stopnia d błędy można mierzyć jako odległość uzyskanego wyniku od oczekiwanego: ERR = E(t) O(t) t lub kwadrat odległości ERR = t (E(t) O(t)) 2 w przypadku wielowymiarowym dodatkowo suma po współrzędnych ERR = (E i (t) O i (t)) 2 t im mniejszy błąd tym lepsza klasyfikacja i
42 Co robić jeżeli wyniki są ciągłe? Regresja liniowa prosta Regresja liniowa wielomian stopnia d im więcej elementów w zbiorze, tym większy błąd nawet dla dobrej sieci, uśrednimy zatem wyniki: ERR = 1 n n (E(t i ) O(t i )) 2 i=1 n ilość przykładów w zbiorze
43 Regresja liniowa prosta Regresja liniowa wielomian stopnia d Regresja liniowa / Metoda najmniejszych kwadratów danych mamy n punktów na R 2 : (x 1, y 1 ),..., (x n, y n ) chcemy znaleźć równanie prostej y = ax + b przybliżającej te punkty
44 Regresja liniowa prosta Regresja liniowa wielomian stopnia d Regresja liniowa / Metoda najmniejszych kwadratów danych mamy n punktów na R 2 : (x 1, y 1 ),..., (x n, y n ) chcemy znaleźć równanie prostej y = ax + b przybliżającej te punkty idea: znajdziemy równanie prostej f, która minimalizuje odległość od tych punktów n (f (x i ) y i ) 2 i=1
45 Regresja liniowa prosta Regresja liniowa wielomian stopnia d Regresja liniowa / Metoda najmniejszych kwadratów
46 Regresja liniowa prosta Regresja liniowa wielomian stopnia d Regresja liniowa / Metoda najmniejszych kwadratów postać prostej f (x) = ax + b błąd E(a, b) = i (f (x i) y i ) 2 = i (ax i + b y i ) 2
47 Regresja liniowa prosta Regresja liniowa wielomian stopnia d Regresja liniowa / Metoda najmniejszych kwadratów postać prostej f (x) = ax + b błąd E(a, b) = i (f (x i) y i ) 2 = i (ax i + b y i ) 2 błąd chcemy minimalizować więc liczymy pochodne po a i po b E a = i E b = i (ax i + b y i ) 2 a (ax i + b y i ) 2 b
48 Regresja liniowa Regresja liniowa prosta Regresja liniowa wielomian stopnia d E a = i i (ax i + b y i ) 2 2(ax i + b y i ) (ax i + b y i ) a a 2(ax i + b y i )x i = 2(a i i x 2 i + b i x i i x i y i ) =
49 Regresja liniowa Regresja liniowa prosta Regresja liniowa wielomian stopnia d E a = i Podobnie E b = i i i (ax i + b y i ) 2 2(ax i + b y i ) (ax i + b y i ) a a 2(ax i + b y i )x i = 2(a i (ax i + b y i ) 2 b 2(ax i + b y i )1 = 2(a i i i x 2 i + b i x i i x i y i ) 2(ax i + b y i ) (ax i + b y i ) b x i + b i 1 i y i ) = =
50 Regresja liniowa prosta Regresja liniowa wielomian stopnia d Regresja liniowa / Metoda najmniejszych kwadratów Oznaczmy S 1 = i 1 = n S x = i x i S y = i y i S xy = i x iy i S xx = i x i 2
51 Regresja liniowa prosta Regresja liniowa wielomian stopnia d Regresja liniowa / Metoda najmniejszych kwadratów Nasze równania teraz wyglądają następująco: 2(aS xx + bs x S xy ) = 0 2(aS x + bs 1 S y ) = 0
52 Regresja liniowa prosta Regresja liniowa wielomian stopnia d Regresja liniowa / Metoda najmniejszych kwadratów Nasze równania teraz wyglądają następująco: 2(aS xx + bs x S xy ) = 0 2(aS x + bs 1 S y ) = 0 as xx + bs x = S xy as x + bs 1 = S y
53 Regresja liniowa prosta Regresja liniowa wielomian stopnia d Regresja liniowa / Metoda najmniejszych kwadratów Nasze równania teraz wyglądają następująco: 2(aS xx + bs x S xy ) = 0 2(aS x + bs 1 S y ) = 0 as xx + bs x = S xy as x + bs 1 = S y a = b = n Sxy Sx Sy n S xx S 2 x Sxx Sy Sxy Sx n S xx S 2 x
54 Regresja liniowa prosta Regresja liniowa wielomian stopnia d Regresja liniowa / Metoda najmniejszych kwadratów Jeżeli f (x) = a d x d + a d 1 x d 1 + a 1 x + a 0 błąd E(a, b) = i (f (x i) y i ) 2
55 Regresja liniowa prosta Regresja liniowa wielomian stopnia d Regresja liniowa / Metoda najmniejszych kwadratów Jeżeli f (x) = a d x d + a d 1 x d 1 + a 1 x + a 0 błąd E(a, b) = i (f (x i) y i ) 2 ponownie liczymy pochodne po każdym ze współczynników E a i = j (a d x d j a 1 x 1 j + a 0 y j ) 2 a j dla i = 0...d,
56 Aproksymacja wielomianem st. 2 Regresja liniowa prosta Regresja liniowa wielomian stopnia d
57 Regresja liniowa prosta Regresja liniowa wielomian stopnia d Regresja liniowa / Metoda najmniejszych kwadratów E a i = j (a d x d j a 1 x 1 j + a 0 y j ) (ad x d j a 0 y j ) a j dla i = 0...d,
58 Regresja liniowa prosta Regresja liniowa wielomian stopnia d Regresja liniowa / Metoda najmniejszych kwadratów E a i = j (a d x d j a 1 x 1 j + a 0 y j ) (ad x d j a 0 y j ) a j dla i = 0...d, E a i = j (a d x d j a 1 x 1 j + a 0 y j ) x i j dla i = 0...d,
59 Regresja liniowa prosta Regresja liniowa wielomian stopnia d Regresja liniowa / Metoda najmniejszych kwadratów E a i = j (a d x d j a 1 x 1 j + a 0 y j ) (ad x d j a 0 y j ) a j dla i = 0...d, E a i = j (a d x d j a 1 x 1 j + a 0 y j ) x i j dla i = 0...d, E = a d a i j x d+i j a 1 j x 1+i j + a 0 xj i j j y j x i j = 0
60 Regresja liniowa prosta Regresja liniowa wielomian stopnia d Regresja liniowa / Metoda najmniejszych kwadratów Oznaczmy: S x k = j x k j S yx k = j y j x k j S 1 = j 1
61 Regresja liniowa prosta Regresja liniowa wielomian stopnia d Regresja liniowa / Metoda najmniejszych kwadratów Otrzymujemy układ równań: S x 2d S x 2d 1... S x d+1 S x d S x 2d 1 S x 2d 2... S x d S x d 1.. S x d S x d 1... S x 1 S x 0 a n a n 1. a 0 = S yx d S yx d 1. S yx 0
62 Regresja liniowa prosta Regresja liniowa wielomian stopnia d Aproksymacja wielomianem zbyt wysokiego stopnia dla wysokich stopni wielomianu d i złośliwych danych problem może być źle uwarunkowany (np. w danych jest para (x i, y i )(x j, y j ) gdzie x i jest dość bliski x j, a odpowiadające im y znacznie się różnią), wielomian trafia idealnie (niemal idealnie, jeżeli d < n 1) w każdy z punktów uczących, ale ni oddaje tego, co się dzieje poza nimi, jeżeli d n (ilość danych), to prostszym rozwiązaniem jest interpolacja wielomianowa Lagrange a.
63 Regresja liniowa prosta Regresja liniowa wielomian stopnia d Aproksymacja wielomianem zbyt wysokiego stopnia
Wstęp do sieci neuronowych, wykład 09, Walidacja jakości uczenia. Metody statystyczne.
Wstęp do sieci neuronowych, wykład 09, Walidacja jakości uczenia. Metody statystyczne. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2011-12-06 1 Przykład
Wst p do sieci neuronowych, wykªad 06, Walidacja jako±ci uczenia. Metody statystyczne.
Wst p do sieci neuronowych, wykªad 06, Walidacja jako±ci uczenia. Metody statystyczne. Maja Czoków, Jarosªaw Piersa Wydziaª Matematyki i Informatyki, Uniwersytet Mikoªaja Kopernika 2012-11-21 Projekt pn.
Stan dotychczasowy. OCENA KLASYFIKACJI w diagnostyce. Metody 6/10/2013. Weryfikacja. Testowanie skuteczności metody uczenia Weryfikacja prosta
Stan dotychczasowy OCENA KLASYFIKACJI w diagnostyce Wybraliśmy metodę uczenia maszynowego (np. sieć neuronowa lub drzewo decyzyjne), która będzie klasyfikować nieznane przypadki Na podzbiorze dostępnych
Jakość uczenia i generalizacja
Jakość uczenia i generalizacja Dokładność uczenia Jest koncepcją miary w jakim stopniu nasza sieć nauczyła się rozwiązywać określone zadanie Dokładność mówi na ile nauczyliśmy się rozwiązywać zadania które
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2011-10-11 1 Modelowanie funkcji logicznych
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2012-10-10 Projekt pn. Wzmocnienie
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa, Andrzej Rutkowski Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2018-10-15 Projekt
WYKŁAD 7. Testowanie jakości modeli klasyfikacyjnych metodyka i kryteria
Wrocław University of Technology WYKŁAD 7 Testowanie jakości modeli klasyfikacyjnych metodyka i kryteria autor: Maciej Zięba Politechnika Wrocławska Testowanie modeli klasyfikacyjnych Dobór odpowiedniego
Elementy modelowania matematycznego
Elementy modelowania matematycznego Modelowanie algorytmów klasyfikujących. Podejście probabilistyczne. Naiwny klasyfikator bayesowski. Modelowanie danych metodą najbliższych sąsiadów. Jakub Wróblewski
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA WYKŁAD 4. UCZENIE SIĘ INDUKCYJNE Częstochowa 24 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska WSTĘP Wiedza pozyskana przez ucznia ma charakter odwzorowania
Wstęp do sieci neuronowych, wykład 03 Warstwy RBF, jednostka Adaline.
Wstęp do sieci neuronowych, wykład 3 Warstwy, jednostka Adaline. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 211-1-18 1 Pomysł Przykłady Zastosowanie 2
9. Praktyczna ocena jakości klasyfikacji
Algorytmy rozpoznawania obrazów 9. Praktyczna ocena jakości klasyfikacji dr inż. Urszula Libal Politechnika Wrocławska 2015 1 1. Zbiór uczacy i zbiór testowy 1. Zbiór uczacy służy do konstrukcji (treningu)
Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki
Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Spis treści I. Wzory ogólne... 2 1. Średnia arytmetyczna:... 2 2. Rozstęp:... 2 3. Kwantyle:... 2 4. Wariancja:... 2 5. Odchylenie standardowe:...
Idea. θ = θ 0, Hipoteza statystyczna Obszary krytyczne Błąd pierwszego i drugiego rodzaju p-wartość
Idea Niech θ oznacza parametr modelu statystycznego. Dotychczasowe rozważania dotyczyły metod estymacji tego parametru. Teraz zamiast szacować nieznaną wartość parametru będziemy weryfikowali hipotezę
Narzędzia statystyczne i ekonometryczne. Wykład 1. dr Paweł Baranowski
Narzędzia statystyczne i ekonometryczne Wykład 1 dr Paweł Baranowski Informacje organizacyjne Wydział Ek-Soc, pok. B-109 pawel@baranowski.edu.pl Strona: baranowski.edu.pl (w tym materiały) Konsultacje:
Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16
Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego
METODY INŻYNIERII WIEDZY
METODY INŻYNIERII WIEDZY WALIDACJA KRZYŻOWA dla ZAAWANSOWANEGO KLASYFIKATORA KNN ĆWICZENIA Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej
Weryfikacja hipotez statystycznych
Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta
( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie:
ma postać y = ax + b Równanie regresji liniowej By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : xy b = a = b lub x Gdzie: xy = też a = x = ( b ) i to dane empiryczne, a ilość
Klasyfikacja LDA + walidacja
Klasyfikacja LDA + walidacja Dr hab. Izabela Rejer Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Plan wykładu 1. Klasyfikator 2. LDA 3. Klasyfikacja wieloklasowa 4. Walidacja
Testowanie modeli predykcyjnych
Testowanie modeli predykcyjnych Wstęp Podczas budowy modelu, którego celem jest przewidywanie pewnych wartości na podstawie zbioru danych uczących poważnym problemem jest ocena jakości uczenia i zdolności
Algorytmy decyzyjne będące alternatywą dla sieci neuronowych
Algorytmy decyzyjne będące alternatywą dla sieci neuronowych Piotr Dalka Przykładowe algorytmy decyzyjne Sztuczne sieci neuronowe Algorytm k najbliższych sąsiadów Kaskada klasyfikatorów AdaBoost Naiwny
Zadania ze statystyki cz. 8 I rok socjologii. Zadanie 1.
Zadania ze statystyki cz. 8 I rok socjologii Zadanie 1. W potocznej opinii pokutuje przekonanie, że lepsi z matematyki są chłopcy niż dziewczęta. Chcąc zweryfikować tę opinię, przeprowadzono badanie w
Egzamin z Metod Numerycznych ZSI, Grupa: A
Egzamin z Metod Numerycznych ZSI, 06.2005. Grupa: A Nazwisko: Imię: Numer indeksu: Ćwiczenia z: Data: Część 1. Test wyboru, max 36 pkt Zaznacz prawidziwe odpowiedzi literą T, a fałszywe N. Każda prawidłowa
Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r
Statystyka matematyczna Testowanie hipotez i estymacja parametrów Wrocław, 18.03.2016r Plan wykładu: 1. Testowanie hipotez 2. Etapy testowania hipotez 3. Błędy 4. Testowanie wielokrotne 5. Estymacja parametrów
Systemy pomiarowo-diagnostyczne. Metody uczenia maszynowego wykład II 2017/2018
Systemy pomiarowo-diagnostyczne Metody uczenia maszynowego wykład II bogumil.konopka@pwr.edu.pl 2017/2018 Określenie rzeczywistej dokładności modelu Zbiór treningowym vs zbiór testowy Zbiór treningowy
W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych:
W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych: Zmienne losowe skokowe (dyskretne) przyjmujące co najwyżej przeliczalnie wiele wartości Zmienne losowe ciągłe
Testowanie hipotez statystycznych
9 października 2008 ...czyli definicje na rozgrzewkę n-elementowa próba losowa - wektor n zmiennych losowych (X 1,..., X n ); intuicyjnie: wynik n eksperymentów realizacja próby (X 1,..., X n ) w ω Ω :
Klasyfikator liniowy Wstęp Klasyfikator liniowy jest najprostszym możliwym klasyfikatorem. Zakłada on liniową separację liniowy podział dwóch klas między sobą. Przedstawia to poniższy rysunek: 5 4 3 2
Weryfikacja hipotez statystycznych. KG (CC) Statystyka 26 V / 1
Weryfikacja hipotez statystycznych KG (CC) Statystyka 26 V 2009 1 / 1 Sformułowanie problemu Weryfikacja hipotez statystycznych jest drugą (po estymacji) metodą uogólniania wyników uzyskanych w próbie
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 5
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 5 Analiza korelacji - współczynnik korelacji Pearsona Cel: ocena współzależności między dwiema zmiennymi ilościowymi Ocenia jedynie zależność liniową. r = cov(x,y
Egzamin z Metod Numerycznych ZSI, Egzamin, Gr. A
Egzamin z Metod Numerycznych ZSI, 06.2007. Egzamin, Gr. A Imię i nazwisko: Nr indeksu: Section 1. Test wyboru, max 33 pkt Zaznacz prawidziwe odpowiedzi literą T, a fałszywe N. Każda prawidłowa odpowiedź
Wybór modelu i ocena jakości klasyfikatora
Wybór modelu i ocena jakości klasyfikatora Błąd uczenia i błąd testowania Obciążenie, wariancja i złożoność modelu (klasyfikatora) Dekompozycja błędu testowania Optymizm Estymacja błędu testowania AIC,
Stanisław Cichocki. Natalia Nehrebecka. Wykład 9
Stanisław Cichocki Natalia Nehrebecka Wykład 9 1 1. Dodatkowe założenie KMRL 2. Testowanie hipotez prostych Rozkład estymatora b Testowanie hipotez prostych przy użyciu statystyki t 3. Przedziały ufności
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA Powtórka Powtórki Kowiariancja cov xy lub c xy - kierunek zależności Współczynnik korelacji liniowej Pearsona r siła liniowej zależności Istotność
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 7
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 7 Analiza korelacji - współczynnik korelacji Pearsona Cel: ocena współzależności między dwiema zmiennymi ilościowymi Ocenia jedynie zależność liniową. r = cov(x,y
Systemy pomiarowo-diagnostyczne. Metody uczenia maszynowego wykład III 2016/2017
Systemy pomiarowo-diagnostyczne Metody uczenia maszynowego wykład III bogumil.konopka@pwr.edu.pl 2016/2017 Wykład III - plan Regresja logistyczna Ocena skuteczności klasyfikacji Macierze pomyłek Krzywe
Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl
Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący
Kolokwium ze statystyki matematycznej
Kolokwium ze statystyki matematycznej 28.05.2011 Zadanie 1 Niech X będzie zmienną losową z rozkładu o gęstości dla, gdzie 0 jest nieznanym parametrem. Na podstawie pojedynczej obserwacji weryfikujemy hipotezę
Wstęp do sieci neuronowych, wykład 04. Skierowane sieci neuronowe. Algorytmy konstrukcyjne dla sieci skierowanych
Wstęp do sieci neuronowych, wykład 04. Skierowane sieci neuronowe. dla sieci skierowanych Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2011-10-25 1 Motywacja
Wstęp do sieci neuronowych laboratorium 01 Organizacja zajęć. Perceptron prosty
Wstęp do sieci neuronowych laboratorium 01 Organizacja zajęć. Perceptron prosty Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2012-10-03 Projekt pn. Wzmocnienie potencjału
Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji
Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki
Analiza współzależności zjawisk
Analiza współzależności zjawisk Informacje ogólne Jednostki tworzące zbiorowość statystyczną charakteryzowane są zazwyczaj za pomocą wielu cech zmiennych, które nierzadko pozostają ze sobą w pewnym związku.
Zadania ze statystyki cz.8. Zadanie 1.
Zadania ze statystyki cz.8. Zadanie 1. Wykonano pewien eksperyment skuteczności działania pewnej reklamy na zmianę postawy. Wylosowano 10 osobową próbę studentów, których poproszono o ocenę pewnego produktu,
Elementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa
Spis treści Elementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa Romuald Kotowski Katedra Informatyki Stosowanej PJWSTK 2009 Spis treści Spis treści 1 Wstęp Bardzo często interesujący
Sztuczna Inteligencja w medycynie projekt (instrukcja) Bożena Kostek
Sztuczna Inteligencja w medycynie projekt (instrukcja) Bożena Kostek Cel projektu Celem projektu jest przygotowanie systemu wnioskowania, wykorzystującego wybrane algorytmy sztucznej inteligencji; Nabycie
Próbkowanie. Wykład 4 Próbkowanie i rozkłady próbkowe. Populacja a próba. Błędy w póbkowaniu, cd, Przykład 1 (Ochotnicy)
Wykład 4 Próbkowanie i rozkłady próbkowe µ = średnia w populacji, µ=ey, wartość oczekiwana zmiennej Y σ= odchylenie standardowe w populacji, σ =(Var Y) 1/2, pierwiastek kwadratowy wariancji zmiennej Y,
Błędy przy testowaniu hipotez statystycznych. Decyzja H 0 jest prawdziwa H 0 jest faszywa
Weryfikacja hipotez statystycznych Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy populacji, o prawdziwości lub fałszywości którego wnioskuje się na podstawie
ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH
1 ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH WFAiS UJ, Informatyka Stosowana II stopień studiów 2 Wnioskowanie statystyczne dla zmiennych numerycznych Porównywanie dwóch średnich Boot-strapping Analiza
ESTYMACJA BŁĘDU PREDYKCJI I JEJ ZASTOSOWANIA
ESTYMACJA BŁĘDU PREDYKCJI I JEJ ZASTOSOWANIA Jan Mielniczuk Wisła, grudzień 2009 PLAN Błędy predykcji i ich podstawowe estymatory Estymacja błędu predykcji w modelu liniowym. Funkcje kryterialne Własności
Charakterystyki liczbowe (estymatory i parametry), które pozwalają opisać właściwości rozkładu badanej cechy (zmiennej)
Charakterystyki liczbowe (estymatory i parametry), które pozwalają opisać właściwości rozkładu badanej cechy (zmiennej) 1 Podział ze względu na zakres danych użytych do wyznaczenia miary Miary opisujące
STATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE
STATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE 1 W trakcie badania obliczono wartości średniej (15,4), mediany (13,6) oraz dominanty (10,0). Określ typ asymetrii rozkładu. 2 Wymień 3 cechy rozkładu Gauss
Statystyka. Wykład 9. Magdalena Alama-Bućko. 24 kwietnia Magdalena Alama-Bućko Statystyka 24 kwietnia / 34
Statystyka Wykład 9 Magdalena Alama-Bućko 24 kwietnia 2017 Magdalena Alama-Bućko Statystyka 24 kwietnia 2017 1 / 34 Tematyka zajęć: Wprowadzenie do statystyki. Analiza struktury zbiorowości miary położenia
Statystyka matematyczna dla leśników
Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 03/04 Wykład 5 Testy statystyczne Ogólne zasady testowania hipotez statystycznych, rodzaje
Statystyczne Metody Opracowania Wyników Pomiarów
Statystyczne Metody Opracowania Wyników Pomiarów dla studentów ZMIN Teresa Jaworska-Gołąb 2017/18 Co czytać [1] I Pracownia fizyczna, Andrzej Magiera red., Oficyna Wydawnicza IMPULS, Kraków 2006; http://www.1pf.if.uj.edu.pl/materialy/zalecana-literatura
Wprowadzenie do teorii ekonometrii. Wykład 1 Warunkowa wartość oczekiwana i odwzorowanie liniowe
Wprowadzenie do teorii ekonometrii Wykład 1 Warunkowa wartość oczekiwana i odwzorowanie liniowe Zajęcia Wykład Laboratorium komputerowe 2 Zaliczenie EGZAMIN (50%) Na egzaminie obowiązują wszystkie informacje
Wprowadzenie do uczenia maszynowego
Wprowadzenie do uczenia maszynowego Agnieszka Ławrynowicz 12 stycznia 2017 Co to jest uczenie maszynowe? dziedzina nauki, która zajmuje się sprawianiem aby komputery mogły uczyć się bez ich zaprogramowania
Elementy inteligencji obliczeniowej
Elementy inteligencji obliczeniowej Paweł Liskowski Institute of Computing Science, Poznań University of Technology 9 October 2018 1 / 19 Perceptron Perceptron (Rosenblatt, 1957) to najprostsza forma sztucznego
Indukowane Reguły Decyzyjne I. Wykład 8
Indukowane Reguły Decyzyjne I Wykład 8 IRD Wykład 8 Plan Powtórka Krzywa ROC = Receiver Operating Characteristic Wybór modelu Statystyka AUC ROC = pole pod krzywą ROC Wybór punktu odcięcia Reguły decyzyjne
Liczba godzin Punkty ECTS Sposób zaliczenia. ćwiczenia 30 zaliczenie z oceną
Wydział: Zarządzanie i Finanse Nazwa kierunku kształcenia: Finanse i Rachunkowość Rodzaj przedmiotu: podstawowy Opiekun: prof. nadzw. dr hab. Tomasz Kuszewski Poziom studiów (I lub II stopnia): I stopnia
LABORATORIUM Z FIZYKI
LABORATORIUM Z FIZYKI LABORATORIUM Z FIZYKI I PRACOWNIA FIZYCZNA C w Gliwicach Gliwice, ul. Konarskiego 22, pokoje 52-54 Regulamin pracowni i organizacja zajęć Sprawozdanie (strona tytułowa, karta pomiarowa)
Hipotezy statystyczne
Hipotezy statystyczne Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy populacji, o którego prawdziwości lub fałszywości wnioskuje się na podstawie pobranej
Testowanie hipotez statystycznych.
Bioinformatyka Wykład 6 Wrocław, 7 listopada 2011 Temat. Weryfikacja hipotez statystycznych dotyczących proporcji. Test dla proporcji. Niech X 1,..., X n będzie próbą statystyczną z 0-1. Oznaczmy odpowiednio
Liczba godzin Punkty ECTS Sposób zaliczenia. ćwiczenia 16 zaliczenie z oceną
Wydział: Zarządzanie i Finanse Nazwa kierunku kształcenia: Finanse i Rachunkowość Rodzaj przedmiotu: podstawowy Opiekun: prof. nadzw. dr hab. Tomasz Kuszewski Poziom studiów (I lub II stopnia): II stopnia
Rozdział 8. Regresja. Definiowanie modelu
Rozdział 8 Regresja Definiowanie modelu Analizę korelacji można traktować jako wstęp do analizy regresji. Jeżeli wykresy rozrzutu oraz wartości współczynników korelacji wskazują na istniejąca współzmienność
Hipotezy statystyczne
Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy populacji, o którego prawdziwości lub fałszywości wnioskuje się na podstawie pobranej próbki losowej. Hipotezy
Wykład 4. Plan: 1. Aproksymacja rozkładu dwumianowego rozkładem normalnym. 2. Rozkłady próbkowe. 3. Centralne twierdzenie graniczne
Wykład 4 Plan: 1. Aproksymacja rozkładu dwumianowego rozkładem normalnym 2. Rozkłady próbkowe 3. Centralne twierdzenie graniczne Przybliżenie rozkładu dwumianowego rozkładem normalnym Niech Y ma rozkład
Wykład 1 Próba i populacja. Estymacja parametrów z wykorzystaniem metody bootstrap
Wykład 1 Próba i populacja. Estymacja parametrów z wykorzystaniem metody bootstrap Magdalena Frąszczak Wrocław, 21.02.2018r Tematyka Wykładów: Próba i populacja. Estymacja parametrów z wykorzystaniem metody
KORELACJE I REGRESJA LINIOWA
KORELACJE I REGRESJA LINIOWA Korelacje i regresja liniowa Analiza korelacji: Badanie, czy pomiędzy dwoma zmiennymi istnieje zależność Obie analizy się wzajemnie przeplatają Analiza regresji: Opisanie modelem
Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski
Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski Zadanie 1 Eksploracja (EXAMINE) Informacja o analizowanych danych Obserwacje Uwzględnione Wykluczone Ogółem
Oznacza to, że chcemy znaleźć minimum, a właściwie wartość najmniejszą funkcji
Wykład 11. Metoda najmniejszych kwadratów Szukamy zależności Dane są wyniki pomiarów dwóch wielkości x i y: (x 1, y 1 ), (x 2, y 2 ),..., (x n, y n ). Przypuśćmy, że nanieśliśmy je na wykres w układzie
166 Wstęp do statystyki matematycznej
166 Wstęp do statystyki matematycznej Etap trzeci realizacji procesu analizy danych statystycznych w zasadzie powinien rozwiązać nasz zasadniczy problem związany z identyfikacją cechy populacji generalnej
Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1.
tel. 44 683 1 55 tel. kom. 64 566 811 e-mail: biuro@wszechwiedza.pl Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: gdzie: y t X t y t = 1 X 1
Testowanie hipotez statystycznych.
Bioinformatyka Wykład 9 Wrocław, 5 grudnia 2011 Temat. Test zgodności χ 2 Pearsona. Statystyka χ 2 Pearsona Rozpatrzmy ciąg niezależnych zmiennych losowych X 1,..., X n o jednakowym dyskretnym rozkładzie
STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2
STATYSTYKA Rafał Kucharski Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 Zależność przyczynowo-skutkowa, symptomatyczna, pozorna (iluzoryczna), funkcyjna stochastyczna
ALGORYTM RANDOM FOREST
SKRYPT PRZYGOTOWANY NA ZAJĘCIA INDUKOWANYCH REGUŁ DECYZYJNYCH PROWADZONYCH PRZEZ PANA PAWŁA WOJTKIEWICZA ALGORYTM RANDOM FOREST Katarzyna Graboś 56397 Aleksandra Mańko 56699 2015-01-26, Warszawa ALGORYTM
TESTOWANIE HIPOTEZ STATYSTYCZNYCH Hipotezą statystyczną nazywamy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas cechy.
TESTOWANIE HIPOTEZ STATYSTYCZNYCH Hipotezą statystyczną nazywamy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas cechy. Hipotezy dzielimy na parametryczne i nieparametryczne. Zajmiemy
Elementy statystyki wielowymiarowej
Wnioskowanie_Statystyczne_-_wykład Spis treści 1 Elementy statystyki wielowymiarowej 1.1 Kowariancja i współczynnik korelacji 1.2 Macierz kowariancji 1.3 Dwumianowy rozkład normalny 1.4 Analiza składowych
Statystyczne Metody Opracowania Wyników Pomiarów
Statystyczne Metody Opracowania Wyników Pomiarów dla studentów Ochrony Środowiska Teresa Jaworska-Gołąb 2017/18 Co czytać [1] H. Szydłowski, Pracownia fizyczna, PWN, Warszawa 1999. [2] A. Zięba, Analiza
Statystyka opisowa. Wykład V. Regresja liniowa wieloraka
Statystyka opisowa. Wykład V. e-mail:e.kozlovski@pollub.pl Spis treści 1 Prosta regresji cechy Y względem cech X 1,..., X k. 2 3 Wyznaczamy zależność cechy Y od cech X 1, X 2,..., X k postaci Y = α 0 +
Wykład 3 Hipotezy statystyczne
Wykład 3 Hipotezy statystyczne Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu obserwowanej zmiennej losowej (cechy populacji generalnej) Hipoteza zerowa (H 0 ) jest hipoteza
Typy zmiennych. Zmienne i rekordy. Rodzaje zmiennych. Graficzne reprezentacje danych Statystyki opisowe
Typy zmiennych Graficzne reprezentacje danych Statystyki opisowe Jakościowe charakterystyka przyjmuje kilka możliwych wartości, które definiują klasy Porządkowe: odpowiedzi na pytania w ankiecie ; nigdy,
Wstęp do sieci neuronowych, wykład 03 Warstwy RBF, jednostka ADALINE.
Wstęp do sieci neuronowych, wykład 3 Warstwy, jednostka ADALINE. Maja Czoków, Jarosław Piersa, Andrzej Rutkowski Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 218-1-15/22 Projekt pn.
Metody klasyfikacji danych - część 1 p.1/24
Metody klasyfikacji danych - część 1 Inteligentne Usługi Informacyjne Jerzy Dembski Metody klasyfikacji danych - część 1 p.1/24 Plan wykładu - Zadanie klasyfikacji danych - Przeglad problemów klasyfikacji
Sztuczna Inteligencja Tematy projektów Sieci Neuronowe
PB, 2009 2010 Sztuczna Inteligencja Tematy projektów Sieci Neuronowe Projekt 1 Stwórz projekt implementujący jednokierunkową sztuczną neuronową złożoną z neuronów typu sigmoidalnego z algorytmem uczenia
Psychometria PLAN NAJBLIŻSZYCH WYKŁADÓW. Co wyniki testu mówią nam o samym teście? A. Rzetelność pomiaru testem. TEN SLAJD JUŻ ZNAMY
definicja rzetelności błąd pomiaru: systematyczny i losowy Psychometria Co wyniki testu mówią nam o samym teście? A. Rzetelność pomiaru testem. rozkład X + błąd losowy rozkład X rozkład X + błąd systematyczny
Wykład Centralne twierdzenie graniczne. Statystyka matematyczna: Estymacja parametrów rozkładu
Wykład 11-12 Centralne twierdzenie graniczne Statystyka matematyczna: Estymacja parametrów rozkładu Centralne twierdzenie graniczne (CTG) (Central Limit Theorem - CLT) Centralne twierdzenie graniczne (Lindenberga-Levy'ego)
TESTOWANIE HIPOTEZ Przez hipotezę statystyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas cechy.
TESTOWANIE HIPOTEZ Przez hipotezę statystyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas cechy. Hipotezy dzielimy na parametryczne i nieparametryczne. Zajmiemy
Wstęp do sieci neuronowych, wykład 01 Neuron biologiczny. Model perceptronu prostego.
Wstęp do sieci neuronowych, wykład 01. Model perceptronu prostego. M. Czoków, J. Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2011-10-04 In memoriam prof. dr hab. Tomasz Schreiber
Przedmiotowe Ocenianie Z Matematyki Liceum Ogólnokształcące obowiązuje w roku szkolnym 2016 / 2017
Przedmiotowe Ocenianie Z Matematyki Liceum Ogólnokształcące obowiązuje w roku szkolnym 2016 / 2017 1. Rok szkolny dzieli się na dwa semestry. Każdy semestr kończy się klasyfikacją. 2. Na początku roku
1 Całki funkcji wymiernych
Całki funkcji wymiernych Definicja. Funkcją wymierną nazywamy iloraz dwóch wielomianów. Całka funkcji wymiernej jest więc postaci: W (x) W (x) = an x n + a n x n +... + a x + a 0 b m x m + b m x m +...
Wydział Matematyki. Testy zgodności. Wykład 03
Wydział Matematyki Testy zgodności Wykład 03 Testy zgodności W testach zgodności badamy postać rozkładu teoretycznego zmiennej losowej skokowej lub ciągłej. Weryfikują one stawiane przez badaczy hipotezy
Statystyczne Metody Opracowania Wyników Pomiarów
Statystyczne Metody Opracowania Wyników Pomiarów dla studentów ZMIN Teresa Jaworska-Gołąb 2018/19 Co czytać [1] I Pracownia fizyczna, Andrzej Magiera red., Oficyna Wydawnicza IMPULS, Kraków 2006; http://www.1pf.if.uj.edu.pl/materialy/zalecana-literatura
STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA
STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA Zadanie 0.1 Zmienna losowa X ma rozkład określony funkcją prawdopodobieństwa: x k 0 4 p k 1/3 1/6 1/ obliczyć EX, D X. (odp. 4/3;
WYKŁAD 8 ANALIZA REGRESJI
WYKŁAD 8 ANALIZA REGRESJI Regresja 1. Metoda najmniejszych kwadratów-regresja prostoliniowa 2. Regresja krzywoliniowa 3. Estymacja liniowej funkcji regresji 4. Testy istotności współczynnika regresji liniowej
X Y 4,0 3,3 8,0 6,8 12,0 11,0 16,0 15,2 20,0 18,9
Zadanie W celu sprawdzenia, czy pipeta jest obarczona błędem systematycznym stałym lub zmiennym wykonano szereg pomiarów przy różnych ustawieniach pipety. Wyznacz równanie regresji liniowej, które pozwoli
ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH
1 ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH WFAiS UJ, Informatyka Stosowana II stopień studiów 2 Wnioskowanie statystyczne Czyli jak bardzo jesteśmy pewni że parametr oceniony na podstawie próbki jest
KADD Metoda najmniejszych kwadratów funkcje nieliniowe
Metoda najmn. kwadr. - funkcje nieliniowe Metoda najmniejszych kwadratów Funkcje nieliniowe Procedura z redukcją kroku iteracji Przykłady zastosowań Dopasowanie funkcji wykładniczej Dopasowanie funkcji
Statystyka Matematyczna Anna Janicka
Statystyka Matematyczna Anna Janicka wykład IX, 25.04.2016 TESTOWANIE HIPOTEZ STATYSTYCZNYCH Plan na dzisiaj 1. Hipoteza statystyczna 2. Test statystyczny 3. Błędy I-go i II-go rodzaju 4. Poziom istotności,