Pomiar dyfuzyjności cieplnej mieszanin gazów metodą fal cieplnych
|
|
- Sabina Marszałek
- 6 lat temu
- Przeglądów:
Transkrypt
1 Prace Instytutu Mechaniki Górotworu PAN Tom 18, nr 2, czerwiec 2016, s Instytut Mechaniki Górotworu PAN Pomiar dyfuzyjności cieplnej mieszanin gazów metodą fal cieplnych ELŻBIETA POLESZCZYK, ANDRZEJ RACHALSKI, MAŁGORZATA ZIĘBA Instytut Mechaniki Górotworu PAN; ul Reymonta 26, Kraków Streszczenie W pracy przedstawiona została metoda pomiaru dyfuzyjności cieplnej płynącego gazu przy użyciu metody fal cieplnych. Badania przeprowadzono metodą poruszającej się sondy w nieruchomym gazie, w temperaturze pokojowej, w zakresie prędkości cm/s. Przedstawiono wyniki pomiarów dla powietrza oraz mieszaniny dwutlenku węgla z powietrzem w wybranych stężeniach. Słowa kluczowe: dyfuzyjność cieplna, termoanemometria, metoda fal cieplnych 1. Wprowadzenie Znajomość dyfuzyjności cieplnej gazów ma duże znaczenie praktyczne. Jednym, ze sposobów wyznaczenia eksperymentalnego tej wielkości jest pomiar ciepła właściwego λ, przewodnictwa cieplnego przy stałym ciśnieniu C P i gęstości gazu ρ w danej temperaturze oraz ciśnieniu, a następnie wyliczenie dyfuzyjności ze wzoru definicyjnego: κ(t,p) = λ(t, p)/(ρ(t,p)c P (T,p)). Ponieważ wymaga to przeprowadzenia pomiarów trzech wielkości (dotyczy to zwłaszcza mieszanin gazowych, których dane nie są zamieszczone w tablicach), stosuje się również metody bezpośredniego pomiaru dyfuzyjności. Przeprowadza się je w zamkniętej próbce nieruchomego gazu. Jedną z takich metod pomiaru jest zastosowanie techniki grzanego włókna (transient-wire method) [1], która wykorzystuje zjawisko przekazywania ciepła od nagrzanego cienkiego włókna (o średnicy rzędu kilkunastu mikrometrów) do otaczającego go badanego gazu i polega na pomiarze chwilowej temperatury włókna. Inne metody wykorzystują zjawisko ugięcia fali cieplnej [2,3] oraz interferencji fal cieplnych w komorze rezonansowej wypełnionej badanym gazem [4,5]. Oryginalną ideą jest wykorzystanie rezonansu pomiędzy nadajnikiem fali cieplnej a detektorem połączonych w pętli elektrycznego sprzężenia zwrotnego [6,7]. Przedstawione metody są ciągle ulepszane, zwłaszcza w aspekcie powtarzalności i dokładności pomiarów, gdyż rozbieżności wartości otrzymanych przez różnych autorów sięgają nawet kilkunastu procent. Zagadnienie pomiaru dyfuzyjności temperaturowej w płynącym gazie jest bardziej złożone. Ponieważ dyfuzyjność temperaturową można wyznaczyć wprost przedstawionymi metodami, to pomiar tej wielkości w płynącym gazie może mieć znaczenie praktyczne, w tym sensie, że otrzymujemy obok prędkości przepływu, dodatkową informację o własnościach płynącego gazu. Może to być również wskazówka, że w trakcie pomiaru nastąpiła zmiana składu gazu. Kiełbasa [8] zaproponował metodę pomiaru dyfuzyjności cieplnej płynącego gazu w oparciu o przestrzenny rozkład amplitudy fali cieplnej. Interesującym rozwiązaniem jest zastosowanie metody fal cieplnych do równoczesnego pomiaru prędkości przepływu i dyfuzyjności temperaturowej w scalonym przepływomierzu do pomiaru mikroprzepływów [9]. Korzystając z zaproponowanej przez Rachalskiego metody pomiaru prędkości przepływu za pomocą analizy spektralnej fali cieplnej [10] przeprowadzono wstępne pomiary dyfuzyjności powietrza z zastosowaniem sygnału typu MBS (Multifrequency Binary Sequences) [11]. W dalszym ciągu przedstawiony zostanie zarys metody oraz uzyskane wyniki pomiarów dla powietrza oraz mieszaniny dwutlenku z powietrzem w kilku stężeniach.
2 28 Elżbieta Poleszczyk, Andrzej Rachalski, Małgorzata Zięba 2. Podstawy teoretyczne metody U podstaw zastosowanej metody leży rozwiązanie równania różniczkowego propagacji fali cieplnej w danym medium. Zgodnie z przedstawionym rozwiązaniem [12] zależność różnicy przesunięć fazowych fali cieplnej o częstości kołowej ω i rejestrowanej na detektorach odległych o Δx w gazie płynącym z prędkością V ma postać: 2 2 Vx 1 16 i ii V (1) Zgodnie z metodą przedstawioną uprzednio [10,11], aby wyznaczyć prędkość przepływu gazu, oraz jego dyfuzyjność należy dokonać dekompozycji sygnału na detektorach fali na składowe harmoniczne, a następnie wyznaczyć przesunięcia fazowe poszczególnych harmonicznych. Otrzymany układ równań (1) z dwiema niewiadomymi, to jest prędkością gazu V i dyfuzyjnością cieplną κ na ogół nie da się rozwiązać analitycznie, gdyż z powodu niedokładności pomiaru przesunięcia fazowego może być on sprzeczny. Dlatego rozwiązuje się go metodą estymacji nieliniowej. Wymaga to użycia, co najmniej kilku składowych harmonicznych sygnału. Analiza równania (1) pokazuje, że czułość przesunięcia fazowego na zmianę dyfuzyjności maleje, gdy prędkość przepływu rośnie. Fizycznie odpowiada to sytuacji, gdy dominującym zjawiskiem przenoszenia fali cieplnej jest unoszenie konwekcyjne, a dyfuzję temperaturową można pominąć. Na Rys. 1 przedstawiono obliczoną zależność wartości bezwzględnej pochodnej wyrażenia (1) po prędkości i po dyfuzyjności, dla powietrza w funkcji prędkości przepływu. Do obliczeń przyjęto wartości zbliżone do stosowanych w pomiarach: częstotliwość fali 1 Hz, odległość między detektorami 5 mm, dyfuzyjność 0.2 cm 2 /s. Jak widać, powyżej 20 cm/s czułość przesunięcia fazowego na zmiany dyfuzyjności jest znacznie mniejsza niż na zmiany prędkości. Ponieważ w metodzie estymacji nieliniowej stosujemy metody gradientowe, to przy pewnej niedokładności pomiaru fazy, funkcja celu może osiągać minimum dla wartości dyfuzyjności bardzo odbiegającej od spodziewanej. Nadmienić trzeba, że wartość prędkości przepływu wyznaczona tą metodą jest poprawna w całym zakresie prędkości. Z powyższych rozważań wynika, metoda ta może być zastosowana do pomiaru dyfuzyjności tylko do bardzo małych prędkości przepływu. pochodne fazy V v[cm/s] Rys. 1. Zależność pochodnej przesunięcia fazowego po prędkości oraz dyfuzyjności: Δx = 5 mm, f = 1 Hz, κ = 0.2 cm 2 / 3. Opis i wyniki pomiarów Pomiary dyfuzyjności cieplnej powietrza przeprowadzono metodą poruszającej się sondy w nieruchomym gazie, w temperaturze pokojowej. Opis stanowiska pomiarowego, budowę czujników oraz szczegółowe dane dotyczące przeprowadzonych pomiarów przedstawiono w pracach [13,14]. Zastosowano dwie konfiguracje przestrzenne układu nadajnik-detektor przedstawione na Rys. 2. Na nadajniku fali generowano sygnał prostokątny oraz typu MBS, o częstotliwościach podstawowych odpowiednio 4 oraz 1 Hz. Do wyznaczenia przesunięcia fazowego zastosowano metodę analizy spektralnej sygnałów na de-
3 Pomiar dyfuzyjności cieplnej mieszanin gazów metodą fal cieplnych 29 Rys. 2. Zastosowane konfiguracje przestrzenne układu nadajnik detektor 1.0 sygna prostoktny 2.4 sygna MBS [cm 2 /s] [cm 2 /s] Rys. 3. Wyniki pomiaru dyfuzyjności temperaturowej powietrza w funkcji prędkości przepływu tektorach fali. Układ równań (1) rozwiązywano metodą Levenberga-Marquardta. Na Rys. 3 przedstawiono wyniki pomiaru dyfuzyjności temperaturowej powietrza otrzymane przy użyciu sygnału prostokątnego oraz sygnału MBS. Jak widać, dla najmniejszych prędkości otrzymujemy zbliżone wartości, niezależnie od konfiguracji czujnika i dla obu rodzajów sygnału. Charakterystyczny jest wzrost wyznaczonych wartości, który dla sygnału prostokątnego pojawia się przy prędkości powyżej 40 cm/s, dla sygnału MBS już przy 15 cm/s. Świadczy to o tym, że zastosowany, bardzo uproszczony model propagacji fal temperaturowych w płynącym gazie nie jest kompletny. Rys. 4 przedstawia wyniki pomiarów dyfuzyjności dla różnych stężeń dwutlenku węgla w mieszaninie z powietrzem. Zauważamy podobne przebiegi jak w przypadku powietrza. Szczegółowe dane zamieszczono w Tabeli 1. Zgodnie z różnymi źródłami literaturowymi dyfuzyjność cieplna suchego powietrza wynosi od 0.19 do cm 2 /s [1]. Otrzymane wartości dla prędkości przepływu 5 i 10 cm/s mieszczą się (z jednym wyjątkiem) w tych granicach. Dyfuzyjność temperaturowa dwutlenku węgla w temperaturze pokojowej wynosi ok. 0.1 cm 2 /s [15], a więc jest 2 razy mniejsza niż dyfuzyjność powietrza. Należy oczekiwać, że zmierzona wartość dyfuzyjności mieszaniny powinna zawierać się w tym przedziale i maleć ze wzrostem stężenia dwutlenku węgla. Analizując otrzymane wyniki dla prędkości przepływu 10 i 15 cm/s, widać duży rozrzut otrzymanych wartości. Spowodowane jest to niedokładnością pomiaru, która wynikać może z zaburzeń prędkości i temperatury w obszarze sondy pomiarowej, jak również z fluktuacji stężenia dwutlenku węgla. Tab. 1. Zmierzone wartości dyfuzyjności temperaturowej powietrza i mieszaniny dwutlenku węgla z powietrzem powietrze 13% CO 2 25% CO 2 50% CO 2 Prędkość prostokąt MBS prostokąt przesuwu konfiguracja konfiguracja [cm/s] a c a c a a a
4 30 Elżbieta Poleszczyk, Andrzej Rachalski, Małgorzata Zięba [cm 2 /s] % CO 2 25% CO 2 50% CO Rys. 4. Wyniki pomiaru dyfuzyjności temperaturowej dla różnych stężeń mieszaniny powietrza i CO 2 4. Podsumowanie Uzyskane rezultaty wskazują na możliwość równoczesnego pomiaru prędkości przepływu i dyfuzyjności gazu zaproponowana metodą, dla prędkości przepływu rzędu 10 cm/s. Dla większych prędkości przepływu otrzymane wyniki pomiaru dyfuzyjności (pomijając rozrzut wywołany niedokładnością) wykazują silną tendencję do wzrostu ze wzrostem prędkości. Wskazuje to, że zastosowany model teoretyczny nie jest całkiem poprawny. Dlatego niezbędne jest przeprowadzenie dalszych badań w celu wyjaśnienia przyczyn występujących rozbieżności oraz właściwej modyfikacji modelu teoretycznego. Podziękowania Projekt został sfinansowany ze środków Narodowego Centrum Nauki przyznanych na podstawie decyzji numer DEC-2012/07/B/ST8/03041: Badania przestrzennej propagacji oraz optymalizacja metod generacji, detekcji i analizy fal temperaturowych w aspekcie bezwzględnego pomiaru prędkości przepływu i dyfuzyjności cieplnej gazów. Literatura [1] Shen J., Mandelis A., Ashe T.: Pyroelectric Thermal-Wave Resonant Cavity: A Precision Thermal Diffusivity Sensor for Gases and Vapors. International Journal of Thermophysics, Vol. 19, No 2, [2] Rohling J.H., Shen J., Wang C., Zhou J. Gu C.E.: Application of the Diffraction Theory for Photothermal Defl ection to Measurements of Thermophysical and Mass-diffusion Properties of Gases. Eur. Phys. J. Special Topics 153, , [3] Bertolotti M., Liakhou G.L., Li Voti R., Paoloni S., Sibilia C.: Thermal Wave Resonator: In Situ Investigation by Photothermal Defl ection Technique. International Journal of Thermophysics, Vol. 19, No 2, [4] Sun L., Venart J.E.S, Prasad R.C.: The Thermal Conductivity, Thermal Diffusivity and Heat Capacity of Gaseous Argon. International Journal of Thermophysics, Vol23, No2, [5] Wang C., Mandelis A.: Measurement of Thermal Diffusivity of Air Using Photopyroelectric Interferometry. Review of Scientific Instruments, Vol70, No5, 1999.
5 Pomiar dyfuzyjności cieplnej mieszanin gazów metodą fal cieplnych 31 [6] Kiełbasa J., Rysz j., Smolarski A.Z., Stasicki B.: Bezwzględny pomiar współczynnika przewodnictwa temperaturowego gazów metoda oscylacyjną. V Krajowa Konferencja Metrologii i Budowy Aparatury Pomiarowej, Poznań, [7] Kiełbasa J., Rysz j., Smolarski A.Z., Stasicki B.: The oscillatory anemometer. Proceedings of the DISA Conference held at the University of Leicester, vol. I, 1972, [8] Kiełbasa J.: Wyznaczanie współczynnika dyfuzji cieplnej κ z rozkładu amplitudy fali cieplnej. Prace Instytutu Mechaniki Górotworu PAN, tom15, nr 3-4, [9] van Kuijik J., Lammerinck T.S.J., de Bree H.-E., Elwenspoek M., Fluitman J.H.J.: Multi-parameter dection in fl uid fl ows. Sensors and Actuators A (1995) [10] Rachalski A.; Absolute measurement of low gas fl ow by means of the spectral analysis of the thermal wave. Review of Scientific Instruments 84 (2): , [11] Kęsek D., Rachalski A.: Wykorzystanie sygnału typu MBS do pomiaru prędkości przepływu i dyfuzyjności temperaturowej powietrza w anemometrze z falą cieplną. Przegląd Elektrotechniczny, 90 8/2014. [12] Kiełbasa J.: Fale cieplne w metrologii powolnych przepływów. Wydawnictwo AGH, Kraków [13] Bujalski M.: Stanowisko pomiarowe z modułem liniowym o napędzie serwokrokowym do badania metod pomiaru prędkości przepływu powietrza. Prace Instytutu Mechaniki Górotworu PAN; Tom 16 Nr 3-4: 43-46; [14] Poleszczyk E., Rachalski A., Zięba M.: Optymalizacja konfiguracji przestrzennej układu pomiarowego nadajnik-detektor w metodzie fal cieplnych. Prace Instytutu Mechaniki Górotworu PAN; Tom 18 Nr 1: 49-54; 2016 [15] Ražniević K.: Tablice cieplne z wykresami, WNT Warszawa The measurement of thermal diffusivity of gas mixtures using thermal wave method Abstract In the paper the method of gases thermal diffusivity measurement using thermal wave method is presented. Method with moving probe in still air was used in the research, which were carried under room temperature, in the range of velocities from 10 to 30 cm/s. Results for air as well as air and carbon dioxide mixture in various concentrations are presented. Keywords: thermal diffusivity, thermoanemometry, thermal waves method
Optymalizacja konfiguracji przestrzennej układu pomiarowego nadajnik-detektory w metodzie fal cieplnych
Prace Instytutu Mechaniki Górotworu PAN Tom 18, nr 1, marzec 216, s. 49-54 Instytut Mechaniki Górotworu PAN Optymalizacja konfiguracji przestrzennej układu pomiarowego nadajnik-detektory w metodzie fal
Zastosowanie złożonych wymuszeń fali temperaturowej w absolutnej metodzie pomiaru prędkości przepływu gazów
217 Prace Instytutu Mechaniki Górotworu PAN Tom 12, nr 1-4, (2010), s. 217-222 Instytut Mechaniki Górotworu PAN Zastosowanie złożonych wymuszeń fali temperaturowej w absolutnej metodzie pomiaru prędkości
Analiza właściwości dynamicznych detektorów propagacji fali temperaturowej w przepływie powietrza i mieszaniny powietrze dwutlenek węgla
Prace Instytutu Mechaniki Górotworu PAN Tom 18, nr 1, marzec 2016, s. 41-47 Instytut Mechaniki Górotworu PAN Analiza właściwości dynamicznych detektorów propagacji fali temperaturowej w przepływie powietrza
Anemometr z falą cieplną generowanie i analiza sygnału
Prace Instytutu Mechaniki órotworu PAN Tom 15, nr 1-2, czerwiec 2013, s. 1-5 Instytut Mechaniki órotworu PAN PAWEŁ LIĘZA, JAN KIEŁBASA, ELŻBIETA POLESZCZYK, ANDRZEJ RACHALSKI, KATARZYNA SOCHA, JAN PALACZ
Numeryczne wyznaczanie pola temperatury i weryfikacja eksperymentalna w zastosowaniu do anemometru z falą cieplną
Prace Instytutu Mechaniki Górotworu PAN Tom 16, nr 3-4, grudzień 2014, s. 53-60 Instytut Mechaniki Górotworu PAN Numeryczne wyznaczanie pola temperatury i weryfikacja eksperymentalna w zastosowaniu do
Weryfikacja numeryczna modelu propagacji fal cieplnych w płynącym gazie
Prace Instytutu Mechaniki Górotworu PAN Tom 6, nr -, czerwiec 0, s. 5-30 Instytut Mechaniki Górotworu PAN Weryfikacja numeryczna modelu propagacji fal cieplnych w płynącym gazie MACIEJ BUJALSKI, ANDRZEJ
Regulacja adaptacyjna w anemometrze stałotemperaturowym
3 Prace Instytutu Mechaniki Górotworu PAN Tom 8, nr 1-4, (2006), s. 3-7 Instytut Mechaniki Górotworu PAN Regulacja adaptacyjna w anemometrze stałotemperaturowym PAWEŁ LIGĘZA Instytut Mechaniki Górotworu
Skuteczność korekcji temperaturowej w termoanemometrycznych systemach pomiarowych
Prace Instytutu Mechaniki Górotworu PAN Tom 18, nr, czerwiec 16, s. - Instytut Mechaniki Górotworu PAN Skuteczność korekcji temperaturowej w termoanemometrycznych systemach pomiarowych PAWEŁ JAMRÓZ, KATARZYNA
Implementacja metod znaczników termicznych w pomiarach prędkości przepływu gazów w aerologii górniczej
Nr 11 PRZEGLĄD GÓRNICZY 95 UKD 67/68.05: 001.895: 001.891.3 Implementacja metod znaczników termicznych w pomiarach prędkości przepływu gazów w aerologii górniczej Implementation of thermal markers methods
Analiza statycznych warunków pracy czujnika termoanemometrycznego w układzie stałotemperaturowym w zależności od średnicy włókna pomiarowego
Prace Instytutu Mechaniki Górotworu PAN Tom 20, nr 4, Grudzień 2018, s. 349-353 Instytut Mechaniki Górotworu PAN Analiza statycznych warunków pracy czujnika termoanemometrycznego w układzie stałotemperaturowym
LABORATORIUM POMIARY W AKUSTYCE. ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej
LABORATORIUM POMIARY W AKUSTYCE ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej 1. Cel ćwiczenia Celem ćwiczenia jest poznanie metody
Rozkład temperatury wokół odcinkowego nadajnika ciepła
Prace Instytutu Mechaniki Górotworu PAN om 6, nr -, czerwiec, s. 37-8 Instytut Mechaniki Górotworu PAN Rozkład temperatury wokół odcinkowego nadajnika ciepła MAREK GAWOR Instytut Mechaniki Górotworu PAN;
4.3 Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2)
Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2)185 4.3 Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2) Celem ćwiczenia jest wyznaczenie prędkości dźwięku w powietrzu
LIV OLIMPIADA FIZYCZNA 2004/2005 Zawody II stopnia
LIV OLIMPIADA FIZYCZNA 004/005 Zawody II stopnia Zadanie doświadczalne Masz do dyspozycji: cienki drut z niemagnetycznego metalu, silny magnes stały, ciężarek o masie m=(100,0±0,5) g, statyw, pręty stalowe,
ĆWICZENIE 3 REZONANS AKUSTYCZNY
ĆWICZENIE 3 REZONANS AKUSTYCZNY W trakcie doświadczenia przeprowadzono sześć pomiarów rezonansu akustycznego: dla dwóch różnych gazów (powietrza i CO), pięć pomiarów dla powietrza oraz jeden pomiar dla
Badanie widma fali akustycznej
Politechnika Łódzka FTIMS Kierunek: Informatyka rok akademicki: 2008/2009 sem. 2. Termin: 30 III 2009 Nr. ćwiczenia: 122 Temat ćwiczenia: Badanie widma fali akustycznej Nr. studenta:... Nr. albumu: 150875
Analiza wpływu właściwości dynamicznych przyrządów pomiarowych na dokładność pomiarów wybranych parametrów środowiska
Prace Instytutu Mechaniki Górotworu PAN Tom 16, nr 3-4, grudzień 14, s. 31-36 Instytut Mechaniki Górotworu PAN Analiza wpływu właściwości dynamicznych przyrządów pomiarowych na dokładność pomiarów wybranych
Badanie widma fali akustycznej
Politechnika Łódzka FTIMS Kierunek: Informatyka rok akademicki: 00/009 sem.. grupa II Termin: 10 III 009 Nr. ćwiczenia: 1 Temat ćwiczenia: Badanie widma fali akustycznej Nr. studenta: 6 Nr. albumu: 15101
Aby nie uszkodzić głowicy dźwiękowej, nie wolno stosować amplitudy większej niż 2000 mv.
Tematy powiązane Fale poprzeczne i podłużne, długość fali, amplituda, częstotliwość, przesunięcie fazowe, interferencja, prędkość dźwięku w powietrzu, głośność, prawo Webera-Fechnera. Podstawy Jeśli fala
BADANIE PODŁUŻNYCH FAL DŹWIĘKOWYCH W PRĘTACH
Ćwiczenie 4 BADANIE PODŁUŻNYCH FAL DŹWIĘKOWYCH W PRĘTACH 4.1. Wiadomości ogólne 4.1.1. Równanie podłużnej fali dźwiękowej i jej prędkość w prętach Rozważmy pręt o powierzchni A kołowego przekroju poprzecznego.
Termoanemometr z możliwością wyznaczania wektora prędkości w płaszczyźnie
169 Prace Instytutu Mechaniki Górotworu PAN Tom 12, nr 1-4, (2010), s. 169-174 Instytut Mechaniki Górotworu PAN Termoanemometr z możliwością wyznaczania wektora prędkości w płaszczyźnie WŁADYSŁAW CIERNIAK,
Wyznaczanie prędkości dźwięku w powietrzu
Imię i Nazwisko... Wyznaczanie prędkości dźwięku w powietrzu Opracowanie: Piotr Wróbel 1. Cel ćwiczenia. Celem ćwiczenia jest wyznaczenie prędkości dźwięku w powietrzu, metodą różnicy czasu przelotu. Drgania
Analiza teoretyczna i opracowanie założeń oraz prognozowanie niepewności i obszaru aplikacyjnego systemu pomiarowego anemometru wibracyjnego
Prace Instytutu Mechaniki Górotworu PAN Tom 3, nr, (), s. 393 Instytut Mechaniki Górotworu PAN Analiza teoretyczna i opracowanie założeń oraz prognozowanie niepewności i obszaru aplikacyjnego systemu pomiarowego
Laboratorium techniki światłowodowej. Ćwiczenie 5. Badanie wpływu periodycznych zgięd na tłumiennośd światłowodu
Laboratorium techniki światłowodowej Ćwiczenie 5. Badanie wpływu periodycznych zgięd na tłumiennośd Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdaoska Gdańsk 2006 1. Wprowadzenie
LABORATORIUM Z FIZYKI Ć W I C Z E N I E N R 2 ULTRADZWIĘKOWE FALE STOJACE - WYZNACZANIE DŁUGOŚCI FAL
Projekt Plan rozwoju Politechniki Częstochowskiej współfinansowany ze środków UNII EUROPEJSKIEJ w ramach EUROPEJSKIEGO FUNDUSZU SPOŁECZNEGO Numer Projektu: POKL.4.1.1--59/8 INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII
Krzysztof Łapsa Wyznaczenie prędkości fal ultradźwiękowych metodami interferencyjnymi
Krzysztof Łapsa Wyznaczenie prędkości fal ultradźwiękowych metodami interferencyjnymi Cele ćwiczenia Praktyczne zapoznanie się ze zjawiskiem interferencji fal akustycznych Wyznaczenie prędkości fal ultradźwiękowych
Badania przepływów dynamicznych w tunelu aerodynamicznym przy użyciu cyfrowej anemometrii obrazowej
Prace Instytutu Mechaniki Górotworu PAN Tom 18, nr 4, grudzień 2016, s. 181-186 Instytut Mechaniki Górotworu PAN Badania przepływów dynamicznych w tunelu aerodynamicznym przy użyciu cyfrowej anemometrii
Ćwiczenie nr 25: Interferencja fal akustycznych
Wydział PRACOWNIA FIZYCZNA WFiIS AGH Imię i nazwisko 1. 2. Temat: Rok Grupa Zespół Nr ćwiczenia Data wykonania Data oddania Zwrot do popr. Data oddania Data zaliczenia OCENA Ćwiczenie nr 25: Interferencja
BŁĘDY W POMIARACH BEZPOŚREDNICH
Podstawy Metrologii i Technik Eksperymentu Laboratorium BŁĘDY W POMIARACH BEZPOŚREDNICH Instrukcja do ćwiczenia nr 2 Zakład Miernictwa i Ochrony Atmosfery Wrocław, listopad 2010 r. Podstawy Metrologii
Numeryczna symulacja rozpływu płynu w węźle
231 Prace Instytutu Mechaniki Górotworu PAN Tom 7, nr 3-4, (2005), s. 231-236 Instytut Mechaniki Górotworu PAN Numeryczna symulacja rozpływu płynu w węźle JERZY CYGAN Instytut Mechaniki Górotworu PAN,
Struktura i model matematyczny cyfrowej metody generacji fali temperaturowej w przepływach
Prace Instytutu Mechaniki Górotworu PAN Tom 16, nr 3-4, grudzień 2014, s. 47-52 Instytut Mechaniki Górotworu PAN truktura i model matematyczny cyfrowej metody generacji fali temperaturowej w przepływach
KOOF Szczecin: www.of.szc.pl
3OF_III_D KOOF Szczecin: www.of.szc.pl XXXII OLIMPIADA FIZYCZNA (198/1983). Stopień III, zadanie doświadczalne D Źródło: Nazwa zadania: Działy: Słowa kluczowe: Komitet Główny Olimpiady Fizycznej; Waldemar
Wykorzystanie programu COMSOL do analizy zmiennych pól p l temperatury. Tomasz Bujok promotor: dr hab. Jerzy Bodzenta, prof. Politechniki Śląskiej
Wykorzystanie programu COMSOL do analizy zmiennych pól p l temperatury metodą elementów w skończonych Tomasz Bujok promotor: dr hab. Jerzy Bodzenta, prof. Politechniki Śląskiej Plan prezentacji Założenia
Nazwisko i imię: Zespół: Data: Ćwiczenie nr 25: Interferencja fal akustycznych. Prędkość dźwięku.
Nazwisko i imię: Zespół: Data: Ćwiczenie nr 25: Interferencja fal akustycznych. Prędkość dźwięku. Cel ćwiczenia: Pomiar prędkości dźwięku w powietrzu oraz w niektórych wybranych gazach przy użyciu rury
Badanie efektu Dopplera metodą fali ultradźwiękowej
Badanie efektu Dopplera metodą fali ultradźwiękowej Cele eksperymentu 1. Pomiar zmiany częstotliwości postrzeganej przez obserwatora w spoczynku w funkcji prędkości v źródła fali ultradźwiękowej. 2. Potwierdzenie
Badanie dylatometryczne żeliwa w zakresie przemian fazowych zachodzących w stanie stałym
PROJEKT NR: POIG.1.3.1--1/ Badania i rozwój nowoczesnej technologii tworzyw odlewniczych odpornych na zmęczenie cieplne Badanie dylatometryczne żeliwa w zakresie przemian fazowych zachodzących w stanie
OKREŚLENIE WPŁYWU WYŁĄCZANIA CYLINDRÓW SILNIKA ZI NA ZMIANY SYGNAŁU WIBROAKUSTYCZNEGO SILNIKA
ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ 2008 Seria: TRANSPORT z. 64 Nr kol. 1803 Rafał SROKA OKREŚLENIE WPŁYWU WYŁĄCZANIA CYLINDRÓW SILNIKA ZI NA ZMIANY SYGNAŁU WIBROAKUSTYCZNEGO SILNIKA Streszczenie. W
POMIAR PRĘDKOŚCI DŹWIĘKU METODĄ REZONANSU I METODĄ SKŁADANIA DRGAŃ WZAJEMNIE PROSTOPADŁYCH
Ćwiczenie 5 POMIR PRĘDKOŚCI DŹWIĘKU METODĄ REZONNSU I METODĄ SKŁDNI DRGŃ WZJEMNIE PROSTOPDŁYCH 5.. Wiadomości ogólne 5... Pomiar prędkości dźwięku metodą rezonansu Wyznaczanie prędkości dźwięku metodą
WYKORZYSTANIE IMPULSOWEJ METODY FLASH DO OKREŚLANIA DYFUZYJNOŚCI CIEPLNEJ INDUKCYJNIE NAGRZEWANYCH PRÓBEK WSADU
ZE SZ YTY N AU KOW E PO LITE CH N IK I ŁÓ DZK IEJ Nr 1169 ELEKTRYKA, z. 15 013 ADAM CIEŚLAK, JERZY ZGRAJA Politechnika Łódzka, Instytut Informatyki Stosowanej WYKORZYSTANIE IMPULSOWEJ METODY FLASH DO OKREŚLANIA
Ćwiczenie 25. Interferencja fal akustycznych
Ćwiczenie 25. Interferencja fal akustycznych Witold Zieliński Cel ćwiczenia Wyznaczenie prędkości dźwięku w gazach metodą interferencji fal akustycznych, przy użyciu rury Quinckego. Wyznaczenie wartości
LABORATORIUM ELEKTROAKUSTYKI. ĆWICZENIE NR 1 Drgania układów mechanicznych
LABORATORIUM ELEKTROAKUSTYKI ĆWICZENIE NR Drgania układów mechanicznych Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z właściwościami układów drgających oraz metodami pomiaru i analizy drgań. W ramach
Modyfikacja metody wyznaczania pasma przenoszenia anemometru z nagrzanym elementem pomiarowym
Prace Instytutu Mechaniki Górotworu PAN Tom 20, nr 3, Wrzesień 2018, s. 217-222 Instytut Mechaniki Górotworu PAN Modyfikacja metody wyznaczania pasma przenoszenia anemometru z nagrzanym elementem pomiarowym
WZMACNIACZ OPERACYJNY
1. OPIS WKŁADKI DA 01A WZMACNIACZ OPERACYJNY Wkładka DA01A zawiera wzmacniacz operacyjny A 71 oraz zestaw zacisków, które umożliwiają dołączenie elementów zewnętrznych: rezystorów, kondensatorów i zwór.
DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu
Ćwiczenie 7 DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Cel ćwiczenia Doświadczalne wyznaczenie częstości drgań własnych układu o dwóch stopniach swobody, pokazanie postaci drgań odpowiadających
PL B1. INSTYTUT MECHANIKI GÓROTWORU POLSKIEJ AKADEMII NAUK, Kraków, PL BUP 21/08. PAWEŁ LIGĘZA, Kraków, PL
RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 209493 (13) B1 (21) Numer zgłoszenia: 382135 (51) Int.Cl. G01F 1/698 (2006.01) G01P 5/12 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22)
Wykład FIZYKA I. 11. Fale mechaniczne. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA I 11. Fale mechaniczne Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html FALA Falą nazywamy każde rozprzestrzeniające
WYZNACZANIE NIEPEWNOŚCI POMIARU METODAMI SYMULACYJNYMI
WYZNACZANIE NIEPEWNOŚCI POMIARU METODAMI SYMULACYJNYMI Stefan WÓJTOWICZ, Katarzyna BIERNAT ZAKŁAD METROLOGII I BADAŃ NIENISZCZĄCYCH INSTYTUT ELEKTROTECHNIKI ul. Pożaryskiego 8, 04-703 Warszawa tel. (0)
SPIS TREŚCI Obliczenia zwężek znormalizowanych Pomiary w warunkach wykraczających poza warunki stosowania znormalizowanych
SPIS TREŚCI Spis ważniejszych oznaczeń... 11 Wstęp... 17 1. Wiadomości ogólne o metrologii przepływów... 21 1.1. Wielkości fizyczne występujące w metrologii przepływów, nazewnictwo... 21 1.2. Podstawowe
Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach
Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach Efekt Comptona. p f Θ foton elektron p f p e 0 p e Zderzenia fotonów
A3 : Wzmacniacze operacyjne w układach liniowych
A3 : Wzmacniacze operacyjne w układach liniowych Jacek Grela, Radosław Strzałka 2 kwietnia 29 1 Wstęp 1.1 Wzory Poniżej zamieszczamy podstawowe wzory i definicje, których używaliśmy w obliczeniach: 1.
PROFIL PRĘDKOŚCI W RURZE PROSTOLINIOWEJ
LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie N 7 PROFIL PRĘDKOŚCI W RURZE PROSTOLINIOWEJ . Cel ćwiczenia Doświadczalne i teoretyczne wyznaczenie profilu prędkości w rurze prostoosiowej 2. Podstawy teoretyczne:
Spis treści. Wykaz ważniejszych oznaczeń. Przedmowa 15. Wprowadzenie Ruch falowy w ośrodku płynnym Pola akustyczne źródeł rzeczywistych
Spis treści Wykaz ważniejszych oznaczeń u Przedmowa 15 Wprowadzenie 17 1. Ruch falowy w ośrodku płynnym 23 1.1. Dźwięk jako drgania ośrodka sprężystego 1.2. Fale i liczba falowa 1.3. Przestrzeń liczb falowych
W celu obliczenia charakterystyki częstotliwościowej zastosujemy wzór 1. charakterystyka amplitudowa 0,
Bierne obwody RC. Filtr dolnoprzepustowy. Filtr dolnoprzepustowy jest układem przenoszącym sygnały o małej częstotliwości bez zmian, a powodującym tłumienie i opóźnienie fazy sygnałów o większych częstotliwościach.
Materiałowe i technologiczne uwarunkowania stanu naprężeń własnych i anizotropii wtórnej powłok cylindrycznych wytłaczanych z polietylenu
POLITECHNIKA ŚLĄSKA ZESZYTY NAUKOWE NR 1676 SUB Gottingen 7 217 872 077 Andrzej PUSZ 2005 A 12174 Materiałowe i technologiczne uwarunkowania stanu naprężeń własnych i anizotropii wtórnej powłok cylindrycznych
Bezprzewodowy pomiar temperatury z wykorzystaniem rezonatora. rezonator kwarcowy z akustyczną poprzeczną falą powierzchniową
Bezprzewodowy pomiar temperatury z wykorzystaniem rezonatora kwarcowego z akustyczną poprzeczną falą powierzchniową Tadeusz Wróbel, Ernest Brzozowski Instytut Technologii Materiałów Elektronicznych ul.
Struktura oprogramowania i możliwości metrologiczne sterowanego komputerowo wielokanałowego termoanemometrycznego systemu pomiarowego
195 Prace Instytutu Mechaniki Górotworu PAN Tom 6, nr 3-4, (2004), s. 195-204 Instytut Mechaniki Górotworu PAN Struktura oprogramowania i możliwości metrologiczne sterowanego komputerowo wielokanałowego
Zaawansowane narzędzia metrologiczne w pomiarach wybranych parametrów środowiska. Optymalizowany dynamicznie termoanemometryczny system pomiarowy
197 Prace Instytutu Mechaniki Górotworu PAN Tom 12, nr 1-4, (2010), s. 197-208 Instytut Mechaniki Górotworu PAN Zaawansowane narzędzia metrologiczne w pomiarach wybranych parametrów środowiska. Optymalizowany
OPTYMALIZACJA EFEKTÓW ROZDZIELANIA W KOLUMNACH KAPILARNYCH DOBÓR PRĘDKOŚCI PRZEPŁYWU GAZU
OPTYMALIZACJA EFEKTÓW ROZDZIELANIA W KOLUMNACH KAPILARNYCH DOBÓR PRĘDKOŚCI PRZEPŁYWU GAZU 1. WPROWADZENIE W czasie swej wędrówki wzdłuż kolumny pasmo chromatograficzne ulega poszerzeniu, co jest zjawiskiem
Politechnika Warszawska Instytut Techniki Cieplnej, MEiL, ZSL
Politechnika Warszawska Instytut Techniki Cieplnej, MEiL, ZSL SEMINARIUM INSTYTUTOWE Problem pomiaru szybkozmiennych temperatur w aplikacjach silnikowych badania eksperymentalne Dr inż. Jan Kindracki Warszawa,
Zastosowanie deflektometrii do pomiarów kształtu 3D. Katarzyna Goplańska
Zastosowanie deflektometrii do pomiarów kształtu 3D Plan prezentacji Metody pomiaru kształtu Deflektometria Zasada działania Stereo-deflektometria Kalibracja Zalety Zastosowania Przykład Podsumowanie Metody
Zintegrowana sonda do wielopunktowych, współczasowych pomiarów pól temperatury i prędkości przepływu gazu
27 Prace Instytutu Mechaniki Górotworu PA Tom 7, nr -2, (2005), s. 27-33 Instytut Mechaniki Górotworu PA Zintegrowana sonda do wielopunktowych, współczasowych pomiarów pól temperatury i prędkości przepływu
Laboratorum 2 Badanie filtru dolnoprzepustowego P O P R A W A
Laboratorum 2 Badanie filtru dolnoprzepustowego P O P R A W A Marcin Polkowski (251328) 15 marca 2007 r. Spis treści 1 Cel ćwiczenia 2 2 Techniczny i matematyczny aspekt ćwiczenia 2 3 Pomiary - układ RC
WPŁYW OBRÓBKI TERMICZNEJ ZIEMNIAKÓW NA PRĘDKOŚĆ PROPAGACJI FAL ULTRADŹWIĘKOWYCH
Wpływ obróbki termicznej ziemniaków... Arkadiusz Ratajski, Andrzej Wesołowski Katedra InŜynierii Procesów Rolniczych Uniwersytet Warmińsko-Mazurski w Olsztynie WPŁYW OBRÓBKI TERMICZNEJ ZIEMNIAKÓW NA PRĘDKOŚĆ
Wyniki pomiarów okresu drgań dla wahadła o długości l = 1,215 m i l = 0,5 cm.
2 Wyniki pomiarów okresu drgań dla wahadła o długości l = 1,215 m i l = 0,5 cm. Nr pomiaru T[s] 1 2,21 2 2,23 3 2,19 4 2,22 5 2,25 6 2,19 7 2,23 8 2,24 9 2,18 10 2,16 Wyniki pomiarów okresu drgań dla wahadła
MICRON3D skaner do zastosowań specjalnych. MICRON3D scanner for special applications
Mgr inż. Dariusz Jasiński dj@smarttech3d.com SMARTTECH Sp. z o.o. MICRON3D skaner do zastosowań specjalnych W niniejszym artykule zaprezentowany został nowy skaner 3D firmy Smarttech, w którym do pomiaru
Ćw. 18: Pomiary wielkości nieelektrycznych II
Wydział: EAIiE Kierunek: Imię i nazwisko (e mail): Rok:. (../..) Grupa: Zespół: Data wykonania: Zaliczenie: Podpis prowadzącego: Uwagi: LABORATORIUM METROLOGII Ćw. 18: Pomiary wielkości nieelektrycznych
Fala na sprężynie. Projekt: na ZMN060G CMA Coach Projects\PTSN Coach 6\ Dźwięk\Fala na sprężynie.cma Przykład wyników: Fala na sprężynie.
6COACH 43 Fala na sprężynie Program: Coach 6 Cel ćwiczenia - Pokazanie fali podłużnej i obserwacja odbicia fali od końców sprężyny. (Pomiar prędkości i długości fali). - Rezonans. - Obserwacja fali stojącej
Własności dynamiczne przetworników pierwszego rzędu
1 ĆWICZENIE 7. CEL ĆWICZENIA. Własności dynamiczne przetworników pierwszego rzędu Celem ćwiczenia jest poznanie własności dynamicznych przetworników pierwszego rzędu w dziedzinie czasu i częstotliwości
Laboratorium. Hydrostatyczne Układy Napędowe
Laboratorium Hydrostatyczne Układy Napędowe Instrukcja do ćwiczenia nr Eksperymentalne wyznaczenie charakteru oporów w przewodach hydraulicznych opory liniowe Opracowanie: Z.Kudżma, P. Osiński J. Rutański,
WPŁYW GRADIENTU TEMPERATURY NA WSPÓŁCZYNNIK PRZEWODZENIA CIEPŁA
ROCZNIKI INŻYNIERII BUDOWLANEJ ZESZYT 10/2010 Komisja Inżynierii Budowlanej Oddział Polskiej Akademii Nauk w Katowicach WPŁYW GRADIENTU TEMPERATURY NA WSPÓŁCZYNNIK PRZEWODZENIA CIEPŁA Andrzej MARYNOWICZ
Laboratorium techniki światłowodowej. Ćwiczenie 3. Światłowodowy, odbiciowy sensor przesunięcia
Laboratorium techniki światłowodowej Ćwiczenie 3. Światłowodowy, odbiciowy sensor przesunięcia Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdaoska Gdańsk 2006 1. Wprowadzenie
ANALiZA WPŁYWU PARAMETRÓW SAMOLOTU NA POZiOM HAŁASU MiERZONEGO WEDŁUG PRZEPiSÓW FAR 36 APPENDiX G
PRACE instytutu LOTNiCTWA 221, s. 115 120, Warszawa 2011 ANALiZA WPŁYWU PARAMETRÓW SAMOLOTU NA POZiOM HAŁASU MiERZONEGO WEDŁUG PRZEPiSÓW FAR 36 APPENDiX G i ROZDZiAŁU 10 ZAŁOżEń16 KONWENCJi icao PIotr
Tutaj powinny znaleźć się wyniki pomiarów (tabelki) potwierdzone przez prowadzacego zajęcia laboratoryjne i podpis dyżurujacego pracownika obsługi
Tutaj powinny znaleźć się wyniki pomiarów (tabelki) potwierdzone przez prowadzacego zajęcia laboratoryjne i podpis dyżurujacego pracownika obsługi technicznej. 1. Wstęp Celem ćwiczenia jest wyznaczenie
KAMIKA Instruments PUBLIKACJE. TYTUŁ Pomiar kształtu i uziarnienia mikrosfer. AUTORZY Stanisław Kamiński, Dorota Kamińska, KAMIKA Instruments
KAMIKA Instruments PUBLIKACJE TYTUŁ Pomiar kształtu i uziarnienia mikrosfer. AUTORZY Stanisław Kamiński, Dorota Kamińska, KAMIKA Instruments DZIEDZINA Pomiar kształtu cząstek PRZYRZĄD 2DiSA SŁOWA KLUCZOWE
WYBÓR PUNKTÓW POMIAROWYCH
Scientific Bulletin of Che lm Section of Technical Sciences No. 1/2008 WYBÓR PUNKTÓW POMIAROWYCH WE WSPÓŁRZĘDNOŚCIOWEJ TECHNICE POMIAROWEJ MAREK MAGDZIAK Katedra Technik Wytwarzania i Automatyzacji, Politechnika
LABORATORIUM PODSTAW TELEKOMUNIKACJI
WOJSKOWA AKADEMIA TECHNICZNA im. Jarosława Dąbrowskiego w Warszawie Wydział Elektroniki LABORATORIUM PODSTAW TELEKOMUNIKACJI Grupa Podgrupa Data wykonania ćwiczenia Ćwiczenie prowadził... Skład podgrupy:
Rozmycie pasma spektralnego
Rozmycie pasma spektralnego Rozmycie pasma spektralnego Z doświadczenia wiemy, że absorpcja lub emisja promieniowania przez badaną substancję występuje nie tylko przy częstości rezonansowej, tj. częstości
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 006 Instytut Fizyki Uniwersytetu Szczecińskiego Równania (3.7), pomimo swojej prostoty, nie posiadają poza nielicznymi przypadkami ścisłych rozwiązań,
SPRAWOZDANIE Z WYKONANEGO DOŚWIADCZENIA
X KONKURS ODDZIAŁU ŁÓDZKIEGO POLSKIEGO TOWARZYSTWA FIZYCZNEGO FIZYKA DA SIĘ LUBIĆ SPRAWOZDANIE Z WYKONANEGO DOŚWIADCZENIA Temat: Wyznaczenie prędkości dźwięku w powietrzu. 1. Wstęp. Celem mojego doświadczenia
Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego. Ćwiczenie 2 Badanie funkcji korelacji w przebiegach elektrycznych.
Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego Ćwiczenie Badanie unkcji korelacji w przebiegach elektrycznych. Cel ćwiczenia: Celem ćwiczenia jest zbadanie unkcji korelacji w okresowych sygnałach
WSPÓŁCZYNNIK PRZEJMOWANIA CIEPŁA PRZEZ KONWEKCJĘ
INSYU INFORMAYKI SOSOWANEJ POLIECHNIKI ŁÓDZKIEJ Ćwiczenie Nr2 WSPÓŁCZYNNIK PRZEJMOWANIA CIEPŁA PRZEZ KONWEKCJĘ 1.WPROWADZENIE. Wymiana ciepła pomiędzy układami termodynamicznymi może być realizowana na
Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7
Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawowymi zastosowaniami wzmacniacza operacyjnego, poznanie jego charakterystyki przejściowej
PROTOKÓŁ POMIARY W OBWODACH PRĄDU PRZEMIENNEGO
PROTOKÓŁ POMIAROWY LABORATORIUM OBWODÓW I SYGNAŁÓW ELEKTRYCZNYCH Grupa Podgrupa Numer ćwiczenia 4 Lp. Nazwisko i imię Data wykonania ćwiczenia Prowadzący ćwiczenie Podpis Data oddania sprawozdania Temat
Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego
Nazwisko i imię: Zespół: Data: Cel ćwiczenia: Ćwiczenie nr 1: Wahadło fizyczne opis ruchu drgającego a w szczególności drgań wahadła fizycznego wyznaczenie momentów bezwładności brył sztywnych Literatura
RÓWNANIE DYNAMICZNE RUCHU KULISTEGO CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA
Dr inż. Andrzej Polka Katedra Dynamiki Maszyn Politechnika Łódzka RÓWNANIE DYNAMICZNE RUCHU KULISTEGO CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA Streszczenie: W pracy opisano wzajemne położenie płaszczyzny parasola
DETEKCJA FAL UDERZENIOWYCH W UKŁADACH ŁOPATKOWYCH CZĘŚCI NISKOPRĘŻNYCH TURBIN PAROWYCH
Mgr inż. Anna GRZYMKOWSKA Politechnika Gdańska Wydział Oceanotechniki i Okrętownictwa DOI: 10.17814/mechanik.2015.7.236 DETEKCJA FAL UDERZENIOWYCH W UKŁADACH ŁOPATKOWYCH CZĘŚCI NISKOPRĘŻNYCH TURBIN PAROWYCH
NIEPEWNOŚĆ POMIARÓW POZIOMU MOCY AKUSTYCZNEJ WEDŁUG ZNOWELIZOWANEJ SERII NORM PN-EN ISO 3740
PRACE INSTYTUTU TECHNIKI BUDOWLANEJ - KWARTALNIK BUILDING RESEARCH INSTITUTE - QUARTERLY 2 (162) 2012 ARTYKUŁY - REPORTS Anna Iżewska* NIEPEWNOŚĆ POMIARÓW POZIOMU MOCY AKUSTYCZNEJ WEDŁUG ZNOWELIZOWANEJ
LABORATORIUM PODZESPOŁÓW ELEKTRONICZNYCH. Ćwiczenie nr 2. Pomiar pojemności i indukcyjności. Szeregowy i równoległy obwód rezonansowy
LABORATORIUM PODZESPOŁÓW ELEKTRONICZNYCH Ćwiczenie nr 2 Pomiar pojemności i indukcyjności. Szeregowy i równoległy obwód rezonansowy Wykonując pomiary PRZESTRZEGAJ przepisów BHP związanych z obsługą urządzeń
WYZNACZANIE PRĘDKOŚCI DŹWIĘKU METODĄ QUINCKEGO I KUNDTA
I PRACOWNIA FIZYCZNA, INSTYTUT FIZYKI UMK, TORUŃ Instrukcja do ćwiczenia nr 4 WYZNACZANIE PRĘDKOŚCI DŹWIĘKU METODĄ QUINCKEGO I KUNDTA 1. Cel ćwiczenia Ćwiczenie składa się z dwóch części. Celem pierwszej
Metody analizy sygnału anemometru z drgającym grzanym włóknem
9 Prace Instytutu Mechaniki Górotworu PAN Tom 1, nr 1-4, (1), s. 9-16 Instytut Mechaniki Górotworu PAN Metody analizy sygnału anemometru z drgającym grzanym włóknem KONRAD PAPIERZ, JAN KIEŁBASA Instytut
BADANIA WARUNKÓW PRACY LOKATORA AKUSTYCZNEGO
Mjr dr inż. Dariusz RODZIK Mgr inż. Stanisław GRZYWIŃSKI Dr inż. Stanisław ŻYGADŁO Mgr inż. Jakub MIERNIK Wojskowa Akademia Techniczna DOI: 10.17814/mechanik.2015.7.294 BADANIA WARUNKÓW PRACY LOKATORA
CENTRUM CZYSTYCH TECHNOLOGII WĘGLOWYCH CLEAN COAL TECHNOLOGY CENTRE. ... nowe możliwości. ... new opportunities
CENTRUM CZYSTYCH TECHNOLOGII WĘGLOWYCH CLEAN COAL TECHNOLOGY CENTRE... nowe możliwości... new opportunities GŁÓWNY INSTYTUT GÓRNICTWA fluidalnym przy ciśnieniu maksymalnym 5 MPa, z zastosowaniem różnych
Urządzenie i sposób pomiaru skuteczności filtracji powietrza.
Urządzenie i sposób pomiaru skuteczności filtracji powietrza. dr inż. Stanisław Kamiński, mgr Dorota Kamińska WSTĘP Obecnie nie może istnieć żaden zakład przerabiający sproszkowane materiały masowe bez
ZMIANA PARAMETRÓW TERMODYNAMICZNYCH POWIETRZA W PAROWNIKU CHŁODZIARKI GÓRNICZEJ Z CZYNNIKIEM R407C***
Górnictwo i Geoinżynieria Rok 30 Zeszyt 1 2006 Krzysztof Filek*, Piotr Łuska**, Bernard Nowak* ZMIANA PARAMETRÓW TERMODYNAMICZNYCH POWIETRZA W PAROWNIKU CHŁODZIARKI GÓRNICZEJ Z CZYNNIKIEM R407C*** 1. Wstęp
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie Laboratorium z Elektrotechniki z Napędami Elektrycznymi
Wydział: EAIiE kierunek: AiR, rok II Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie Laboratorium z Elektrotechniki z Napędami Elektrycznymi Grupa laboratoryjna: A Czwartek 13:15 Paweł Górka
4.2 Analiza fourierowska(f1)
Analiza fourierowska(f1) 179 4. Analiza fourierowska(f1) Celem doświadczenia jest wyznaczenie współczynników szeregu Fouriera dla sygnałów okresowych. Zagadnienia do przygotowania: szereg Fouriera; sygnał
Ćw. 8: POMIARY Z WYKORZYSTANIE OSCYLOSKOPU Ocena: Podpis prowadzącego: Uwagi:
Wydział: EAIiE Imię i nazwisko (e mail): Rok: Grupa: Zespół: Data wykonania: LABORATORIUM METROLOGII Ćw. 8: POMIARY Z WYKORZYSTANIE OSCYLOSKOPU Ocena: Podpis prowadzącego: Uwagi: Wstęp Celem ćwiczenia
Badanie roli pudła rezonansowego za pomocą konsoli pomiarowej CoachLab II
52 FOTON 99, Zima 27 Badanie roli pudła rezonansowego za pomocą konsoli pomiarowej CoachLab II Bogdan Bogacz Pracownia Technicznych Środków Nauczania Zakład Metodyki Nauczania i Metodologii Fizyki Instytut
Koncepcja precyzyjnego pomiaru parametrów przepływów gazów w zakresie małych prędkości z uwzględnieniem zmiany zwrotu i temperatury
Prace Instytutu Mechaniki Górotworu PAN Tom, nr -, (), s. 9-7 Instytut Mechaniki Górotworu PAN Koncepcja precyzyjnego pomiaru parametrów przepływów gazów w zakresie małych prędkości z uwzględnieniem zmiany
Ruch falowy. Parametry: Długość Częstotliwość Prędkość. Częstotliwość i częstość kołowa MICHAŁ MARZANTOWICZ
Ruch falowy Parametry: Długość Częstotliwość Prędkość Częstotliwość i częstość kołowa Opis ruchu falowego Równanie fali biegnącej (w dodatnim kierunku osi x) v x t f 2 2 2 2 2 x v t Równanie różniczkowe