II Memoriał Uli Marciniak. Uniwersytet Wrocławski

Wielkość: px
Rozpocząć pokaz od strony:

Download "II Memoriał Uli Marciniak. Uniwersytet Wrocławski"

Transkrypt

1 Uniwersytet Wrocławski

2 Dlaczego uczymy się matematyki?

3 Matematyka stanowi osnowę wszechświata

4

5

6

7

8

9 Zaczekaj na mnie 10! sekund!

10

11

12

13

14

15 10! sekund = 6 tygodni, co do sekundy!

16 Matematyka jest skuteczna

17 Matematyka jest skuteczna

18 Matematyka jest skuteczna Jaki jest obwód Ziemi?

19

20

21

22

23

24

25

26

27

28

29

30 Suma kątów w trójkącie = kąt półpełny

31 -600 Cofnijmy się w czasie czas Tales Eratostenes Pitagoras

32 Cyrena; miejsce urodzin Eratostenesa

33 Jak Eratostenes wyznaczył obwód Ziemi? A: Aleksandria 22. czerwca słońce zagląda w Asuanie do studni. Zmierzony kąt to 7,2 stopnia. Odległość Aleksandria-Asuan AN, wyliczona ze średniej prędkości karawan, to 800 km. N: Siena, dziś Asuan Obwód Ziemi : AN = 360 : 7,2, zatem obwód Ziemi to km.

34 ( ) Arystarch z Samos, wykorzystując najprostsze własności trójkątów oraz obserwacje wyznaczył: odległość od Ziemi do Słońca i do Księżyca, promień Słońca oraz promień Księżyca.

35 t Tales Eratostenes Pitagoras Arystarch

36 Wyspa Samos; miejsce urodzin Pitagorasa i Arystarcha

37 Jeśli Słońce jest piłeczką o średnicy 10 cm, to: Ziemia ma średnicę 1 mm i krąży w odległości około 10 m, Księżyc ma średnicę ¼ mm i krąży w odległości 6 cm od Ziemi, Najbliższa inna gwiazda znajduje się w odległości 2700 km, czyli w Czelabińsku na Syberii, Gwiazdy wykonują regularny ruch po niebie, z wyjątkiem pięciu światełek, zwanych planetami (gr.: włóczęga).

38 Ile razy dalej od Ziemi jest Słońce niż Księżyc?

39 Ile razy dalej od Ziemi jest Słońce niż Księżyc? Pomysł: narysować podobny trójkąt i porównać długości boków!

40 Co to znaczy podobny?

41

42 Definicja: Trójkąt ABC jest podobny do trójkąta A B C wtedy, gdy mają takie same kąty. C C A B A B

43 Ile razy dalej od Ziemi jest Słońce niż Księżyc?

44 Ile razy dalej od Ziemi jest Słońce niż Księżyc?

45 Ile razy Słońce jest większe od Księżyca?

46 Ile razy Słońce jest większe od Księżyca?

47 Matematyka pomaga unikać oszustw

48 Nasza aspiryna pomaga lepiej o 57%, Nasz proszek lepiej pierze o 120%......zwalcza coraz więcej bólu...pranie coraz bielsze

49 Dwa razy więcej!

50 Dwa razy więcej!

51 Nieźle? Świetnie! 6 5,5 5 4,5 4 3,5 3 2,5 2 1,5 1 I trymestr II trymestr III trymestr Średnia ocen uczniów pewnej klasy w kolejnych trymestrach: 3,0 3,2 3,5 3,6 3,5 3,4 3,3 3,2 3,1 3 2,9 2,8 2,7 I trymestr II trymestr III trymestr

52 Gdzie tkwi oszustwo? Weekendowe podróże są wyjątkowo niebezpieczne: zdarza się wtedy aż 28,6% wszystkich wypadków!

53 Matematyka pozwala radzić sobie tam, gdzie nasze zmysły i intuicja są bezradne

54 Powierzchnia Ziemi nie jest płaszczyzną

55

56 Jak zobaczyć, że przestrzeń się zagina? Jak można by wykryć zakrzywienie naszego Wszechświata?

57 Karl Friedrich Gauss Theorema egregium: Zakrzywienie przestrzeni można wykryć, wykonując pomiary wewnątrz tej przestrzeni.

58

59

60

61 Matematyka szkolna Piękna czy Bestia!?

62 Nauczyciel westchnął, stłumił, spojrzał na zegarek i mówił. Wielkim poetą! Zapamiętajcie to sobie, bo ważne! Dlaczego kochamy? Bo był wielkim poetą. Wielkim poetą był! Nieroby, nieuki, mówię wam przecież spokojnie, wbijcie to sobie dobrze w głowy a więc jeszcze raz powtórzę, proszę panów: wielki poeta, Juliusz Słowacki, wielki poeta, kochamy Juliusza Słowackiego i zachwycamy się jego poezjami, gdyż był on wielkim poetą. Proszę zapisać sobie temat wypracowania domowego: Dlaczego w poezjach wielkiego poety, Juliusza Słowackiego, mieszka nieśmiertelne piękno, które zachwyt wzbudza? Witold Gombrowicz Ferdydurke

63 Pilnie ćwicz na pewno kiedyś ci się to przyda!

64 Pilnie ćwicz na pewno kiedyś ci się to przyda!

65 Dziękuję za uwagę!

III Memoriał Uli Marciniak. Siła logicznego myślenia. Uniwersytet Wrocławski

III Memoriał Uli Marciniak. Siła logicznego myślenia. Uniwersytet Wrocławski III Memoriał Uli Marciniak Siła logicznego myślenia Uniwersytet Wrocławski 24.03.2019 1 Nasza aspiryna pomaga lepiej o 57%, Nasz proszek lepiej pierze o 120%......zwalcza coraz więcej bólu...pranie coraz

Bardziej szczegółowo

O układzie współrzędnych. Kinga Kolczyńska - Przybycień

O układzie współrzędnych. Kinga Kolczyńska - Przybycień Spis tresci 1 Spis tresci 1 Każdy z was na pewno w swoim życiu widział mapę W naturalny sposób powstaje pytanie po co w ogóle są mapy? Najbardziej prostą odpowiedzią jest to, że pomagają w przemieszczaniu

Bardziej szczegółowo

Skala jasności w astronomii. Krzysztof Kamiński

Skala jasności w astronomii. Krzysztof Kamiński Skala jasności w astronomii Krzysztof Kamiński Obserwowana wielkość gwiazdowa (magnitudo) Skala wymyślona prawdopodobnie przez Hipparcha, który podzielił gwiazdy pod względem jasności na 6 grup (najjaśniejsze:

Bardziej szczegółowo

Wymagania na egzamin poprawkowy z matematyki dla klasy I C LO (Rok szkolny 2015/16) Wykaz zakładanych osiągnięć ucznia klasy I liceum

Wymagania na egzamin poprawkowy z matematyki dla klasy I C LO (Rok szkolny 2015/16) Wykaz zakładanych osiągnięć ucznia klasy I liceum Wymagania na egzamin poprawkowy z matematyki dla klasy I C LO (Rok szkolny 05/6) Wykaz zakładanych osiągnięć ucznia klasy I liceum (osiągnięcia ucznia w zakresie podstawowym) I. Liczby rzeczywiste. Język

Bardziej szczegółowo

JAK MATEMATYKA POZWALA OPISYWAĆ WSZECHŚWIAT. 1 Leszek Błaszkiewicz

JAK MATEMATYKA POZWALA OPISYWAĆ WSZECHŚWIAT. 1 Leszek Błaszkiewicz JAK MATEMATYKA POZWALA OPISYWAĆ WSZECHŚWIAT 1 Leszek Błaszkiewicz 2 Matematyka w Astrometrii Matematyka w Astrometrii Astrometria (astronomia pozycyjna) najstarszy dział astronomii zajmujący się pomiarami

Bardziej szczegółowo

Wędrówki między układami współrzędnych

Wędrówki między układami współrzędnych Wykład udostępniam na licencji Creative Commons: Wędrówki między układami współrzędnych Piotr A. Dybczyński Układ równikowy godzinny i układ horyzontalny zenit północny biegun świata Z punkt wschodu szerokość

Bardziej szczegółowo

ETAP II. Astronomia to nauka. pochodzeniem i ewolucją. planet i gwiazd. na wydarzenia na Ziemi.

ETAP II. Astronomia to nauka. pochodzeniem i ewolucją. planet i gwiazd. na wydarzenia na Ziemi. ETAP II Konkurencja I Ach te definicje! (każda poprawnie ułożona definicja warta jest aż dwa punkty) Astronomia to nauka o ciałach niebieskich zajmująca się badaniem ich położenia, ruchów, odległości i

Bardziej szczegółowo

Materiały edukacyjne Tranzyt Wenus Zestaw 3. Paralaksa. Zadanie 1. Paralaksa czyli zmiana

Materiały edukacyjne Tranzyt Wenus Zestaw 3. Paralaksa. Zadanie 1. Paralaksa czyli zmiana Materiały edukacyjne Tranzyt Wenus 2012 Zestaw 3. Paralaksa Zadanie 1. Paralaksa czyli zmiana Paralaksa to zjawisko pozornej zmiany położenia obiektu oglądanego z dwóch kierunków. W praktyce najłatwiej

Bardziej szczegółowo

Własności walca, stożka i kuli.

Własności walca, stożka i kuli. Własności walca, stożka i kuli. 1. Cele lekcji a) Wiadomości Uczeń: - zna pojęcie bryły obrotowej, - zna definicje: walca, stożka, kuli, - zna budowę brył obrotowych, - zna pojęcia związane z symetrią

Bardziej szczegółowo

Sprawa otyłości Ziemi

Sprawa otyłości Ziemi Logo designed by Armella Leung, www.armella.fr.to Sprawa otyłości Ziemi Tomasz Kacik Zespół Szkół Handlowych w Sopocie Wstęp Poglądy o kulistości Ziemi głosili już filozofowie szkoły pitagorejskiej, a

Bardziej szczegółowo

Odległość mierzy się zerami

Odległość mierzy się zerami Odległość mierzy się zerami Jednostki odległości w astronomii jednostka astronomiczna AU, j.a. rok świetlny l.y., r.św. parsek pc średnia odległość Ziemi od Słońca odległość przebyta przez światło w próżni

Bardziej szczegółowo

OCENIANIE KSZTAŁTUJĄCE NA LEKCJI MATEMATYKI. Scenariusz lekcji proponowany przez Jolantę Strzałkowską nauczyciela matematyki w Gimnazjum nr 1 w Kole

OCENIANIE KSZTAŁTUJĄCE NA LEKCJI MATEMATYKI. Scenariusz lekcji proponowany przez Jolantę Strzałkowską nauczyciela matematyki w Gimnazjum nr 1 w Kole OCENIANIE KSZTAŁTUJĄCE NA LEKCJI MATEMATYKI Scenariusz lekcji proponowany przez Jolantę Strzałkowską nauczyciela matematyki w Gimnazjum nr 1 w Kole Lekcja: matematyka Gimnazjum kl. II Temat: Liczby bardzo

Bardziej szczegółowo

Zadania do testu Wszechświat i Ziemia

Zadania do testu Wszechświat i Ziemia INSTRUKCJA DLA UCZNIA Przeczytaj uważnie czas trwania tekstu 40 min. ). W tekście, który otrzymałeś są zadania. - z luką - rozszerzonej wypowiedzi - zadania na dobieranie ). Nawet na najłatwiejsze pytania

Bardziej szczegółowo

MATURA Powtórka do matury z matematyki. Część VII: Planimetria ODPOWIEDZI. Organizatorzy: MatmaNa6.pl, naszemiasto.pl

MATURA Powtórka do matury z matematyki. Część VII: Planimetria ODPOWIEDZI. Organizatorzy: MatmaNa6.pl, naszemiasto.pl MATURA 2012 Powtórka do matury z matematyki Część VII: Planimetria ODPOWIEDZI Organizatorzy: MatmaNa6.pl, naszemiasto.pl Witaj, otrzymałeś już siódmą z dziesięciu części materiałów powtórkowych do matury

Bardziej szczegółowo

Wyznaczenie masy optycznej atmosfery Krzysztof Markowicz Instytut Geofizyki, Wydział Fizyki, Uniwersytet Warszawski

Wyznaczenie masy optycznej atmosfery Krzysztof Markowicz Instytut Geofizyki, Wydział Fizyki, Uniwersytet Warszawski Wyznaczenie masy optycznej atmosfery Krzysztof Markowicz Instytut Geofizyki, Wydział Fizyki, Uniwersytet Warszawski Czas trwania: 30 minut Czas obserwacji: dowolny w ciągu dnia Wymagane warunki meteorologiczne:

Bardziej szczegółowo

Zadania egzaminacyjne - matematyka

Zadania egzaminacyjne - matematyka Zad.1 Zad.2 Zad.3 Zad.4 Zad.5 1 Zad.6 Zad.7 2 Zad.8 Zad.9 Zad.10 3 Zad.11 Zad.12 Zad.13 Zad.14 Zad.15 4 Zad.16 Zad.17 Zad.18 Zad.19 Zade.20 5 Zad.21 Zad.22 Zad.23 Zad.24 Zad.25 Zad.26 6 Zad.27 Zad.28 Zad.29

Bardziej szczegółowo

Trójkąty i ich własności klasa V

Trójkąty i ich własności klasa V Trójkąty i ich własności klasa V Opracowała Barbara Wichowska Nauczycielka matematyki Szkoły Podstawowej z Oddziałami Integracyjnymi Nr 9 w Sopocie Listopad 2007 rok SPIS TREŚCI 1. Temat: Z jakich odcinków

Bardziej szczegółowo

2. Kształt i rozmiary Ziemi

2. Kształt i rozmiary Ziemi 2. Kształt i rozmiary Ziemi Poglądy na temat kształtu ziemi zmieniały się wraz z poznawaniem przez człowieka świata oraz wraz z rozwojem wiedzy różnych nauk a także odkrywaniem czy konstruowaniem poszczególnych

Bardziej szczegółowo

Geografia jako nauka. Współrzędne geograficzne.

Geografia jako nauka. Współrzędne geograficzne. Geografia (semestr 3 / gimnazjum) Lekcja numer 1 Temat: Geografia jako nauka. Współrzędne geograficzne. Geografia jest nauką opisującą świat, w którym żyjemy. Wyraz geographia (z języka greckiego) oznacza

Bardziej szczegółowo

Jarosław Wróblewski Matematyka dla Myślących, 2008/09

Jarosław Wróblewski Matematyka dla Myślących, 2008/09 9. Funkcje trygonometryczne. Elementy geometrii: twierdzenie Pitagorasa i twierdzenie cosinusów, twierdzenie o kącie wpisanym i środkowym, okrąg wpisany i opisany na wielokącie, wielokąty foremne (dokończenie).

Bardziej szczegółowo

Wyznaczanie stałej słonecznej i mocy promieniowania Słońca

Wyznaczanie stałej słonecznej i mocy promieniowania Słońca Wyznaczanie stałej słonecznej i mocy promieniowania Słońca Jak poznać Wszechświat, jeśli nie mamy bezpośredniego dostępu do każdej jego części? Ta trudność jest codziennością dla astronomii. Obiekty astronomiczne

Bardziej szczegółowo

wymagania programowe z matematyki kl. II gimnazjum

wymagania programowe z matematyki kl. II gimnazjum wymagania programowe z matematyki kl. II gimnazjum Umie obliczyć potęgę liczby wymiernej o wykładniku naturalnym. 1. Arytmetyka występują potęgi o wykładniku naturalnym. Umie zapisać i porównać duże liczby

Bardziej szczegółowo

Dział I FUNKCJE TRYGONOMETRYCZNE

Dział I FUNKCJE TRYGONOMETRYCZNE MATEMATYKA ZAKRES PODSTAWOWY Rok szkolny 01/013 Klasa: III Nauczyciel: Mirosław Kołomyjski Dział I FUNKCJE TRYGONOMETRYCZNE Lp. Zagadnienie Osiągnięcia ucznia. 1. Miara kąta. Sprawnie operuje pojęciami:

Bardziej szczegółowo

XIV WOJEWÓDZKI KONKURS MATEMATYCZNY

XIV WOJEWÓDZKI KONKURS MATEMATYCZNY XIV WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJÓW WOJEWÓDZTWA ŚWIĘTOKRZYSKIEGO ETAP III - WOJEWÓDZKI Kod ucznia 24 marca 2017 roku godz. 13:00 Suma punktów Czas pracy: 90 minut Liczba punktów do

Bardziej szczegółowo

Projekt działań wspólnych SP30 i SP28 Co dwie szkoły to nie jedna. Matematyka, przyroda, informatyka

Projekt działań wspólnych SP30 i SP28 Co dwie szkoły to nie jedna. Matematyka, przyroda, informatyka Projekt działań wspólnych SP30 i SP28 Co dwie szkoły to nie jedna Sprawozdanie z realizacji zaplanowanych działań w listopadzie Matematyka, przyroda, informatyka W minionym miesiącu nasz zespół realizował

Bardziej szczegółowo

MATEMATYKA POZIOM PODSTAWOAWY Kryteria oceniania odpowiedzi. Arkusz A I. Strona 1 z 7

MATEMATYKA POZIOM PODSTAWOAWY Kryteria oceniania odpowiedzi. Arkusz A I. Strona 1 z 7 MATEMATYKA POZIOM PODSTAWOAWY Kryteria oceniania odpowiedzi Arkusz A I Strona z 7 Wersja A Odpowiedzi Zadanie 2 3 4 5 6 7 8 9 0 2 3 Odpowiedź C D B B C C A D A B A B C Zadanie 4 5 6 7 8 9 20 2 22 23 24

Bardziej szczegółowo

SCENARIUSZ LEKCJI MATEMATYKI W LICEUM OGÓLNOKSZTAŁCĄCYM. Powtórzenie i utrwalenie wiadomości dotyczących geometrii figur płaskich.

SCENARIUSZ LEKCJI MATEMATYKI W LICEUM OGÓLNOKSZTAŁCĄCYM. Powtórzenie i utrwalenie wiadomości dotyczących geometrii figur płaskich. Katarzyna Gawinkowska Hanna Małecka VI L.O im J. Korczaka w ZSO nr 2 w Sosnowcu SCENARIUSZ LEKCJI MATEMATYKI W LICEUM OGÓLNOKSZTAŁCĄCYM Temat: Powtórzenie i utrwalenie wiadomości dotyczących geometrii

Bardziej szczegółowo

Troszkę Geometrii. Kinga Kolczyńska - Przybycień

Troszkę Geometrii. Kinga Kolczyńska - Przybycień Spis tresci O Geometrii 1 O Geometrii 2 3 4 5 6 7 Spis tresci O Geometrii 1 O Geometrii 2 3 4 5 6 7 Kilka słów o mierzeniu Otóż jak sama nazwa Geometria (z gr geo-ziemia, metria-miara) ma ona coś wspólnego

Bardziej szczegółowo

XV WOJEWÓDZKI KONKURS Z MATEMATYKI

XV WOJEWÓDZKI KONKURS Z MATEMATYKI XV WOJEWÓDZKI KONKURS Z MATEMATYKI DLA UCZNIÓW DOTYCHCZASOWYCH GIMNAZJÓW ORAZ KLAS DOTYCHCZASOWYCH GIMNAZJÓW PROWADZONYCH W SZKOŁACH INNEGO TYPU WOJEWÓDZTWA ŚWIĘTOKRZYSKIEGO W ROKU SZKOLNYM 2017/2018 ETAP

Bardziej szczegółowo

Liceum dla Dorosłych semestr 1 FIZYKA MAŁGORZATA OLĘDZKA

Liceum dla Dorosłych semestr 1 FIZYKA MAŁGORZATA OLĘDZKA Liceum dla Dorosłych semestr 1 FIZYKA MAŁGORZATA OLĘDZKA Temat 6 : JAK ZMIERZONO ODLEGŁOŚCI DO KSIĘŻYCA, PLANET I GWIAZD? 1) Co to jest paralaksa? Eksperyment Wyciągnij rękę jak najdalej od siebie z palcem

Bardziej szczegółowo

GSP077 Pakiet. KArty pracy. MateMatyka. Ekstraklasa 6klasisty matematyka kpracy 6 pak 1.indd 1

GSP077 Pakiet. KArty pracy. MateMatyka. Ekstraklasa 6klasisty matematyka kpracy 6 pak 1.indd 1 GSP077 klasa Pakiet 6 KArty pracy MateMatyka Ekstraklasa 6klasisty matematyka kpracy 6 pak.indd 9/24/3 2:2 PM Instrukcja matematyka Uważnie czytaj teksty zadań i polecenia. Rozwiązania zapisz długopisem

Bardziej szczegółowo

Radomski Ośrodek Doskonalenia Nauczycieli, Radomski Oddział SNM Test diagnostyczny dla uczniów klas pierwszych szkół ponadgimnazjalnych Wersja A

Radomski Ośrodek Doskonalenia Nauczycieli, Radomski Oddział SNM Test diagnostyczny dla uczniów klas pierwszych szkół ponadgimnazjalnych Wersja A Radomski Ośrodek Doskonalenia Nauczycieli, Radomski Oddział SNM Test diagnostyczny dla uczniów klas pierwszych szkół ponadgimnazjalnych Wersja A Imię i nazwisko. Klasa. Drogi uczniu! Masz przed sobą test

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Wpisuje zdający przed rozpoczęciem pracy PESEL ZDAJĄCEGO Miejsce na nalepkę z kodem szkoły PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Instrukcja dla zdającego Arkusz I Czas pracy 10 minut 1. Proszę sprawdzić,

Bardziej szczegółowo

PRÓBNY EGZAMIN GIMNAZJALNY

PRÓBNY EGZAMIN GIMNAZJALNY PRÓBNY EGZAMIN GIMNAZJALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO 24 MARCA 2012 CZAS PRACY: 90 MINUT 1 ZADANIE 1 (1 PKT.) Która równość jest fałszywa? Wybierz odpowiedź spośród

Bardziej szczegółowo

Konkurs Potyczki informatyczno matematyczne VI edycja 2009r. Zespół Szkół w Dobrzeniu Wielkim

Konkurs Potyczki informatyczno matematyczne VI edycja 2009r. Zespół Szkół w Dobrzeniu Wielkim Zad 1. (5pkt/12min) W prognozie pogody podano, że obecnie nad morzem jest piękna, bezwietrzna pogoda, ale za ponad pięć godzin, wiatr może osiągnąć tam prędkość 90km/h, a w górach może wiać nawet z prędkością

Bardziej szczegółowo

WOJEWÓDZKI KONKURS MATEMATYCZNY

WOJEWÓDZKI KONKURS MATEMATYCZNY Kod ucznia Liczba punktów WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJÓW W ROKU SZKOLNYM 207/208 02.03.208. Test konkursowy zawiera 20 zadań. Są to zadania zamknięte i otwarte. Na ich rozwiązanie

Bardziej szczegółowo

Zadanie 2 Średnia arytmetyczna liczb: ; A) 9 B) ; x jest równa 3. Zatem x wynosi: C) 3 D) 8

Zadanie 2 Średnia arytmetyczna liczb: ; A) 9 B) ; x jest równa 3. Zatem x wynosi: C) 3 D) 8 Zadanie Całkowity dochód pewnej rodziny wynosił 200zł miesięcznie. Diagram kołowy przedstawia procentowy udział poszczególnych wydatków w budżecie rodziny. Korzystając z diagramu wskaż zdanie prawdziwe

Bardziej szczegółowo

Plik pobrany ze strony www.zadania.pl

Plik pobrany ze strony www.zadania.pl Plik pobrany ze strony www.zadania.pl Wpisuje zdający przed rozpoczęciem pracy PESEL ZDAJĄCEGO Miejsce na nalepkę z kodem szkoły PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Instrukcja dla zdającego Arkusz I

Bardziej szczegółowo

Wyznaczanie długości i szerokości geograficznej z obserwacji astronomicznych.

Wyznaczanie długości i szerokości geograficznej z obserwacji astronomicznych. Wykład udostępniam na licencji Creative Commons: Wyznaczanie długości i szerokości geograficznej z obserwacji astronomicznych. Piotr A. Dybczyński Związek czasu słonecznego z gwiazdowym. Zadanie:

Bardziej szczegółowo

Wyznaczanie długości i szerokości geograficznej z obserwacji astronomicznych.

Wyznaczanie długości i szerokości geograficznej z obserwacji astronomicznych. Wykład udostępniam na licencji Creative Commons: Wyznaczanie długości i szerokości geograficznej z obserwacji astronomicznych. Piotr A. Dybczyński Związek czasu słonecznego z gwiazdowym. Zadanie:

Bardziej szczegółowo

Cud grecki. Cud grecki. Wrocław, 2 marca 2016

Cud grecki. Cud grecki. Wrocław, 2 marca 2016 Wrocław, 2 marca 2016 Wykształcenie podstawowe Spośród wielu twierdzeń i faktów pochodzących ze starożytnej Grecji w szkole na lekcjach matematyki pojawiają się: Twierdzenie Talesa Wykształcenie podstawowe

Bardziej szczegółowo

KIE TOWARZY WATCHE LEC KÓW ASTRO

KIE TOWARZY WATCHE LEC KÓW ASTRO TOWARZYSTWO WATCHERS MIŁOŚNIKÓWASTRONOMII www.stma.pl 1 SIEDLECKIE SKY XV Festiwal Nauki i Sztuki Opis pokazów SKY SIEDLECKIE TOWARZYSTWO WATCHERS mgr inŝ. Sławomir Miernicki MIŁOŚNIKÓWASTRONOMII Siedlce,

Bardziej szczegółowo

Czy liczby pierwsze zdradzą swoje tajemnice? Czy liczby pierwsze zdradzą swoje tajemnice?

Czy liczby pierwsze zdradzą swoje tajemnice? Czy liczby pierwsze zdradzą swoje tajemnice? Czy liczby pierwsze zdradzą swoje tajemnice? Czy liczby pierwsze zdradzą swoje tajemnice? Wstęp Liczby pierwsze były tematem rozważań uczonych już od wieków. Pierwsze wzmianki na temat liczb pierwszych

Bardziej szczegółowo

x Kryteria oceniania

x Kryteria oceniania Wojewódzki Konkurs z matematyki dla uczniów szkół podstawowych rok szkolny 216/21 Etap I - szkolny W kluczu przedstawiono przykładowe rozwiązania oraz prawidłowe odpowiedzi. Za każdą inną poprawną metodę

Bardziej szczegółowo

Model odpowiedzi i schemat oceniania do arkusza I

Model odpowiedzi i schemat oceniania do arkusza I Model odpowiedzi i schemat oceniania do arkusza I Zadanie 1 (4 pkt) n Odczytanie i zapisanie danych z wykresu: 100, 105, 100, 10, 101. n Obliczenie mediany: Mediana jest równa 101. n Obliczenie średniej

Bardziej szczegółowo

Kuratorium Oświaty w Lublinie ZESTAW ZADAŃ KONKURSOWYCH Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 2014/2015 ETAP OKRĘGOWY. Instrukcja dla ucznia

Kuratorium Oświaty w Lublinie ZESTAW ZADAŃ KONKURSOWYCH Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 2014/2015 ETAP OKRĘGOWY. Instrukcja dla ucznia Kuratorium Oświaty w Lublinie KOD UCZNIA ZESTAW ZADAŃ KONKURSOWYCH Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 2014/2015 ETAP OKRĘGOWY Instrukcja dla ucznia 1. Zestaw konkursowy zawiera 8 zadań. 2.

Bardziej szczegółowo

ARKUSZ II

ARKUSZ II www.galileusz.com.pl ARKUSZ II W każdym z zadań 1.-24. wybierz i zaznacz jedną poprawną odpowiedź. Zadanie 1. (0-1 pkt) Liczba 30 to p% liczby 80, zatem A) p = 44,(4)% B) p > 44,(4)% C) p = 43,(4)% D)

Bardziej szczegółowo

Matematyka test dla uczniów klas drugich

Matematyka test dla uczniów klas drugich Matematyka test dla uczniów klas drugich gimnazjów w roku szkolnym 011/01 Etap międzyszkolny Schemat punktowania (do uzyskania maksymalnie: 1) UWAGI OGÓLNE: 1) Za każde prawidłowo rozwiązane zadanie dowolną

Bardziej szczegółowo

Wstęp do astrofizyki I

Wstęp do astrofizyki I Wstęp do astrofizyki I Wykład 10 Tomasz Kwiatkowski 8 grudzień 2010 r. Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 10 1/36 Plan wykładu Wyznaczanie mas ciał niebieskich Gwiazdy podwójne Optycznie

Bardziej szczegółowo

Optyka 2012/13 powtórzenie

Optyka 2012/13 powtórzenie strona 1 Imię i nazwisko ucznia Data...... Klasa... Zadanie 1. Słońce w ciągu dnia przemieszcza się na niebie ze wschodu na zachód. W którym kierunku obraca się Ziemia? Zadanie 2. Na rysunku przedstawiono

Bardziej szczegółowo

Test diagnostyczny dla uczniów klas pierwszych szkół ponadgimnazjalnych Wersja A

Test diagnostyczny dla uczniów klas pierwszych szkół ponadgimnazjalnych Wersja A Test diagnostyczny dla uczniów klas pierwszych szkół ponadgimnazjalnych Wersja A Imię i nazwisko. Klasa. Drogi uczniu! Masz przed sobą test sprawdzający Twoją wiedzę i umiejętności, które nabyłeś na wcześniejszych

Bardziej szczegółowo

ETAP 3 GEOMETRIA NA PŁASZCZYŹNIE ZADANIA PRZYGOTOWAWCZE

ETAP 3 GEOMETRIA NA PŁASZCZYŹNIE ZADANIA PRZYGOTOWAWCZE LAMBDA Zespół Szkół w Chełmży ul. Hallera 23, 87 140 Chełmża tel./fax. 675 24 19 Konkurs matematyczny dla uczniów klas III gimnazjum www.lamdba.neth.pl ETAP 3 GEOMETRIA NA PŁASZCZYŹNIE ZADANIA PRZYGOTOWAWCZE

Bardziej szczegółowo

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM.

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM. ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM. I. Trygonometria. 1. Definicje funkcji trygonometrycznych kąta ostrego w trójkącie prostokątnym. 2. Rozwiązywanie trójkątów prostokątnych

Bardziej szczegółowo

PRÓBNY EGZAMIN GIMNAZJALNY

PRÓBNY EGZAMIN GIMNAZJALNY PRÓBNY EGZAMIN GIMNAZJALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO 14 KWIETNIA 2012 CZAS PRACY: 90 MINUT 1 ZADANIE 1 (1 PKT.) Korzystajac z tego, że 12 2 = 144, wskaż wartość liczby

Bardziej szczegółowo

I. Funkcja kwadratowa

I. Funkcja kwadratowa Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy w roku szkolnym 2018/2019 w CKZiU nr 3 Ekonomik w Zielonej Górze KLASA III fl POZIOM PODSTAWOWY I. Funkcja kwadratowa narysować wykres funkcji

Bardziej szczegółowo

Egzamin maturalny z fizyki i astronomii 5 Poziom podstawowy

Egzamin maturalny z fizyki i astronomii 5 Poziom podstawowy Egzamin maturalny z fizyki i astronomii 5 Poziom podstawowy 14. Kule (3 pkt) Dwie małe jednorodne kule A i B o jednakowych masach umieszczono w odległości 10 cm od siebie. Kule te oddziaływały wówczas

Bardziej szczegółowo

Orientacyjnie 140 godzin lekcyjnych, tj. 35 tygodni po 4 godziny lekcyjne tygodniowo.

Orientacyjnie 140 godzin lekcyjnych, tj. 35 tygodni po 4 godziny lekcyjne tygodniowo. 6 Orientacyjnie 40 godzin lekcyjnych, tj. 35 tygodni po 4 godziny lekcyjne tygodniowo.. Śmietankowe ponad wszystko Statystyka. Powtórzenie wiadomości ze statystyki 3 Czytanka. O języku matematyki, czyli

Bardziej szczegółowo

PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa V szkoła podstawowa marzec 2015

PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa V szkoła podstawowa marzec 2015 PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa V szkoła podstawowa marzec 205 KARTA PUNKTACJI ZADAŃ (wypełnia komisja konkursowa): Numer zadania Zad. Zad. 2 Zad. 3 Zad. 4 Zad. 5 Zad. 6 Zad. 7

Bardziej szczegółowo

SCENARIUSZ LEKCJI MATEMATYKI W KLASIE IV

SCENARIUSZ LEKCJI MATEMATYKI W KLASIE IV SCENARIUSZ LEKCJI MATEMATYKI W KLASIE IV Opracowała: Hanna Nowakowska Szkoła Podstawowa im. Jana Pawła II w Żydowie TEMAT : ŻEGNAMY FIGURY PŁASKIE Cel ogólny: Utrwalenie wiadomości o figurach płaskich

Bardziej szczegółowo

WIOLETTA NAWROCKA nauczyciel matematyki w Zespole Szkół w Choczewie IDĘ DO GIMNAZJUM ZADANIA TESTOWE Z MATEMATYKI DLA UCZNIÓW KL. VI.

WIOLETTA NAWROCKA nauczyciel matematyki w Zespole Szkół w Choczewie IDĘ DO GIMNAZJUM ZADANIA TESTOWE Z MATEMATYKI DLA UCZNIÓW KL. VI. WIOLETTA NAWROCKA nauczyciel matematyki w Zespole Szkół w Choczewie IDĘ DO GIMNAZJUM ZADANIA TESTOWE Z MATEMATYKI DLA UCZNIÓW KL. VI. Przeczytaj uważnie pytanie. Chwilę zastanów się. Masz do wyboru cztery

Bardziej szczegółowo

A. fałszywa dla każdej liczby x.b. prawdziwa dla C. prawdziwa dla D. prawdziwa dla

A. fałszywa dla każdej liczby x.b. prawdziwa dla C. prawdziwa dla D. prawdziwa dla Zadanie 1 Liczba jest równa A. B. C. 10 D. Odpowiedź B. Zadanie 2 Liczba jest równa A. 3 B. 2 C. D. Odpowiedź D. Zadanie 3. Liczba jest równa Odpowiedź D. Zadanie 4. Liczba osobników pewnego zagrożonego

Bardziej szczegółowo

A co oznacza samo słowo geometria? W dosłownym znaczeniu to "mierzyć Ziemię", ponieważ "GEO-ZIEMIA", a "METRIA-MIERZYĆ".

A co oznacza samo słowo geometria? W dosłownym znaczeniu to mierzyć Ziemię, ponieważ GEO-ZIEMIA, a METRIA-MIERZYĆ. Figury geometryczne i ich własności WSTĘP Geometria... na pewno spotkałeś/łaś się już z takim określeniem. Jest to jeden z działów matematyki, który dotyczy różnych figur (takich jak odcinek, prosta, ale

Bardziej szczegółowo

TEST DIAGNOZJACY PO I SEMESTRZE KL.I GR. A

TEST DIAGNOZJACY PO I SEMESTRZE KL.I GR. A TEST DIAGNOZJACY PO I SEMESTRZE KL.I GR. A NAZWISKO I IMIE.. KLASA. DATA 1. Liczbą podzielną przez 3 jest A. 119 B. 121 C. 133 D. 222 2. Z podanych liczb wybierz te, które dzielą się przez 2. 1272, 22

Bardziej szczegółowo

Grawitacja - powtórka

Grawitacja - powtórka Grawitacja - powtórka 1. Oceń prawdziwość każdego zdania. Zaznacz, jeśli zdanie jest prawdziwe, lub, jeśli jest A. Jednorodne pole grawitacyjne istniejące w obszarze sali lekcyjnej jest wycinkiem centralnego

Bardziej szczegółowo

14 POLE GRAWITACYJNE. Włodzimierz Wolczyński. Wzór Newtona. G- stała grawitacji 6, Natężenie pola grawitacyjnego.

14 POLE GRAWITACYJNE. Włodzimierz Wolczyński. Wzór Newtona. G- stała grawitacji 6, Natężenie pola grawitacyjnego. Włodzimierz Wolczyński 14 POLE GRAWITACYJNE Wzór Newtona M r m G- stała grawitacji Natężenie pola grawitacyjnego 6,67 10 jednostka [ N/kg] Przyspieszenie grawitacyjne jednostka [m/s 2 ] Praca w polu grawitacyjnym

Bardziej szczegółowo

Klasa III technikum Egzamin poprawkowy z matematyki sierpień I. CIĄGI LICZBOWE 1. Pojęcie ciągu liczbowego. b) a n =

Klasa III technikum Egzamin poprawkowy z matematyki sierpień I. CIĄGI LICZBOWE 1. Pojęcie ciągu liczbowego. b) a n = /9 Narysuj wykres ciągu (a n ) o wyrazie ogólnym: I. CIĄGI LICZBOWE. Pojęcie ciągu liczbowego. a) a n =5n dla n

Bardziej szczegółowo

Kurs ZDAJ MATURĘ Z MATEMATYKI - MODUŁ 11 Teoria planimetria

Kurs ZDAJ MATURĘ Z MATEMATYKI - MODUŁ 11 Teoria planimetria 1 Pomimo, że ten dział, to typowa geometria wydawałoby się trudny dział to paradoksalnie troszkę tu odpoczniemy, jeśli chodzi o teorię. Dlaczego? Otóż jak zapewne doskonale wiesz, na maturze otrzymasz

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE II GIMNAZJUM

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE II GIMNAZJUM WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE II GIMNAZJUM OCENA ŚRÓDROCZNA: NIEDOSTATECZNY ocenę niedostateczny otrzymuje uczeń, który

Bardziej szczegółowo

Zestaw powtórzeniowy z matematyki dla uczniów kl II PG nr 3. Część 3 (równania i nierówności; twierdzenie Pitagorasa)

Zestaw powtórzeniowy z matematyki dla uczniów kl II PG nr 3. Część 3 (równania i nierówności; twierdzenie Pitagorasa) Zestaw powtórzeniowy z matematyki dla uczniów kl II PG nr 3 Część 3 (równania i nierówności; twierdzenie Pitagorasa) 1. Zapisz w postaci równania: a) Różnica liczby x i i liczby 8 jest równa połowie liczby

Bardziej szczegółowo

Pożegnania. Mapa nieba, miedzioryt, XIX w.

Pożegnania. Mapa nieba, miedzioryt, XIX w. Pożegnania Opustoszałe gniazda bocianie, coraz wcześniejsze zachody Słońca, zimne noce i zmieniające barwy liście na drzewach i krzewach to zapowiedź pory jesiennej pożegnanie pięknego w tym roku gorącego

Bardziej szczegółowo

KLASA I LO Poziom podstawowy (styczeń) Treści nauczania wymagania szczegółowe:

KLASA I LO Poziom podstawowy (styczeń) Treści nauczania wymagania szczegółowe: KLASA I LO Poziom podstawowy (styczeń) Treści nauczania wymagania szczegółowe: ZAKRES PODSTAWOWY 7. Planimetria. Uczeń: 1) rozpoznaje trójkąty podobne i wykorzystuje (także w kontekstach praktycznych)

Bardziej szczegółowo

WOJEWÓDZKI KONKURS MATEMATYCZNY

WOJEWÓDZKI KONKURS MATEMATYCZNY Kod ucznia Liczba punktów WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2014/2015 13 STYCZNIA 2015 1. Test konkursowy zawiera 23 zadania. Są to zadania zamknięte i otwarte.

Bardziej szczegółowo

Rozkład materiału nauczania

Rozkład materiału nauczania Dział/l.p. Ilość godz. Typ szkoły: TECHNIKUM Zawód: TECHNIK USŁUG FRYZJERSKICH Rok szkolny 2017/2018 Przedmiot: MATEMATYKA Klasa: III 60 godzin numer programu T5/O/5/12 Rozkład materiału nauczania Temat

Bardziej szczegółowo

Daniel Woźniak, XX Liceum Ogólnokształcące w Krakowie. Opiekun: Iwona Sitnik-Szumiec

Daniel Woźniak, XX Liceum Ogólnokształcące w Krakowie. Opiekun: Iwona Sitnik-Szumiec Daniel Woźniak, XX Liceum Ogólnokształcące w Krakowie Opiekun: Iwona Sitnik-Szumiec Praca moja poświęcona jest metodom wykorzystywania środka ciężkości, określaniu jego dokładnego położenia jak również

Bardziej szczegółowo

Zapisy podstawy programowej Uczeń: 2. 1) wyjaśnia cechy budowy i określa położenie różnych ciał niebieskich we Wszechświecie;

Zapisy podstawy programowej Uczeń: 2. 1) wyjaśnia cechy budowy i określa położenie różnych ciał niebieskich we Wszechświecie; Geografia listopad Liceum klasa I, poziom rozszerzony XI Ziemia we wszechświecie Zapisy podstawy programowej Uczeń: 2. 1) wyjaśnia cechy budowy i określa położenie różnych ciał niebieskich we Wszechświecie;

Bardziej szczegółowo

Geometria. Rodzaje i własności figur geometrycznych:

Geometria. Rodzaje i własności figur geometrycznych: Geometria Jest jednym z działów matematyki, którego przedmiotem jest badanie figur geometrycznych i zależności między nimi. Figury geometryczne na płaszczyźnie noszą nazwę figur płaskich, w przestrzeni

Bardziej szczegółowo

Wymagania na egzamin poprawkowy z matematyki dla klasy I A LO (Rok szkolny 2015/16)

Wymagania na egzamin poprawkowy z matematyki dla klasy I A LO (Rok szkolny 2015/16) Wymagania na egzamin poprawkowy z matematyki dla klasy I A LO (Rok szkolny 05/6) Wykaz zakładanych osiągnięć ucznia klasy I liceum (osiągnięcia ucznia w zakresie podstawowym) I. Liczby rzeczywiste. Język

Bardziej szczegółowo

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE 3 ZASADNICZEJ SZKOŁY ZAWODOWEJ

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE 3 ZASADNICZEJ SZKOŁY ZAWODOWEJ ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE 3 ZASADNICZEJ SZKOŁY ZAWODOWEJ I. Funkcja kwadratowa i wymierna 1. Funkcja kwadratowa i jej postacie. 2. Wykres funkcji kwadratowej. 3. Równania

Bardziej szczegółowo

Pomiar pól wielokątów nieregularnych w terenie.

Pomiar pól wielokątów nieregularnych w terenie. Pomiar pól wielokątów nieregularnych w terenie. Czas trwania zajęć: 45 minut Kontekst w jakim wprowadzono doświadczenie: Pierwsza część zajęć odbywa się w terenie (boisko szkolne lub inny teren o nieutwardzonej

Bardziej szczegółowo

Wojewódzki Konkurs Przedmiotowy z matematyki dla uczniów szkół podstawowych województwa kujawsko-pomorskiego. Etap rejonowy

Wojewódzki Konkurs Przedmiotowy z matematyki dla uczniów szkół podstawowych województwa kujawsko-pomorskiego. Etap rejonowy Wojewódzki Konkurs Przedmiotowy z matematyki dla uczniów szkół podstawowych województwa kujawsko-pomorskiego Etap rejonowy 21.11.2015 Kod ucznia: Wynik: /20 pkt. Instrukcja dla ucznia Zanim przystąpisz

Bardziej szczegółowo

Planimetria 1 12 godz.

Planimetria 1 12 godz. Planimetria 1 1 godz. Funkcje trygonometryczne kąta ostrego 1 definicje funkcji trygonometrycznych kąta ostrego wartości funkcji trygonometrycznych kątów 30º, 45º, 60º Trygonometria zastosowania Rozwiązywanie

Bardziej szczegółowo

wymagania programowe z matematyki kl. III gimnazjum

wymagania programowe z matematyki kl. III gimnazjum wymagania programowe z matematyki kl. III gimnazjum 1. Liczby i wyrażenia algebraiczne Zna pojęcie notacji wykładniczej. Umie zapisać liczbę w notacji wykładniczej. Umie porównywać liczy zapisane w różny

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Wojewódzki 16 lutego 2018 Czas 90 minut Rozwiązania i punktacja

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Wojewódzki 16 lutego 2018 Czas 90 minut Rozwiązania i punktacja Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Wojewódzki 6 lutego 208 Czas 90 minut Rozwiązania i punktacja ZADANIA ZAMKNIĘTE Zadanie. ( punkt) Odległość między miastami A i B na mapie wynosi

Bardziej szczegółowo

POTĘGI I PIERWIASTKI

POTĘGI I PIERWIASTKI POTĘGI I PIERWIASTKI I. ZADANIA ZAMKNIĘTE Zadanie 1 Wskaż jedną poprawną odpowiedź. Połowa liczby 100 A. 50 B. 1 100 C. 10 D. 99 Zadanie Wskaż jedną poprawną odpowiedź. Po skróceniu liczba : A. B. C. D.

Bardziej szczegółowo

Karta pracy do doświadczeń

Karta pracy do doświadczeń 1 Karta pracy do doświadczeń UWAGA: Pola z poleceniami zapisanymi niebieską czcionką i ramkami z przerywaną linią wypełniają uczniowie uczestniczący w zajęciach. A. Temat w formie pytania badawczego lub

Bardziej szczegółowo

OPIS MODUŁ KSZTAŁCENIA (SYLABUS)

OPIS MODUŁ KSZTAŁCENIA (SYLABUS) OPIS MODUŁ KSZTAŁCENIA (SYLABUS) I. Informacje ogólne: 1 Nazwa modułu Astronomia ogólna 2 Kod modułu 04-A-AOG-90-1Z 3 Rodzaj modułu obowiązkowy 4 Kierunek studiów astronomia 5 Poziom studiów I stopień

Bardziej szczegółowo

KONKURS MATEMATYCZNY DLA KLASY IV

KONKURS MATEMATYCZNY DLA KLASY IV DLA KLASY IV Zadanie 1. Wartość wyrażenia ( 2 ) : + (100 : 4 +2 6)= wynosi: a)1 b) c) 2 d) 41 Zadanie 2. Klientka płaci banknotem 100- złotowym za 2 kostki masła po zł, 6 jajek po 40 gr., bułek po 1zł,

Bardziej szczegółowo

Proporcjonalność prosta i odwrotna

Proporcjonalność prosta i odwrotna Literka.pl Proporcjonalność prosta i odwrotna Data dodania: 2010-02-14 14:32:10 Autor: Anna Jurgas Temat lekcji dotyczy szczególnego przypadku funkcji liniowej y=ax. Jednak można sie dopatrzeć pewnej różnicy

Bardziej szczegółowo

Ptolemeusz matematyk i astronom

Ptolemeusz matematyk i astronom Matematyka jest miarą wszystkiego Arystoteles Ptolemeusz matematyk i astronom Bartłomiej Zajda Zespół Szkół Publicznych Nr 2 w Wadowicach tel. 33 82 324 80 zsp2wadowice@poczta.onet.pl 1 Pochodzę z Wadowic,

Bardziej szczegółowo

Pozorne orbity planet Z notatek prof. Antoniego Opolskiego. Tomasz Mrozek Instytut Astronomiczny UWr Zakład Fizyki Słońca CBK PAN

Pozorne orbity planet Z notatek prof. Antoniego Opolskiego. Tomasz Mrozek Instytut Astronomiczny UWr Zakład Fizyki Słońca CBK PAN Pozorne orbity planet Z notatek prof. Antoniego Opolskiego Tomasz Mrozek Instytut Astronomiczny UWr Zakład Fizyki Słońca CBK PAN Początek Młody miłośnik astronomii patrzy w niebo Młody miłośnik astronomii

Bardziej szczegółowo

Próbny Egzamin Gimnazjalny z Matematyki Zestaw przygotowany przez serwis 24 marca 2012 Czas pracy: 90 minut

Próbny Egzamin Gimnazjalny z Matematyki Zestaw przygotowany przez serwis   24 marca 2012 Czas pracy: 90 minut Strona 1 /Gimnazjum/Egzamin gimnazjalny Próbny Egzamin Gimnazjalny z Matematyki Zestaw przygotowany przez serwis www.zadania.info 24 marca 2012 Czas pracy: 90 minut Zadanie 1 (1 pkt.) Która równość jest

Bardziej szczegółowo

14R2 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - II POZIOM ROZSZERZONY

14R2 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - II POZIOM ROZSZERZONY 14R2 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - II POZIOM ROZSZERZONY Ruch jednostajny po okręgu Dynamika bryły sztywnej Pole grawitacyjne Rozwiązanie zadań należy zapisać w wyznaczonych

Bardziej szczegółowo

SPRAWDZIAN NR Merkury krąży wokół Słońca po orbicie, którą możemy uznać za kołową.

SPRAWDZIAN NR Merkury krąży wokół Słońca po orbicie, którą możemy uznać za kołową. SPRAWDZIAN NR 1 IMIĘ I NAZWISKO: KLASA: GRUPA A 1. Merkury krąży wokół Słońca po orbicie, którą możemy uznać za kołową. Zaznacz poprawne dokończenie zdania. Siłę powodującą ruch Merkurego wokół Słońca

Bardziej szczegółowo

Konkurs przedmiotowy z matematyki dla uczniów gimnazjów 12 stycznia 2017 r. zawody II stopnia (rejonowe)

Konkurs przedmiotowy z matematyki dla uczniów gimnazjów 12 stycznia 2017 r. zawody II stopnia (rejonowe) Kod ucznia:. Liczba punktów: Konkurs przedmiotowy z matematyki dla uczniów gimnazjów 12 stycznia 2017 r. zawody II stopnia (rejonowe) Witamy Cię na drugim etapie Konkursu przedmiotowego z matematyki. Przed

Bardziej szczegółowo

I. Funkcja kwadratowa

I. Funkcja kwadratowa Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas III w roku szkolnym 2017/2018 w Zespole Szkół Ekonomicznych w Zielonej Górze Dla każdej klasy 3 obowiązuje taka ilość poniższego

Bardziej szczegółowo

00013 Mechanika nieba A

00013 Mechanika nieba A 1 00013 Mechanika nieba A Dane osobowe właściciela arkusza 00013 Mechanika nieba A Czas pracy 90/150 minut Instrukcja dla zdającego 1. Proszę sprawdzić, czy arkusz egzaminacyjny zawiera 10 stron. Ewentualny

Bardziej szczegółowo

Historia myśli naukowej. Ewolucja poglądów związanych z budową Wszechświata. dr inż. Romuald Kędzierski

Historia myśli naukowej. Ewolucja poglądów związanych z budową Wszechświata. dr inż. Romuald Kędzierski Historia myśli naukowej Ewolucja poglądów związanych z budową Wszechświata dr inż. Romuald Kędzierski Wszechświat według uczonych starożytnych Starożytny Babilon -Ziemia jest nieruchomą półkulą, która

Bardziej szczegółowo

ZMA Kolokwium 1. Imię Nazwisko #indeksu Grupa. Ocena. 1. Na podstawie danych narysuj diagram ORM. (15 10 pkt). Gwiazda

ZMA Kolokwium 1. Imię Nazwisko #indeksu Grupa. Ocena. 1. Na podstawie danych narysuj diagram ORM. (15 10 pkt). Gwiazda Imię Nazwisko #indeksu Grupa ZMA Kolokwium 1 Ocena 1. Na podstawie danych narysuj diagram ORM. (15 10 pkt). Formatted: Space Before: 0 pt Gwiazdy Nazwa Masa (mas ziemi) Promień (km) Słońce 34000 696000

Bardziej szczegółowo

Za rozwiązanie wszystkich zadań można otrzymać łącznie 45 punktów.

Za rozwiązanie wszystkich zadań można otrzymać łącznie 45 punktów. Centralna Komisja Egzaminacyjna. MATERIAŁY ĆWICZENIOWE Z MATEMATYKI POZIOM PODSTAWOWY Czas pracy: 70 minut Materiały ćwiczeniowe z matematyki Poziom podstawowy Czas pracy: 70 minut Instrukcja dla zdającego:.

Bardziej szczegółowo

Krzywe stożkowe Lekcja II: Okrąg i jego opis w różnych układach współrzędnych

Krzywe stożkowe Lekcja II: Okrąg i jego opis w różnych układach współrzędnych Krzywe stożkowe Lekcja II: Okrąg i jego opis w różnych układach współrzędnych Wydział Matematyki Politechniki Wrocławskiej Okrąg Okrąg jest szczególną krzywą stożkową. Wyznacza nam koło, które jest podstawą

Bardziej szczegółowo