Konstrukcja biortogonalnych baz dyskryminacyjnych dla problemu klasyfikacji sygnałów. Wit Jakuczun

Wielkość: px
Rozpocząć pokaz od strony:

Download "Konstrukcja biortogonalnych baz dyskryminacyjnych dla problemu klasyfikacji sygnałów. Wit Jakuczun"

Transkrypt

1 Konstrukcja biortogonalnych baz dyskryminacyjnych dla problemu klasyfikacji sygnałów Politechnika Warszawska Strona 1

2 Podstawowe definicje Politechnika Warszawska Strona 2

3 Podstawowe definicje Zbiór treningowy Politechnika Warszawska Strona 2

4 Podstawowe definicje Zbiór treningowy zbiór X = {(x i, y i ): x i R d, y i { 1, +1}} l i=1 rozkładem prawdopodobieństwa D na R n { 1, +1} wylosowany niezależnie zgodnie z pewnym Politechnika Warszawska Strona 2

5 Podstawowe definicje Zbiór treningowy zbiór X = {(x i, y i ): x i R d, y i { 1, +1}} l i=1 rozkładem prawdopodobieństwa D na R n { 1, +1} Klasyfikator wylosowany niezależnie zgodnie z pewnym Politechnika Warszawska Strona 2

6 Podstawowe definicje Zbiór treningowy zbiór X = {(x i, y i ): x i R d, y i { 1, +1}} l i=1 rozkładem prawdopodobieństwa D na R n { 1, +1} Klasyfikator Dowolne odwzorowanie h: R n { 1, +1} wylosowany niezależnie zgodnie z pewnym Politechnika Warszawska Strona 2

7 Podstawowe definicje Zbiór treningowy zbiór X = {(x i, y i ): x i R d, y i { 1, +1}} l i=1 rozkładem prawdopodobieństwa D na R n { 1, +1} Klasyfikator Dowolne odwzorowanie h: R n { 1, +1} Bład na próbce wylosowany niezależnie zgodnie z pewnym Politechnika Warszawska Strona 2

8 Podstawowe definicje Zbiór treningowy zbiór X = {(x i, y i ): x i R d, y i { 1, +1}} l i=1 rozkładem prawdopodobieństwa D na R n { 1, +1} Klasyfikator Dowolne odwzorowanie h: R n { 1, +1} Bład na próbce err X (h) = {(x i,y i ): h(x i ) y i } X wylosowany niezależnie zgodnie z pewnym Politechnika Warszawska Strona 2

9 Podstawowe definicje Zbiór treningowy zbiór X = {(x i, y i ): x i R d, y i { 1, +1}} l i=1 rozkładem prawdopodobieństwa D na R n { 1, +1} Klasyfikator Dowolne odwzorowanie h: R n { 1, +1} Bład na próbce err X (h) = {(x i,y i ): h(x i ) y i } X Bład rzeczywisty wylosowany niezależnie zgodnie z pewnym Politechnika Warszawska Strona 2

10 Podstawowe definicje Zbiór treningowy zbiór X = {(x i, y i ): x i R d, y i { 1, +1}} l i=1 rozkładem prawdopodobieństwa D na R n { 1, +1} Klasyfikator Dowolne odwzorowanie h: R n { 1, +1} Bład na próbce err X (h) = {(x i,y i ): h(x i ) y i } X Bład rzeczywisty err D (h) = P D (h(x) y) wylosowany niezależnie zgodnie z pewnym Politechnika Warszawska Strona 2

11 Podstawowe definicje cd. Politechnika Warszawska Strona 3

12 Podstawowe definicje cd. Baza biortogonalna Politechnika Warszawska Strona 3

13 Podstawowe definicje cd. Baza biortogonalna zbiór d par wektorów z R d {(φ i, ψ i )} d i=1, takich że φ i, ψ k = δ i,k x = d x, ψ i φ i i=1 x R Politechnika Warszawska Strona 3

14 Sformułowanie problemu (baza dyskryminacyjna) Politechnika Warszawska Strona 4

15 Sformułowanie problemu (baza dyskryminacyjna) Dla danego zbioru treningowego X znaleźć taka bazę biortogonalna {(φ i, ψ i )} d i=1 przestrzeni Rn, że warunek Politechnika Warszawska Strona 4

16 Sformułowanie problemu (baza dyskryminacyjna) Dla danego zbioru treningowego X znaleźć taka bazę biortogonalna {(φ i, ψ i )} d i=1 przestrzeni Rn, że warunek y i ψ k, x i > 0 zachodzi dla jak największej liczby przykładów treningowych dla k = 1,..., d, i = 1,..., l Politechnika Warszawska Strona 4

17 Szukanie bazy dyskryminacyjnej Politechnika Warszawska Strona 5

18 Szukanie bazy dyskryminacyjnej Dowolna baza Politechnika Warszawska Strona 5

19 Szukanie bazy dyskryminacyjnej Dowolna baza NIEWYKONALNE Politechnika Warszawska Strona 5

20 Szukanie bazy dyskryminacyjnej Dowolna baza NIEWYKONALNE Baza ortogonalna Politechnika Warszawska Strona 5

21 Szukanie bazy dyskryminacyjnej Dowolna baza NIEWYKONALNE Baza ortogonalna proste, brak adaptacji, brak lokalności Politechnika Warszawska Strona 5

22 Szukanie bazy dyskryminacyjnej Dowolna baza NIEWYKONALNE Baza ortogonalna proste, brak adaptacji, brak lokalności Lifting scheme Politechnika Warszawska Strona 5

23 Szukanie bazy dyskryminacyjnej Dowolna baza NIEWYKONALNE Baza ortogonalna proste, brak adaptacji, brak lokalności Lifting scheme proste, mo żliwósć adaptacji, lokalność Politechnika Warszawska Strona 5

24 Lifting Scheme Politechnika Warszawska Strona 6

25 Lifting Scheme Split Politechnika Warszawska Strona 6

26 Lifting Scheme Split Rozbij wektor x R d na dwa wektory x e (współrzędne parzyste) oraz x o (współrzędne nieparzyste). Politechnika Warszawska Strona 6

27 Lifting Scheme Split Rozbij wektor x R d na dwa wektory x e (współrzędne parzyste) oraz x o (współrzędne nieparzyste). Update Politechnika Warszawska Strona 6

28 Lifting Scheme Split Rozbij wektor x R d na dwa wektory x e (współrzędne parzyste) oraz x o (współrzędne nieparzyste). Update Utwórz zgrubne przybliżenie c wektora x c i = xo i + x e i 2 = x(2i) + x(2i + 1) 2 Politechnika Warszawska Strona 6

29 Lifting Scheme Split Rozbij wektor x R d na dwa wektory x e (współrzędne parzyste) oraz x o (współrzędne nieparzyste). Update Utwórz zgrubne przybliżenie c wektora x c i = xo i + x e i 2 = x(2i) + x(2i + 1) 2 Predict Politechnika Warszawska Strona 6

30 Lifting Scheme Split Rozbij wektor x R d na dwa wektory x e (współrzędne parzyste) oraz x o (współrzędne nieparzyste). Update Utwórz zgrubne przybliżenie c wektora x c i = xo i + x e i 2 = x(2i) + x(2i + 1) 2 Predict Znajdź współczynniki d i według wzoru d i = x o i PREDICT(c, L) Politechnika Warszawska Strona 6

31 Lifting scheme c.d. X Update C Predict D Politechnika Warszawska Strona 7

32 Lifting scheme (predyktor liniowy) c(n) x(2n+1) c(n+1) α +1 β Σ d(n) Politechnika Warszawska Strona 8

33 Lifting scheme - własności Politechnika Warszawska Strona 9

34 Lifting scheme - własności Zalety Politechnika Warszawska Strona 9

35 Lifting scheme - własności Zalety wektory bazowe ψ i (analizujace) sa lokalne Politechnika Warszawska Strona 9

36 Lifting scheme - własności Zalety wektory bazowe ψ i (analizujace) sa lokalne działanie operatorów predykcji jest od siebie niezależne Politechnika Warszawska Strona 9

37 Lifting scheme - własności Zalety wektory bazowe ψ i (analizujace) sa lokalne działanie operatorów predykcji jest od siebie niezależne Wady Politechnika Warszawska Strona 9

38 Lifting scheme - własności Zalety wektory bazowe ψ i (analizujace) sa lokalne działanie operatorów predykcji jest od siebie niezależne Wady zależność kolejnych współrzędnych wektora x od ich sasiadów Politechnika Warszawska Strona 9

39 Lifting scheme - własności Zalety wektory bazowe ψ i (analizujace) sa lokalne działanie operatorów predykcji jest od siebie niezależne Wady zależność kolejnych współrzędnych wektora x od ich sasiadów tylko jeden sposób budowy bazy Politechnika Warszawska Strona 9

40 Metoda (krok 1) Politechnika Warszawska Strona 10

41 Metoda (krok 1) Współczynniki d i można wykorzystać do klasyfikacji pred(x) = sgn(d i b i ) Politechnika Warszawska Strona 10

42 Metoda (krok 1) Współczynniki d i można wykorzystać do klasyfikacji pred(x) = sgn(d i b i ) W przypadku liniowego operatora predykcji, współczynnik d i można zapisać następujaco d i = x e i c, p i Politechnika Warszawska Strona 10

43 Metoda (krok 2) Politechnika Warszawska Strona 11

44 Metoda (krok 2) Na podstawie zbioru treningowego X tworzymy nowy zbiór treningowy (oddzielnie dla każdego współczynnika d i ) X i = {( c k i, y k )} l k=1 Politechnika Warszawska Strona 11

45 Metoda (krok 2) Na podstawie zbioru treningowego X tworzymy nowy zbiór treningowy (oddzielnie dla każdego współczynnika d i ) X i = {( c k i, y k )} l k=1 Aby znaleźć współczynniki p i należy rozwiazać następujacy problem optymalizacyjny 1 min p i,b i,c i 2 p i C i l k=1 przy ograniczeniach y k (x k o,i + c k i, p i + bi ) 1 0 ξ k 0 ξ i k = 1,..., l Politechnika Warszawska Strona 11

46 Metoda (krok 3) Politechnika Warszawska Strona 12

47 Metoda (krok 3) Podobnie jak w przypadku Support Vector Machines (SVM) rozwiazanie jest dane wzorem p i = l y k α k c k i k=1 Politechnika Warszawska Strona 12

48 Metoda (krok 3) Podobnie jak w przypadku Support Vector Machines (SVM) rozwiazanie jest dane wzorem p i = l y k α k c k i k=1 Do wyliczania współczynników d k i nie trzeba znać wektora p i d k i = x k o,i + y j α c j j i, ck i j I SV Politechnika Warszawska Strona 12

49 Metoda (krok 3) Podobnie jak w przypadku Support Vector Machines (SVM) rozwiazanie jest dane wzorem p i = l y k α k c k i k=1 Do wyliczania współczynników d k i nie trzeba znać wektora p i d k i = x k o,i + j I SV y j α j c j i, ck i Można zastosować kernel trick d k i = x k o,i + j I SV y j α j K( c j i, ck i ) Politechnika Warszawska Strona 12

50 Oszacowanie wymiaru VC Wymiar VC dla tak konstruowanej przestrzeni hipotez można oszacować następujaco dim V C d + 3 log 2 (d) gdzie d = argmax s S ( em s ) s Politechnika Warszawska Strona 13

51 Podsumowanie Politechnika Warszawska Strona 14

52 Podsumowanie Zalety Politechnika Warszawska Strona 14

53 Podsumowanie Zalety Naturalna równoległość Politechnika Warszawska Strona 14

54 Podsumowanie Zalety Naturalna równoległość Łatwość interpretacji (lokalność funkcji bazowych) Politechnika Warszawska Strona 14

55 Podsumowanie Zalety Naturalna równoległość Łatwość interpretacji (lokalność funkcji bazowych) Wysoka jakość Politechnika Warszawska Strona 14

56 Podsumowanie Zalety Naturalna równoległość Łatwość interpretacji (lokalność funkcji bazowych) Wysoka jakość Wady Politechnika Warszawska Strona 14

57 Podsumowanie Zalety Naturalna równoległość Łatwość interpretacji (lokalność funkcji bazowych) Wysoka jakość Wady duża liczba parametrów sterujacych Politechnika Warszawska Strona 14

58 Podsumowanie Zalety Naturalna równoległość Łatwość interpretacji (lokalność funkcji bazowych) Wysoka jakość Wady duża liczba parametrów sterujacych ograniczenie do dwóch klas decyzyjnych Politechnika Warszawska Strona 14

59 Podsumowanie Zalety Naturalna równoległość Łatwość interpretacji (lokalność funkcji bazowych) Wysoka jakość Wady duża liczba parametrów sterujacych ograniczenie do dwóch klas decyzyjnych ograniczenie do klasyfikacji sygnałów Politechnika Warszawska Strona 14

60 Wyniki Dane Bład klasyfikacji Rozmiar drzewa Oryginalne Nowe Oryginalne Nowe Twonorm Ringnorm Threenorm Waveform Shape Table 1: Klasyfikator C4.5 Politechnika Warszawska Strona 15

61 Wyniki c.d Dane Bład klasyfikacji 3 współczynniki 15 współczynników Twonorm Ringnorm Threenorm Waveform Shape Table 2: Głosowanie 3 i 15 współczynników Politechnika Warszawska Strona 16

Lokalne klasyfikatory jako narzędzie analizy i

Lokalne klasyfikatory jako narzędzie analizy i Lokalne klasyfikatory jako narzędzie analizy i klasyfikacji sygnałów 25 listopada 2005 Lokalne klasyfikatory... 2 Część I Hierarchiczne biortogonalne bazy dyskryminacyjne Lokalne klasyfikatory... 3 Sformułowanie

Bardziej szczegółowo

Lokalne klasyfikatory jako narzędzie analizy i klasyfikacji sygnałów. Wit Jakuczun

Lokalne klasyfikatory jako narzędzie analizy i klasyfikacji sygnałów. Wit Jakuczun Lokalne klasyfikatory jako narzędzie analizy i klasyfikacji sygnałów Lokalne klasyfikatory... 2 Plan Referatu Część I- Lokalne Klasyfikatory Schemat Liftingu Proximal Support Vector Machines(PSVM) Przykład

Bardziej szczegółowo

Metody probabilistyczne klasyfikatory bayesowskie

Metody probabilistyczne klasyfikatory bayesowskie Konwersatorium Matematyczne Metody Ekonomii narzędzia matematyczne w eksploracji danych First Prev Next Last Go Back Full Screen Close Quit Metody probabilistyczne klasyfikatory bayesowskie Wykład 8 Marcin

Bardziej szczegółowo

7. Maszyny wektorów podpierajacych SVMs

7. Maszyny wektorów podpierajacych SVMs Algorytmy rozpoznawania obrazów 7. Maszyny wektorów podpierajacych SVMs dr inż. Urszula Libal Politechnika Wrocławska 2015 1 1. Maszyny wektorów podpierajacych - SVMs Maszyny wektorów podpierających (ang.

Bardziej szczegółowo

Problem eliminacji nieprzystających elementów w zadaniu rozpoznania wzorca Marcin Luckner

Problem eliminacji nieprzystających elementów w zadaniu rozpoznania wzorca Marcin Luckner Problem eliminacji nieprzystających elementów w zadaniu rozpoznania wzorca Marcin Luckner Wydział Matematyki i Nauk Informacyjnych Politechnika Warszawska Elementy nieprzystające Definicja odrzucania Klasyfikacja

Bardziej szczegółowo

ALGORYTM RANDOM FOREST

ALGORYTM RANDOM FOREST SKRYPT PRZYGOTOWANY NA ZAJĘCIA INDUKOWANYCH REGUŁ DECYZYJNYCH PROWADZONYCH PRZEZ PANA PAWŁA WOJTKIEWICZA ALGORYTM RANDOM FOREST Katarzyna Graboś 56397 Aleksandra Mańko 56699 2015-01-26, Warszawa ALGORYTM

Bardziej szczegółowo

Lokalne klasyfikatory jako narzędzie analizy i klasyfikacji sygnałów

Lokalne klasyfikatory jako narzędzie analizy i klasyfikacji sygnałów Instytut Podstaw Informatyki Polska Akademia Nauk Lokalne klasyfikatory jako narzędzie analizy i klasyfikacji sygnałów Rozprawa Doktorska Autor: mgr Wit Jakuczun Promotor: dr hab. Jerzy Cytowski Warszawa,

Bardziej szczegółowo

2 1 3 c c1. e 1, e 2,..., e n A= e 1 e 2...e n [ ] M. Przybycień Matematyczne Metody Fizyki I

2 1 3 c c1. e 1, e 2,..., e n A= e 1 e 2...e n [ ] M. Przybycień Matematyczne Metody Fizyki I Liniowa niezależno ność wektorów Przykład: Sprawdzić czy następujące wektory z przestrzeni 3 tworzą bazę: e e e3 3 Sprawdzamy czy te wektory są liniowo niezależne: 3 c + c + c3 0 c 0 c iei 0 c + c + 3c3

Bardziej szczegółowo

4. O funkcji uwikłanej 4.1. Twierdzenie. Niech będzie dana funkcja f klasy C 1 na otwartym podzbiorze. ϕ : K(x 0, δ) (y 0 η, y 0 + η), taka że

4. O funkcji uwikłanej 4.1. Twierdzenie. Niech będzie dana funkcja f klasy C 1 na otwartym podzbiorze. ϕ : K(x 0, δ) (y 0 η, y 0 + η), taka że 4. O funkcji uwikłanej 4.1. Twierdzenie. Niech będzie dana funkcja f klasy C 1 na otwartym podzbiorze taka że K(x 0, δ) (y 0 η, y 0 + η) R n R, f(x 0, y 0 ) = 0, y f(x 0, y 0 ) 0. Wówczas dla odpowiednio

Bardziej szczegółowo

4.1. Wprowadzenie...70 4.2. Podstawowe definicje...71 4.3. Algorytm określania wartości parametrów w regresji logistycznej...74

4.1. Wprowadzenie...70 4.2. Podstawowe definicje...71 4.3. Algorytm określania wartości parametrów w regresji logistycznej...74 3 Wykaz najważniejszych skrótów...8 Przedmowa... 10 1. Podstawowe pojęcia data mining...11 1.1. Wprowadzenie...12 1.2. Podstawowe zadania eksploracji danych...13 1.3. Główne etapy eksploracji danych...15

Bardziej szczegółowo

Optymalizacja ciągła

Optymalizacja ciągła Optymalizacja ciągła 5. Metoda stochastycznego spadku wzdłuż gradientu Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 04.04.2019 1 / 20 Wprowadzenie Minimalizacja różniczkowalnej

Bardziej szczegółowo

Entropia Renyi ego, estymacja gęstości i klasyfikacja

Entropia Renyi ego, estymacja gęstości i klasyfikacja Entropia Renyi ego, estymacja gęstości i klasyfikacja Wojciech Czarnecki Jacek Tabor 6 lutego 2014 1 / Wojciech Czarnecki, Jacek Tabor Renyi s Multithreshold Linear Classifier 1/36 36 2 / Wojciech Czarnecki,

Bardziej szczegółowo

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 STATYSTYKA Rafał Kucharski Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 Wybrane litery alfabetu greckiego α alfa β beta Γ γ gamma δ delta ɛ, ε epsilon η eta Θ θ theta

Bardziej szczegółowo

Przykład eksploracji danych o naturze statystycznej Próba 1 wartości zmiennej losowej odległość

Przykład eksploracji danych o naturze statystycznej Próba 1 wartości zmiennej losowej odległość Dwie metody Klasyczna metoda histogramu jako narzędzie do postawienia hipotezy, jaki rozkład prawdopodobieństwa pasuje do danych Indukcja drzewa decyzyjnego jako metoda wykrycia klasyfikatora ukrytego

Bardziej szczegółowo

ESTYMACJA BŁĘDU PREDYKCJI I JEJ ZASTOSOWANIA

ESTYMACJA BŁĘDU PREDYKCJI I JEJ ZASTOSOWANIA ESTYMACJA BŁĘDU PREDYKCJI I JEJ ZASTOSOWANIA Jan Mielniczuk Wisła, grudzień 2009 PLAN Błędy predykcji i ich podstawowe estymatory Estymacja błędu predykcji w modelu liniowym. Funkcje kryterialne Własności

Bardziej szczegółowo

Zrównoleglona optymalizacja stochastyczna na dużych zbiorach danych

Zrównoleglona optymalizacja stochastyczna na dużych zbiorach danych Zrównoleglona optymalizacja stochastyczna na dużych zbiorach danych mgr inż. C. Dendek prof. nzw. dr hab. J. Mańdziuk Politechnika Warszawska, Wydział Matematyki i Nauk Informacyjnych Outline 1 Uczenie

Bardziej szczegółowo

Iloczyn skalarny. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. 10. wykład z algebry liniowej Warszawa, grudzień 2013

Iloczyn skalarny. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. 10. wykład z algebry liniowej Warszawa, grudzień 2013 Iloczyn skalarny Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 10. wykład z algebry liniowej Warszawa, grudzień 2013 Mirosław Sobolewski (UW) Warszawa, grudzień 2013 1 / 14 Standardowy

Bardziej szczegółowo

Elementy modelowania matematycznego

Elementy modelowania matematycznego Elementy modelowania matematycznego Modelowanie algorytmów klasyfikujących. Podejście probabilistyczne. Naiwny klasyfikator bayesowski. Modelowanie danych metodą najbliższych sąsiadów. Jakub Wróblewski

Bardziej szczegółowo

Oracle Data Mining 10g

Oracle Data Mining 10g Oracle Data Mining 10g Zastosowanie algorytmu Support Vector Machines do problemów biznesowych Piotr Hajkowski Oracle Consulting Agenda Podstawy teoretyczne algorytmu SVM SVM w bazie danych Klasyfikacja

Bardziej szczegółowo

Rozwiązania, seria 5.

Rozwiązania, seria 5. Rozwiązania, seria 5. 26 listopada 2012 Zadanie 1. Zbadaj, dla jakich wartości parametru r R wektor (r, r, 1) lin{(2, r, r), (1, 2, 2)} R 3? Rozwiązanie. Załóżmy, że (r, r, 1) lin{(2, r, r), (1, 2, 2)}.

Bardziej szczegółowo

Klasyfikacja obiektów Drzewa decyzyjne (drzewa klasyfikacyjne)

Klasyfikacja obiektów Drzewa decyzyjne (drzewa klasyfikacyjne) Klasyfikacja obiektów Drzewa decyzyjne (drzewa klasyfikacyjne) Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski Klasyfikacja i predykcja. Odkrywaniem reguł klasyfikacji nazywamy proces znajdowania

Bardziej szczegółowo

Kwantyzacja wektorowa. Kodowanie różnicowe.

Kwantyzacja wektorowa. Kodowanie różnicowe. Kwantyzacja wektorowa. Kodowanie różnicowe. Kodowanie i kompresja informacji - Wykład 7 12 kwietnia 2010 Kwantyzacja wektorowa wprowadzenie Zamiast kwantyzować pojedyncze elementy kwantyzujemy całe bloki

Bardziej szczegółowo

Wykład 5. Ker(f) = {v V ; f(v) = 0}

Wykład 5. Ker(f) = {v V ; f(v) = 0} Wykład 5 Niech f : V W będzie przekształceniem liniowym przestrzeni wektorowych Wtedy jądrem przekształcenia nazywamy zbiór tych elementów z V, których obrazem jest wektor zerowy w przestrzeni W Jądro

Bardziej szczegółowo

PODYPLOMOWE STUDIA ZAAWANSOWANE METODY ANALIZY DANYCH I DATA MINING W BIZNESIE

PODYPLOMOWE STUDIA ZAAWANSOWANE METODY ANALIZY DANYCH I DATA MINING W BIZNESIE UNIWERSYTET WARMIŃSKO-MAZURSKI W OLSZTYNIE PODYPLOMOWE STUDIA ZAAWANSOWANE METODY ANALIZY DANYCH I DATA MINING W BIZNESIE http://matman.uwm.edu.pl/psi e-mail: psi@matman.uwm.edu.pl ul. Słoneczna 54 10-561

Bardziej szczegółowo

Techniki Optymalizacji: Stochastyczny spadek wzdłuż gradientu I

Techniki Optymalizacji: Stochastyczny spadek wzdłuż gradientu I Techniki Optymalizacji: Stochastyczny spadek wzdłuż gradientu I Wojciech Kotłowski Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl pok. 2 (CW) tel. (61)665-2936 konsultacje:

Bardziej szczegółowo

Stanisław Cichocki Natalia Nehrebecka. Wykład 7

Stanisław Cichocki Natalia Nehrebecka. Wykład 7 Stanisław Cichocki Natalia Nehrebecka Wykład 7 1 1. Metoda Największej Wiarygodności MNW 2. Założenia MNW 3. Własności estymatorów MNW 4. Testowanie hipotez w MNW 2 1. Metoda Największej Wiarygodności

Bardziej szczegółowo

Data Mining Wykład 6. Naiwny klasyfikator Bayes a Maszyna wektorów nośnych (SVM) Naiwny klasyfikator Bayesa.

Data Mining Wykład 6. Naiwny klasyfikator Bayes a Maszyna wektorów nośnych (SVM) Naiwny klasyfikator Bayesa. GLM (Generalized Linear Models) Data Mining Wykład 6 Naiwny klasyfikator Bayes a Maszyna wektorów nośnych (SVM) Naiwny klasyfikator Bayesa Naiwny klasyfikator Bayesa jest klasyfikatorem statystycznym -

Bardziej szczegółowo

komputery? Andrzej Skowron, Hung Son Nguyen Instytut Matematyki, Wydział MIM, UW

komputery? Andrzej Skowron, Hung Son Nguyen  Instytut Matematyki, Wydział MIM, UW Czego moga się nauczyć komputery? Andrzej Skowron, Hung Son Nguyen son@mimuw.edu.pl; skowron@mimuw.edu.pl Instytut Matematyki, Wydział MIM, UW colt.tex Czego mogą się nauczyć komputery? Andrzej Skowron,

Bardziej szczegółowo

Elementy statystyki wielowymiarowej

Elementy statystyki wielowymiarowej Wnioskowanie_Statystyczne_-_wykład Spis treści 1 Elementy statystyki wielowymiarowej 1.1 Kowariancja i współczynnik korelacji 1.2 Macierz kowariancji 1.3 Dwumianowy rozkład normalny 1.4 Analiza składowych

Bardziej szczegółowo

EGZAMIN MAGISTERSKI, 18.09.2012 Matematyka w ekonomii i ubezpieczeniach

EGZAMIN MAGISTERSKI, 18.09.2012 Matematyka w ekonomii i ubezpieczeniach Matematyka w ekonomii i ubezpieczeniach Sprawdź, czy wektor x 0 = (0,0,3,3) jest optymalnym rozwiązaniem zagadnienia programowania liniowego: Zminimalizować 8x 1 +5x 2 +3x 3 +4x 4, przy ograniczeniach

Bardziej szczegółowo

PROGRAMOWANIE KWADRATOWE

PROGRAMOWANIE KWADRATOWE PROGRAMOWANIE KWADRATOWE Programowanie kwadratowe Zadanie programowania kwadratowego: Funkcja celu lub/i co najmniej jedno z ograniczeń jest funkcją kwadratową. 2 Programowanie kwadratowe Nie ma uniwersalnej

Bardziej szczegółowo

Metody numeryczne. dr Artur Woike. Ćwiczenia nr 2. Rozwiązywanie równań nieliniowych metody połowienia, regula falsi i siecznych.

Metody numeryczne. dr Artur Woike. Ćwiczenia nr 2. Rozwiązywanie równań nieliniowych metody połowienia, regula falsi i siecznych. Ćwiczenia nr 2 metody połowienia, regula falsi i siecznych. Sformułowanie zagadnienia Niech będzie dane równanie postaci f (x) = 0, gdzie f jest pewną funkcją nieliniową (jeżeli f jest liniowa to zagadnienie

Bardziej szczegółowo

Wstęp do Modelu Standardowego

Wstęp do Modelu Standardowego Wstęp do Modelu Standardowego Plan (Uzupełnienie matematyczne II) Abstrakcyjna przestrzeń stanów Podstawowe własności Iloczyn skalarny amplitudy prawdopodobieństwa Operatory i ich hermitowskość Wektory

Bardziej szczegółowo

Zmiana baz. Jacek Jędrzejewski 2014. 1 Macierz przejścia od bazy do bazy 2

Zmiana baz. Jacek Jędrzejewski 2014. 1 Macierz przejścia od bazy do bazy 2 Zmiana baz Jacek Jędrzejewski 2014 Spis treści 1 Macierz przejścia od bazy do bazy 2 2 Wektory a zmiana baz 2 21 Współrzędne wektora względem różnych baz 2 22 Wektory o tych samych współrzędnych względem

Bardziej szczegółowo

UCZENIE MASZYNOWE III - SVM. mgr inż. Adam Kupryjanow

UCZENIE MASZYNOWE III - SVM. mgr inż. Adam Kupryjanow UCZENIE MASZYNOWE III - SVM mgr inż. Adam Kupryjanow Plan wykładu Wprowadzenie LSVM dane separowalne liniowo SVM dane nieseparowalne liniowo Nieliniowy SVM Kernel trick Przykłady zastosowań Historia 1992

Bardziej szczegółowo

Wprowadzenie do teorii ekonometrii. Wykład 1 Warunkowa wartość oczekiwana i odwzorowanie liniowe

Wprowadzenie do teorii ekonometrii. Wykład 1 Warunkowa wartość oczekiwana i odwzorowanie liniowe Wprowadzenie do teorii ekonometrii Wykład 1 Warunkowa wartość oczekiwana i odwzorowanie liniowe Zajęcia Wykład Laboratorium komputerowe 2 Zaliczenie EGZAMIN (50%) Na egzaminie obowiązują wszystkie informacje

Bardziej szczegółowo

PODSTAWY STATYSTYCZNEGO MODELOWANIA DANYCH. Wykład 6 Drzewa klasyfikacyjne - wprowadzenie. Reguły podziału i reguły przycinania drzew.

PODSTAWY STATYSTYCZNEGO MODELOWANIA DANYCH. Wykład 6 Drzewa klasyfikacyjne - wprowadzenie. Reguły podziału i reguły przycinania drzew. PODSTAWY STATYSTYCZNEGO MODELOWANIA DANYCH Wykład 6 Drzewa klasyfikacyjne - wprowadzenie. Reguły podziału i reguły przycinania drzew. Wprowadzenie Drzewo klasyfikacyjne Wprowadzenie Formalnie : drzewo

Bardziej szczegółowo

Programowanie liniowe metoda sympleks

Programowanie liniowe metoda sympleks Programowanie liniowe metoda sympleks Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2012 Mirosław Sobolewski (UW) Warszawa, 2012 1 / 12

Bardziej szczegółowo

Własności statystyczne regresji liniowej. Wykład 4

Własności statystyczne regresji liniowej. Wykład 4 Własności statystyczne regresji liniowej Wykład 4 Plan Własności zmiennych losowych Normalna regresja liniowa Własności regresji liniowej Literatura B. Hansen (2017+) Econometrics, Rozdział 5 Własności

Bardziej szczegółowo

Sieć przesyłająca żetony CP (counter propagation)

Sieć przesyłająca żetony CP (counter propagation) Sieci neuropodobne IX, specyficzne architektury 1 Sieć przesyłająca żetony CP (counter propagation) warstwa Kohonena: wektory wejściowe są unormowane jednostki mają unormowane wektory wag jednostki są

Bardziej szczegółowo

Testowanie modeli predykcyjnych

Testowanie modeli predykcyjnych Testowanie modeli predykcyjnych Wstęp Podczas budowy modelu, którego celem jest przewidywanie pewnych wartości na podstawie zbioru danych uczących poważnym problemem jest ocena jakości uczenia i zdolności

Bardziej szczegółowo

Metody teorii gier. ALP520 - Wykład z Algorytmów Probabilistycznych p.2

Metody teorii gier. ALP520 - Wykład z Algorytmów Probabilistycznych p.2 Metody teorii gier ALP520 - Wykład z Algorytmów Probabilistycznych p.2 Metody teorii gier Cel: Wyprowadzenie oszacowania dolnego na oczekiwany czas działania dowolnego algorytmu losowego dla danego problemu.

Bardziej szczegółowo

Teoretyczne podstawy programowania liniowego

Teoretyczne podstawy programowania liniowego Teoretyczne podstawy programowania liniowego Elementy algebry liniowej Plan Kombinacja liniowa Definicja Kombinacja liniowa wektorów (punktów) x 1, x 2,, x k R n to wektor x R n k taki, że x = i=1 λ i

Bardziej szczegółowo

Statystyczna analiza Danych

Statystyczna analiza Danych Statystyczna analiza Danych Dla bioinformatyków Wykład pierwszy: O testowaniu hipotez Plan na dziś Quiz! Cele wykładu Plan na semestr Kryteria zaliczenia Sprawy organizacyjne Quiz (15 minut) Jakie znasz

Bardziej szczegółowo

Teoria systemów uczacych się i wymiar Vapnika-Chervonenkisa

Teoria systemów uczacych się i wymiar Vapnika-Chervonenkisa Systemy uczace się 2009 1 / 32 Teoria systemów uczacych się i wymiar Vapnika-Chervonenkisa Hung Son Nguyen Wydział Matematyki, Informatyki i Mechaniki Uniwersytet Warszawski email: son@mimuw.edu.pl Grudzień

Bardziej szczegółowo

3 1 + i 1 i i 1 2i 2. Wyznaczyć macierze spełniające własność komutacji: [A, X] = B

3 1 + i 1 i i 1 2i 2. Wyznaczyć macierze spełniające własność komutacji: [A, X] = B 1. Dla macierzy a) A = b) A = c) A = d) A = 3 1 + i 1 i i i 0 i i 0 1 + i 1 i 0 0 0 0 1 0 1 0 1 + i 1 i Wyznaczyć macierze spełniające własność komutacji: A, X = B. Obliczyć pierwiaski z macierzy: A =

Bardziej szczegółowo

Ontogeniczne sieci neuronowe. O sieciach zmieniających swoją strukturę

Ontogeniczne sieci neuronowe. O sieciach zmieniających swoją strukturę Norbert Jankowski Ontogeniczne sieci neuronowe O sieciach zmieniających swoją strukturę Warszawa 2003 Opracowanie książki było wspierane stypendium Uniwersytetu Mikołaja Kopernika Spis treści Wprowadzenie

Bardziej szczegółowo

Część 2. Teoretyczne i praktyczne aspekty wybranych metod analiz ilościowych w ekonomii i zarządzaniu

Część 2. Teoretyczne i praktyczne aspekty wybranych metod analiz ilościowych w ekonomii i zarządzaniu Spis treści Część 1 Analiza procedur wyznaczania i wykorzystania rozwiązań uogólnionych wybranej klasy nieliniowych modeli optymalizacyjnych we wspomaganiu procesów decyzyjnych (Jerzy Mika) Wprowadzenie.

Bardziej szczegółowo

Metody iteracyjne rozwiązywania układów równań liniowych (5.3) Normy wektorów i macierzy (5.3.1) Niech. x i. i =1

Metody iteracyjne rozwiązywania układów równań liniowych (5.3) Normy wektorów i macierzy (5.3.1) Niech. x i. i =1 Normy wektorów i macierzy (5.3.1) Niech 1 X =[x x Y y =[y1 x n], oznaczają wektory przestrzeni R n, a yn] niech oznacza liczbę rzeczywistą. Wyrażenie x i p 5.3.1.a X p = p n i =1 nosi nazwę p-tej normy

Bardziej szczegółowo

Metody klasyfikacji danych - część 1 p.1/24

Metody klasyfikacji danych - część 1 p.1/24 Metody klasyfikacji danych - część 1 Inteligentne Usługi Informacyjne Jerzy Dembski Metody klasyfikacji danych - część 1 p.1/24 Plan wykładu - Zadanie klasyfikacji danych - Przeglad problemów klasyfikacji

Bardziej szczegółowo

10. Metody obliczeniowe najmniejszych kwadratów

10. Metody obliczeniowe najmniejszych kwadratów 10. Metody obliczeniowe najmniejszych kwadratów 1. Dowód twierdzenia o faktoryzacji macierzy Twierdzenie 1 Każdadodatniookreślon aisymetryczn amacierzm można przedstawíc wpostaci M = PP T gdzie P jest

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład VIII: Przestrzenie statystyczne. Estymatory 1 grudnia 2014 Wprowadzenie Przykład: pomiar z błędem Współczynnik korelacji r(x, Z) = 0, 986 Wprowadzenie Przykład: pomiar z błędem Współczynnik korelacji

Bardziej szczegółowo

Weryfikacja hipotez statystycznych. KG (CC) Statystyka 26 V / 1

Weryfikacja hipotez statystycznych. KG (CC) Statystyka 26 V / 1 Weryfikacja hipotez statystycznych KG (CC) Statystyka 26 V 2009 1 / 1 Sformułowanie problemu Weryfikacja hipotez statystycznych jest drugą (po estymacji) metodą uogólniania wyników uzyskanych w próbie

Bardziej szczegółowo

Metody numeryczne I Równania nieliniowe

Metody numeryczne I Równania nieliniowe Metody numeryczne I Równania nieliniowe Janusz Szwabiński szwabin@ift.uni.wroc.pl Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/66 Równania nieliniowe 1. Równania nieliniowe z pojedynczym pierwiastkiem

Bardziej szczegółowo

METODA SYMPLEKS. Maciej Patan. Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski

METODA SYMPLEKS. Maciej Patan. Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski METODA SYMPLEKS Maciej Patan Uniwersytet Zielonogórski WSTĘP Algorytm Sympleks najpotężniejsza metoda rozwiązywania programów liniowych Metoda generuje ciąg dopuszczalnych rozwiązań x k w taki sposób,

Bardziej szczegółowo

Jakość uczenia i generalizacja

Jakość uczenia i generalizacja Jakość uczenia i generalizacja Dokładność uczenia Jest koncepcją miary w jakim stopniu nasza sieć nauczyła się rozwiązywać określone zadanie Dokładność mówi na ile nauczyliśmy się rozwiązywać zadania które

Bardziej szczegółowo

Baza w jądrze i baza obrazu ( )

Baza w jądrze i baza obrazu ( ) Przykład Baza w jądrze i baza obrazu (839) Znajdź bazy jądra i obrazu odwzorowania α : R 4 R 3, gdzie α(x, y, z, t) = (x + 2z + t, 2x + y 3z 5t, x y + z + 4t) () zór ten oznacza, że α jest odwzorowaniem

Bardziej szczegółowo

Algorytmy klasyfikacji

Algorytmy klasyfikacji Algorytmy klasyfikacji Konrad Miziński Instytut Informatyki Politechnika Warszawska 6 maja 2015 1 Wnioskowanie 2 Klasyfikacja Zastosowania 3 Drzewa decyzyjne Budowa Ocena jakości Przycinanie 4 Lasy losowe

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład XV: Zagadnienia redukcji wymiaru danych 2 lutego 2015 r. Standaryzacja danych Standaryzacja danych Własności macierzy korelacji Definicja Niech X będzie zmienną losową o skończonym drugim momencie.

Bardziej szczegółowo

1. Zbadać liniową niezależność funkcji x, 1, x, x 2 w przestrzeni liniowej funkcji ciągłych na przedziale [ 1, ).

1. Zbadać liniową niezależność funkcji x, 1, x, x 2 w przestrzeni liniowej funkcji ciągłych na przedziale [ 1, ). B 2 Suma Zbadać, czy liniowo niezależne wektory u, v, w stanowią bazę przestrzeni liniowej lin { u + 2 v + w, u v + 2 w, 3 u + 5 w } 2 Współrzędne wektora (, 4, 5, 4 ) w pewnej bazie podprzestrzeni U R

Bardziej szczegółowo

Wstęp do metod numerycznych Faktoryzacja QR i SVD. P. F. Góra

Wstęp do metod numerycznych Faktoryzacja QR i SVD. P. F. Góra Wstęp do metod numerycznych Faktoryzacja QR i SVD P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2012 Transformacja Householdera Niech u R N, u 0. Tworzymy macierz W sposób oczywisty P T = P. Obliczmy

Bardziej szczegółowo

Przestrzeń unitarna. Jacek Kłopotowski. 23 października Katedra Matematyki i Ekonomii Matematycznej SGH

Przestrzeń unitarna. Jacek Kłopotowski. 23 października Katedra Matematyki i Ekonomii Matematycznej SGH Katedra Matematyki i Ekonomii Matematycznej SGH 23 października 2018 Definicja iloczynu skalarnego Definicja Iloczynem skalarnym w przestrzeni liniowej R n nazywamy odwzorowanie ( ) : R n R n R spełniające

Bardziej szczegółowo

ELEMENTY ANALIZY NUMERYCZNEJ ELEMENTY ANALIZY NUMERYCZNEJ. Egzamin pisemny zestaw 1 26 czerwca 2017 roku

ELEMENTY ANALIZY NUMERYCZNEJ ELEMENTY ANALIZY NUMERYCZNEJ. Egzamin pisemny zestaw 1 26 czerwca 2017 roku Egzamin pisemny zestaw czerwca 0 roku Imię i nazwisko:.... ( pkt.) Udowodnić, że jeśli funkcja g interpoluje funkcję f w węzłach x 0, x, K, x n, a funk- cja h interpoluje funkcję f w węzłach x, x, K, x

Bardziej szczegółowo

Układy liniowo niezależne

Układy liniowo niezależne Układy liniowo niezależne Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 3.wykład z algebry liniowej Warszawa, październik 2016 Mirosław Sobolewski (UW) Warszawa, październik 2016 1

Bardziej szczegółowo

Algorytmy decyzyjne będące alternatywą dla sieci neuronowych

Algorytmy decyzyjne będące alternatywą dla sieci neuronowych Algorytmy decyzyjne będące alternatywą dla sieci neuronowych Piotr Dalka Przykładowe algorytmy decyzyjne Sztuczne sieci neuronowe Algorytm k najbliższych sąsiadów Kaskada klasyfikatorów AdaBoost Naiwny

Bardziej szczegółowo

Wprowadzenie do uczenia maszynowego

Wprowadzenie do uczenia maszynowego Wprowadzenie do uczenia maszynowego Agnieszka Ławrynowicz 12 stycznia 2017 Co to jest uczenie maszynowe? dziedzina nauki, która zajmuje się sprawianiem aby komputery mogły uczyć się bez ich zaprogramowania

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład XIII: Prognoza. 26 stycznia 2015 Wykład XIII: Prognoza. Prognoza (predykcja) Przypuśćmy, że mamy dany ciąg liczb x 1, x 2,..., x n, stanowiących wyniki pomiaru pewnej zmiennej w czasie wielkości

Bardziej szczegółowo

Laboratorium 11. Regresja SVM.

Laboratorium 11. Regresja SVM. Laboratorium 11 Regresja SVM. 1. Uruchom narzędzie Oracle Data Miner i połącz się z serwerem bazy danych. 2. Z menu głównego wybierz Activity Build. Na ekranie powitalnym kliknij przycisk Dalej>. 3. Z

Bardziej szczegółowo

Metody dekompozycji macierzy stosowane w automatyce

Metody dekompozycji macierzy stosowane w automatyce Metody dekompozycji macierzy stosowane w automatyce Grzegorz Mzyk Politechnika Wrocławska, WydziałElektroniki 23 lutego 2015 Plan wykładu 1 Wprowadzenie 2 Rozkład LU 3 Rozkład spektralny 4 Rozkład Cholesky

Bardziej szczegółowo

Programowanie liniowe metoda sympleks

Programowanie liniowe metoda sympleks Programowanie liniowe metoda sympleks Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2009 Mirosław Sobolewski (UW) Warszawa, 2009 1 / 13

Bardziej szczegółowo

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI ESTYMACJA

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI ESTYMACJA WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI ESTYMACJA Symbole w statystyce Symbole Populacja Średnia m Próba x Odchylenie standardowe σ s Odsetek p p Estymacja co to jest? Estymacja punktowa Estymacja przedziałowa

Bardziej szczegółowo

Analiza metod wykrywania przekazów steganograficznych. Magdalena Pejas Wydział EiTI PW magdap7@gazeta.pl

Analiza metod wykrywania przekazów steganograficznych. Magdalena Pejas Wydział EiTI PW magdap7@gazeta.pl Analiza metod wykrywania przekazów steganograficznych Magdalena Pejas Wydział EiTI PW magdap7@gazeta.pl Plan prezentacji Wprowadzenie Cel pracy Tezy pracy Koncepcja systemu Typy i wyniki testów Optymalizacja

Bardziej szczegółowo

SVM: Maszyny Wektorów Podpieraja cych

SVM: Maszyny Wektorów Podpieraja cych SVM 1 / 24 SVM: Maszyny Wektorów Podpieraja cych Nguyen Hung Son Outline SVM 2 / 24 1 Wprowadzenie 2 Brak liniowej separowalności danych Nieznaczna nieseparowalność Zmiana przetrzeń atrybutów 3 Implementacja

Bardziej szczegółowo

WYKŁAD 4. Podejmowanie decyzji dla modeli probabilistycznych Modelowanie Gaussowskie. autor: Maciej Zięba. Politechnika Wrocławska

WYKŁAD 4. Podejmowanie decyzji dla modeli probabilistycznych Modelowanie Gaussowskie. autor: Maciej Zięba. Politechnika Wrocławska Wrocław University of Technology WYKŁAD 4 Podejmowanie decyzji dla modeli probabilistycznych Modelowanie Gaussowskie autor: Maciej Zięba Politechnika Wrocławska Klasyfikacja Klasyfikacja (ang. Classification):

Bardziej szczegółowo

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw udowy Maszyn Zakład Mechaniki http://www.ipbm.simr.pw.edu.pl/ Teoria maszyn i podstawy automatyki semestr zimowy 2016/2017

Bardziej szczegółowo

Automatyczna predykcja. Materiały/konsultacje. Co to jest uczenie maszynowe? Przykład 6/10/2013. Google Prediction API, maj 2010

Automatyczna predykcja. Materiały/konsultacje. Co to jest uczenie maszynowe? Przykład 6/10/2013. Google Prediction API, maj 2010 Materiały/konsultacje Automatyczna predykcja http://www.ibp.pwr.wroc.pl/kotulskalab Konsultacje wtorek, piątek 9-11 (uprzedzić) D1-115 malgorzata.kotulska@pwr.wroc.pl Co to jest uczenie maszynowe? Uczenie

Bardziej szczegółowo

Eksploracja Danych. wykład 4. Sebastian Zając. 10 maja 2017 WMP.SNŚ UKSW. Sebastian Zając (WMP.SNŚ UKSW) Eksploracja Danych 10 maja / 18

Eksploracja Danych. wykład 4. Sebastian Zając. 10 maja 2017 WMP.SNŚ UKSW. Sebastian Zając (WMP.SNŚ UKSW) Eksploracja Danych 10 maja / 18 Eksploracja Danych wykład 4 Sebastian Zając WMP.SNŚ UKSW 10 maja 2017 Sebastian Zając (WMP.SNŚ UKSW) Eksploracja Danych 10 maja 2017 1 / 18 Klasyfikacja danych Klasyfikacja Najczęściej stosowana (najstarsza)

Bardziej szczegółowo

1 Przestrzeń liniowa. α 1 x α k x k = 0

1 Przestrzeń liniowa. α 1 x α k x k = 0 Z43: Algebra liniowa Zagadnienie: przekształcenie liniowe, macierze, wyznaczniki Zadanie: przekształcenie liniowe, jądro i obraz, interpretacja geometryczna. Przestrzeń liniowa Już w starożytności człowiek

Bardziej szczegółowo

Rachunek prawdopodobieństwa Rozdział 5. Rozkłady łączne

Rachunek prawdopodobieństwa Rozdział 5. Rozkłady łączne Rachunek prawdopodobieństwa Rozdział 5. Rozkłady łączne 5.3 Rozkłady warunkowe i warunkowa wartość oczekiwana Katarzyna Rybarczyk-Krzywdzińska semestr zimowy 2015/2016 Prawdopodobieństwo wyraża postawę

Bardziej szczegółowo

Zaawansowane metody numeryczne

Zaawansowane metody numeryczne Wykład 11 Ogólna postać metody iteracyjnej Definicja 11.1. (metoda iteracyjna rozwiązywania układów równań) Metodą iteracyjną rozwiązywania { układów równań liniowych nazywamy ciąg wektorów zdefiniowany

Bardziej szczegółowo

Programowanie celowe #1

Programowanie celowe #1 Programowanie celowe #1 Problem programowania celowego (PC) jest przykładem problemu programowania matematycznego nieliniowego, który można skutecznie zlinearyzować, tzn. zapisać (i rozwiązać) jako problem

Bardziej szczegółowo

15. PODSUMOWANIE ZAJĘĆ

15. PODSUMOWANIE ZAJĘĆ 15. PODSUMOWANIE ZAJĘĆ Efekty kształcenia: wiedza, umiejętności, kompetencje społeczne Przedmiotowe efekty kształcenia Pytania i zagadnienia egzaminacyjne EFEKTY KSZTAŁCENIA WIEDZA Wykazuje się gruntowną

Bardziej szczegółowo

Programowanie liniowe metoda sympleks

Programowanie liniowe metoda sympleks Programowanie liniowe metoda sympleks Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 13. wykład z algebry liniowej Warszawa, styczeń 2018 Mirosław Sobolewski (UW) Warszawa, 2018 1 /

Bardziej szczegółowo

Spam or Not Spam That is the question

Spam or Not Spam That is the question or Not That is the question 4 maja 2006 Zwięzła definicja spamu Czym jest spam? Typy spamu Kto dostaje najwięcej spamu? to nadmiar informacji zbędnych dla odbiorcy przekazu. Definicji poszerzona Czym jest

Bardziej szczegółowo

Praca domowa - seria 6

Praca domowa - seria 6 Praca domowa - seria 6 28 grudnia 2012 Zadanie 1. Znajdź bazę jądra i obrazu przekształcenia liniowego φ : R 4 wzorem: R 3 danego φ(x 1, x 2, x 3, x 4 ) = (x 1 +2x 2 x 3 +3x 4, x 1 +x 2 +2x 3 +x 4, 2x

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody systemowe i decyzyjne w informatyce Laboratorium MATLAB Zadanie nr 2 κ-nn i Naive Bayes autorzy: M. Zięba, J.M. Tomczak, A. Gonczarek, S. Zaręba Cel zadania Celem zadania jest implementacja klasyfikatorów

Bardziej szczegółowo

Testowanie hipotez. 1 Testowanie hipotez na temat średniej

Testowanie hipotez. 1 Testowanie hipotez na temat średniej Testowanie hipotez Poziom p Poziom p jest to najmniejszy poziom istotności α, przy którym możemy odrzucić hipotezę zerową dysponując otrzymaną wartością statystyki testowej. 1 Testowanie hipotez na temat

Bardziej szczegółowo

Algorytmy ewolucyjne optymalizacji wielokryterialnej sterowane preferencjami decydenta

Algorytmy ewolucyjne optymalizacji wielokryterialnej sterowane preferencjami decydenta Algorytmy ewolucyjne optymalizacji wielokryterialnej sterowane preferencjami decydenta Dr Janusz Miroforidis MGI Metro Group Information Technology Polska Sp. z o.o. listopad 2010 Wprowadzenie Plan prezentacji

Bardziej szczegółowo

Programowanie liniowe

Programowanie liniowe Badania operacyjne Problem Model matematyczny Metoda rozwiązania Znaleźć optymalny program produkcji. Zmaksymalizować 1 +3 2 2 3 (1) Przy ograniczeniach 3 1 2 +2 3 7 (2) 2 1 +4 2 12 (3) 4 1 +3 2 +8 3 10

Bardziej szczegółowo

Ą ń Ś ź ń ć ż Ę Ń Ą ć ń ń ż ń ź ź ź Ż ń ź ń Ą ń ż Ł ż Ę Ż ć ż ń Ę ć ż ż ń Ę ż ń ń Ą ż ń Ąć Ę ń Ę Ł Ą Ż ż Ę Ę ń Ż ż Ż Ę Ę Ę Ę Ę ć ż ż ż ć ćń ż ź Ę ń ż ć Ę ż ż Ę ź Ę ń ż Ę Ę ń Ę Ę ń ć Ż ć ż Ą Ę Ę ź ń ż ń

Bardziej szczegółowo

Ń ź Ń ź Ń ź Ń ź ź Ń Ń Ń Ń ź Ą ź Ń ź Ó Ą ć Ń ć Ń ć ć ć ć ć ź ź ć Ń Ń ć ć Ę Ą ź Ę Ń ć ź Ń ź Ł Ń ć Ń Ą ć Ń ć ć ź Ń ćń Ś ź ź ź ć Ń ź ź Ń Ń Ę Ń ź Ń ź Ń Ą ć ź ć ć Ę ć ź ć Ą ć ź ć Ń ć ć ź ć Ń Ń Ń Ę ć Ą Ą ź Ń

Bardziej szczegółowo

Strefa pokrycia radiowego wokół stacji bazowych. Zasięg stacji bazowych Zazębianie się komórek

Strefa pokrycia radiowego wokół stacji bazowych. Zasięg stacji bazowych Zazębianie się komórek Problem zapożyczania kanałów z wykorzystaniem narzędzi optymalizacji Wprowadzenie Rozwiązanie problemu przydziału częstotliwości prowadzi do stanu, w którym każdej stacji bazowej przydzielono żądaną liczbę

Bardziej szczegółowo

ALGEBRA Z GEOMETRIĄ LINIOWA NIEZALEŻNOŚĆ, ROZPINANIE I BAZY

ALGEBRA Z GEOMETRIĄ LINIOWA NIEZALEŻNOŚĆ, ROZPINANIE I BAZY ALGEBRA Z GEOMETRIĄ 1/10 LINIOWA NIEZALEŻNOŚĆ, ROZPINANIE I BAZY Piotr M. Hajac Uniwersytet Warszawski Wykład 10, 11.12.2013 Typeset by Jakub Szczepanik. Geometryczne intuicje Dla pierścienia R = R mamy

Bardziej szczegółowo

Algorytm Grovera. Kwantowe przeszukiwanie zbiorów. Robert Nowotniak

Algorytm Grovera. Kwantowe przeszukiwanie zbiorów. Robert Nowotniak Wydział Fizyki Technicznej, Informatyki i Matematyki Stosowanej Politechnika Łódzka 13 listopada 2007 Plan wystapienia 1 Informatyka Kwantowa podstawy 2 Opis problemu (przeszukiwanie zbioru) 3 Intuicyjna

Bardziej szczegółowo

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl

Bardziej szczegółowo

Metody scoringowe w regresji logistycznej

Metody scoringowe w regresji logistycznej Metody scoringowe w regresji logistycznej Andrzej Surma Wydział Matematyki, Informatyki i Mechaniki Uniwersytetu Warszawskiego 19 listopada 2009 AS (MIMUW) Metody scoringowe w regresji logistycznej 19

Bardziej szczegółowo

Wykład 4 Udowodnimy teraz, że jeśli U, W są podprzetrzeniami skończenie wymiarowej przestrzeni V to zachodzi wzór: dim(u + W ) = dim U + dim W dim(u

Wykład 4 Udowodnimy teraz, że jeśli U, W są podprzetrzeniami skończenie wymiarowej przestrzeni V to zachodzi wzór: dim(u + W ) = dim U + dim W dim(u Wykład 4 Udowodnimy teraz, że jeśli U, W są podprzetrzeniami skończenie wymiarowej przestrzeni V to zachodzi wzór: dim(u + W ) = dim U + dim W dim(u W ) Rzeczywiście U W jest podprzetrzenią przestrzeni

Bardziej szczegółowo

Systemy pomiarowo-diagnostyczne. Metody uczenia maszynowego wykład I dr inż. 2015/2016

Systemy pomiarowo-diagnostyczne. Metody uczenia maszynowego wykład I dr inż. 2015/2016 Systemy pomiarowo-diagnostyczne Metody uczenia maszynowego wykład I dr inż. Bogumil.Konopka@pwr.edu.pl 2015/2016 1 Wykład I - plan Sprawy organizacyjne Uczenie maszynowe podstawowe pojęcia Proces modelowania

Bardziej szczegółowo

Wybór modelu i ocena jakości klasyfikatora

Wybór modelu i ocena jakości klasyfikatora Wybór modelu i ocena jakości klasyfikatora Błąd uczenia i błąd testowania Obciążenie, wariancja i złożoność modelu (klasyfikatora) Dekompozycja błędu testowania Optymizm Estymacja błędu testowania AIC,

Bardziej szczegółowo