Analityka danych & big data
|
|
- Paweł Barański
- 6 lat temu
- Przeglądów:
Transkrypt
1 TomaszJangas.com Analityka danych & big data 15 października 2017 W tym artykule opiszę architekturę, jaka często wykorzystywana jest dzisiaj w środowiskach do analityki danych w wielu różnych organizacjach oraz jak ta architektura się zmienia w kontekście dużych zbiorów danych Tomasz Jangas
2 Dlaczego patrzymy w kierunku wykorzystania dużych zbiorów danych? Powodów jest wiele i pewnie każda organizacja będzie miała w tym zakresie swoje własne priorytety. Ważne moim zdaniem, aby przy wdrażaniu tego typu projektów robić to w odpowiedzi na konkretne wymagania biznesowe, a nie dlatego, aby móc się pochwalić rozwiązaniem big data w swoim środowisku, dla którego później "być może znajdziemy jakieś zastosowanie". W takim razie, jakie są te biznesowe cele i wymagania? One w zasadzie nie zmieniają się od lat. Zmienia się natomiast technologia i co za tym idzie, możliwości z jakich możemy korzystać, aby te cele zrealizować. Już od dłuższego czasu mówi się między innymi o: powiększaniu przychodów poprzez lepsze zrozumienie, czy nawet przewidywanie zachowań klientów, korzystając przy tym z tzw. analityki predykcyjnej ("co się wydarzy?") oraz analityki preskryptywnej ("co powinniśmy zrobić?"), monetyzowaniu posiadanych w organizacji danych przechowywanych w wielu różnych źródłach, łączenie tych danych i dostarczanie nowych perspektyw, bardziej precyzyjnych informacji oraz szerszego kontekstu, zwiększanie efektywności operacyjnej, poprzez przewidywanie cyberataków, oszustw finansowych, awarii sprzętu (tutaj wkraczamy dodatkowo w świat IoT), ale również poprzez redukcję kosztów utrzymania np. hurtowni danych, poprawianie poziomu zadowolenia klientów np. poprzez stosowanie automatycznych rekomendacji, gdzie znowu z pomocą przychodzi analityka preskryptywna Przykład, czyli jak mogło by to wyglądać? Wyobraź sobie, że w naszym przykładowym przedsiębiorstwie powstała biznesowa inicjatywa wdrożenia robota-doradcy w zakresie oferowania usług i produktów klientom firmy. Przy czym, pisząc robota, mam tutaj na myśli zautomatyzowane oprogramowanie, które potrafi doradzać, korzystając z: analityki opisowej (np.: tradycyjne historyczne raporty i analiza 360o naszego klienta) analityki predykcyjnej (np.: przewidywanie trendów i zachowania rynku) analityki preskryptywnej (np.: silnik rekomendacji) Abyśmy takie moduły analityczne mogli uruchomić w ramach naszego projektu robotadoradcy i aby spełniały one swoje zadanie, musimy najpierw dostarczyć odpowiednich danych do analizy i upewnić się, że dane te będą zawsze gotowe na czas. Dlatego, realizując taki projekt, najprawdopodobniej będziemy musieli: zbudować tzw. "jezioro danych" (data lake), w którym dane będą przechowywane i przetwarzane, Tomasz Jangas
3 zagwarantować mechanizmy, które pozwolą na wzbogacanie danych wpływających i wypływających z tego "jeziora" w sposób strumieniowy, dostarczyć technologię, pozwalającą na eksplorację dużych zbiorów danych, które są bardzo dynamiczne i zmieniają się bardzo szybko, umożliwić budowanie tematycznych mini hurtowni danych (data mart) i ich dostarczanie na żądanie naszym interesariuszom (np. liniom biznesowym wewnątrz naszego przedsiębiorstwa). To oczywiście na koniec oznacza dla nas konieczność zaimplementowania konkretnych rozwiązań i produktów oraz wdrożenia konkretnych technologii, o których tutaj jednak nie będę pisał, bo nie taki jest cel tego artykułu. Warto przy tym pamiętać również o uwzględnieniu wszystkich potrzebnych źródeł danych - systemów, z których będziemy czerpać dane do ich dalszej analizy (dane o klientach, dane finansowe, dane marketingowe, dane z portali społecznościowych i prawdopodobnie wiele innych). Jak to wyglądało kiedyś i jak wygląda dzisiaj jeszcze w wielu przedsiębiorstwach i organizacjach? Architektura, którą można zobaczyć w zasadzie w większości organizacji, bazuje i ogranicza się do typowych i tradycyjnych źródeł, z których dane poddawane są analizie biznesowej. Są to z reguły transakcyjne systemy biznesowe (różne w zależności od rodzaju prowadzonego biznesu), systemy CRM i ERP, systemy finansowe, systemy kadrowe i wiele, wiele innych. W procesie analizy danych przetwarzanych i przechowywanych w tych systemach, wykorzystywane są hurtownie danych. Dlaczego? Przede wszystkim, ponieważ: nikt nie będzie ryzykował kariery, aby analizować te dane bezpośrednio w transakcyjnych systemach produkcyjnych przedsiębiorstwa (w systemach typu OLTP), chcemy, aby analiza ta była efektywna i wydajna oraz aby przyniosła pożądane rezultaty i dlatego musimy wykonać pewnego rodzaju transformacje modelu danych z "transakcyjnego" do "analitycznego". Najprościej mówiąc, chcemy, aby dane nadawały się do zapisania w schemacie, wykorzystywanym w hurtowni danych (w systemie typu OLAP). Ponadto zapytania naszych użytkowników biznesowych, dla których analiza jest wykonywana, często wymagają zebrania danych z wielu różnych źródeł i systemów, dlatego ma sens zapisanie ich w centralnym repozytorium, jakim jest nasza hurtownia danych. Przy czym warto pamiętać, że centralne repozytorium nie oznacza tutaj utrzymywania tylko jednej hurtowni danych. Organizacje zazwyczaj mają takich hurtowni wiele Tomasz Jangas
4 To co widzisz na powyższym rysunku, to logiczny schemat takiej architektury. Mamy tutaj przykładowe systemy transakcyjne (CRM, ERP, HR), z których ładujemy dane do hurtowni danych (EDW - Enterprise Data Warehouse). W procesie tym wykorzystujemy narzędzie ETL (Extract Transform Load), które właśnie m.in. pozwala wykonać opisaną wcześniej transformację danych. Jest to również narzędzie wykorzystywane do integracji danych oraz do tworzenia tematycznych hurtowni danych (DM - Data Mart). W nich przechowujemy już tylko ograniczone zbiory danych, potrzebne na przykład określonym liniom biznesowym lub departamentom. Tak przygotowane dane mogą być dalej analizowane za pomocą narzędzi BI (Business Intelligence), które są wykorzystywane bezpośrednio przez użytkowników biznesowych lub przez IT na żądanie tych użytkowników. Z kolei odpowiedzi na pytania, które zadają Ci użytkownicy biznesowi, dostarczane są w tych narzędziach zazwyczaj w postaci raportów, wizualizacji lub paneli informacyjnych (dashboard). Co się jednak stanie, gdy użytkownik biznesowy będzie chciał zadać pytanie spoza zdefiniowanej wcześniej listy? Cały proces przygotowania danych, aby dostarczyć żądaną treść i odpowiedź na to nowe zapytanie jest bardzo czasochłonny. Z różnych obserwacji wynika, że przygotowanie danych do analizy biznesowej stanowi aż 80% czasu całego procesu. Jest to na pewno jedno z poważniejszych wyzwań i wpływa na ostateczne koszty rozwiązania. Jest to również jeden z wielu powodów, dla których powyższa architektura w wielu organizacjach ewoluuje, albo już wyewoluowała w kierunku opisanym poniżej. Kierunek zmian. Ewolucja ta spowodowana jest również pojawianiem się nowych źródeł danych. Mowa tutaj o systemach, w których przechowywane są dane niestrukturalne lub semistrukturalne, takie jak pliki, logi, audio, video, posty w portalach społecznościowych. Jest to zupełnie inny rodzaj danych niż te, z którymi mamy do czynienia w przypadku systemów transakcyjnych. Tam przechowujemy dane strukturalne, czyli dane uporządkowane w tabelach, wierszach i kolumnach. Ale dlaczego nie wykorzystać posiadanej już hurtowni danych i za pomocą wspomnianych wcześniej narzędzi integracji danych ETL nie uzupełnić jej danymi z nowych źródeł? Niestety tradycyjne hurtownie danych nie są przystosowane do Tomasz Jangas
5 przechowywania danych niestrukturalnych. W związku z tym taka integracja często jest albo w ogóle niemożliwa, albo bardzo kosztowa. Dlatego w przypadku nowych źródeł danych wykorzystywane są nieco inne narzędzia i mechanizmy, natomiast logika działania jak widzisz na poniższym rysunku jest bardzo podobna. A podobieństwo to wynika z tego, że niezależnie od rodzaju danych i źródeł, z których one pochodzą, użytkownik biznesowy "na koniec dnia" chce otrzymać ten sam rezultat, czyli odpowiedzi na swoje zapytania w postaci na przykład raportów, wizualizacji lub paneli informacyjnych (dashboard). Powyżej widzisz logiczny schemat architektury, w której rolę "hurtowni danych" pełni Hadoop i/lub baza danych NO SQL (Not Only SQL). Narzędzia te są znakomicie przystosowane do przechowywania i przetwarzania dużych zbiorów danych niestrukturalnych. Analogicznie jak na poprzednim rysunku, w tematycznych hurtowniach danych (ADB - Analytical DB) przechowywane są zbiory danych przygotowywane do analizy na przykład dla określonego klienta biznesowego. A czy nie byłoby idealnie, gdybyśmy byli w stanie połączyć te dwa światy? Problemem mogą być tutaj stosowane narzędzia do integracji danych (ETL) oraz systemy do analityki (BI). Nie wszystkie umożliwiają pracę w tak szerokim zakresie. Istnieją oczywiście wyjątki, które pozwalają na wdrożenie takiej architektury, jak ta zaprezentowana na rysunku poniżej Tomasz Jangas
6 Chcę zostawić Cię na koniec z kilkoma przemyśleniami i wyzwaniami, na które moim zdaniem warto zwrócić uwagę: Jakie narzędzia wykorzystać do ładowania danych do Hadoopa? Ekosystem tych narzędzi jest bardzo duży i bardzo szybko się zmienia. Jakiego mechanizmu ETL użyć do połączenia tych dwóch światów? Chcemy analizować jednocześnie dane strukturalne z hurtowni danych jak i dane niestrukturalne przechowywane i przetwarzane w Hadoopie. Jak optymalnie wykorzystać samego Hadoopa? Nie jest to łatwe środowisko i wymaga dużych umiejętności programistycznych. Z kolei programowanie wymaga czasu, a dla biznesu czas wdrożenia rozwiązania oznacza często, czy zdążymy z danym produktem lub usługą przed naszą konkurencją. Jak odpowiedzieć na wymagania biznesu, który nie chce kolejnego narzędzia BI lub co więcej wymaga, aby analitykę taką realizować wewnątrz aplikacji biznesowej? Musimy pomyśleć jak zintegrować moduł do analityki biznesowej z naszą aplikacją i czy dane narzędzie w ogóle na to pozwoli. Jak sprostać wymaganiom użytkownika biznesowego w zakresie czasu oczekiwania na wynik analizy szczególnie w kontekście responsywności Hadoopa? I tutaj znowu wyzwaniem jest mnogość narzędzi i częstotliwość zmian w ekosystemie Hadoopa. Chcemy wybrać takie rozwiązanie, które sprawi, aby zapytania spoza wcześniej zdefiniowanej listy obsługiwane były w akceptowalnym czasie. Aby ominąć ograniczenia, czasami stosuje się podejście, w którym tworzy się dodatkowe zbiory danych, przechowywane wewnątrz pamięci bezpośrednio w rozwiązaniach analitycznych. Pytanie, czy rozwiązując w ten sposób jeden problem, nie tworzymy przypadkiem kolejnego, Tomasz Jangas
7 związanego z brakiem kontroli nad danymi, ryzykiem utraty ich spójności oraz dodatkowymi trudnościami w zarządzaniu. Podstawowe pytania jakie nasuwają się często w momencie, gdy zaczniemy myśleć o wdrożeniu tego typu architektury dla naszego systemu analityki biznesowej, to: Czy mamy umiejętności do zrealizowania projektu (szczególnie w kontekście Hadoopa), czy mamy je wewnątrz organizacji, gdzie je znaleźć? W jakim czasie osiągniemy pożądaną wartość, szczególnie jeżeli będziemy musieli sporo tego czasu przeznaczyć na programowanie komponentów rozwiązania? Jak zbudować środowisko do analizy danych niestrukturalnych, które będzie bardziej elastyczne niż to, do czego jesteśmy przyzwyczajeni w przypadku tradycyjnych hurtowni danych (o mocnym ukierunkowaniu na znalezienie odpowiedzi na konkretne rodzaje zapytań i wykonywanie konkretnych, zdefiniowanych wcześniej zadań analitycznych). Generalnie wolelibyśmy nie "zamykać się" w ten sam sposób w przypadku analizowania danych niestrukturalnych Tomasz Jangas
Rola analityki danych w transformacji cyfrowej firmy
Rola analityki danych w transformacji cyfrowej firmy Piotr Czarnas Querona CEO Analityka biznesowa (ang. Business Intelligence) Proces przekształcania danych w informacje, a informacji w wiedzę, która
Bardziej szczegółowoAnalityka danych w środowisku Hadoop. Piotr Czarnas, 5 czerwca 2017
Analityka danych w środowisku Hadoop Piotr Czarnas, 5 czerwca 2017 Pytania stawiane przez biznes 1 Jaka jest aktualnie sytuacja w firmie? 2 Na czym jeszcze możemy zarobić? Które procesy możemy usprawnić?
Bardziej szczegółowoAnalityka danych w środowisku Hadoop. Piotr Czarnas, 27 czerwca 2017
Analityka danych w środowisku Hadoop Piotr Czarnas, 27 czerwca 2017 Hadoop i Business Intelligence - wyzwania 1 Ładowane danych do Hadoop-a jest trudne 2 Niewielu specjalistów dostępnych na rynku Dostęp
Bardziej szczegółowodr inż. Paweł Morawski Informatyczne wsparcie decyzji logistycznych semestr letni 2016/2017
dr inż. Paweł Morawski Informatyczne wsparcie decyzji logistycznych semestr letni 2016/2017 KONTAKT Z PROWADZĄCYM dr inż. Paweł Morawski e-mail: pmorawski@spoleczna.pl www: http://pmorawski.spoleczna.pl
Bardziej szczegółowoWprowadzenie do technologii Business Intelligence i hurtowni danych
Wprowadzenie do technologii Business Intelligence i hurtowni danych 1 Plan rozdziału 2 Wprowadzenie do Business Intelligence Hurtownie danych Produkty Oracle dla Business Intelligence Business Intelligence
Bardziej szczegółowoUsługi analityczne budowa kostki analitycznej Część pierwsza.
Usługi analityczne budowa kostki analitycznej Część pierwsza. Wprowadzenie W wielu dziedzinach działalności człowieka analiza zebranych danych jest jednym z najważniejszych mechanizmów podejmowania decyzji.
Bardziej szczegółowoHurtownie danych. Wprowadzenie do systemów typu Business Intelligence
Hurtownie danych Wprowadzenie do systemów typu Business Intelligence Krzysztof Goczyła Teresa Zawadzka Katedra Inżynierii Oprogramowania Wydział Elektroniki, Telekomunikacji i Informatyki Politechnika
Bardziej szczegółowoWprowadzenie do Hurtowni Danych. Mariusz Rafało
Wprowadzenie do Hurtowni Danych Mariusz Rafało mrafalo@sgh.waw.pl WARSTWA PREZENTACJI HURTOWNI DANYCH Wykorzystanie hurtowni danych - aspekty Analityczne zbiory danych (ADS) Zbiór danych tematycznych (Data
Bardziej szczegółowoOd Expert Data Scientist do Citizen Data Scientist, czyli jak w praktyce korzystać z zaawansowanej analizy danych
Od Expert Data Scientist do Citizen Data Scientist, czyli jak w praktyce korzystać z zaawansowanej analizy danych Tomasz Demski StatSoft Polska www.statsoft.pl Analiza danych Zaawansowana analityka, data
Bardziej szczegółowoWprowadzenie do Hurtowni Danych. Mariusz Rafało
Wprowadzenie do Hurtowni Danych Mariusz Rafało mariusz.rafalo@hotmail.com WPROWADZENIE DO HURTOWNI DANYCH Co to jest hurtownia danych? Hurtownia danych jest zbiorem danych zorientowanych tematycznie, zintegrowanych,
Bardziej szczegółowoDOKUMENT INFORMACYJNY COMARCH BUSINESS INTELLIGENCE:
DOKUMENT INFORMACYJNY COMARCH BUSINESS INTELLIGENCE: JAKIE PROBLEMY ROZWIĄZUJE BI 1 S t r o n a WSTĘP Niniejszy dokument to zbiór podstawowych problemów, z jakimi musi zmagać się przedsiębiorca, analityk,
Bardziej szczegółowoPierwsze wdrożenie SAP BW w firmie
Pierwsze wdrożenie w firmie Mirosława Żurek, BCC Poznao, maj 2013 Zakres tematyczny wykładu Podstawowe założenia i pojęcia hurtowni danych ; Przykładowe pierwsze wdrożenie w firmie i jego etapy; Przykładowe
Bardziej szczegółowoHURTOWNIE DANYCH I BUSINESS INTELLIGENCE
BAZY DANYCH HURTOWNIE DANYCH I BUSINESS INTELLIGENCE Akademia Górniczo-Hutnicza w Krakowie Adrian Horzyk horzyk@agh.edu.pl Google: Horzyk HURTOWNIE DANYCH Hurtownia danych (Data Warehouse) to najczęściej
Bardziej szczegółowoHurtownie danych i business intelligence. Plan na dziś : Wprowadzenie do przedmiotu
i business intelligence Paweł Skrobanek, C-3 pok. 321 pawel.skrobanek@pwr.wroc.pl Wrocław 2005-2012 Plan na dziś : 1. Wprowadzenie do przedmiotu (co będzie omawiane oraz jak będę weryfikował zdobytą wiedzę
Bardziej szczegółowoModel referencyjny doboru narzędzi Open Source dla zarządzania wymaganiami
Politechnika Gdańska Wydział Zarządzania i Ekonomii Katedra Zastosowań Informatyki w Zarządzaniu Zakład Zarządzania Technologiami Informatycznymi Model referencyjny Open Source dla dr hab. inż. Cezary
Bardziej szczegółowoCo to jest Business Intelligence?
Cykl: Cykl: Czwartki z Business Intelligence Sesja: Co Co to jest Business Intelligence? Bartłomiej Graczyk 2010-05-06 1 Prelegenci cyklu... mariusz@ssas.pl lukasz@ssas.pl grzegorz@ssas.pl bartek@ssas.pl
Bardziej szczegółowoAUREA BPM Oracle. TECNA Sp. z o.o. Strona 1 z 7
AUREA BPM Oracle TECNA Sp. z o.o. Strona 1 z 7 ORACLE DATABASE System zarządzania bazą danych firmy Oracle jest jednym z najlepszych i najpopularniejszych rozwiązań tego typu na rynku. Oracle Database
Bardziej szczegółowodr inż. Paweł Morawski Informatyczne wsparcie decyzji logistycznych semestr letni 2018/2019
dr inż. Paweł Morawski Informatyczne wsparcie decyzji logistycznych semestr letni 2018/2019 KONTAKT Z PROWADZĄCYM dr inż. Paweł Morawski e-mail: pmorawski@spoleczna.pl www: http://pmorawski.spoleczna.pl
Bardziej szczegółowoDopasowanie IT/biznes
Dopasowanie IT/biznes Dlaczego trzeba mówić o dopasowaniu IT-biznes HARVARD BUSINESS REVIEW, 2008-11-01 Dlaczego trzeba mówić o dopasowaniu IT-biznes http://ceo.cxo.pl/artykuly/51237_2/zarzadzanie.it.a.wzrost.wartosci.html
Bardziej szczegółowoOdkryj w danych to, co najważniejsze
Odkryj w danych to, co najważniejsze W erze data lake ów posiadanie bazy danych jest absolutnym minimum dla efektywnego prowadzenia biznesu, szczególnie w Sieci. Każda dobrze zarządzana, nowo utworzona
Bardziej szczegółowoHurtownia danych praktyczne zastosowania
Hurtownia danych praktyczne zastosowania Dorota Olkowicz dorota.olkowicz@its.waw.pl Centrum Bezpieczeństwa Ruchu Drogowego ITS Plan prezentacji 1. Hurtownie danych 2. Hurtownia danych POBR 3. Narzędzia
Bardziej szczegółowoPaweł Gołębiewski. Softmaks.pl Sp. z o.o. ul. Kraszewskiego 1 85-240 Bydgoszcz www.softmaks.pl kontakt@softmaks.pl
Paweł Gołębiewski Softmaks.pl Sp. z o.o. ul. Kraszewskiego 1 85-240 Bydgoszcz www.softmaks.pl kontakt@softmaks.pl Droga na szczyt Narzędzie Business Intelligence. Czyli kiedy podjąć decyzję o wdrożeniu?
Bardziej szczegółowoSzkolenie autoryzowane. MS Wdrażanie hurtowni danych w Microsoft SQL Server 2012
Szkolenie autoryzowane MS 10777 Wdrażanie hurtowni danych w Microsoft SQL Server 2012 Strona szkolenia Terminy szkolenia Rejestracja na szkolenie Promocje Opis szkolenia Szkolenie przeznaczone jest dla
Bardziej szczegółowoIBM DATASTAGE COMPETENCE CENTER
IBM DATASTAGE COMPETENCE CENTER W informacji drzemie ogromny potencjał biznesowy. Odpowiednio opisane i wykorzystane dane stanowią podstawę sprawnie funkcjonującego przedsiębiorstwa. Wykorzystując najnowocześniejsze
Bardziej szczegółowoInstalacja SQL Server Express. Logowanie na stronie Microsoftu
Instalacja SQL Server Express Logowanie na stronie Microsoftu Wybór wersji do pobrania Pobieranie startuje, przechodzimy do strony z poradami. Wypakowujemy pobrany plik. Otwiera się okno instalacji. Wybieramy
Bardziej szczegółowoTrendy BI z perspektywy. marketingu internetowego
Trendy BI z perspektywy marketingu internetowego BI CECHUJE ORGANIZACJE DOJRZAŁE ANALITYCZNIE 2 ALE JAKA JEST TA DOJRZAŁOŚĆ ANALITYCZNA ORGANIZACJI? 3 Jaka jest dojrzałość analityczna organizacji? Zarządzanie
Bardziej szczegółowoDopasowanie IT/biznes
Dopasowanie IT/biznes Dlaczego trzeba mówić o dopasowaniu IT-biznes HARVARD BUSINESS REVIEW, 2008-11-01 Dlaczego trzeba mówić o dopasowaniu IT-biznes http://ceo.cxo.pl/artykuly/51237_2/zarzadzanie.it.a.wzrost.wartosci.html
Bardziej szczegółowoHurtownie danych w praktyce
Hurtownie danych w praktyce Fakty i mity Dr inż. Maciej Kiewra Parę słów o mnie... 8 lat pracy zawodowej z hurtowniami danych Projekty realizowane w kraju i zagranicą Certyfikaty Microsoft z Business Intelligence
Bardziej szczegółowoSamodzielny Business Intelligence in memory duże i małe. Paweł Gajda Business Solution Architect
Samodzielny Business Intelligence in memory duże i małe Paweł Gajda Business Solution Architect Agenda 1. Zapytania biznesowe 2. SAP Visual Intelligence 3. Szybkość 4. Zaangażowanie 5. Samoobsługa 6. Kreatywność
Bardziej szczegółowoArchitecture Best Practices for Big Data Deployments
GLOBAL SPONSORS Architecture Best Practices for Big Data Deployments Kajetan Mroczek Systems Engineer GLOBAL SPONSORS Rozwój analityki biznesowej EKSPLORACJA DANYCH UCZENIE MASZYNOWE SZTUCZNA INTELIGENCJA
Bardziej szczegółowoNowoczesne narzędzia w relacjach z klientami
Nowoczesne narzędzia w relacjach z klientami Jak robić to dobrze? Plan prezentacji o o o o o Wprowadzenie Co lubią internauci Kilka ważnych zasad projektowania Różne narzędzia ale taki sam proces Postępujące
Bardziej szczegółowoSystem INTEGRYB jako zintegrowane repozytorium danych umożliwiające zaawansowaną analitykę badawczą
System INTEGRYB jako zintegrowane repozytorium danych umożliwiające zaawansowaną analitykę badawczą Lena Szymanek 1, Jacek Seń 1, Krzysztof Skibicki 2, Sławomir Szydłowski 2, Andrzej Kunicki 1 1 Morski
Bardziej szczegółowoEwolucja technik modelowania hurtowni danych
Baza wiedzy JPro Ewolucja technik modelowania hurtowni Porównanie technik modelowania hurtowni podsumowanie: Strona 1/6 Nazwa podejścia Corporate Information Factory Kimball Bus Architecture Data Vault
Bardziej szczegółowoHurtownie danych. Wstęp. Architektura hurtowni danych. http://zajecia.jakubw.pl/hur CO TO JEST HURTOWNIA DANYCH
Wstęp. Architektura hurtowni. Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/hur CO TO JEST HURTOWNIA DANYCH B. Inmon, 1996: Hurtownia to zbiór zintegrowanych, nieulotnych, ukierunkowanych
Bardziej szczegółowoPrezentacja firmy WYDAJNOŚĆ EFEKTYWNOŚĆ SKUTECZNOŚĆ. http://www.qbico.pl
Prezentacja firmy { WYDAJNOŚĆ EFEKTYWNOŚĆ SKUTECZNOŚĆ http://www.qbico.pl Firma ekspercka z dziedziny Business Intelligence Srebrny Partner Microsoft w obszarach Business Intelligence i Data Platform Tworzymy
Bardziej szczegółowoCOMARCH DATA WAREHOUSE MANAGER 6.2
COMARCH DATA WAREHOUSE MANAGER 6.2 WSTĘP DO ZAGADNIENIA HURTOWNI DANYCH Gromadzenie danych biznesowych z systemów rozproszonych, oraz doprowadzenie do ich uwspólnienia, w celu przeprowadzenia analiz oraz
Bardziej szczegółowoSYSTEM VILM ZARZĄDZANIE CYKLEM ŻYCIA ŚRODOWISK WIRTUALNYCH. info@prointegra.com.pl tel: +48 (032) 730 00 42
SYSTEM VILM ZARZĄDZANIE CYKLEM ŻYCIA ŚRODOWISK WIRTUALNYCH info@prointegra.com.pl tel: +48 (032) 730 00 42 1. WPROWADZENIE... 3 2. KORZYŚCI BIZNESOWE... 4 3. OPIS FUNKCJONALNY VILM... 4 KLUCZOWE FUNKCJE
Bardziej szczegółowoSzybkość instynktu i rozsądek rozumu$
Szybkość instynktu i rozsądek rozumu$ zastosowania rozwiązań BigData$ Bartosz Dudziński" Architekt IT! Już nie tylko dokumenty Ilość Szybkość Różnorodność 12 terabajtów milionów Tweet-ów tworzonych codziennie
Bardziej szczegółowoInformacja o firmie i oferowanych rozwiązaniach
Informacja o firmie i oferowanych rozwiązaniach Kim jesteśmy INTEGRIS Systemy IT Sp. z o.o jest jednym z najdłużej działających na polskim rynku autoryzowanych Partnerów Microsoft w zakresie rozwiązań
Bardziej szczegółowoStatSoft profesjonalny partner w zakresie analizy danych
Analiza danych Data mining Sterowanie jakością Analityka przez Internet StatSoft profesjonalny partner w zakresie analizy danych StatSoft Polska Sp. z o.o. StatSoft Polska Sp. z o.o. ul. Kraszewskiego
Bardziej szczegółowoMarcin Adamczak Jakub Gruszka MSP. Business Intelligence
Marcin Adamczak Jakub Gruszka MSP Business Intelligence Plan Prezentacji Definicja Podział Zastosowanie Wady i zalety Przykłady Historia W październiku 1958 Hans Peter Luhn pracownik działu badań w IBM
Bardziej szczegółowoHurtownie danych - przegląd technologii Robert Wrembel Politechnika Poznańska Instytut Informatyki Robert.Wrembel@cs.put.poznan.pl
Hurtownie danych - przegląd technologii Robert Wrembel Politechnika Poznańska Instytut Informatyki Robert.Wrembel@cs.put.poznan.pl www.cs.put.poznan.pl/rwrembel Plan wykładów Wprowadzenie - integracja
Bardziej szczegółowoHurtownie danych - przegląd technologii
Hurtownie danych - przegląd technologii Robert Wrembel Politechnika Poznańska Instytut Informatyki Robert.Wrembel@cs.put.poznan.pl www.cs.put.poznan.pl/rwrembel Plan wykład adów Wprowadzenie - integracja
Bardziej szczegółowoElektroniczne kontrole podatkowe już od 1 lipca 2016 r.
Masz pytania dotyczące elektronicznych kontroli podatkowych? Zapytaj naszych specjalistów: tel.: 22 417 93 01 e-kontrole@sage.com www.sage.com.pl/e-kontrole Zapraszamy do kontaktu. Jesteśmy do Twojej dyspozycji.
Bardziej szczegółowoQlikView Business Intelligence, a system ERP SAP Użytkownicy systemów ERP firmy SAP przez wiele lat poszukiwali skutecznych i łatwych sposobów dotarcia do swych danych. Używali arkuszy kalkulacyjnych,
Bardziej szczegółowoBazy Danych. Bazy Danych i SQL Podstawowe informacje o bazach danych. Krzysztof Regulski WIMiIP, KISiM,
Bazy Danych Bazy Danych i SQL Podstawowe informacje o bazach danych Krzysztof Regulski WIMiIP, KISiM, regulski@metal.agh.edu.pl Oczekiwania? 2 3 Bazy danych Jak przechowywać informacje? Jak opisać rzeczywistość?
Bardziej szczegółowoHurtownie danych. Rola hurtowni danych w systemach typu Business Intelligence
Hurtownie danych Rola hurtowni danych w systemach typu Business Intelligence Krzysztof Goczyła Teresa Zawadzka Katedra Inżynierii Oprogramowania Wydział Elektroniki, Telekomunikacji i Informatyki Politechnika
Bardziej szczegółowoJarosław Żeliński analityk biznesowy, projektant systemów
Trendy w architekturze oprogramowania zarządzającego procesami biznesowymi i przepływem pracy - dedykowane czy standardowe? Jarosław Żeliński analityk biznesowy, projektant systemów O mnie Od 1991 roku
Bardziej szczegółowoWstęp do Business Intelligence
Wstęp do Business Intelligence Co to jest Buisness Intelligence Business Intelligence (analityka biznesowa) - proces przekształcania danych w informacje, a informacji w wiedzę, która może być wykorzystana
Bardziej szczegółowoMigracja Business Intelligence do wersji 2013.3
Migracja Business Intelligence do wersji 2013.3 Copyright 2013 COMARCH Wszelkie prawa zastrzeżone Nieautoryzowane rozpowszechnianie całości lub fragmentu niniejszej publikacji w jakiejkolwiek postaci jest
Bardziej szczegółowoBaza danych to zbiór wzajemnie powiązanych ze sobą i zintegrowanych danych z pewnej dziedziny.
PI-14 01/12 Baza danych to zbiór wzajemnie powiązanych ze sobą i zintegrowanych danych z pewnej dziedziny.! Likwidacja lub znaczne ograniczenie redundancji (powtarzania się) danych! Integracja danych!
Bardziej szczegółowoHurtownie danych i business intelligence. Plan na dziś : Wprowadzenie do przedmiotu
i business intelligence Paweł Skrobanek, C-3 pok. 321 pawel.skrobanek@pwr.wroc.pl Wrocław 2005-2007 Plan na dziś : 1. Wprowadzenie do przedmiotu (co będzie omawiane oraz jak będę weryfikował zdobytą wiedzę
Bardziej szczegółowoDajemy WIĘCEJ CALL CENTER? WIĘCEJ? ODWAŻNIE, chcą ROZWIJAĆ SIĘ każdego dnia i pomagają w tym innym,
NIE DAJEMY GOTOWYCH ODPOWIEDZI 3 Co decyduje o skuteczności i jakości działań nowoczesnego CALL CENTER? Jak wybrać partnera biznesowego, który dostarczy profesjonalną usługę? 2 4 Ludzie? Procesy? Technologie?
Bardziej szczegółowoVI Kongres BOUG Praktyczne aspekty wykorzystania Business Intelligence w przemyśle wydobywczym węgla kamiennego
VI Kongres BOUG Praktyczne aspekty wykorzystania Business Intelligence w przemyśle wydobywczym węgla kamiennego mgr Artur Wroński mgr inż. Przemysław Kapica 25.04.2012 Agenda: Środowisko platformy BI Użytkownicy
Bardziej szczegółowoLean management w procesie obsługi klienta
Lean management w procesie obsługi klienta Lean Management oznacza sprawne a zarazem efektywne kosztowe wykonywanie wszystkich działań w firmie przy założeniu minimalizacji strat, minimalizacji stanów
Bardziej szczegółowoCZY TWOJE ŚRODOWISKO PLIKOWE RÓWNIEŻ ROŚNIE SZYBCIEJ NIŻ BAZODANOWE?
1 CZY TWOJE ŚRODOWISKO PLIKOWE RÓWNIEŻ ROŚNIE SZYBCIEJ NIŻ BAZODANOWE? STAN OBECNY I WYZWANIA Z informacji otrzymanych od naszych Klientów wynika, że dotychczasowe rozwiązania w zakresie przechowywania
Bardziej szczegółowoUruchamianie bazy PostgreSQL
Uruchamianie bazy PostgreSQL PostgreSQL i PostGIS Ten przewodnik może zostać pobrany jako PostgreSQL_pl.odt lub PostgreSQL_pl.pdf Przejrzano 10.09.2016 W tym rozdziale zobaczymy, jak uruchomić PostgreSQL
Bardziej szczegółowoMigracja Business Intelligence do wersji 11.0
Migracja Business Intelligence do wersji 11.0 Copyright 2012 COMARCH Wszelkie prawa zastrzeżone Nieautoryzowane rozpowszechnianie całości lub fragmentu niniejszej publikacji w jakiejkolwiek postaci jest
Bardziej szczegółowoWorkplace by Facebook. Twoja bezpieczna, firmowa sieć społecznościowa
Workplace by Facebook Twoja bezpieczna, firmowa sieć społecznościowa Nowe spojrzenie na pracę W ostatnich latach znacząco zmienił się sposób spojrzenia na pracę. Telefon stacjonarny i poczta email przestały
Bardziej szczegółowoAnalityka i BigData w służbie cyberbezpieczeństa
Date Venue Next generation SOC Analityka i BigData w służbie cyberbezpieczeństa Tomasz Rostkowski Architekt - IBM Analytics Zagrożenia cyberprzestępczości...złe wieści Ewolucja centrów operacji bezpieczeństwa
Bardziej szczegółowoKatalog handlowy e-quality
1 / 12 Potęga e-innowacji Katalog handlowy e-quality 2 / 12 e-quality to system ERP do zarządzania obsługą reklamacji, oparty na aplikacjach webowo-mobilnych działających w czasie rzeczywistym. Istotą
Bardziej szczegółowoKatalog handlowy e-production
1 / 12 Potęga e-innowacji Katalog handlowy e-production 2 / 12 e-production to zaawansowany system informatyczny przeznaczony do opomiarowania pracy maszyn produkcyjnych w czasie rzeczywistym. Istotą systemu
Bardziej szczegółowoPLANOWANIE I BUDŻETOWANIE Z WYKORZYSTANIEM NARZĘDZI CYFROWYCH
PLANOWANIE I BUDŻETOWANIE Z WYKORZYSTANIEM NARZĘDZI CYFROWYCH 1 Budżet same problemy Zmienność danych Planowanie wieloletnie Postępowania przetargowe NIK Poziomy wydatków Koszty utrzymaniowe vs majątkowe
Bardziej szczegółowoSkuteczna Strategia CRM - wyzwanie dla organizacji. Artur Kowalski Prometriq
Skuteczna Strategia CRM - wyzwanie dla organizacji Artur Kowalski Prometriq Wrocław, 19-11-2009 Jest tylko jedna strategia sukcesu Polega ona na precyzyjnym zdefiniowaniu docelowego odbiorcy i zaoferowaniu
Bardziej szczegółowoE-logistyka Redakcja naukowa Waldemar Wieczerzycki
E-logistyka Redakcja naukowa Waldemar Wieczerzycki E-logistyka to szerokie zastosowanie najnowszych technologii informacyjnych do wspomagania zarządzania logistycznego przedsiębiorstwem (np. produkcją,
Bardziej szczegółowo9 elementów zarządzania projektami Narzędzia Nowoczesnego Project Managera
9 elementów zarządzania projektami Narzędzia Nowoczesnego Project Managera Darmowy Ebook Autor: Adam Omelczuk Tytuł: 9 elementów zarządzania projektami W życiu i w biznesie Darmowy Ebook NARZĘDZIA Nowoczesnego
Bardziej szczegółowoprodukować, promować i sprzedawać produkty, zarządzać i rozliczać przedsięwzięcia, oraz komunikować się wewnątrz organizacji.
Wspieramy w doborze, wdrażaniu oraz utrzymaniu systemów informatycznych. Od wielu lat dostarczamy technologie Microsoft wspierające funkcjonowanie działów IT, jak i całych przedsiębiorstw. Nasze oprogramowanie
Bardziej szczegółowoNowoczesne aplikacje mobilne i ich rola w podnoszeniu jakości danych
Nowoczesne aplikacje mobilne i ich rola w podnoszeniu jakości danych www.ascen.pl 1 Agenda O firmie Zarządzanie jakością danych Aplikacje mobilne i ich rola w zarządzaniu jakością danych 2 O firmie Data
Bardziej szczegółowoPREZENTACJA FUNKCJONALNA SYSTEMU PROPHIX
PREZENTACJA FUNKCJONALNA SYSTEMU PROPHIX Architektura i struktura funkcjonalna systemu PROPHIX PROPHIX Corporate Performance Management (Zarządzanie Wydajnością Firmy) System do samodzielnego planowania,
Bardziej szczegółowotrendów, które zmieniają IT (technologię informatyczną)
trendów, które zmieniają IT (technologię informatyczną) Powszechnie wiadomo, że technologia informatyczna ewoluuje. Ludzie wykorzystują technologię w większym stopniu niż dotychczas. A ponieważ nasi użytkownicy
Bardziej szczegółowoMigracja XL Business Intelligence do wersji
Migracja XL Business Intelligence do wersji 2019.0 Copyright 2018 COMARCH Wszelkie prawa zastrzeżone Nieautoryzowane rozpowszechnianie całości lub fragmentu niniejszej publikacji w jakiejkolwiek postaci
Bardziej szczegółowoBusiness Intelligence
Business Intelligence Paweł Mielczarek Microsoft Certified Trainer (MCT) MCP,MCSA, MCTS, MCTS SQL 2005, MCTS SQL 2008, MCTS DYNAMICS, MBSS, MBSP, MCITP DYNAMICS. Geneza Prowadzenie firmy wymaga podejmowania
Bardziej szczegółowoRobotyzacja procesów biznesowych
Robotyzacja procesów biznesowych Robo c Process Automa on (RPA) dynamicznie wkroczył do przemysłu, a teraz coraz częściej pojawia się w biurze, aby wspierać obsługę administracyjną. Praca człowieka, wykonującego
Bardziej szczegółowoWprowadzenie do Hurtowni Danych
Wprowadzenie do Hurtowni Danych BIG DATA Definicja Big Data Big Data definiowane jest jako składowanie zbiorów danych o tak dużej złożoności i ilości danych, że jest to niemożliwe przy zastosowaniu podejścia
Bardziej szczegółowoInformatyzacja przedsiębiorstw WYKŁAD
Informatyzacja przedsiębiorstw WYKŁAD dr inż. Piotr Zabawa IBM/Rational Certified Consultant pzabawa@pk.edu.pl wersja 0.1.0 07.10.2010 Wykład 1 Modelowanie procesów biznesowych Przypomnienie rodzajów narzędzi
Bardziej szczegółowoMigracja Business Intelligence do wersji
Migracja Business Intelligence do wersji 2016.1 Copyright 2015 COMARCH Wszelkie prawa zastrzeżone Nieautoryzowane rozpowszechnianie całości lub fragmentu niniejszej publikacji w jakiejkolwiek postaci jest
Bardziej szczegółowoHurtownie danych i przetwarzanie analityczne - projekt
Hurtownie danych i przetwarzanie analityczne - projekt Warunki zaliczenia projektu: 1. Za projekt można zdobyć maksymalnie 40 punktów. 2. Projekt należy regularnie konsultować z jego koordynatorem. 3.
Bardziej szczegółowoPraktyczne wykorzystanie elementów raportowania Microsoft Project 2010 /Project Server 2010 Sesja 5 PowerPivot & PowerView Bartłomiej Graczyk
Praktyczne wykorzystanie elementów raportowania Microsoft Project 2010 /Project Server 2010 Sesja 5 PowerPivot & PowerView Bartłomiej Graczyk 2012-11-05 Bartłomiej Graczyk MCT,MCITP,MCTS Architekt rozwiązań
Bardziej szczegółowoMigracja Business Intelligence do wersji
Migracja Business Intelligence do wersji 2015.1 Copyright 2014 COMARCH Wszelkie prawa zastrzeżone Nieautoryzowane rozpowszechnianie całości lub fragmentu niniejszej publikacji w jakiejkolwiek postaci jest
Bardziej szczegółowoOrganizacyjnie. Prowadzący: dr Mariusz Rafało (hasło: BIG)
Big Data Organizacyjnie Prowadzący: dr Mariusz Rafało mrafalo@sgh.waw.pl http://mariuszrafalo.pl (hasło: BIG) Automatyzacja Automatyzacja przetwarzania: Apache NiFi Źródło: nifi.apache.org 4 Automatyzacja
Bardziej szczegółowoBudowa systemu wspomagającego podejmowanie decyzji. Metodyka projektowo wdrożeniowa
Budowa systemu wspomagającego podejmowanie decyzji Metodyka projektowo wdrożeniowa Agenda Systemy wspomagające decyzje Business Intelligence (BI) Rodzaje systemów BI Korzyści z wdrożeń BI Zagrożenia dla
Bardziej szczegółowoJak opisać wymagania zamawiającego wybrane elementy
Jak opisać wymagania zamawiającego wybrane elementy Adam Rzeźnicki, Grzegorz Sobolewski PIIT Listopad, 2012 Agenda Kontekst ma znaczenie - na przykładzie cyklu wytwórczego systemu aplikacyjnego Rodzaje
Bardziej szczegółowoWybór Discoverer 10g czy BI Beans
XI Konferencja PLOUG Kościelisko Październik 2005 Wybór Discoverer 10g czy BI Beans Tomasz Bawor Matrix.pl S.A. e mail: tomasz.bawor@matrix.pl Streszczenie W przypadku kiedy stajemy przed wyborem narzędzia
Bardziej szczegółowoNadajemy pracy sens. Business case study. ValueView w SGB Banku SA, czyli o nowatorskim podejściu do pomiaru rentowności zadań stanowisk i procesów.
Business case study ValueView w SGB Banku SA, czyli o nowatorskim podejściu do pomiaru rentowności zadań stanowisk i procesów. Kraków 2016 Historia naszego Klienta SGB Bank SA Bank SGB Banku SA stanął
Bardziej szczegółowoSkuteczność => Efekty => Sukces
O HBC Współczesne otoczenie biznesowe jest wyjątkowo nieprzewidywalne. Stała w nim jest tylko nieustająca zmiana. Ciągłe doskonalenie się poprzez reorganizację procesów to podstawy współczesnego zarządzania.
Bardziej szczegółowoNarzędzia IT we współczesnych strategiach utrzymaniowych
Narzędzia IT we współczesnych strategiach utrzymaniowych - NAJNOWSZE TRENDY - Piotr Rzepakowski, CEO Decitum Sp. z o.o. Od predykcji churn, przez analizę retencji do optymalizacji utrzymania Przyszła Analityczny
Bardziej szczegółowoRAPORT KWARTALNY KBJ S.A. ZA I KWARTAŁ 2012 ROKU. Warszawa, dnia 15 maja 2012 roku.
RAPORT KWARTALNY ZA I KWARTAŁ 2012 ROKU Warszawa, dnia 15 maja 2012 roku www.kbj.com.pl Spis treści 1. Podstawowe informacje o Spółce... 3 1.1 Struktura Akcjonariatu... 4 1.2 Skład Zarządu... 4 1.3 Skład
Bardziej szczegółowoHurtownie danych i business intelligence - wykład II. Zagadnienia do omówienia. Miejsce i rola HD w firmie
Hurtownie danych i business intelligence - wykład II Paweł Skrobanek, C-3 pok. 321 pawel.skrobanek@pwr.wroc.pl oprac. Wrocław 2005-2012 Zagadnienia do omówienia 1. Miejsce i rola w firmie 2. Przegląd architektury
Bardziej szczegółowoHadoop i Spark. Mariusz Rafało
Hadoop i Spark Mariusz Rafało mrafalo@sgh.waw.pl http://mariuszrafalo.pl WPROWADZENIE DO EKOSYSTEMU APACHE HADOOP Czym jest Hadoop Platforma służąca przetwarzaniu rozproszonemu dużych zbiorów danych. Jest
Bardziej szczegółowodr inż. Maciej Kiewra Prezentacja wygłoszona na konferencji BI vs Big Data podczas Kongresu GigaCon Warszawa, 16.04.2014 r.
dr inż. Maciej Kiewra Prezentacja wygłoszona na konferencji BI vs Big Data podczas Kongresu GigaCon Warszawa, 16.04.2014 r. Big Data w praktyce, z perspektywy konsultanta Business Intelligence Parę słów
Bardziej szczegółowoKrzysztof Wawrzyniak Quo vadis BS? Ożarów Mazowiecki, styczeń 2014
1 QUO VADIS.. BS? Rekomendacja D dlaczego? Mocne fundamenty to dynamiczny rozwój. Rzeczywistość wdrożeniowa. 2 Determinanty sukcesu w biznesie. strategia, zasoby (ludzie, kompetencje, procedury, technologia)
Bardziej szczegółowoNarzędzia PMR do analizy sektora transportu drogowego
Narzędzia PMR do analizy sektora transportu drogowego Wspomaganie zarządzania relacjami z dostawcami w branży transportowej Analizy bieżącej i przyszłej sytuacji w branży transportu drogowego, rzetelne
Bardziej szczegółowoIMPLEMENTATION OF WDROŻENIE COMARCHW MINISTERSTWIE FINANSÓW SINDBAD RAPORTY ANALIZY BADANIA PROGNOZY CASE STUDY 1
IMPLEMENTATION OF WDROŻENIE COMARCHW MINISTERSTWIE FINANSÓW M2M SINDBAD PLATFORM RAPORTY ANALIZY BADANIA PROGNOZY CASE STUDY 1 MINISTERSTWO FINANSÓW Ministerstwo Finansów zapewnia obsługę Ministra Finansów
Bardziej szczegółowoBusiness Intelligence Odkryj szerszą perspektywę dla swojego biznesu
Business Intelligence Odkryj szerszą perspektywę dla swojego biznesu Zadania stojące przed Business Intelligence Przyrost informacji w ciągu ostatnich kilku lat osiągnął niespotykany dotąd poziom. Firmy
Bardziej szczegółowoBI: przegląd, ETL, raportowanie i analizy
BI: przegląd, ETL, raportowanie i analizy 2013-04-12 Krzysztof Bokiej, Łukasz Limanowski, Mariusz Pyka Roche Wstęp 2013-04-12 Krzysztof Bokiej, Roche Architektura typowego środowisko DW/BI Systemy Źródłowe
Bardziej szczegółowoSystemy Business Intelligence w praktyce. Maciej Kiewra
Systemy Business Intelligence w praktyce Maciej Kiewra Wspólna nazwa dla grupy systemów: Hurtownia danych Pulpity menadżerskie Karty wyników Systemy budżetowe Hurtownia danych - ujednolicone repozytorium
Bardziej szczegółowoSpectrum Spatial. Dla systemów BI (Business Intelligence)
Spectrum Spatial Dla systemów BI (Business Intelligence) Czym jest Spectrum Spatial? Spectrum Spatial jest platformą programistyczną, która umożliwia lokalizację danych w przestrzeni w celu szybkiego i
Bardziej szczegółowoomnia.pl, ul. Kraszewskiego 62A, 37-500 Jarosław, tel. +48 16 621 58 10 www.omnia.pl kontakt@omnia.pl
.firma Dostarczamy profesjonalne usługi oparte o nowoczesne technologie internetowe Na wstępie Wszystko dla naszych Klientów Jesteśmy świadomi, że strona internetowa to niezastąpione źródło informacji,
Bardziej szczegółowoPortale raportowe, a narzędzia raportowe typu self- service
Portale raportowe, a narzędzia raportowe typu self- service Bartłomiej Graczyk Kierownik Projektów / Architekt rozwiązań Business Intelligence E mail: bartek@graczyk.info.pl Site: www.graczyk.info.pl Agenda
Bardziej szczegółowo