Analityka danych w środowisku Hadoop. Piotr Czarnas, 5 czerwca 2017
|
|
- Sławomir Zając
- 7 lat temu
- Przeglądów:
Transkrypt
1 Analityka danych w środowisku Hadoop Piotr Czarnas, 5 czerwca 2017
2 Pytania stawiane przez biznes 1 Jaka jest aktualnie sytuacja w firmie? 2 Na czym jeszcze możemy zarobić? Które procesy możemy usprawnić? 3 Failure rate 6-9m 4 Gdzie ponosimy straty?
3 Wyzwania przy wdrożeniu procesów analityki danych Biznes oczekuje odpowiedzi na wczoraj Dużo źródeł danych Długi czas przygotowania danych Koszty narzędzi i środowiska Ochrona danych osobowych (RODO)
4 Wyzwania przy wdrożeniu procesów analityki danych Biznes oczekuje odpowiedzi na wczoraj Nie wszystkie dane potrzebne do raportu są dostępne Dane dostępne w hurtowni najwcześniej po kilku dniach Raport wykonuje się długo na obecnej infrastrukturze Biznes oczekuje danych w czasie rzeczywistym
5 Wyzwania przy wdrożeniu procesów analityki danych Dużo źródeł danych Analityk musi znaleźć potrzebne dane Tabele w hurtowni danych nie są opisane Nowe źródła danych (Google Analytics, plik z danymi rynkowymi, etc.) wymagają załadowania
6 Wyzwania przy wdrożeniu procesów analityki danych Długi czas przygotowania danych Analityk biznesowy jest uzależniony od IT Dane trzeba załadować Ładowanie danych do Hadoop-a nie jest proste:
7 Wyzwania przy wdrożeniu procesów analityki danych Koszty narzędzi i środowiska Tradycyjne bazy danych są kosztowne Narzędzia wizualizacyjne (jak QlikView) tylko dla wybranych Brak powszechnego dostępu do raportów dla wszystkich użytkowników $$$
8 Wyzwania przy wdrożeniu procesów analityki danych Ochrona danych osobowych Regulacja RODO / GDPR wchodzi w życie 25 maja 2018 Ewidencja źródeł z danymi personalnymi Zapewnienie kontroli dostępu i audyt dostępu
9 Obraz klienta 360 Obszary raportowania ad-hoc Profilowanie klientów na podstawie dodatkowych źródeł informacji (Google Analytics, Facebook, etc.) Łączenie danych CRM, ERP i rynkowych Logistyka Monitorowanie łańcucha dostaw i dystrybucji Analiza danych od partnerów handlowych
10 Proces przygotowania danych do raportu Zamówienie raportu Biznes prosi o przygotowanie raportu Znalezienie danych Analityk szuka i analizuje źródła danych Przygotowanie danych Analityk prosi IT o załadowanie danych do hurtowni Budowa raportu Analityk buduje model danych oraz wizualizację
11 Dostęp do danych dowolnym narzędziem Brak wpływu na obecne środowisko Wirtualna baza danych wspomagana przez Apache Spark Łatwe uruchamianie środowiska analitycznego Big Data Dostęp do wszystkich źródeł danych Progresywne wdrażanie analityki Big Data w firmie
12 Zwinny process analityki danych Zamówienie raportu Biznes może sam pobrać dane do Excela Znalezienie danych Analityk łatwo znajduje dostępne dane Przygotowanie danych Analityk sam może podłączyć lub przeładować dane Budowa raportu Model danych raportu zostaje opublikowany na przyszość
13 Apache Spark w analityce Najpopularniejszy silnik Big Data Open source Skalowalny Pełne wsparcie SQL Nastawiony na przetwarzanie ad-hoc Działa w każdym środowisku
14 Spark vs Hadoop Spark Wykonywanie zapytań SQL Analityka w czasie rzeczywistym Równoległa obsługa wielu użytkowników Hadoop Zarządzanie klastrem Bezpieczeństwo komunikacji Definicja metadanych Przechowywanie danych (HDFS)
15 Tradycyjne ładowanie danych do Hadoop-a (push) 1 Przygotowanie plików Napisanie skryptów ładujących 2 3 Podpięcie skryptów ładujących pod harmonogramy
16 Samoobsługowe odwrócone ładowanie danych (pull) 1 Podpięcie źródeł danych Wskazanie danych do załadowania Spark sam pobierze dane ze źródła 2 3 Wskazanie harmonogramu ładowania
17 Demo
18 Klasyczne środowisko Business Intelligence Narzędzia BI: Źródła danych Warstwa wizualna CRM ERP Baza danych Pliki tekstowe Model danych Silnik ekstraktów Procesy ETL Modele danych do raportów Dane dostępne tylko w ramach narzędzia BI Ekstrakty danych Rozmiar ograniczony wielkością serwera Hurtowni a
19 Wyzwania w dostępie do danych Gdzie znajdę dane do raportu? Czy dane są zabezpieczone? Kiedy dane rynkowe lub od partnera będą raportowalne? Czy mogę użyć danych z raportu w Excelu? Czy są tam dane personalne? Czy hurtownia danych jest wystarczająco szybka?
20 Środowisko ze współdzielonym modelem danych Narzędzia BI: Logiczna hurtownia danych Źródła danych Warstwa wizualna Inne narzędzia Model danych Definicja źródeł danych Centralna definicja uprawnień Warstwa utrzymania danych CRM ERP Baza danych Pliki tekstowe Opcjonalne procesy ETL System harmonogramów Zarządzanie cyklem życia cache Hurtowni a
21 Zalety centralizacji modelu danych Dostęp do danych z dowolnego narzędzia Wszystkie źródła danych opisane Mniejsza zależność analityków od zespołu IT Pełny obraz źródeł danych na potrzeby regulacji RODO Łatwe i krokowe wdrażanie platformy Big Data do analityki Nieograniczone możliwości skalowania
22 Dziękuję za uwagę Piotr Czarnas CEO Querona Ltd
Analityka danych w środowisku Hadoop. Piotr Czarnas, 27 czerwca 2017
Analityka danych w środowisku Hadoop Piotr Czarnas, 27 czerwca 2017 Hadoop i Business Intelligence - wyzwania 1 Ładowane danych do Hadoop-a jest trudne 2 Niewielu specjalistów dostępnych na rynku Dostęp
Bardziej szczegółowoRola analityki danych w transformacji cyfrowej firmy
Rola analityki danych w transformacji cyfrowej firmy Piotr Czarnas Querona CEO Analityka biznesowa (ang. Business Intelligence) Proces przekształcania danych w informacje, a informacji w wiedzę, która
Bardziej szczegółowoCo to jest Business Intelligence?
Cykl: Cykl: Czwartki z Business Intelligence Sesja: Co Co to jest Business Intelligence? Bartłomiej Graczyk 2010-05-06 1 Prelegenci cyklu... mariusz@ssas.pl lukasz@ssas.pl grzegorz@ssas.pl bartek@ssas.pl
Bardziej szczegółowoWprowadzenie do Hurtowni Danych. Mariusz Rafało
Wprowadzenie do Hurtowni Danych Mariusz Rafało mrafalo@sgh.waw.pl WARSTWA PREZENTACJI HURTOWNI DANYCH Wykorzystanie hurtowni danych - aspekty Analityczne zbiory danych (ADS) Zbiór danych tematycznych (Data
Bardziej szczegółowoHurtownia danych praktyczne zastosowania
Hurtownia danych praktyczne zastosowania Dorota Olkowicz dorota.olkowicz@its.waw.pl Centrum Bezpieczeństwa Ruchu Drogowego ITS Plan prezentacji 1. Hurtownie danych 2. Hurtownia danych POBR 3. Narzędzia
Bardziej szczegółowoPaweł Gołębiewski. Softmaks.pl Sp. z o.o. ul. Kraszewskiego 1 85-240 Bydgoszcz www.softmaks.pl kontakt@softmaks.pl
Paweł Gołębiewski Softmaks.pl Sp. z o.o. ul. Kraszewskiego 1 85-240 Bydgoszcz www.softmaks.pl kontakt@softmaks.pl Droga na szczyt Narzędzie Business Intelligence. Czyli kiedy podjąć decyzję o wdrożeniu?
Bardziej szczegółowoQlikView Business Intelligence, a system ERP SAP Użytkownicy systemów ERP firmy SAP przez wiele lat poszukiwali skutecznych i łatwych sposobów dotarcia do swych danych. Używali arkuszy kalkulacyjnych,
Bardziej szczegółowoDOKUMENT INFORMACYJNY COMARCH BUSINESS INTELLIGENCE:
DOKUMENT INFORMACYJNY COMARCH BUSINESS INTELLIGENCE: JAKIE PROBLEMY ROZWIĄZUJE BI 1 S t r o n a WSTĘP Niniejszy dokument to zbiór podstawowych problemów, z jakimi musi zmagać się przedsiębiorca, analityk,
Bardziej szczegółowoAnalityka danych & big data
TomaszJangas.com Analityka danych & big data 15 października 2017 W tym artykule opiszę architekturę, jaka często wykorzystywana jest dzisiaj w środowiskach do analityki danych w wielu różnych organizacjach
Bardziej szczegółowoSystem INTEGRYB jako zintegrowane repozytorium danych umożliwiające zaawansowaną analitykę badawczą
System INTEGRYB jako zintegrowane repozytorium danych umożliwiające zaawansowaną analitykę badawczą Lena Szymanek 1, Jacek Seń 1, Krzysztof Skibicki 2, Sławomir Szydłowski 2, Andrzej Kunicki 1 1 Morski
Bardziej szczegółowoHurtownie danych i business intelligence - wykład II. Zagadnienia do omówienia. Miejsce i rola HD w firmie
Hurtownie danych i business intelligence - wykład II Paweł Skrobanek, C-3 pok. 321 pawel.skrobanek@pwr.wroc.pl oprac. Wrocław 2005-2012 Zagadnienia do omówienia 1. Miejsce i rola w firmie 2. Przegląd architektury
Bardziej szczegółowoVI Kongres BOUG Praktyczne aspekty wykorzystania Business Intelligence w przemyśle wydobywczym węgla kamiennego
VI Kongres BOUG Praktyczne aspekty wykorzystania Business Intelligence w przemyśle wydobywczym węgla kamiennego mgr Artur Wroński mgr inż. Przemysław Kapica 25.04.2012 Agenda: Środowisko platformy BI Użytkownicy
Bardziej szczegółowodr inż. Maciej Kiewra Prezentacja wygłoszona na konferencji BI vs Big Data podczas Kongresu GigaCon Warszawa, 16.04.2014 r.
dr inż. Maciej Kiewra Prezentacja wygłoszona na konferencji BI vs Big Data podczas Kongresu GigaCon Warszawa, 16.04.2014 r. Big Data w praktyce, z perspektywy konsultanta Business Intelligence Parę słów
Bardziej szczegółowoHurtownie danych i business intelligence - wykład II. Zagadnienia do omówienia. Miejsce i rola HD w firmie
Hurtownie danych i business intelligence - wykład II Paweł Skrobanek, C-3 pok. 321 pawel.skrobanek@pwr.wroc.pl oprac. Wrocław 2005-2008 Zagadnienia do omówienia 1. 2. Przegląd architektury HD 3. Warsztaty
Bardziej szczegółowoWprowadzenie do Hurtowni Danych. Mariusz Rafało
Wprowadzenie do Hurtowni Danych Mariusz Rafało mariusz.rafalo@hotmail.com WPROWADZENIE DO HURTOWNI DANYCH Co to jest hurtownia danych? Hurtownia danych jest zbiorem danych zorientowanych tematycznie, zintegrowanych,
Bardziej szczegółowoIBM DATASTAGE COMPETENCE CENTER
IBM DATASTAGE COMPETENCE CENTER W informacji drzemie ogromny potencjał biznesowy. Odpowiednio opisane i wykorzystane dane stanowią podstawę sprawnie funkcjonującego przedsiębiorstwa. Wykorzystując najnowocześniejsze
Bardziej szczegółowoPraktyczne aspekty pozyskiwania wiedzy z danych z perspektywy matematyka w bankowości. 2014-01-23 (VI zajęcia) Jakub Jurdziak
Praktyczne aspekty pozyskiwania wiedzy z danych z perspektywy matematyka w bankowości 2014-01-23 (VI zajęcia) Jakub Jurdziak CEL ZAJĘĆ: Prezentacja nowoczesnego banku uniwersalnego jako organizacji opartej
Bardziej szczegółowoOrganizacyjnie. Prowadzący: dr Mariusz Rafało (hasło: BIG)
Big Data Organizacyjnie Prowadzący: dr Mariusz Rafało mrafalo@sgh.waw.pl http://mariuszrafalo.pl (hasło: BIG) Automatyzacja Automatyzacja przetwarzania: Apache NiFi Źródło: nifi.apache.org 4 Automatyzacja
Bardziej szczegółowoTECHNOLOGIE BIG DATA A BEZPIECZEŃSTWO INFORMATYCZNE WE KNOW YOU KNOW. silmine.com
TECHNOLOGIE BIG DATA A BEZPIECZEŃSTWO INFORMATYCZNE WE KNOW YOU KNOW. silmine.com 13 + 13 LAT DOŚWIADCZENIA PONAD 480 ZREALIZOWANYCH PROJEKTÓW PARTNERSTWO Naszą ambicją jest dostarczać klientom szeroki
Bardziej szczegółowoTriki i dobre praktyki
Triki i dobre praktyki EURECA jak wesprzeć menedżerów (raportowanie wspomagające) Badania Większość menedżerów podejmuje decyzje na podstawie opinii, a nie na faktów Opinie Fakty Lag vs. lead measures
Bardziej szczegółowoWprowadzenie do technologii Business Intelligence i hurtowni danych
Wprowadzenie do technologii Business Intelligence i hurtowni danych 1 Plan rozdziału 2 Wprowadzenie do Business Intelligence Hurtownie danych Produkty Oracle dla Business Intelligence Business Intelligence
Bardziej szczegółowoWprowadzenie do Hurtowni Danych
Wprowadzenie do Hurtowni Danych BIG DATA Definicja Big Data Big Data definiowane jest jako składowanie zbiorów danych o tak dużej złożoności i ilości danych, że jest to niemożliwe przy zastosowaniu podejścia
Bardziej szczegółowoOd Expert Data Scientist do Citizen Data Scientist, czyli jak w praktyce korzystać z zaawansowanej analizy danych
Od Expert Data Scientist do Citizen Data Scientist, czyli jak w praktyce korzystać z zaawansowanej analizy danych Tomasz Demski StatSoft Polska www.statsoft.pl Analiza danych Zaawansowana analityka, data
Bardziej szczegółowoKonferencja. Business Intelligence Trends 24 czerwca 2014 r.
Konferencja Business Intelligence Trends 24 czerwca 2014 r. O FIRMIE PRODUKCJA OPROGRAMOWANIA ZARZĄDZANIE ZASOBAMI IT WDROŻENIA POLITYKA ZARZĄDZANIA LICENCJAMI SZKOLENIA KONSULTACJE KOMPETENCJE PRODUKCJA
Bardziej szczegółowoTrendy BI z perspektywy. marketingu internetowego
Trendy BI z perspektywy marketingu internetowego BI CECHUJE ORGANIZACJE DOJRZAŁE ANALITYCZNIE 2 ALE JAKA JEST TA DOJRZAŁOŚĆ ANALITYCZNA ORGANIZACJI? 3 Jaka jest dojrzałość analityczna organizacji? Zarządzanie
Bardziej szczegółowoOne Size Doesn t Fit All, czyli case study stworzenia BI dostosowanego do strategicznych, operacyjnych oraz analitycznych potrzeb
One Size Doesn t Fit All, czyli case study stworzenia BI dostosowanego do strategicznych, operacyjnych oraz analitycznych potrzeb X Kongres Business Intelligence Warszawa, 17.03.2016 Joanna Łuczak Multi-Partnerski
Bardziej szczegółowoPierwsze wdrożenie SAP BW w firmie
Pierwsze wdrożenie w firmie Mirosława Żurek, BCC Poznao, maj 2013 Zakres tematyczny wykładu Podstawowe założenia i pojęcia hurtowni danych ; Przykładowe pierwsze wdrożenie w firmie i jego etapy; Przykładowe
Bardziej szczegółowoUsługi analityczne budowa kostki analitycznej Część pierwsza.
Usługi analityczne budowa kostki analitycznej Część pierwsza. Wprowadzenie W wielu dziedzinach działalności człowieka analiza zebranych danych jest jednym z najważniejszych mechanizmów podejmowania decyzji.
Bardziej szczegółowoHURTOWNIE DANYCH I BUSINESS INTELLIGENCE
BAZY DANYCH HURTOWNIE DANYCH I BUSINESS INTELLIGENCE Akademia Górniczo-Hutnicza w Krakowie Adrian Horzyk horzyk@agh.edu.pl Google: Horzyk HURTOWNIE DANYCH Hurtownia danych (Data Warehouse) to najczęściej
Bardziej szczegółowoOrganizacyjnie. Prowadzący: dr Mariusz Rafało (hasło: BIG)
Big Data Organizacyjnie Prowadzący: dr Mariusz Rafało mrafalo@sgh.waw.pl http://mariuszrafalo.pl (hasło: BIG) Zaliczenie: Praca na zajęciach Egzamin Projekt/esej zaliczeniowy Plan zajęć # TEMATYKA ZAJĘĆ
Bardziej szczegółowoAUREA BPM Oracle. TECNA Sp. z o.o. Strona 1 z 7
AUREA BPM Oracle TECNA Sp. z o.o. Strona 1 z 7 ORACLE DATABASE System zarządzania bazą danych firmy Oracle jest jednym z najlepszych i najpopularniejszych rozwiązań tego typu na rynku. Oracle Database
Bardziej szczegółowodr inż. Paweł Morawski Informatyczne wsparcie decyzji logistycznych semestr letni 2018/2019
dr inż. Paweł Morawski Informatyczne wsparcie decyzji logistycznych semestr letni 2018/2019 KONTAKT Z PROWADZĄCYM dr inż. Paweł Morawski e-mail: pmorawski@spoleczna.pl www: http://pmorawski.spoleczna.pl
Bardziej szczegółowoPrezentacja firmy WYDAJNOŚĆ EFEKTYWNOŚĆ SKUTECZNOŚĆ. http://www.qbico.pl
Prezentacja firmy { WYDAJNOŚĆ EFEKTYWNOŚĆ SKUTECZNOŚĆ http://www.qbico.pl Firma ekspercka z dziedziny Business Intelligence Srebrny Partner Microsoft w obszarach Business Intelligence i Data Platform Tworzymy
Bardziej szczegółowoField Service Management Najczęściej spotykane problemy
Field Service Management Najczęściej spotykane problemy Wysokie koszty wykonania usługi Niskie zadowolenie klientów Czas i trasa dojazdu Nieterminowe dostarczenie usług Straty magazynowe Niedotrzymywanie
Bardziej szczegółowoSystemy Business Intelligence w praktyce. Maciej Kiewra
Systemy Business Intelligence w praktyce Maciej Kiewra Wspólna nazwa dla grupy systemów: Hurtownia danych Pulpity menadżerskie Karty wyników Systemy budżetowe Hurtownia danych - ujednolicone repozytorium
Bardziej szczegółowoROLA CONTROLLERA I ROZWÓJ TECHNOLOGII
Efektywność to realizacja właściwych działań we właściwy sposób. Peter F. Drucker Trzy kroki do zwiększenia efektywności w controllingu 1 2 3 Controlling Automation - usprawnij podstawowe procesy controlingowe
Bardziej szczegółowoHurtownie danych w praktyce
Hurtownie danych w praktyce Fakty i mity Dr inż. Maciej Kiewra Parę słów o mnie... 8 lat pracy zawodowej z hurtowniami danych Projekty realizowane w kraju i zagranicą Certyfikaty Microsoft z Business Intelligence
Bardziej szczegółowoOdkryj w danych to, co najważniejsze
Odkryj w danych to, co najważniejsze W erze data lake ów posiadanie bazy danych jest absolutnym minimum dla efektywnego prowadzenia biznesu, szczególnie w Sieci. Każda dobrze zarządzana, nowo utworzona
Bardziej szczegółowoBudowa systemu wspomagającego podejmowanie decyzji. Metodyka projektowo wdrożeniowa
Budowa systemu wspomagającego podejmowanie decyzji Metodyka projektowo wdrożeniowa Agenda Systemy wspomagające decyzje Business Intelligence (BI) Rodzaje systemów BI Korzyści z wdrożeń BI Zagrożenia dla
Bardziej szczegółowoHadoop i Spark. Mariusz Rafało
Hadoop i Spark Mariusz Rafało mrafalo@sgh.waw.pl http://mariuszrafalo.pl WPROWADZENIE DO EKOSYSTEMU APACHE HADOOP Czym jest Hadoop Platforma służąca przetwarzaniu rozproszonemu dużych zbiorów danych. Jest
Bardziej szczegółowoEwolucja technik modelowania hurtowni danych
Baza wiedzy JPro Ewolucja technik modelowania hurtowni Porównanie technik modelowania hurtowni podsumowanie: Strona 1/6 Nazwa podejścia Corporate Information Factory Kimball Bus Architecture Data Vault
Bardziej szczegółowoSpojrzenie na systemy Business Intelligence
Marcin Adamczak Nr 5375 Spojrzenie na systemy Business Intelligence 1.Wprowadzenie. W dzisiejszym świecie współczesna organizacja prędzej czy później stanie przed dylematem wyboru odpowiedniego systemu
Bardziej szczegółowoAnalityka internetowa w Polsce A.D. 2014. Trendy i prognozy na najbliższe miesiące wybrane przez ekspertów Bluerank
Analityka internetowa w Polsce A.D. 2014 Trendy i prognozy na najbliższe miesiące wybrane przez ekspertów Bluerank Obecnie: Bez pomiaru nie ma zarządzania. Gdzie: - Peter Drucker, guru zarządzania Dane
Bardziej szczegółowoAutomatyzacja Procesów Biznesowych. Systemy Informacyjne Przedsiębiorstw
Automatyzacja Procesów Biznesowych Systemy Informacyjne Przedsiębiorstw Rodzaje przedsiębiorstw Produkcyjne największe zapotrzebowanie na kapitał, największe ryzyko Handlowe kapitał obrotowy, średnie ryzyko
Bardziej szczegółowoBig Data w strategii przedsiębiorstwa. Warszawa,
Big Data w strategii przedsiębiorstwa Warszawa, 2016-03-17 1 Czemu stoję przed Paostwem? Przez przeszło 12 lat odpowiadałem za systemy raportujące w portalu Onet.pl. Odpowiadałem za wybór narzędzi do analizy
Bardziej szczegółowoArchitecture Best Practices for Big Data Deployments
GLOBAL SPONSORS Architecture Best Practices for Big Data Deployments Kajetan Mroczek Systems Engineer GLOBAL SPONSORS Rozwój analityki biznesowej EKSPLORACJA DANYCH UCZENIE MASZYNOWE SZTUCZNA INTELIGENCJA
Bardziej szczegółowoPlatforma Cognos. Agata Tyma CMMS Department Marketing & Sales Specialist atyma@aiut.com.pl. 2011 AIUT Sp. z o. o.
Platforma Cognos Agata Tyma CMMS Department Marketing & Sales Specialist atyma@aiut.com.pl Business Intelligence - Fakty Kierownicy tracą około 2 godzin dziennie na szukanie istotnych informacji. Prawie
Bardziej szczegółowodr inż. Paweł Morawski Informatyczne wsparcie decyzji logistycznych semestr letni 2016/2017
dr inż. Paweł Morawski Informatyczne wsparcie decyzji logistycznych semestr letni 2016/2017 KONTAKT Z PROWADZĄCYM dr inż. Paweł Morawski e-mail: pmorawski@spoleczna.pl www: http://pmorawski.spoleczna.pl
Bardziej szczegółowoMarcin Adamczak Jakub Gruszka MSP. Business Intelligence
Marcin Adamczak Jakub Gruszka MSP Business Intelligence Plan Prezentacji Definicja Podział Zastosowanie Wady i zalety Przykłady Historia W październiku 1958 Hans Peter Luhn pracownik działu badań w IBM
Bardziej szczegółowoPortale raportowe, a narzędzia raportowe typu self- service
Portale raportowe, a narzędzia raportowe typu self- service Bartłomiej Graczyk Kierownik Projektów / Architekt rozwiązań Business Intelligence E mail: bartek@graczyk.info.pl Site: www.graczyk.info.pl Agenda
Bardziej szczegółowoSAS Access to Hadoop, SAS Data Loader for Hadoop Integracja środowisk SAS i Hadoop. Piotr Borowik
SAS Access to Hadoop, SAS Data Loader for Hadoop Integracja środowisk SAS i Hadoop Piotr Borowik Wyzwania związane z Big Data Top Hurdles with Big data Source: Gartner (Sep 2014), Big Data Investment Grows
Bardziej szczegółowoJak skutecznie budować i wdrażać zabezpieczenia do walki z wyłudzeniami?
Jak skutecznie budować i wdrażać zabezpieczenia do walki z wyłudzeniami? Tomasz Imbiorowski, Dyrektor Departamentu Bezpieczeństwa, Bank Pocztowy SA Dariusz Wojtas, Head of Product Management, IMPAQ Warszawa,
Bardziej szczegółowoPraktyczne wdrożenie RODO w systemie informatycznym uczelni na przykładzie one4all RODO dla systemów Microsoft Dynamics 365 / AX
Praktyczne wdrożenie RODO w systemie informatycznym uczelni na przykładzie one4all RODO dla systemów Microsoft Dynamics 365 / AX Kim jesteśmy? Mariusz Tracz Dyrektor ds. Wdrożeń Agata Barszcz Specjalista
Bardziej szczegółowoSzkolenie: Jak mieć więcej czasu na wyciąganie wniosków
Szkolenie: Jak mieć więcej czasu na wyciąganie wniosków 14 listopada 2018 r 8:45-12:45 Warszawa https://alterdata.evenea.pl "Dzisiaj praca analityka składa się w 15% z analizowania. Cała reszta czynności
Bardziej szczegółowoBig Data & Analytics
Big Data & Analytics Optymalizacja biznesu Autor: Wiktor Jóźwicki, Scapaflow Senior Consultant Data wydania: 05.02.2014 Wprowadzenie Niniejszy dokument przedstawia zagadnienie Big Data w ujęciu zapotrzebowania
Bardziej szczegółowoSamodzielny Business Intelligence in memory duże i małe. Paweł Gajda Business Solution Architect
Samodzielny Business Intelligence in memory duże i małe Paweł Gajda Business Solution Architect Agenda 1. Zapytania biznesowe 2. SAP Visual Intelligence 3. Szybkość 4. Zaangażowanie 5. Samoobsługa 6. Kreatywność
Bardziej szczegółowoCzęść I Istota analizy biznesowej a Analysis Services
Spis treści Część I Istota analizy biznesowej a Analysis Services 1 Analiza biznesowa: podstawy analizy danych... 3 Wprowadzenie do analizy biznesowej... 3 Wielowymiarowa analiza danych... 5 Atrybuty w
Bardziej szczegółowoPREZENTACJA FUNKCJONALNA SYSTEMU PROPHIX
PREZENTACJA FUNKCJONALNA SYSTEMU PROPHIX Architektura i struktura funkcjonalna systemu PROPHIX PROPHIX Corporate Performance Management (Zarządzanie Wydajnością Firmy) System do samodzielnego planowania,
Bardziej szczegółowoZastosowania narzędzi analitycznych w komunikacji społecznej
Zastosowania narzędzi analitycznych w komunikacji społecznej Jarosław Romaniuk/ 11 maja 2015 Media Społeczne dziś Użytkownicy sieci społecznościowych w 2014r (mln) Na Świecie W Polsce Liczba użytkowników
Bardziej szczegółowoKONCEPCJA 1. BI w Polpharmie Case Study. Julian Głowniak Szef Systemów Wsparcia Biznesu Grupy Polpharma
KONCEPCJA 1 BI w Polpharmie Case Study Julian Głowniak Szef Systemów Wsparcia Biznesu Grupy Polpharma Polpharma dziś lider w regionie Europy Centralnej i Wschodniej Polpharma dziś ilość krajów 3 Centrala
Bardziej szczegółowoBase all your decisions on Data, not Instinct.
Base all your decisions on Data, not Instinct. Jeff Bezos, CEO, Amazon Żyjemy w świecie danych. Decyzje, strategie, rozwój produktów są oparte o ich analizę. Zmierzamy w kierunku data-driven organizations
Bardziej szczegółowoPureSystems zautomatyzowane środowisko aplikacyjne. Emilia Smółko Software IT Architect
PureSystems zautomatyzowane środowisko aplikacyjne. Emilia Smółko Software IT Architect Wbudowana wiedza specjalistyczna Dopasowane do zadania Optymalizacja do aplikacji transakcyjnych Inteligentne Wzorce
Bardziej szczegółowoDane Klienta: Draszba S.A. Al. Gen. Józefa Hallera 233a 80-502 Gdańsk www.heavyduty.pl
Dane Klienta: Draszba S.A. Al. Gen. Józefa Hallera 233a 80-502 Gdańsk www.heavyduty.pl Draszba S.A. jest właścicielem marki Heavy Duty (HD) i Marisha oraz dystrybutorem wysokiej jakości obuwia Dr. Martens,
Bardziej szczegółowomożliwości analizy i optymalizacji działalności kancelarii weryfikacja wydajności pracowników i rentowności spraw
Zalety Legisys możliwości analizy i optymalizacji działalności kancelarii weryfikacja wydajności pracowników i rentowności spraw widok 360 na klienta i zapis komunikacji z nim katalogowanie spraw wraz
Bardziej szczegółowoSpis treści. Wstęp... 9
Wstęp... 9 Rozdział 1 ZARYS TEORII STEROWANIA PROCESAMI PRZEDSIĘBIORSTWA... 11 1. Zakres i potencjalne zastosowania teorii... 11 2. Opis szkieletowego systemu EPC II... 12 2.1. Poziomy organizacyjne, warstwy
Bardziej szczegółowoUsługa archiwizacji danych w systemie Eureca. Marek Jelenik CONTROLLING SYSTEMS sp. z o.o.
Usługa archiwizacji danych w systemie Eureca Marek Jelenik CONTROLLING SYSTEMS sp. z o.o. Na czym polega usługa archiwizacji danych w systemie Eureca? 2012 2013 2014 2015 Przed archiwizacją SQL OLAP BAZA
Bardziej szczegółowoX ZJAZD UŻYTKOWNIKÓW SYSTEMU EURECA
X ZJAZD UŻYTKOWNIKÓW SYSTEMU EURECA Agenda dzień pierwszy I dzień Czas Co nas czeka 10-30-11.00 30 Rejestracja i kawa 11.00-11.30 30 Co nowego w CS. Podsumowanie ostatniego roku 12.30-12.15 45 Controlling
Bardziej szczegółowoBI: przegląd, ETL, raportowanie i analizy
BI: przegląd, ETL, raportowanie i analizy 2013-04-12 Krzysztof Bokiej, Łukasz Limanowski, Mariusz Pyka Roche Wstęp 2013-04-12 Krzysztof Bokiej, Roche Architektura typowego środowisko DW/BI Systemy Źródłowe
Bardziej szczegółowoModernizacja systemów zarządzania i obsługi klienta w Kasie Rolniczego Ubezpieczenia Społecznego
Modernizacja systemów zarządzania i obsługi klienta w Kasie Rolniczego Ubezpieczenia Społecznego Wicedyrektor Biura Kadr i Szkolenia Centrali KRUS 1 Projekty Komponentu A Poakcesyjnego Programu Wsparcia
Bardziej szczegółowoOpen Source biznes i bezpieczeństwo w oprogramowaniu. Comp S.A. Open Source Day 2016
Open Source biznes i bezpieczeństwo w oprogramowaniu Comp S.A. Open Source Day 2016 Kamil Hajduczenia Joanna Sadowska Dominik Czyż Warszawa, 26. kwietnia2016 C OMP Ø 1000+ pracowników w 18 lokalizacjach
Bardziej szczegółowoMicrosoft SQL Server Analiza wdrożenia w LPP S.A.
Microsoft SQL Server Analiza wdrożenia w LPP S.A. LPP S.A. zastępuje hurtownię danych Retek Data Warehouse oraz narzędzia analityczne Microstrategy zintegrowanym rozwiązaniem opartym na Microsoft SQL Server
Bardziej szczegółowoPrzetwarzanie danych z wykorzystaniem technologii NoSQL na przykładzie serwisu Serp24
Przetwarzanie danych z wykorzystaniem technologii NoSQL na przykładzie serwisu Serp24 Agenda Serp24 NoSQL Integracja z CMS Drupal Przetwarzanie danych Podsumowanie Serp24 Darmowe narzędzie Ułatwia planowanie
Bardziej szczegółowoBusiness Intelligence Odkryj szerszą perspektywę dla swojego biznesu
Business Intelligence Odkryj szerszą perspektywę dla swojego biznesu Zadania stojące przed Business Intelligence Przyrost informacji w ciągu ostatnich kilku lat osiągnął niespotykany dotąd poziom. Firmy
Bardziej szczegółowoE-logistyka Redakcja naukowa Waldemar Wieczerzycki
E-logistyka Redakcja naukowa Waldemar Wieczerzycki E-logistyka to szerokie zastosowanie najnowszych technologii informacyjnych do wspomagania zarządzania logistycznego przedsiębiorstwem (np. produkcją,
Bardziej szczegółowoSAP w 24 godziny / Michael Missbach, George Anderson. Gliwice, cop Spis treści
SAP w 24 godziny / Michael Missbach, George Anderson. Gliwice, cop. 2016 Spis treści O autorce 9 Podziękowania 10 Wprowadzenie 11 CZĘŚĆ I WPROWADZENIE DO SYSTEMU SAP Godzina 1. SAP w skrócie 17 Ogólne
Bardziej szczegółowoMigracja XL Business Intelligence do wersji
Migracja XL Business Intelligence do wersji 2019.0 Copyright 2018 COMARCH Wszelkie prawa zastrzeżone Nieautoryzowane rozpowszechnianie całości lub fragmentu niniejszej publikacji w jakiejkolwiek postaci
Bardziej szczegółowoSpectrum Spatial. Dla systemów BI (Business Intelligence)
Spectrum Spatial Dla systemów BI (Business Intelligence) Czym jest Spectrum Spatial? Spectrum Spatial jest platformą programistyczną, która umożliwia lokalizację danych w przestrzeni w celu szybkiego i
Bardziej szczegółowoVII Kongres BOUG 03 października 2012
Raportowanie SLA w duŝej organizacji Studium przypadku VII Kongres BOUG 03 października 2012 Zdefiniowanie przypadku Zadanie do wykonania: Jak przenieść ustalenia formalne na efektywnie raportujący system?
Bardziej szczegółowoComarch BI Point Standalone ulotka. Wersja: 6.2
Comarch BI Point Standalone ulotka Wersja: 6.2 Copyright 2017 COMARCH Wszelkie prawa zastrzeżone. Nieautoryzowane rozpowszechnianie całości lub fragmentu niniejszej publikacji w jakiejkolwiek postaci jest
Bardziej szczegółowoObywatel 360 Narzędzia do zarządzania danymi
Obywatel 360 Narzędzia do zarządzania danymi Łukasz Leszewski SAS Institute Zasoby informacyjne w organizacji Zasoby informacyjne w tej chwili są najbardziej wartościowym zasobem w biznesie, bo bez nich
Bardziej szczegółowoAurea BPM. Lepsze procesy, lepsze wyniki Warszawa, 24 lipca 2013
Aurea BPM Lepsze procesy, lepsze wyniki Warszawa, 24 lipca 2013 Agenda 1. Dlaczego BPM jest drogą do lepszej wymiany informacji w firmie 2. Aurea BPM unikalna platforma o wyróżniających cechach 3. Podsumowanie
Bardziej szczegółowoOnline Sales Support. - nowoczesne platforma do raportowania i komunikacji
Online Sales Support - nowoczesne platforma do raportowania i komunikacji Co to jest Online Sales Support? To portal komunikacyjno raportowy dla producentów i partnerów biznesowych: Integracja z innymi
Bardziej szczegółowoOpis wymagań i program szkoleń dla użytkowników i administratorów
Załącznik nr 3 do OPZ Opis wymagań i program szkoleń dla użytkowników i administratorów Spis treści Wprowadzenie...2 1. Typ i zakres szkoleń...2 2. Grupy użytkowników...2 3. Warunki ogólne szkoleń...3
Bardziej szczegółowoCZĘŚĆ I ZASTOSOWANIE PROGRAMU EXCEL DO ANALIZ BUSINESS INTELLIGENCE
Spis treści O autorach Wprowadzenie CZĘŚĆ I ZASTOSOWANIE PROGRAMU EXCEL DO ANALIZ BUSINESS INTELLIGENCE Rozdział 1. Istotne zagadnienia bazodanowe Bazy danych jako remedium na standardowe ograniczenia
Bardziej szczegółowoZastosowania aplikacji B2B dostępnych na rynku zalety aplikacji online
2012 Zastosowania aplikacji B2B dostępnych na rynku zalety aplikacji online Sławomir Frąckowiak Wdrożenie systemu B2B Lublin, 25 października 2012 Aplikacje B2B do czego? Realizacja najważniejszych procesów
Bardziej szczegółowoSpis treści. Wstęp... 11
Spis treści Wstęp... 11 1. OBSZARY WIRTUALIZACJI DZIAŁALNOŚCI WSPÓŁCZESNYCH ORGANIZACJI (Artur Machura)... 13 1.1. Wprowadzenie... 13 1.2. Charakterystyka kontekstu rynkowego współczesnych organizacji...
Bardziej szczegółowoCZY TWOJE ŚRODOWISKO PLIKOWE RÓWNIEŻ ROŚNIE SZYBCIEJ NIŻ BAZODANOWE?
1 CZY TWOJE ŚRODOWISKO PLIKOWE RÓWNIEŻ ROŚNIE SZYBCIEJ NIŻ BAZODANOWE? STAN OBECNY I WYZWANIA Z informacji otrzymanych od naszych Klientów wynika, że dotychczasowe rozwiązania w zakresie przechowywania
Bardziej szczegółowoAnalityka i BigData w służbie cyberbezpieczeństa
Date Venue Next generation SOC Analityka i BigData w służbie cyberbezpieczeństa Tomasz Rostkowski Architekt - IBM Analytics Zagrożenia cyberprzestępczości...złe wieści Ewolucja centrów operacji bezpieczeństwa
Bardziej szczegółowoLIDERZY DATA SCIENCE CENTRUM TECHNOLOGII ICM CENTRUM TECHNOLOGII ICM ICM UW TO NAJNOWOCZEŚNIEJSZY OŚRODEK DATA SCIENCE W EUROPIE ŚRODKOWEJ.
ROZUMIEĆ DANE 1 Pozyskiwanie wartościowych informacji ze zbiorów danych to jedna z kluczowych kompetencji warunkujących przewagę konkurencyjną we współczesnej gospodarce. Jednak do efektywnej i wydajnej
Bardziej szczegółowoNowoczesne aplikacje mobilne i ich rola w podnoszeniu jakości danych
Nowoczesne aplikacje mobilne i ich rola w podnoszeniu jakości danych www.ascen.pl 1 Agenda O firmie Zarządzanie jakością danych Aplikacje mobilne i ich rola w zarządzaniu jakością danych 2 O firmie Data
Bardziej szczegółowoIntegracja danych ubezpieczeniowych w czasie rzeczywistym. Łukasz Szewczyk Solution Architect
Integracja danych ubezpieczeniowych w czasie rzeczywistym Łukasz Szewczyk Solution Architect Dlaczego integrować dane w czasie rzeczywistym? W dość krótkim czasie większość danych jakie posiadamy staje
Bardziej szczegółowoDni: 2. Partner merytoryczny. Opis: Adresaci szkolenia
Kod szkolenia: Tytuł szkolenia: BIGDATA/STR Strumieniowe przetwarzanie Big Data Dni: 2 Partner merytoryczny Opis: Adresaci szkolenia Szkolenie jest przeznaczone głównie dla programistów i analityków danych,
Bardziej szczegółowoCOMARCH DATA WAREHOUSE MANAGER 6.2
COMARCH DATA WAREHOUSE MANAGER 6.2 WSTĘP DO ZAGADNIENIA HURTOWNI DANYCH Gromadzenie danych biznesowych z systemów rozproszonych, oraz doprowadzenie do ich uwspólnienia, w celu przeprowadzenia analiz oraz
Bardziej szczegółowoRozszerzona analiza i obraz rynku. Wizualizacja przestrzenna z iq GIS
Rozszerzona analiza i obraz rynku Wizualizacja przestrzenna z iq GIS AGENDA Wstęp - Kim jesteśmy Zastosowanie iq GIS Korzyści w codziennej pracy Jak zacząć AGENDA Wstęp - Kim jesteśmy Kim jesteśmy Innowacyjne
Bardziej szczegółowoAdam Dolega Architekt Rozwiązań Biznesowych Microsoft adam.dolega@microsoft.com
Adam Dolega Architekt Rozwiązań Biznesowych Microsoft adam.dolega@microsoft.com Budowa rozwiązań Rozwiązania dla programistów Narzędzia integracyjne Zarządzanie infrastrukturą Zarządzanie stacjami, urządzeniami
Bardziej szczegółowoSystem Profesal. Zarządzanie przez fakty
System Profesal Zarządzanie przez fakty Obecny Profesal jest systemem powstałym w wyniku 25 lat doświadczeń firmy ASTOR 150 użytkowników Ponad 450 000 notatek Ponad 11 000 artykułów bazy wiedzy Ponad 35
Bardziej szczegółowoProjektowanie rozwiązań Big Data z wykorzystaniem Apache Hadoop & Family
Kod szkolenia: Tytuł szkolenia: HADOOP Projektowanie rozwiązań Big Data z wykorzystaniem Apache Hadoop & Family Dni: 5 Opis: Adresaci szkolenia: Szkolenie jest adresowane do programistów, architektów oraz
Bardziej szczegółowoWIZUALNA EKSPLORACJA DANYCH I RAPORTOWANIE W SAS VISUAL ANALYTICS ORAZ WSTĘP DO SAS VISUAL STATISTICS
WIZUALNA EKSPLORACJA DANYCH I RAPORTOWANIE W SAS VISUAL ANALYTICS ORAZ WSTĘP DO SAS VISUAL STATISTICS WEBINARIUM, 2016.03.08 Dr Sławomir Strzykowski, Senior Business Solution Manager SAS VISUAL ANALYTICS
Bardziej szczegółowoOrganizacyjnie. Prowadzący: dr Mariusz Rafało (hasło: BIG)
Big Data Organizacyjnie Prowadzący: dr Mariusz Rafało mrafalo@sgh.waw.pl http://mariuszrafalo.pl (hasło: BIG) Data Camp Architektura Data Lake Repozytorium służące składowaniu i przetwarzaniu danych o
Bardziej szczegółowoNALITYKA IZNESOWA WYDZIAŁ ORGANIZACJI I ZARZĄDZANIA POLITECHNIKA ŚLĄSKA NOWY KIERUNEK STUDIÓW.
NALITYKA IZNESOWA NOWY KIERUNEK STUDIÓW WYDZIAŁ ORGANIZACJI I ZARZĄDZANIA POLITECHNIKA ŚLĄSKA Czy wiesz jakie kompetencje: o gwarantują zatrudnienie? I Z Czy wiesz jakie kompetencje: o gwarantują zatrudnienie?
Bardziej szczegółowo