HISTORIA. Zdanie a jest elementem zbioru A zapisujemy symbolicznie a A. Znak czytamy należy do zbioru.
|
|
- Halina Pawlik
- 6 lat temu
- Przeglądów:
Transkrypt
1
2 HISTORIA Już w starożytności Greccy matematycy przydzielali konkretne liczby do danego zbioru pod względem wspólnych cech, na przykład wspólnych dzielników. Zgodnie z tradycją przedmioty należące do zbioru nazywamy jego elementami. Zbiory oznaczamy zwykle wielkimi literami alfabetu, a elementy - małymi. Zdanie a jest elementem zbioru A zapisujemy symbolicznie a A. Znak czytamy należy do zbioru. Możemy wyróżnić: zbiór skończony-taki, który ma skończoną liczbę elementów zbiór nieskończony-do którego należy nieskończenie wiele elementów zbiór pusty-nie należy do niego żaden element i oznaczamy go symbolem.
3 Najwybitniejszą postacią ówczesnych czasów jest John Venn angielski matematyk, logik i filozof. Urodzony w Kingston Upon Hull (Yorkshire). Od dziecka pasjonował się matematyką, cały czas tworząc nowe teorie oraz formułując wnioski. W wieku 23 lat ukończył studia z matematyki na Uniwersytecie w Cambridge. Diagramy, które noszą jego imię, zostały wprowadzone jako sposób obrazowania relacji włączenia i wykluczenia między klasami lub zbiorami. Składają się z dwóch lub trzech przecinających się okręgów, z których każdy reprezentuje klasę oraz oznaczony jest wielką literą. Małe litery x i cieniowane służą do wskazania odpowiednio istnienia i nieistnienia (przynajmniej jednego) członka danej klasy.
4 ZASTOSOWANIA W programowaniu (tzw. set) są one wykorzystywane do przechowywaniu kolekcji danych oraz jako zmienne w języku Pascal, pojawiają się nawet działania na nich W statystyce jako zbiory danych, które są określane również jako kolekcja danych statystycznych. Zwykle stanowią wyniki obserwacji pewnej próby statystycznej, dzięki ich uporządkowanej formie ułatwiają analizę danych. W biologii między innymi przy opisie danych królestw, gatunków, podgatunków itp. W życiu codziennym do opisowego określania różnych zależności W chemii gdzie układ okresowy pierwiastków jest swoistym zbiorem z wieloma podzbiorami np. metale szlachetne, lantanowce
5 Ciekawostki Zbiór pusty jest podzbiorem każdego zbioru. Wynika z tego, że zbiór pusty ma aż jeden podzbiór: zbiór pusty. Inna, dosyć ciekawa nazwa na zbiór jednoelementowy to SINGLETON. Zbiór mający co najmniej jeden element możemy określić jako niepusty. Jedną z ważniejszych teorii mówiących o zbiorach jest teoria mnogości. W jej zakres wchodzą zbiory liczbowe oraz wszelkie inne zbiory elementów abstrakcyjnych. Jednym z jej 4 głównych twórców był słynny polski matematyk, Wacław Sierpiński. ma zawsze otwarty przedział, gdyż nieskończoność nie ma końca. Jeżeli przedział ma w zapisie nieskończoność to można go nazwać prawo lub lewostronnie nieograniczonym.
6 KOMIKS
7 REBUS kocz ny sze ór ba e ę ch rki +j eum ę pór den +j dech o +ł k grobek em st łowiek ling kl k b
8 Poziomo: KRZYŻÓWKA MATEMATYCZNA 1. Jeśli iloczyn zbiorów A i B jest zbiorem pustym zbiory są 2. Zbiór x {-2, -1, 1, 2} jest zbiorem liczby Ile elementów ma iloczyn A i B? A:{2, 4, 6, 8, 10}; B: {1, 2, 3, 4, 10, 12} Pionowo: (a: b) przedział 2. A \B (słownie) 3. Słownie znak 4. A B oznacza, że liczba 1 to element zbioru A i B, gdy A:{1, 2}, B:{3, 1}. 5. <a; b> przedział 4. W tym zapisane są elementy zbioru. 5. Zbiór bez żadnego elementu. 6. Inaczej zbiór B zawarty w zbiorze A. 6. Dodanie jednego zbioru do drugiego. HASŁO:
9 ZADANIA MATURALNE PRZYKŁAD 1 MATURA PODSTAWOWA Zbiór X= R\(1; 6 można zapisać w postaci: A. X= ( ; 1) (6; + ) C. X= ( ; 1) 6; + ) B. X= ( ; 1 6; + ) D. X= ( ; 1 (6; + ) ROZWIĄZANIE: Rysujemy więc, dla pomocy, przedziały X = R oraz (1; 6 i odejmujemy go: (zauważmy, że nie odjęliśmy od przedziału 1 (kółeczko otwarte), ale odjęliśmy 6 (kółeczko zamknięte)) Odpowiedzią więc będzie X = ( ; 1 (6; + ). PRZYKŁAD 2 Wypisz wszystkie elementy zbiorów: A zbioru naturalnych liczb nieparzystych mniejszych od 11, B zbioru dzielników naturalnych liczby 63, Wyznacz część wspólną tych zbiorów. ROZWIĄZANIE: Zapisujemy zbiory A i B A = {1,3,5,7,9, } B = {1,3,7,9,21,63}
10 Wyznaczamy część wspólną, czyli liczby, które są w obydwu zbiorach i zapisujemy odpowiedź Odpowiedź: A B = {1,3,7,9} PRZYKŁAD 3 Zapisz w postaci przedziału zbiór liczb rzeczywistych spełniających równanie 1 x = x 1 ROZWIĄZANIE: Zaczynamy więc od zastosowania definicji wartości bezwzględnej: 1 x = { 1 x gdy: 1 x > 0 (1 x) = x 1 gdy: 1 x 0 Teraz widzimy, że aby obydwie strony były sobie równe to co pod wartością bezwzględną musi mieć znak przeciwny. Rozwiązujemy nierówność: x 1 x 1 1 x 0 Odpowiedź: 1; + ) PRZYKŁAD 4 Dane są zbiory A = ( ; 2) 3; + ) oraz B = 5; 3. Wyznacz zbiory A B oraz A\B. Ile liczb postaci k 2 zbioru B\A., gdzie k jest liczbą całkowitą, należy do
11 ROZWIĄZANIE: Rysujemy przedziały A i B Wyznaczamy część wspólną zbiorów (kółko przy 2 było niezamalowane, więc nie należy do części wspólnej, a liczba 3 należy do obydwu) A B = 5; 2) {3} odejmujemy zbiór B od A (-5 i 3 należały do zbioru B więc przedziały są otwarte) A\B = ( ; 5) (3; + ) odejmujemy zbiór A od B (przedział zawiera -2, ponieważ nie należało ono do przedziału A i nie zawiera 3, ponieważ należało do A) B\A = 2; 3) Zapisujemy liczby w postaci k 2, czyli k { 2, 1 1, 1, 1, 0, , 2, } Zapisujemy odpowiedź: Odpowiedź: A B = 5; 2) {3}, A\B = ( ; 5) (3; + ), jest dziesięć takich liczb.
12 MATURA ROZSZERZONA PRZYKŁAD 1 Ile rozwiązań ma równanie 2 x = 3? A. 4 B. 3 C. 2 D. 1 ROZWIĄZANIE: Najpierw rozwiązujemy równanie twierdzeniem: 2 x = 3 2 x = 3 2 x + 3 = 6 2 x + 3 = 0 x + 3 = 3 x + 3 = 0 Tak przygotowane równania możemy rozwiązać metodą graficzną: Rozwiązaniem równania są 3 liczby, tak więc zaznaczamy odpowiedź B PRZYKŁAD 2 Liczba n jest najmniejszą liczbą całkowitą spełniającą równanie 2 x + 57 = x 39. Zakoduj cyfry: setek, dziesiątek i jedności liczby n
13 ROZWIĄZANIE: Rysujemy oś i rozwiązujemy równania w poszczególnych przedziałach. W każdym przedziale sprawdzamy czy rozwiązanie należy do założenia: zał. I: x ( ; 57) zał. II: 57; 39) zał. III: 39; + ) 2( x 57) = x (x + 57) = x (x + 57) = x 39 2x 114 = x x = x x = x 39 x = 153 3x = 75 x = 153 zał x = 153 zał. x = 25 zał. Rozwiązaniami równania są liczby: -153 i -25. Tak więc n= -153, Zapisujemy n = 153, czyli kodujemy liczbę PRZYKŁAD 3 Rozwiąż nierówność x 1 + x x ROZWIĄZANIE: Rysujemy oś i rozwiązujemy nierówności w poszczególnych przedziałach i w każdym przedziale bierzemy część wspólną tego przedziału z otrzymanym zbiorem rozwiązań nierówności. I zał. x ( ; 1) II zał. x 1; 5) III zał. x 5; + ) x + 1 x x x 1 x x x 1 + x x 2x + 2x x x
14 0x 4 x 3 x 4 odp. I : x ( ; 1) odp. II : x 1; 3 odp. III : x Sumujemy odpowiedzi i podajemy odpowiedź ostateczną: Odpowiedź: x ( ; 3 ZADANIA DO SAMODZIELNEGO WYKONANIA MATURA PODSTAWOWA: ZADANIE 1 Na diagramie obok ciemniejszym kolorem zaznaczono zbiór: A. A B C. (A C)\B B. A B D. (A C)\B ZADANIE 2 Dane są przedziały A = 3; 6, B = (5; + ). Podaj, ile liczb całkowitych należy do zbioru A B, a ile do zbioru A\B. ZADANIE 3 Dane są zbiory: A zbiór rozwiązań nierówności 1,5-0,75x > 0 B zbiór rozwiązań nierówności -3x 12 C = 0; 6 Wyznacz zbiór A B. Ile dzielników liczby 48 należy do zbioru C\A?
15 MATURA ROZSZERZONA ZADANIE 1 Dane są zbiory A = ( ; 3 2; 7) i B = ( 5; 1) (2; + ). Ile liczb całkowitych należy do zbioru A\B? A. 9 B. 8 C.6 D.5 ZADANIE 2 Liczba a jest iloczynem wszystkich liczb spełniających równanie 1 x = 3. Zakoduj cyfry: setek, dziesiątek i jedności liczby a 2 ZADANIE 3 Rozwiąż nierówność 2x x 1 6
16 SUCHARY 1. Jak mama budzi ósemkę? -Wstawaj. Nie możesz tak leżeć w nieskończoność! 2. W której części pociągu jeździ matematyk? W przedziale. 3. Wchodzi liczba do wagonu a tu nie jej przedział. 4. Po co matematyk idzie na pole? Po zbiory. Ogłoszenia Klasa II b zaprasza na SOR matematyczny, czyli szkolny oddział ratunkowy z matematyki! Na zajęciach: przygotowanie do sprawdzianów i kartkówek oraz powtórzenie do matury. Ty podajesz temat, my go dla ciebie przygotujemy! Zapraszamy w piątek od 14:30 do 15:15 (8 godz. lekcyjna)
17 Odpowiedzi do zadań: Matura podstawowa: 1. C 2. 1 do A B i 3 do A\B 3. A B = 4; 2), cztery liczby. Matura rozszerzona: 1. C (a=585) 3. x 3; 1 Gazetkę przygotowali: Z historii matematyki: Paweł, Dominika, Martyna Zastosowania: Wojciech, MXD, Z8z Ciekawostki matematyczne: Hidook, Mckubiak, Kasia, Basia Komiks: Julka, Matylda, Alek, Oskar Rebus: Maja, Pati, Teresa, Tosia Krzyżówka: Gosia, Gabi, Werka, Hania Zadania przed maturą: Miklusia, Jawoszko, Kuba Skład, humor, okładka: SOS, Melo, Pszemo, Mehow (bardzo pomogli Mckubiak z Hidookiem)
Do zbioru liczb rzeczywistych zaliczane są wszystkie liczby, które znamy, oznaczamy je symbolem i dzielimy na dwie największe podgrupy:
HISTORIA Do zbioru liczb rzeczywistych zaliczane są wszystkie liczby, które znamy, oznaczamy je symbolem i dzielimy na dwie największe podgrupy: Liczby wymierne (w tym całkowite i naturalne) Liczby niewymierne
CIEKAWOSTKI. Terminu funkcja użył po raz pierwszy Leibniz w pracy Odwrotna metoda stycznych lub o funkcjach.
HISTORIA Pierwszy raz terminu funkcja użył Gottfried Wilhelm w pracy Odwrotna metoda stycznych lub o funkcjach opublikowanej w 1692.Następnie rozwijał to zagadnienie w kolejnych pracach i korespondencji
zaznaczymy na osi liczbowej w ten sposób:
1. Zagadnienia teoretyczne. 1.1. Przedział domknięty Przykład 1. Pisząc mamy na myśli wszystkie liczby rzeczywiste od -4 do 7, razem z -4 i 7. Jeśli napiszemy, będziemy mówić o zbiorze wszystkich liczb
1. ZBIORY PORÓWNYWANIE ZBIORÓW. WYKŁAD 1
WYKŁAD 1 1 1. ZBIORY. Pojęcie ZBIORU i NALEŻENIA do niego są pojęciami pierwotnymi(niedefiniowalnymi) w matematyce, reszta matematyki jest zdefiniowana lub opisana za pomocą tych pojęć. Można by, opierając
Aryabhata urodzony w VI wieku hinduski matematyk i astronom, uznawany za jednego z najwybitniejszych w historii Indii.
Luty 2014 Aryabhata urodzony w VI wieku hinduski matematyk i astronom, uznawany za jednego z najwybitniejszych w historii Indii. Był Twórcą algebry. Jako jeden z pierwszych rozwiązywał równania kwadratowe
1.8. PRZEDZIAŁY LICZBOWE
.8. PRZEDZIAŁY LICZBOWE Przedziały liczbowe Nazwa zbioru Oznaczenie Warunek, które spełniają liczby naleŝące do zbioru Ilustracja graficzna Przedział otwarty ( b) a, a < x < b Przedział domknięty a, b
1.UKŁADY RÓWNAŃ LINIOWYCH
UKŁADY RÓWNAŃ 1.UKŁADY RÓWNAŃ LINIOWYCH Układ: a1x + b1y = c1 a x + by = c nazywamy układem równań liniowych. Rozwiązaniem układu jest kaŝda para liczb spełniająca kaŝde z równań. Przy rozwiązywaniu układów
Wymagania edukacyjne: Matematyka Zasadnicza Szkoła Zawodowa
ymagania edukacyjne: Matematyka Zasadnicza Szkoła Zawodowa Oznaczenia: wymagania konieczne (ocena dopuszczająca), wymagania podstawowe (ocena dostateczna), wymagania rozszerzające (ocena dobra) D wymagania
KURS MATURA ROZSZERZONA część 1
KURS MATURA ROZSZERZONA część 1 LEKCJA Wyrażenia algebraiczne ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 Wyrażenie 3 a 8 a +
MATeMAtyka 1. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony Klasa pierwsza
MATeMAtyka 1 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Klasa pierwsza Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe
Wymagania na egzamin poprawkowy z matematyki z zakresu klasy pierwszej TECHNIKUM
Zespól Szkół Ogólnokształcących i Zawodowych w Ciechanowcu 3 czerwca 017r. Wymagania na egzamin poprawkowy z matematyki z zakresu klasy pierwszej TECHNIKUM Strona 1 z 8 1. Wprowadzenie do matematyki. Pojęcia
HISTORIA JĘZYKA MATEMATYKI:
HISTORIA JĘZYKA MATEMATYKI: Wprowadzenie terminu moduł, jako jednostki miary we francuskim, przypisuje się Jean-Robertowi Argandowi w 1806 roku. Niżej wartość bezwzględna odnosić się będzie przede wszystkim
Skrypt 31. Powtórzenie do matury Liczby rzeczywiste
Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 31 Powtórzenie do matury
LOGIKA MATEMATYCZNA, ZBIORY, LICZBY RZECZYWISTE
LOGIKA MATEMATYCZNA, ZBIORY, LICZBY RZECZYWISTE POJĘCIE PIERWOTNE, AKSJOMAT, TWIERDZENIE Pojęcie pierwotne jest to pojęcie, którego nie definiujemy, a mimo to przyjmujemy za oczywiste np.: liczba, punkt,
Teoria. a, jeśli a < 0.
Teoria Definicja 1 Wartością bezwzględną liczby a R nazywamy liczbę a określoną wzorem a, jeśli a 0, a = a, jeśli a < 0 Zgodnie z powyższym określeniem liczba a jest równa odległości liczby a od liczby
Klasa 1 technikum. Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne:
Klasa 1 technikum Przedmiotowy system oceniania wraz z wymaganiami edukacyjnymi Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I GIMNAZJUM Małgorzata Janik
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I GIMNAZJUM Małgorzata Janik DOPUSZCZAJĄCY DOSTATECZNY DOBRY BARDZO DOBRY LICZBY I DZIAŁANIA zna pojęcie liczby naturalnej, całkowitej, wymiernej. rozumie rozszerzenie
Lista 2 logika i zbiory. Zad 1. Dane są zbiory A i B. Sprawdź, czy zachodzi któraś z relacji:. Wyznacz.
Lista 2 logika i zbiory. Zad 1. Dane są zbiory A i B. Sprawdź, czy zachodzi któraś z relacji:. Wyznacz. Na początek wypiszmy elementy obu zbiorów: A jest zbiorem wszystkich liczb całkowitych, które podniesione
. Funkcja ta maleje dla ( ) Zadanie 1 str. 180 b) i c) Zadanie 2 str. 180 a) i b)
Lekcja 1 -. Lekcja organizacyjna kontrakt diagnoza i jej omówienie Podręcznik: W. Babiański, L. Chańko, D. Ponczek Matematyka. Zakres podstawowy. Wyd. Nowa Era. Zakres materiału: Funkcje kwadratowe Wielomiany
Powtórzenie podstawowych zagadnień. związanych ze sprawnością rachunkową *
Powtórzenie podstawowych zagadnień związanych ze sprawnością rachunkową * (Materiały dydaktyczne do laboratorium fizyki) Politechnika Koszalińska październik 2010 Spis treści 1. Zbiory liczb..................................................
EGZAMIN MATURALNY W ROKU SZKOLNYM 2014/2015
EGZAMIN MATURALNY W ROKU SZKOLNYM 0/0 FORMUŁA OD 0 ( NOWA MATURA ) MATEMATYKA POZIOM PODSTAWOWY ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ MMA-P CZERWIEC 0 Egzamin maturalny z matematyki nowa formuła Klucz
KRYTERIA OCEN Z MATEMATYKI DLA KLASY I GIMNAZJUM
KRYTERIA OCEN Z MATEMATYKI DLA KLASY I GIMNAZJUM DZIAŁ: LICZBY WYMIERNE (DODATNIE I UJEMNE) Otrzymuje uczeń, który nie spełnia kryteriów oceny dopuszczającej, nie jest w stanie na pojęcie liczby naturalnej,
CIĄGI wiadomości podstawowe
1 CIĄGI wiadomości podstawowe Jak głosi definicja ciąg liczbowy to funkcja, której dziedziną są liczby naturalne dodatnie (w zadaniach oznacza się to najczęściej n 1) a wartościami tej funkcji są wszystkie
Liczby rzeczywiste. Działania w zbiorze liczb rzeczywistych. Robert Malenkowski 1
Robert Malenkowski 1 Liczby rzeczywiste. 1 Liczby naturalne. N {0, 1,, 3, 4, 5, 6, 7, 8...} Liczby naturalne to liczby używane powszechnie do liczenia i ustalania kolejności. Liczby naturalne można ustawić
Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu
Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z obowiązkowych
1. LICZBY DZIAŁ Z PODRĘCZNIKA L.P. NaCoBeZu kryteria sukcesu w języku ucznia
L.P. DZIAŁ Z PODRĘCZNIKA NaCoBeZu kryteria sukcesu w języku ucznia 1. LICZBY 1. Znam pojęcie liczby naturalne, całkowite, wymierne, dodatnie, ujemne, niedodatnie, odwrotne, przeciwne. 2. Potrafię zaznaczyć
Wymagania edukacyjne z matematyki dla zasadniczej szkoły zawodowej na poszczególne oceny
Wymagania edukacyjne z matematyki dla zasadniczej szkoły zawodowej na poszczególne oceny Podstawa programowa z 23 grudnia 2008r. do nauczania matematyki w zasadniczych szkołach zawodowych Podręcznik: wyd.
PRZEDMIOTOWY SYSTEM OCENIANIA PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY
PRZEDMIOTOWY SYSTEM OCENIANIA PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY Warszawa 2019 LICZBY RZECZYWISTE stosować prawidłowo pojęcie zbioru, podzbioru, zbioru pustego; zapisywać zbiory w różnej postaci
1 Działania na zbiorach
M. Beśka, Wstęp do teorii miary, rozdz. 1 1 1 Działania na zbiorach W rozdziale tym przypomnimy podstawowe działania na zbiorach koncentrując się na własnościach tych działań, które będą przydatne w dalszej
LICZBY POWTÓRKA I (0, 2) 10 II (2, 5) 5 III 25 IV Liczba (0, 4) 5 jest równa liczbom A) I i III B) II i IV C) II i III D) I i II E) III i IV
LICZBY POWTÓRKA ZADANIE (3 PKT) W tabeli zapisano cztery liczby. I (0, 2) 0 II (2, 5) 5 ( III 25 ) 2 ( 25 ) 3 IV 2 5 5 Liczba (0, 4) 5 jest równa liczbom A) I i III B) II i IV C) II i III D) I i II E)
Kształcenie w zakresie podstawowym. Klasa 1
Kształcenie w zakresie podstawowym. Klasa 1 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego działu, aby uzyskać poszczególne stopnie. Na ocenę dopuszczającą uczeń powinien opanować
Liczby zespolone. x + 2 = 0.
Liczby zespolone 1 Wiadomości wstępne Rozważmy równanie wielomianowe postaci x + 2 = 0. Współczynniki wielomianu stojącego po lewej stronie są liczbami całkowitymi i jedyny pierwiastek x = 2 jest liczbą
Wymagania edukacyjne z matematyki dla klasy I gimnazjum wg programu Matematyka z plusem
Wymagania edukacyjne z matematyki dla klasy I gimnazjum wg programu Matematyka z plusem pojęcie liczby naturalnej, całkowitej, wymiernej rozszerzenie osi liczbowej na liczby ujemne sposób i potrzebę zaokrąglania
Matematyka dyskretna Literatura Podstawowa: 1. K.A. Ross, C.R.B. Wright: Matematyka Dyskretna, PWN, 1996 (2006) 2. J. Jaworski, Z. Palka, J.
Matematyka dyskretna Literatura Podstawowa: 1. K.A. Ross, C.R.B. Wright: Matematyka Dyskretna, PWN, 1996 (2006) 2. J. Jaworski, Z. Palka, J. Szmański: Matematyka dyskretna dla informatyków, UAM, 2008 Uzupełniająca:
Algebra zbiorów. Materiały pomocnicze do wykładu. przedmiot: Matematyka Dyskretna 1 wykładowca: dr Magdalena Kacprzak
Algebra zbiorów Materiały pomocnicze do wykładu uczelnia: PJWSTK przedmiot: Matematyka Dyskretna 1 wykładowca: dr Magdalena Kacprzak Teoria mnogości Teoria mnogości jest działem matematyki zajmującym się
Lista zadań nr 15 TERMIN ODDANIA ROZWIĄZANYCH ZADAŃ 9 marca 2015
Lista zadań nr 5 TERMIN ODDANIA ROZWIĄZANYCH ZADAŃ 9 marca 05 Liczby rzeczywiste a) planuję i wykonuję obliczenia na liczbach rzeczywistych; w szczególności obliczam pierwiastki, w tym pierwiastki nieparzystego
Definicja i własności wartości bezwzględnej.
Równania i nierówności z wartością bezwzględną. Rozwiązywanie układów dwóch (trzech) równań z dwiema (trzema) niewiadomymi. Układy równań liniowych z parametrem, analiza rozwiązań. Definicja i własności
Plan realizacji materiału nauczania wraz z określeniem wymagań edukacyjnych
Plan realizacji materiału nauczania wraz z określeniem wymagań edukacyjnych Poziomy wymagań edukacyjnych: K konieczny ocena dopuszczająca (2) P podstawowy ocena dostateczna (3) R rozszerzający ocena dobra
MATURA Przygotowanie do matury z matematyki
MATURA 01 Przygotowanie do matury z matematyki Część III: Równania i nierówności ROZWIĄZANIA Powtórka jest organizowana przez redaktorów portalu MatmaNa6.pl we współpracy z dziennikarzami Gazety Lubuskiej.
Plan wynikowy z rozkładem materiału
Plan wynikowy z rozkładem materiału Plan wynikowy oraz rozkład materiału nauczania są indywidualnymi dokumentami nauczycielskimi związanymi z realizowanym programem nauczania. Uwzględniają specyfikę danej
Funkcja kwadratowa. f(x) = ax 2 + bx + c = a
Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax, a R \ {0}.
KURS MATURA ROZSZERZONA część 1
KURS MATURA ROZSZERZONA część 1 LEKCJA 1 Liczby rzeczywiste ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 10 2 2019 684 168 2 Dane
Funkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k.
Funkcje wymierne Jerzy Rutkowski Teoria Przypomnijmy, że przez R[x] oznaczamy zbiór wszystkich wielomianów zmiennej x i o współczynnikach rzeczywistych Definicja Funkcją wymierną jednej zmiennej nazywamy
Wymagania edukacyjne z matematyki dla uczniów klasy VII szkoły podstawowej
Wymagania edukacyjne z matematyki dla uczniów klasy VII szkoły podstawowej Ocenę dopuszczającą otrzymuje uczeń, który: rozumie rozszerzenie osi liczbowej na liczby ujemne umie porównywać liczby wymierne,
f (x)=mx 2 +(2m 2)x+m+1 ma co najmniej jedno
Zadanie 1 x 2 2mx+4m 3=0 ma dwa różne pierwiastki? Odp: m ( ; 1) (3 ; ) Zadanie 2 mx 2 +(2m 2) x+m+1=0 ma dwa różne pierwiastki? Odp: m ( ;0) (0; 1 3 ) Zadanie 3 ma jeden pierwiastek? Odp: m = -2, m =
PLAN WYNIKOWY PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY
PLAN WYNIKOWY PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY Copyright by Nowa Era Sp. z o.o. Warszawa 019 Liczba godzin TEMAT ZAJĘĆ EDUKACYJNYCH Język matematyki 1 Wzory skróconego mnożenia 3 Liczby pierwsze,
Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Biotechnologia w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era inżyniera
PRÓBNA NOWA MATURA z WSiP. Matematyka dla klasy 2 Poziom podstawowy. Zasady oceniania zadań
PRÓBNA NOWA MATURA z WSiP Matematyka dla klasy Poziom podstawowy Zasady oceniania zadań Copyright by Wydawnictwa Szkolne i Pedagogiczne sp. z o.o., Warszawa 0 Matematyka dla klasy Poziom podstawowy Kartoteka
WYMAGANIA EDUKACYJNE Z MATEMATYKI dla klasy I ba Rok szk. 2012/2013
Dział LICZBY RZECZYWISTE Uczeń otrzymuje ocenę dopuszczającą lub dostateczną, jeśli: podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i złożonych oraz przyporządkowuje
Plan wynikowy z wymaganiami edukacyjnymi z matematyki w zakresie podstawowym dla klasy 1 zsz Katarzyna Szczygieł
Plan wynikowy z wymaganiami edukacyjnymi z matematyki w zakresie podstawowym dla klasy 1 zsz Katarzyna Szczygieł Lp. Temat Kształcone umiejętności 1 Zasady pracy na lekcjach matematyki. Dział I. LICZBY
PRZYKŁADY ZADAŃ MATURALNYCH Z MATEMATYKI NA POSZCZEGÓLNE STANDARDY DLA WYBRANYCH TREŚCI PROGRAMOWYCH Z POZIOMU PODSTAWOWEGO I ROZSZERZONEGO
PRZYKŁADY ZADAŃ MATURALNYCH Z MATEMATYKI NA POSZCZEGÓLNE STANDARDY DLA WYBRANYCH TREŚCI PROGRAMOWYCH Z POZIOMU PODSTAWOWEGO I ROZSZERZONEGO ZADANIA OPRACOWANE PRZEZ Agnieszkę Sumicką Katarzynę Hejmanowską
ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna
Arkusz A04 2 Poziom podstawowy ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna odpowiedź Zadanie 1. (0-1) Liczba π spełnia nierówność: A. + 1 > 5 B. 1 < 2 C. + 2 3 4
Funkcja kwadratowa. f(x) = ax 2 + bx + c,
Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax 2 + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax 2, a R \
LOGIKA I TEORIA ZBIORÓW
LOGIKA I TEORIA ZBIORÓW Logika Logika jest nauką zajmującą się zdaniami Z punktu widzenia logiki istotne jest, czy dane zdanie jest prawdziwe, czy nie Nie jest natomiast istotne o czym to zdanie mówi Definicja
I Liceum Ogólnokształcące w Warszawie
I Liceum Ogólnokształcące w Warszawie.. Imię i Nazwisko... Klasa... Liczba uzyskanych punktów PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI... Wynik procentowy... Ocena szkolna POZIOM ROZSZERZONY 1. Sprawdź, czy
Wymagania dla klasy siódmej. Treści na 2 na 3 na 4 na 5 na 6 Uczeń: Uczeń: Uczeń: Uczeń: Uczeń: DZIAŁ 1. LICZBY
Wymagania dla klasy siódmej Treści na 2 na 3 na 4 na 5 na 6 Uczeń: Uczeń: Uczeń: Uczeń: Uczeń: DZIAŁ 1. LICZBY Rzymski sposób zapisu liczb Liczby pierwsze i złożone. Dzielenie z resztą Rozwinięcia dziesiętne
Przedmiotowy system oceniania
Przedmiotowy system oceniania gimnazjum - matematyka Opracowała mgr Katarzyna Kukuła 1 MATEMATYKA KRYTERIA OCEN Kryteria oceniania zostały określone przez podanie listy umiejętności, którymi uczeń musi
Przykładowe rozwiązania zadań. Próbnej Matury 2014 z matematyki na poziomie rozszerzonym
Zadania rozwiązali: Przykładowe rozwiązania zadań Próbnej Matury 014 z matematyki na poziomie rozszerzonym Małgorzata Zygora-nauczyciel matematyki w II Liceum Ogólnokształcącym w Inowrocławiu Mariusz Walkowiak-nauczyciel
domykanie relacji, relacja równoważności, rozkłady zbiorów
1 of 8 2012-03-28 17:45 Logika i teoria mnogości/wykład 5: Para uporządkowana iloczyn kartezjański relacje domykanie relacji relacja równoważności rozkłady zbiorów From Studia Informatyczne < Logika i
PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI DLA KLASY 1LO i 1TI ROK SZKOLNY 2018/2019
PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI DLA KLASY 1LO i 1TI ROK SZKOLNY 2018/2019 Przedmiotowy system oceniania jest zgodny z Rozporządzeniem Ministra Edukacji Narodowej z dnia 10 czerwca 2015 r. w
Wymagania edukacyjne. Hasło z podstawy programowej 1. Liczby naturalne 1 Liczby naturalne, cechy podzielności. Liczba godzin
. Liczby rzeczywiste (3 h) PRZEDMIOT: Matematyka KLASA: I zasadnicza szkoła zawodowa Dział programowy Temat Wymagania edukacyjne Liczba godzin Hasło z podstawy programowej. Liczby naturalne Liczby naturalne,
Temat (rozumiany jako lekcja) Propozycje środków dydaktycznych. Liczba godzin. Uwagi
Roczny plan dydaktyczny z matematyki dla pierwszej klasy szkoły branżowej I stopnia dla uczniów będących absolwentami ośmioletniej szkoły podstawowej, uwzględniający kształcone umiejętności i treści podstawy
EGZAMIN MATURALNY W ROKU SZKOLNYM 2014/2015
EGZAMIN MATURALNY W ROKU SZKOLNYM 0/05 FORMUŁA DO 0 ( STARA MATURA ) MATEMATYKA POZIOM PODSTAWOWY ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ MMA-P CZERWIEC 05 Klucz punktowania zadań zamkniętych Nr zad. 3
Wymagania edukacyjne z matematyki dla klasy VII
Wymagania edukacyjne z matematyki dla klasy VII Szkoły Podstawowej nr 100 w Krakowie Na podstawie programu Matematyka z plusem Na ocenę dopuszczającą Uczeń: rozumie rozszerzenie osi liczbowej na liczby
Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas I ae i I be w roku szkolnym 2018/2019 w CKZiU NR 3 Ekonomik w Zielonej Górze
Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas I ae i I be w roku szkolnym 018/019 w CKZiU NR Ekonomik w Zielonej Górze I. Pierwiastki (w tym usuwanie niewymierności), potęgi,
Wymagania na poszczególne oceny szkolne Klasa 7
1 Wymagania na poszczególne oceny szkolne Klasa 7 Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane
Rozdział 7 Relacje równoważności
Rozdział 7 Relacje równoważności Pojęcie relacji. Załóżmy, że dany jest niepusty zbiór A oraz własność W, którą mogą mieć niektóre elementy zbioru A. Własność W wyznacza pewien podzbiór W A zbioru A, złożony
Matematyka dyskretna
Matematyka dyskretna Wykład 6: Ciała skończone i kongruencje Gniewomir Sarbicki 2 marca 2017 Relacja przystawania Definicja: Mówimy, że liczby a, b Z przystają modulo m (co oznaczamy jako a = b (mod m)),
Przypomnienie wiadomości dla trzecioklasisty C z y p a m i ę t a s z?
Przypomnienie wiadomości dla trzecioklasisty C z y p a m i ę t a s z? Liczby naturalne porządkowe, (0 nie jest sztywno związane z N). Przykłady: 1, 2, 6, 148, Liczby całkowite to liczby naturalne, przeciwne
Wymagania edukacyjne z matematyki dla klasy pierwszej zasadniczej szkoły zawodowej
Wymagania edukacyjne z matematyki dla klasy pierwszej zasadniczej szkoły zawodowej ocena dopuszczająca ocena dostateczna ocena dobra ocena bardzo dobra ocena celująca Dział I. LICZBY RZECZYWISTE I DZIALANIA
Uzasadnienie tezy. AB + CD = BC + AD 2
LUBELSKA PRÓBA PRZED MATURĄ MARZEC 06 ODPOWIEDZI I PROPOZYCJA OCENIANIA ZAMKNIĘTE ODPOWIEDZI Nr zadania 5 Odpowiedź C D C B B ZADANIE Z KODOWANĄ ODPOWIEDZIĄ Zadanie 6 cyfra dziesiątek jedności OTWARTE
Teoria liczb. Magdalena Lemańska. Magdalena Lemańska,
Teoria liczb Magdalena Lemańska Literatura Matematyka Dyskretna Andrzej Szepietowski http://wazniak.mimuw.edu.pl/ Discrete Mathematics Seymour Lipschutz, Marc Lipson Wstęp Teoria liczb jest dziedziną matematyki,
Od autorów... 7 Zamiast wstępu zrozumieć symbolikę... 9 Zdania Liczby rzeczywiste i ich zbiory... 15
Spis treści Od autorów........................................... 7 Zamiast wstępu zrozumieć symbolikę................... 9 Zdania............................................... 10 1. Liczby rzeczywiste
EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY CZERWIEC 2013. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 00 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN
FUNKCJA LINIOWA, RÓWNANIA I UKŁADY RÓWNAŃ LINIOWYCH
FUNKCJA LINIOWA, RÓWNANIA I UKŁADY RÓWNAŃ LINIOWYCH PROPORCJONALNOŚĆ PROSTA Proporcjonalnością prostą nazywamy zależność między dwoma wielkościami zmiennymi x i y, określoną wzorem: y = a x Gdzie a jest
Indukcja matematyczna. Zasada minimum. Zastosowania.
Indukcja matematyczna. Zasada minimum. Zastosowania. Arkadiusz Męcel Uwagi początkowe W trakcie zajęć przyjęte zostaną następujące oznaczenia: 1. Zbiory liczb: R - zbiór liczb rzeczywistych; Q - zbiór
EGZAMIN MATURALNY Z MATEMATYKI. dla osób niesłyszących CZERWIEC 2013 POZIOM PODSTAWOWY. Czas pracy: do 200 minut. Liczba punktów do uzyskania: 50
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 00 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN
7. CIĄGI. WYKŁAD 5. Przykłady :
WYKŁAD 5 1 7. CIĄGI. CIĄGIEM NIESKOŃCZONYM nazywamy funkcję określoną na zbiorze liczb naturalnych, dodatnich, a wyrazami ciągu są wartości tej funkcji. CIĄGIEM SKOŃCZONYM nazywamy funkcję określoną na
konieczne (ocena dopuszczająca) Temat podstawowe (ocena dostateczna) dopełniające (ocena bardzo dobra) rozszerzające (ocena dobra)
Wymagania na poszczególne oceny szkolne Klasa 7 Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane
O geometrii semialgebraicznej
Inauguracja roku akademickiego 2018/2019 na Wydziale Matematyki i Informatyki Uniwersytetu Łódzkiego O geometrii semialgebraicznej Stanisław Spodzieja Łódź, 28 września 2018 Wstęp Rozwiązywanie równań
WYMAGANIA EDUKACYJNE - matematyka - poziom rozszerzony Dariusz Drabczyk
WYMAGANIA EDUKACYJNE - matematyka - poziom rozszerzony Dariusz Drabczyk str 1 Klasa 1d: wpisy oznaczone jako: LICZBY RZECZYWISTE, JĘZYK MATEMATYKI, FUNKCJA LINIOWA, (F) FUNKCJE, FUNKCJA KWADRATOWA. Przypisanie
Lekcja 2. Pojęcie równania kwadratowego. Str Teoria 1. Równaniem wielomianowym nazywamy równanie postaci: n
Lekcja 1. Lekcja organizacyjna kontrakt. Podręcznik: A. Ceve, M. Krawczyk, M. Kruk, A. Magryś-Walczak, H. Nahorska Matematyka w zasadniczej szkole zawodowej. Wydawnictwo Podkowa. Zakres materiału: Równania
Logika dla socjologów Część 3: Elementy teorii zbiorów i relacji
Logika dla socjologów Część 3: Elementy teorii zbiorów i relacji Rafał Gruszczyński Katedra Logiki Uniwersytet Mikołaja Kopernika 2011/2012 Spis treści 1 Zbiory 2 Pary uporządkowane 3 Relacje Zbiory dystrybutywne
Kryteria oceniania z matematyki w klasie pierwszej w roku szkolnym 2015/2016
Kryteria oceniania z matematyki w klasie pierwszej w roku szkolnym 2015/2016 1) Liczby - zamienia liczby dziesiętne skończone na ułamki zwykłe i liczby mieszane, - zapisuje ułamek zwykły w postaci ułamka
Wymagania programowe w porządku związanym z realizacją programu
Wymagania programowe w porządku związanym z realizacją programu Nazwa umiejętności UCZEŃ POTRAFI: Poziom wymagań Kategoria celu 1. Porównać dwie liczby całkowite. K C 2. Uporządkować liczby całkowite.
Plan wynikowy z wymaganiami edukacyjnymi z przedmiotu matematyka w zakresie rozszerzonym dla klasy I liceum ogólnokształcącego
Plan wynikowy z wymaganiami edukacyjnymi z przedmiotu matematyka w zakresie rozszerzonym dla klasy I liceum ogólnokształcącego Temat (rozumiany jako lekcja) Lekcja organizacyjna I. Działania na liczbach
EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY CZERWIEC Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 00 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN
FUNKCJE I RÓWNANIA KWADRATOWE. Lekcja 78. Pojęcie i wykres funkcji kwadratowej str
FUNKCJE I RÓWNANIA KWADRATOWE Lekcja 78. Pojęcie i wykres funkcji kwadratowej str. 178-180. Funkcja kwadratowa to taka, której wykresem jest parabola. Definicja Funkcją kwadratową nazywamy funkcje postaci
Katalog wymagań programowych na poszczególne stopnie szkolne klasa 1
Matematyka Liczy się matematyka Klasa klasa Rozdział. Liczby zamienia liczby dziesiętne skończone na ułamki zwykłe i liczby mieszane zapisuje ułamek zwykły w postaci ułamka dziesiętnego skończonego porównuje
Katalog wymagań programowych na poszczególne stopnie szkolne klasa 1
Matematyka Liczy się matematyka Klasa klasa Rozdział. Liczby zamienia liczby dziesiętne skończone na ułamki zwykłe i liczby mieszane zapisuje ułamek zwykły w postaci ułamka dziesiętnego skończonego porównuje
EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY CZERWIEC Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 00 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN
LUBELSKA PRÓBA PRZED MATURĄ 09 MARCA Kartoteka testu. Maksymalna liczba punktów. Nr zad. Matematyka dla klasy 3 poziom podstawowy
Matematyka dla klasy poziom podstawowy LUBELSKA PRÓBA PRZED MATURĄ 09 MARCA 06 Kartoteka testu Nr zad Wymaganie ogólne. II. Wykorzystanie i interpretowanie reprezentacji.. II. Wykorzystanie i interpretowanie
Zadanie 1. Suma silni (11 pkt)
2 Egzamin maturalny z informatyki Zadanie 1. Suma silni (11 pkt) Pojęcie silni dla liczb naturalnych większych od zera definiuje się następująco: 1 dla n = 1 n! = ( n 1! ) n dla n> 1 Rozpatrzmy funkcję
ocena dopuszczająca ocena dostateczna ocena dobra ocena bardzo dobra ocena celująca
Wymagania na poszczególne oceny szkolne z matematyki dla klas siódmych ''Matematyka" Szkoła Podstawowa im. Jana Pawła II w Mętowie Rok szkolny 2017/2018 Klasa 7a, 7b Nauczyciel: Małgorzata Łysakowska Ocena
Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum. w roku szkolnym 2012/2013
Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum w roku szkolnym 2012/2013 I. Zakres materiału do próbnego egzaminu maturalnego z matematyki: 1) liczby rzeczywiste 2) wyrażenia algebraiczne
Matematyka dyskretna
Matematyka dyskretna Wykład 6: Ciała skończone i kongruencje Gniewomir Sarbicki 24 lutego 2015 Relacja przystawania Definicja: Mówimy, że liczby a, b Z przystają modulo m (co oznaczamy jako a = b (mod
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY I GIMNAZJUM
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY I GIMNAZJUM LICZBY I DZIAŁANIA zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby ujemne umie zaznaczać liczbę