CZĘŚĆ 1 TEST KWALIFIKACYJNY Z PREDYSPOZYCJI DO ZAWODU ARCHITEKTA SUMA MAKS. 40 C D E F G H. ZADANIE A Dziewczynka z zapałkami 2017
|
|
- Dawid Sadowski
- 6 lat temu
- Przeglądów:
Transkrypt
1 TABELA PUNKTACJI. WYPEŁNIA WYDZIAŁOWA KOMISJA KWALIFIKACYJNA ZADANIE A B PRZYZNANE PUNKTY PODPIS SPRAWDZENIE TEST KWALIFIKACYJNY Z PREDYSPOZYCJI DO ZAWODU ARCHITEKTA PODPISY GDAŃSK, 10 CZERWCA 017 C D E F G H CZĘŚĆ 1 CZAS TRWANIA TESTU GODZINY SUMA MAKS. 40 ZADANIE A Dziewczynka z zapałkami 017 Dziewczynka bawiła się zapałkami układając cyfry. Ustaliła ich następujący wzór: ZADANIE B Kwadraty i trójkąty W poniższy kwadrat należy wpisać drugi, którego wierzchołki znajdują się w środkach bo- prostokąty nie- ków pierwszego. Następnie wrysuj wszystkie przekątne i policz powstałe kwadraty, będące kwadratami i trójkąty. Podaj ich liczbę. Potem ułożyła dwa równania: Gdy zobaczył to jej brat, przełożył w każdym równaniu dwie zapałki i sprawił, że równania stały się poprawne. Pokaż jak to zrobił: ODPOWIEDŹ kwadraty prostokąty trójkąty 3
2 10 CZERWCA 017 TEST Z PREDYSPOZYCJI - CZĘŚĆ 1 ZADANIE C Wklęsłe / wypukłe Wyobraź sobie, że poniższe linie przedstawiają krawędzie trzech, prostopadłych do siebie płaszczyzn. Uzupełnij szkic uzyskując odpowiednie wrażenie przestrzenne: NAROŻNIK WYPUKŁY ZADANIE D Stos kamiennych płyt Z płyt kamiennych o wymiarach 40x40 cm robotnicy układali podest. Płyty przywieziono w paczkach po 7 szt. Każda taka paczka stanowiła sześcian o wymiarach 10x10x10 cm. Po zakończeniu prac okazało się, że nie wykorzystano wszystkich płyt z ostatniej paczki. Pozostałe w paczce płyty, w wyniku przypadkowego ich pobierania, stanowiły układ o nierównomiernej wysokości. Robotnik przełożył jedną z nich i uzyskał ciekawą regularność. Dokończ aksonometrię korzystając z widoku z góry, gdzie podano liczbę leżących w stosie płyt. Na aksonometrii zaznaczono obrys jednej płyty. widok z góry NAROŻNIK WKLĘSŁY 6
3 10 CZERWCA TEST Z PREDYSPOZYCJI - CZĘŚĆ 1 ZADANIE E Uniwersalny klocek W prostopadłych do siebie płaszczyznach wycięto kształty liter F, E i V. Narysuj klocek o maksymalnej objętości, który można przełożyć przez każdy z wyciętych kształtów. Klocek może się jedynie przesuwać równolegle do płaszczyzn z wyciętymi otworami i nie może się obracać. Wszystkie otwory wykonano w oparciu o wspólny moduł, który jest pokazany przerywanymi liniami. 10
4 10 CZERWCA 017 TEST Z PREDYSPOZYCJI - CZĘŚĆ 1 ZADANIE F Schody na podest Korzystając z poniższego rzutu dokończ aksonometrię. Moduł a = 30 cm, wysokość stopni wynosi 15 cm. Podest otoczony jest "murkiem," dla którego określono w cm różnicę poziomu względem podestu. ZADANIE G Spacer z psem Pan Arrow Walker uwielbia spacery z psem. Spacer ten zawsze wygląda tak samo. Zaraz po wyjściu z domu pan Arrow wystrzeliwuje z łuku strzałę, która z prędkością 30m/s przelatuje równo 300 m i wbija się w ziemię. Natychmiast ruszają pies i jego właściciel z tym, że pan Arrow idzie z prędkością 3,6 km/h, a jego pies biegnie trzy razy szybciej. Gdy pies dobiegnie do strzały, chwyta ją i przynosi swojemu panu, który niezwłocznie wystrzeliwuje ją ponownie na 300 m. Dzieje się tak przez cały spacer, w którym zataczają krąg, aż do momentu, gdy wracając znajdą się o 300 m od domu. Ostatni strzał wbija się w drzwi domu, a pies nie wyciąga strzały tylko biega bez przystanku między domem i swoim panem, aby w końcu wspólnie stanąć pod drzwiami. Jaką trasę pokonuje pies, jeżeli wiadomo, że pan Arrow Walker spaceruje dokładnie przez godzinę i 5 minut? w trakcie spaceru pies przebiega ODPOWIEDŹ: 8 4
5 WYDZIAŁ ARCHITEKTURY PG 10 CZERWCA TEST T Z PREDYSPOZYCJI - CZĘŚĆ 1 ZADANIE H Na podstawie poniższych ższych rysunków wyodrębnij 4 style następujące pujące kolejno po sobie w architekturze. Nazwij te style i wpisz w pierwszej kolumnie zaczynaj zaczynającc od najstarszego. W pozostałych kolumnach przyp przyporządkuj rysunki do określonego lonego stylu wpisując odpowiednią cyfrę w przyległym prostokącie. prostok nazwa stylu
CZĘŚĆ A 18 pkt. 3. Które z poniższych brył A, B, C, D przedstawiają bryłę zaznaczoną kolorem szarym?
WYDZIAŁ ARCHITEKTURY POLITECHNIKI GDAŃSKIEJ T E S T K W A L I F I K A C Y J N Y Z P R E D Y S P O Z Y C J I D O Z A W O D U A R C H I T E K T A GDAŃSK, 6 CZERWCA 2009, CZAS TRWANIA TESTU (CZĘŚĆ A + B +
TABELA PUNKTACJI. WYPEŁNIA WYDZIAŁOWA KOMISJA EGZAMINACYJNA
WYDZIAŁ ARCHITEKTURY POLITECHNIKI GDAŃSKIEJ KIERUNEK ARCHITEKTURA TEST KWALIFIKACYJNY Z PREDYSPOZYCJI DO ZAWODU ARCHITEKTA CZĘŚĆ I GDAŃSK, 13 CZERWCA 2015, CZAS TRWANIA TESTU - 2.5 GODZINY ZADANIE SUMA
Figury geometryczne. 1. a) Narysuj prostą prostopadłą do prostej, przechodzącą przez punkt. b) Narysuj prostą równoległą do prostej,
Figury geometryczne str. 1/7...... imię i nazwisko lp. w dzienniku...... klasa data 1. a) Narysuj prostą prostopadłą do prostej, przechodzącą przez punkt. b) Narysuj prostą równoległą do prostej, przechodzącą
WYDZIAŁ ARCHITEKTURY POLITECHNIKI GDAŃSKIEJ T E S T K W A L I F I K A C Y J N Y Z P R E D Y S P O Z Y C J I D O Z A W O D U A R C H I T E K T A
WYDZIAŁ ARCHITEKTURY POLITECHNIKI GDAŃSKIEJ T E S T K W A L I F I K A C Y J N Y Z P R E D Y S P O Z Y C J I D O Z A W O D U A R C H I T E K T A CZĘŚĆ I GDAŃSK, 14 CZERWCA 2008, GODZ 9.00 CZAS TRWANIA TESTU
Konkurs dla gimnazjalistów Etap II 5 luty 2013 roku
Strona1 Konkurs dla gimnazjalistów Etap II 5 luty 2013 roku Instrukcja dla ucznia 1. W zadaniach o numerach od 1. do 15. są podane cztery warianty odpowiedzi: A, B, C, D. Dokładnie jedna z nich jest poprawna.
Czas na rozwiązanie: 120 min.
Czas na rozwiązanie: 120 min. Przed Tobą 11 zadań testowych, 6 zadań otwartych krótkiej odpowiedzi i 2 zadania dowodowe. Za swoje rozwiązania możesz maksymalnie możesz uzyskać 50 punktów (22 pkt. za zadania
WOJEWÓDZKI KONKURS MATEMATYCZNY
Kod ucznia Liczba punktów WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM W ROKU SZKOLNYM 2013/2014 MARZEC 2014 R. 1. Test konkursowy zawiera 20 zadań. Są to zadania zamknięte i otwarte. Na ich rozwiązanie
Czy pamiętasz? Zadanie 1. Rozpoznaj wśród poniższych brył ostrosłupy i graniastosłupy.
1. Bryły Tradycyjna futbolówka jest zszyta z 3232 kawałków. Gdybyśmy ją rozcięli, ujrzelibyśmy siatkę dwudziestościanu ściętego. Kulisty kształt piłka otrzymuje dzięki wypełnieniu sprężonym powietrzem.
Matematyka test dla uczniów klas piątych
Matematyka test dla uczniów klas piątych szkół podstawowych w roku szkolnym 2010/2011 Etap międzyszkolny (60 minut) [suma punktów]..... Imię i nazwisko Nazwa (numer) szkoły, miejscowość W sklepie sportowym
Egzamin ósmoklasisty Matematyka
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. WYPEŁNIA ZESPÓŁ NADZORUJĄCY KOD UCZNIA PESEL miejsce na naklejkę Egzamin ósmoklasisty Matematyka DATA: 16 kwietnia 2019 r. GODZINA
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019 MATEMATYKA Przykładowy arkusz egzaminacyjny (EO_7) Czas pracy: do 150 minut GRUDZIEŃ 2017 Centralna Komisja Egzaminacyjna Warszawa Zadanie 1. (0 1) Z okazji
Konkursy w województwie podkarpackim w roku szkolnym 2013/2014 KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH ETAP REJONOWY
Kod ucznia - - pieczątka WKK Dzień Miesiąc Rok DATA URODZENIA UCZNIA KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH ETAP REJONOWY Drogi Uczniu! Witaj na II etapie konkursu z matematyki. Przeczytaj
KONKURS PRZEDMIOTOWY Z MATEMATYKI dla uczniów szkół podstawowych 5 marca 2015 r. zawody III stopnia (wojewódzkie)
Kod ucznia Liczba zdobytych punktów KONKURS PRZEDMIOTOWY Z MATEMATYKI dla uczniów szkół podstawowych 5 marca 2015 r. zawody III stopnia (wojewódzkie) Drogi Uczniu, przed Tobą test składający się z 22 zadań.
Próbny Egzamin Gimnazjalny z Matematyki Zestaw przygotowany przez serwis 24 marca 2012 Czas pracy: 90 minut
Strona 1 /Gimnazjum/Egzamin gimnazjalny Próbny Egzamin Gimnazjalny z Matematyki Zestaw przygotowany przez serwis www.zadania.info 24 marca 2012 Czas pracy: 90 minut Zadanie 1 (1 pkt.) Która równość jest
Geometria. Rodzaje i własności figur geometrycznych:
Geometria Jest jednym z działów matematyki, którego przedmiotem jest badanie figur geometrycznych i zależności między nimi. Figury geometryczne na płaszczyźnie noszą nazwę figur płaskich, w przestrzeni
Konkurs dla gimnazjalistów Etap II 15 lutego 2012 roku
Strona1 Konkurs dla gimnazjalistów Etap II 15 lutego 2012 roku Instrukcja dla ucznia 1. W zadaniach o numerach od 1. do 14. są podane cztery warianty odpowiedzi: A, B, C, D. Dokładnie jedna z nich jest
KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH Etap Wojewódzki
Kod ucznia - - Dzień Miesiąc Rok pieczątka WKK DATA URODZENIA UCZNIA KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH Etap Wojewódzki Drogi Uczniu Witaj na III etapie konkursu matematycznego. Przeczytaj
Uczeń. KONKURS OMNIBUS MATEMATYCZNY rok szkolny 2011/2012. 90 minut. Pracuj samodzielnie. Powodzenia! Finał 20 kwietnia 2012 roku
KONKURS OMNIBUS MATEMATYCZNY rok szkolny 2011/2012 Finał 20 kwietnia 2012 roku Zestaw dla uczniów klas III Uczeń Liczba zdobytych punktów Drogi Uczniu, witaj na finale konkursu Omnibus Matematyczny. Przeczytaj
1.2. Ostrosłupy. W tym temacie dowiesz się: jak obliczać długości odcinków zawartych w ostrosłupach, jakie są charakterystyczne kąty w ostrosłupach.
12 Ostrosłupy W tym temacie dowiesz się: jak obliczać długości odcinków zawartych w ostrosłupach, jakie są charakterystyczne kąty w ostrosłupach Ostrosłup prosty to ostrosłup, który ma wszystkie krawędzie
Lista NR 6. Przedstaw obliczenia we wszystkich zadaniach.
Lista NR 6 Przedstaw obliczenia we wszystkich zadaniach. Zad 1. (0-1) Długość przekątnej prostokąta przedstawionego na rysunku jest równa A. 12 B. 16 C. 20 D. 24 Zad 2. (0-2) Przedstawiony na rysunku trójkąt
KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH
Kod ucznia - - Dzień Miesiąc Rok pieczątka WKK DATA URODZENIA UCZNIA KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH ETAP REJONOWY Drogi Uczniu, witaj na II etapie konkursu matematycznego. Przeczytaj
KONKURS PRZEDMIOTOWY Z MATEMATYKI dla uczniów szkół podstawowych 24 stycznia 2015 r. zawody II stopnia (rejonowe)
Kod ucznia Liczba zdobytych punktów KONKURS PRZEDMIOTOWY Z MATEMATYKI dla uczniów szkół podstawowych 24 stycznia 205 r. zawody II stopnia (rejonowe) Drogi Uczniu, przed Tobą test składający się z 3 zadań.
A TALES Konkurs Matematyczny MERIDIAN
A TALES Konkurs Matematyczny MERIDIAN Sobota, 21 lutego 2009 Czas pracy: 90 minut Maksymalna liczba punktów do uzyskania: 120 W czasie testu nie wolno używać kalkulatorów ani innych pomocy naukowych. 1.
EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2011/2012
EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2011/2012 BADANIE UMIEJĘTNOŚCI UCZNIÓW W TRZECIEJ KLASIE GIMNAZJUM CZĘŚĆ MATEMATYCZNO PRZYRODNICZA MATEMATYKA TEST 2 Klucz odpowiedzi i wykaz umiejętności do pobrania
Konkurs dla gimnazjalistów Etap II 8 lutego 2017 roku
Konkurs dla gimnazjalistów Etap II 8 lutego 017 roku Instrukcja dla ucznia 1. W zadaniach o numerach od 1. do 15. są podane cztery warianty odpowiedzi: A, B, C, D. Dokładnie jedna z nich jest poprawna.
XII. GEOMETRIA PRZESTRZENNA GRANIASTOSŁUPY
pitagoras.d2.pl XII. GEOMETRIA PRZESTRZENNA GRANIASTOSŁUPY Graniastosłup to wielościan posiadający dwie identyczne i równoległe podstawy oraz ściany boczne będące równoległobokami. Jeśli podstawy graniastosłupa
Graniastosłupy mają dwie podstawy, a ich ściany boczne mają kształt prostokątów.
GRANIASTOSŁUPY I OSTROSŁUPY Bryły czyli figury przestrzenne dzielimy na: graniastosłupy ostrosłupy bryły obrotowe Graniastosłupy i ostrosłupy nazywamy wielościanami Graniastosłupy mają dwie podstawy, a
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów 13 luty 2014 Czas 90 minut. Rozwiązania zadań
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów 13 luty 2014 Czas 90 minut Rozwiązania zadań ZADANIA ZAMKNIĘTE W zadaniach od 1. do 10. wybierz i zaznacz na karcie odpowiedzi jedną poprawną odpowiedź.
Klasa 6. Pola wielokątów
Klasa 6. Pola wielokątów gr. A str. 1/4... imię i nazwisko...... klasa data 1. Jedna przekątna rombu ma 6 cm, a druga jest od niej o 3 cm krótsza. Dokończ zdania. Wybierz właściwe odpowiedzi spośród A
XIV MIEJSKI KONKURS MATEMATYCZNY uczniów klas IV VIII szkół podstawowych FINAŁ 17 maja 2019r. KLASA VIII. jest: 0,5 0,25 0,0625 0,0(5)
tutaj wpisz swój kod XIV MIEJSKI KONKURS MATEMATYCZNY uczniów klas IV VIII szkół podstawowych FINAŁ 17 maja 2019r. KLASA VIII Drogi Ósmoklasisto! Gratulujemy zakwalifikowania się do finału XIV Miejskiego
Tworzenie modelu domu przykład 1. Stworzymy ten model w dwóch częściach: podstawa i dach.
Tworzenie modelu domu przykład 1 Stworzymy ten model w dwóch częściach: podstawa i dach. Używając kartki w kratkę, najpierw szkicuj swój kształt, jak na poniższym rysunku. Podczas szkicowania zdecyduj
PRÓBNY ARKUSZ MATURALNY Z MATEMATYKI
WPISUJE ZDAJĄCY Stowarzyszenie Nauczycieli Matematyki www.snm.edu.pl KOD PESEL Miejsce na naklejkę z kodem (podczas egzaminu w maju) PRÓBNY ARKUSZ MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 1. Sprawdź czy
XI Olimpiada Matematyczna Gimnazjalistów
XI Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część testowa www.omg.edu.pl (24 września 2015 r.) Rozwiązania zadań testowych 1. Dane są takie dodatnie liczby a i b, że 30% liczby a
MISTRZ MATEMATYKI. Test sprawdzający wiadomości uczniów pierwszej klasy gimnazjum w ramach realizacji programu Matematyka 2001.
MISTRZ MATEMATYKI Test sprawdzający wiadomości uczniów pierwszej klasy gimnazjum w ramach realizacji programu Matematyka 00. Zakres materiału: DZIAŁANIA NA ZBIORACH LICZB RZECZYWISTYCH Wykonała: mgr Krystyna
PITAGORASEK. Konkurs Matematyczny MERIDIAN wtorek, 6 marca Maksymalna liczba punktów do uzyskania: 120
PITAGORASEK Konkurs Matematyczny MERIDIAN wtorek, Czas pracy: 120 minut Maksymalna liczba punktów do uzyskania: 120 W czasie testu nie wolno używać kalkulatorów ani innych pomocy naukowych. 1. Zasady punktowania
Obiekt 2: Świątynia Zeusa
Obiekt 2: Świątynia Zeusa Rys 2-1. Wyobrażenie greckiej świątyni ku czci Zeusa Prezentowane w tym dokumencie zadanie polega na narysowaniu bryły, będącej wyobrażeniem greckiej świątyni ku czci Zeusa. Poniżej
Matematyk Roku gminny konkurs matematyczny. FINAŁ 19 maja 2017 KLASA PIERWSZA
Twój kod:.. "Matematyka nie taka straszna jak ją malują Matematyk Roku 2017 - gminny konkurs matematyczny FINAŁ 19 maja 2017 KLASA PIERWSZA 1. Przed Tobą zestaw 20 zadań konkursowych. Zanim rozpoczniesz
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI poziom rozszerzony
Próbny egzamin maturalny z matematyki. Poziom rozszerzony 1 PRÓNY EGZMIN MTURLNY Z MTEMTYKI poziom rozszerzony ZNI ZMKNIĘTE W każdym z zadań 1.. wybierz i zaznacz jedną poprawną odpowiedź. Zadanie 1. (0
STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH
STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH Stereometria jest działem geometrii, którego przedmiotem badań są bryły przestrzenne oraz ich właściwości. WZAJEMNE POŁOŻENIE PROSTYCH W PRZESTRZENI 2 proste
Test na koniec nauki w klasie trzeciej gimnazjum
8 Test na koniec nauki w klasie trzeciej gimnazjum imię i nazwisko ucznia...... data klasa Test 2 1 Na przeciwległych ścianach każdej z pięciu sześciennych kostek umieszczono odpowiednio liczby: 1 i 1,
XX edycja Międzynarodowego Konkursu Matematycznego PIKOMAT rok szkolny 2011/2012
XX edycja Międzynarodowego Konkursu Matematycznego PIKOMA rok szkolny 2011/2012 Etap I Klasa IV Zastąp znaki zapytania znakami dodawania, odejmowania, mnożenia i dzielenia w taki sposób, aby wyniki obliczeń
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019 MATEMATYKA Przykładowy arkusz egzaminacyjny (EO_2) Czas pracy: do 150 minut GRUDZIEŃ 2017 Centralna Komisja Egzaminacyjna Warszawa Zadanie 1. (1 pkt) Asia
Zagadnienia na powtórzenie
Zagadnienia na powtórzenie TERESA ZIEGLER IMIĘ I NAZWISKO: KLASA: GRUPA A 1. Zaznacz takie dokończenie zdania, aby otrzymać zdanie prawdziwe. Sześcian przecięto płaszczyzną zawierającą dwie równoległe
~ A ~ PANGEA KONKURS MATEMATYCZNY
PANGEA KONKURS MATEMATYCZNY Piątek, 17kwietnia 2015 Czas pracy: 90 minut 1. Ogólne zasady 1.1 W czasie testu nie wolno używać kalkulatorów ani innych pomocy naukowych. 1.2 Zadania mają formę testu jednokrotnego
ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna
Arkusz A05 2 Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna odpowiedź Zadanie 1. (0-1) Ułamek 5+2 5 2 ma wartość: A.
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019 MATEMATYKA Przykładowy arkusz egzaminacyjny (EO_1) Czas pracy: 100 minut GRUDZIEŃ 2017 Centralna Komisja Egzaminacyjna Warszawa Zadanie 1. (0 1) Z okazji
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019 MATEMATYKA Przykładowy arkusz egzaminacyjny (EO_5) Czas pracy: do 150 minut GRUDZIEŃ 2017 Centralna Komisja Egzaminacyjna Warszawa Zadanie 1. (0 1) Z okazji
PRÓBNY EGZAMIN ÓSMOKLASISTY
PRÓBNY EGZAMIN ÓSMOKLASISTY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO 16 MARCA 2019 CZAS PRACY: 100 MINUT 1 ZADANIE 1 (1 PKT) Firma transportowa Paka korzysta z samochodów dostawczych,
WOJEWÓDZKI KONKURS MATEMATYCZNY
Kod ucznia Liczba punktów WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJÓW W ROKU SZKOLNYM 2017/2018 04.01.2018 1. Test konkursowy zawiera 20 zadań. Są to zadania zamknięte i otwarte. Na ich rozwiązanie
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 1 MAJA 2010 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT.) Rozwiazaniem nierówności
UZUPEŁNIA ZESPÓŁ NADZORUJĄCY
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2013 KOD UCZNIA UZUPEŁNIA ZESPÓŁ NADZORUJĄCY PESEL miejsce na naklejkę z kodem EGZAMIN W KLASIE TRZECIEJ
Kuratorium Oświaty w Lublinie ZESTAW ZADAŃ KONKURSOWYCH Z MATEMATYKI DLA UCZNIÓW SZKOŁY PODSTAWOWEJ ROK SZKOLNY 2014/2015 ETAP WOJEWÓDZKI
Kuratorium Oświaty w Lublinie KOD UCZNIA ZESTAW ZADAŃ KONKURSOWYCH Z MATEMATYKI DLA UCZNIÓW SZKOŁY PODSTAWOWEJ ROK SZKOLNY 2014/2015 ETAP WOJEWÓDZKI Instrukcja dla ucznia 1. Zestaw konkursowy zawiera 14
Wojewódzki Konkurs Matematyczny w gimnazjum rok szkolny 2011/2012 etap rejonowy
Kod ucznia Łączna liczba punktów Numer zadania 1 14 15 17 18 19 20 Drogi Uczniu! Liczba punktów Przed Tobą test składający się z 20 zadań. Za wszystkie zadania razem możesz zdobyć 40 punktów. Aby przejść
KONKURS PRZEDMIOTOWY Z MATEMATYKI dla uczniów szkół podstawowych 24 marca 2017 r. zawody III stopnia (wojewódzkie)
Kod ucznia Liczba zdobytych punktów KONKURS PRZEDMIOTOWY Z MATEMATYKI dla uczniów szkół podstawowych 24 marca 2017 r. zawody III stopnia (wojewódzkie) Drogi Uczniu, przed Tobą test składający się z 24
OBLICZANIE PÓL I OBWODÓW FIGUR PŁASKICH
OBLICZANIE PÓL I OBWODÓW FIGUR PŁASKICH Zadanie 1 Jeden z boków prostokąta ma 5 cm, a drugi jest 3 razy dłuższy. Oblicz pole prostokąta. Zadanie 2 Oblicz pole kwadratu, którego obwód wynosi 6 dm. Zadanie
Numer zadania Liczba punktów
Kod ucznia Łączna liczba punktów Numer zadania 1 13 14 16 17 18 19 20 Liczba punktów Drogi Uczniu! Przed Tobą test składający się z 20 zadań. Za wszystkie zadania razem możesz zdobyć 45 punktów. Aby mieć
X Olimpiada Matematyczna Gimnazjalistów
www.omg.edu.pl X Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część korespondencyjna (10 listopada 01 r. 15 grudnia 01 r.) Szkice rozwiązań zadań konkursowych 1. nia rozmieniła banknot
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego
Data urodzenia ucznia Dzień miesiąc rok Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów ETAP REJONOWY Rok szkolny 2016/2017 Instrukcja dla ucznia 1. Sprawdź, czy test zawiera 12 stron. Ewentualny
Zadanie 1. (0 1) Cena okularów bez promocji wynosi 240 zł. Ile zapłaci za te okulary klient, który ma 35 lat? Wybierz odpowiedź spośród podanych.
Informacja do zadań 1. i 2. Promocja w zakładzie optycznym jest związana z wiekiem klienta i polega na tym, że klient otrzymuje tyle procent zniżki, ile ma lat. Zadanie 1. (0 1) Cena okularów bez promocji
KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH 2012/2013
.... pieczątka WKK Kod ucznia Dzień Miesiąc Rok DATA URODZENIA UCZNIA KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH 2012/2013 ETAP WOJEWÓDZKI Drogi Uczniu! Witaj na etapie wojewódzkim konkursu matematycznego.
2 Figury geometryczne
Płaszczyzna, proste... 21 2 igury geometryczne 1 Płaszczyzna, proste i półproste P 1. Wypisz proste, do których: a) prosta k jest równoległa, o n k l b) prosta p jest prostopadła, m c) prosta k nie jest
Imię i nazwisko. Zadanie 1 Oto wyniki kartkówki przeprowadzonej w trzech klasach drugich gimnazjum.
Imię i nazwisko. Zadanie 1 Oto wyniki kartkówki przeprowadzonej w trzech klasach drugich gimnazjum. Oceń prawdziwość każdego zdania. Zaznacz P, jeśli zdanie jest prawdziwe, lub F, jeśli jest fałszywe.
KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH
pieczątka WKK Kod ucznia - - Dzień Miesiąc Rok DATA URODZENIA UCZNIA KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH ETAP WOJEWÓDZKI Drogi Uczniu, witaj na III etapie konkursu matematycznego. Przeczytaj
EGZAMIN MATURALNY Z MATEMATYKI MAJ 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN
EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY SIERPIEŃ 2014. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 03 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN MATURALNY Z MATEMATYKI Instrukcja
KONKURS PRZEDMIOTOWY Z MATEMATYKI Finał 7 marca 2008 r.
KOD Nr zad. 1 2 3 4 5 6 7 8 9 10 11 12 Razem Max liczba pkt. 3 3 3 3 3 3 3 3 5 3 4 4 40 Liczba pkt. Kuratorium Oświaty w Katowicach KONKURS PRZEDMIOTOWY Z MATEMATYKI Finał 7 marca 2008 r. Przeczytaj uważnie
TWORZENIE TORU KOLEJOWEGO DLA LOKOMOTYWY - ZABAWKI. W tym przewodniku stworzymy tor kolejowy pasujący do zabawki.
TWORZENIE TORU KOLEJOWEGO DLA LOKOMOTYWY - ZABAWKI W tym przewodniku stworzymy tor kolejowy pasujący do zabawki. Wymiary twojej zabawki mogą być inne niż ta, więc musisz zacząć od zmierzenia jej wymiarów.
ARKUSZ HOSPITACJI DIAGNOZUJĄCEJ
ARKUSZ HOSPITACJI DIAGNOZUJĄCEJ Nauczyciel: Małgorzata Drejka Gimnazjum nr 4 w Legionowie, klasa I F, zajęcia edukacyjne: matematyka Data: 12.06.2006. Cel główny: Obserwacja osiągniętego poziomu sprawności
Konkurs kombinatoryczno-algorytmiczny KOALA Zadanie treningowe 2014/2015
Konkurs kombinatoryczno-algorytmiczny KOALA Zadanie treningowe 2014/2015 1. Trójkąty Trójkąt Sierpińskiego to fraktal generowany etapami w następujący sposób: Ile białych trójkątów będzie na szóstym etapie
Matematyk Roku gminny konkurs matematyczny. FINAŁ 20 maja 2016 KLASA PIERWSZA
Twój kod:.. "Matematyka nie taka straszna jak ją malują Matematyk Roku 2016 - gminny konkurs matematyczny FINAŁ 20 maja 2016 KLASA PIERWSZA 1. Przed Tobą zestaw 20 zadań konkursowych. Zanim rozpoczniesz
Prawdy i nieprawdy. Liczba graczy od 2 do 6 osób. Rekwizyty talia 50 kart (plus 4 do wariantu 2) Zasady gry. klasa II GRANIASTOSŁUPY
Prawdy i nieprawdy klasa II GRANIASTOSŁUPY Liczba graczy od 2 do 6 osób Rekwizyty talia 50 kart (plus 4 do wariantu 2) Zasady gry Wariant 1. Gracze układają karty w stos zdaniami do góry. W trakcie rozgrywki
TEST DO KLASY MATEMATYCZNO FIZYCZNEJ VI 2013 Kod ucznia:
TEST DO KLASY MATEMATYCZNO FIZYCZNEJ VI 2013 Kod ucznia: W zadaniach od 1 do 10 tylko jedna odpowiedź jest prawidłowa. Za poprawną odpowiedź otrzymasz 1 punkt; za brak odpowiedzi lub złą odpowiedź 0 punktów;
Zadanie 1. Przekątna prostopadłościanu o wymiarach ma długość A. 2 5 B. 2 3 C. 5 2 D Zadanie 2.
Zadanie 1. Przekątna prostopadłościanu o wymiarach 3 4 5 ma długość A. 2 5 B. 2 3 C. 5 2 D. 2 15 Zadanie 2. Pole powierzchni całkowitej prostopadłościanu jest równe 198. Stosunki długości krawędzi prostopadłościanu
Egzamin ósmoklasisty od roku szkolnego 2018 / Matematyka. Przykładowy arkusz egzaminacyjny (EO_6) Czas pracy: do 150 minut
Egzamin ósmoklasisty od roku szkolnego 2018 / 2019 Matematyka Przykładowy arkusz egzaminacyjny (EO_6) Czas pracy: do 150 minut Zadanie 1. (0-1) Z okazji Światowego Dnia Książki uczniowie klasy VII zorganizowali
SPRAWDZIAN NR Oceń prawdziwość zdania. 2. Zaznacz poprawną odpowiedź. 3. Na rysunkach przedstawiono dwie bryły. Nazwij każdą z nich.
SPRAWDZIAN NR 1 WIESŁAWA MALINOWSKA IMIĘ I NAZWISKO: KLASA: GRUPA A 1. Oceń prawdziwość zdania. Zaznacz P, jeśli zdanie jest prawdziwe, lub F, jeśli jest fałszywe. A. Rysunek nie przedstawia siatki ostrosłupa
Egzamin ósmoklasisty Matematyka
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. WYPEŁNIA ZESPÓŁ NADZORUJĄCY KOD UCZNIA PESEL miejsce na naklejkę Egzamin ósmoklasisty Matematyka DATA: 16 kwietnia 2019 r. GODZINA
Próbny egzamin maturalny z matematyki Poziom podstawowy. Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA
Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KOD PESEL PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI We współpracy z POZIOM PODSTAWOWY 1. Sprawdź, czy arkusz egzaminacyjny
EGZAMIN MATURALNY Z MATEMATYKI SIERPIEŃ 2010 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY
entralna Komisja Egzaminacyjna rkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny KE 00 KO WPISUJE ZJĄY PESEL Miejsce na naklejkę z kodem EGZMIN MTURLNY Z MTEMTYKI
POZIOM PODSTAWOWY - GR 1 Czas pracy 170 minut
POZIOM PODSTAWOWY - GR 1 Czas pracy 170 minut Klasa Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 16 stron.. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym.. W zadaniach
TWORZENIE SZEŚCIANU. Sześcian to trójwymiarowa bryła, w której każdy z sześciu boków jest kwadratem. Sześcian
TWORZENIE SZEŚCIANU Sześcian to trójwymiarowa bryła, w której każdy z sześciu boków jest kwadratem. Sześcian ZADANIE Twoim zadaniem jest zaprojektowanie a następnie wydrukowanie (za pomocą drukarki 3D)
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019 MATEMATYKA Przykładowy arkusz egzaminacyjny (EO_4) Czas pracy: do 150 minut GRUDZIEŃ 2017 Centralna Komisja Egzaminacyjna Warszawa Zadanie 1. (0 1) Z okazji
ARKUSZ II
www.galileusz.com.pl ARKUSZ II W każdym z zadań 1.-24. wybierz i zaznacz jedną poprawną odpowiedź. Zadanie 1. (0-1 pkt) Liczba 30 to p% liczby 80, zatem A) p = 44,(4)% B) p > 44,(4)% C) p = 43,(4)% D)
LUBELSKA PRÓBA PRZED MATURĄ POZIOM PODSTAWOWY Klasa 1 Klasa 1
Klasa 1 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 18 stron. 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym. 3. W zadaniach
MATEMATYKA POZIOM ROZSZERZONY PRZYKŁADOWY ZESTAW ZADAŃ NR 2. Czas pracy 150 minut
Miejsce na naklejkę z kodem szkoły CKE MATEMATYKA POZIOM ROZSZERZONY PRZYKŁADOWY ZESTAW ZADAŃ NR 2 Czas pracy 150 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 14 stron (zadania
Test z matematyki. Małe olimpiady przedmiotowe. Imię i nazwisko. Drogi Uczniu,
Małe olimpiady przedmiotowe Test z matematyki ORGANIZATORZY: Wydział Edukacji Urzędu Miasta w Koszalinie Centrum Edukacji Nauczycieli w Koszalinie Imię i nazwisko. Szkoła Szkoła Podstawowa nr 7 w Koszalinie
Kuratorium Oświaty w Bydgoszczy. Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów szkół podstawowych etap wojewódzki część I
Kod ucznia: Bydgoszcz, 31.01.2015r. Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów szkół podstawowych etap wojewódzki część I Wypełnia komisja konkursowa Numer zadania 1 2 3 4 5 Razem Punktacja
MATEMATYKA POZIOM ROZSZERZONY PRZYKŁADOWY ZESTAW ZADAŃ NR 2. Czas pracy 150 minut
Miejsce na naklejkę z kodem szkoły CKE MATEMATYKA POZIOM ROZSZERZONY MARZEC ROK 2008 PRZYKŁADOWY ZESTAW ZADAŃ NR 2 Czas pracy 150 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera
VI PUCHAR POLSKI W ROZWIĄZYWANIU ŁAMIGŁÓWEK. 13 grudnia 2009
VI PUCHAR POLSKI W ROZWIĄZYWANIU ŁAMIGŁÓWEK 13 grudnia 2009 ZADANIA FINAŁOWE CZĘŚĆ TRZECIA (60 MINUT) IMIĘ I NAZWISKO: PUNKTACJA: Punkty są przyznawane za liczbę poprawnie rozwiązanych zadań (nie za konkretne
w jednym kwadrat ziemia powietrze równoboczny pięciobok
Wielościany Definicja 1: Wielościanem nazywamy zbiór skończonej ilości wielokątów płaskich spełniających następujące warunki: 1. każde dwa wielokąty mają bok lub wierzchołek wspólny albo nie mają żadnego
Rzuty aksonometryczne służą do poglądowego przedstawiania przedmiotów.
RZUTOWANIE AKSONOMETRYCZNE Rzuty aksonometryczne służą do poglądowego przedstawiania przedmiotów. W metodzie aksonometrycznej rzutnią jest płaszczyzna dowolnie ustawiona względem trzech osi,, układu prostokątnego
PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI
PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI P-1 POZIOM PODSTAWOWY Czas pracy: 170 minut Za rozwiązanie wszystkich zadań można uzyskać łącznie 50 punktów BRUDNOPIS Zadanie 1. (1 pkt) ZADANIA ZAMKNIĘTE
WOJEWÓDZKI KONKURS MATEMATYCZNY
Kod ucznia Liczba punktów WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJÓW W ROKU SZKOLNYM 016/017 0.0.017 1. Test konkursowy zawiera zadania. Są to zadania zamknięte i otwarte. Na ich rozwiązanie
PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI
PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Zestaw P1 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 16 stron.. W zadaniach od 1. do 5. są podane 4 odpowiedzi:
SPRAWDZIAN NR 1. Suma długości krawędzi prostopadłościanu o wymiarach 4 cm x 6 cm x 10 cm jest równa. A. 20 cm B. 40 cm C. 60 cm D.
SPRAWDZIAN NR 1 ARTUR ANTAS IMIĘ I NAZWISKO: KLASA: GRUPA A 1. Zaznacz poprawną odpowiedź. Który wielokąt jest podstawą ostrosłupa o 6 wierzchołkach? A. Trójkąt. B. Czworokąt. C. Pięciokąt. D. Sześciokąt.
ZADANIA MATEMATYCZNE DLA UCZNIÓW KLAS VI zestaw drugi.
ZADANIA MATEMATYCZNE DLA UCZNIÓW KLAS VI zestaw drugi. 21. Za bilety wstępu do pijalni wód mineralnych dla 4 osób dorosłych i 40 dzieci zapłacono 106 zł. Bilet dla osoby dorosłej kosztował 3,50 zł. Ile
Klasa 3.Graniastosłupy.
Klasa 3.Graniastosłupy. 1. Uzupełnij nazwy odcinków oznaczonych literami: a........................................................... b........................................................... c...........................................................
Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2014/2015
Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2014/2015 KOD UCZNIA Etap: Data: Czas pracy: szkolny 13 listopada 2014 r. 120 minut Informacje dla
ARKUSZ X
www.galileusz.com.pl ARKUSZ X W każdym z zadań 1.-24. wybierz i zaznacz jedną poprawną odpowiedź. Zadanie 1. (0-1 pkt) Liczba 3 2 jest równa A) 5 2 B) 6 2 C) 6 2 D) 2 Zadanie 2. (0-1 pkt) Kurtka zimowa