MATEMATYKA JEST CIEKAWA
|
|
- Filip Małek
- 6 lat temu
- Przeglądów:
Transkrypt
1 MATEMATYKA JEST CIEKAWA ROK 1 NUMER 2 DATA WYDANIA: LISTOPAD 2018 LICZBA DWA SZKOŁA PODSTAWOWA NR 1 Ja i przyroda to dwie strony medalu Woody Allen Chcę Wam podać kilka ciekawostek związanych z liczbą 2. Opowiedzieć o niej kilka historii mniej lub bardziej znanych. Chińczycy przywiązują dużą wagę do brzmienia słów i dlatego uważają tą liczbę, lub jak kto woli, cyfrę za dobrą bo chińskie słowo dwa brzmi tak samo jak słowo łatwy. Sym bol dwa używany wspó łc ześni e wywo dzi się od hinduskich Braminów, którzy zapisywali dwójkę jako dwa poziome odcinki (taki kształt tego symbolu został przyjęty w Chinach i do dziś jest tam używany; łatwo też zauważyć analogię do rzymskiego symbolu II) System dwójkowy używa tylko dwóch cyfr zera i jedynki. Około 3000 lat temu Hinduski matematyk Pingala badał ten system. Nasi prapraprzodkowie mieli sporo racji upierając się przy tym systemie ponieważ dziś system dwójkowy stanowi podstawę języka komputerowego. Brytyjski matematyk George Boole jako pierwszy opracował logiczny system oparty na zerach i jedynkach, wprowadzając pojęcie tzw. algebry Boole a. W kreskówkach, które opowiadały o przygodach Różowej Pantery pomocnik Inspektora Clouseau to sierżant Deux Deux czyli Dwa Dwa. Mark Twain to pseudonim artystyczny Samuela Longhorne a Clemensa, który większość życia spędził pływając po Mississippi i to praca podsunęła mu pomysł na pseudonim. Bezpieczna głębokość wody to dwa sążnie, a załoga wypływając na bezpieczne wody wołała By the mark twain (Minęliśmy znak dwóch sążni) w tamtych czasach angielski liczebnik two (dwa) często przyjmowało formę twain. Podwójny kozioł w tenisie dwukrotne odbicie piłki od kortu po stronie zawodnika, co powoduje utratę przez niego punktu. Podwójne kliknięcie sposób uruchamiania aplikacji komputerowych i otwierania katalogów. Podwoje okazałe dwuskrzydłowe drzwi, często większych rozmiarów tak jak do zamku lub katedry. Liczba 2 jest jedyną liczbą pierwszą i parzystą. W numerologii dwójki cechuje delikatne usposobienie, duża duchowość i rozwinięta intuicja, są to dobrzy słuchacze, którzy charakteryzują się naturalną empatią. W tym numerze: LICZBA DWA 1 WIELOKĄTY GWIAŹDZISTE 2 GWIAZDY MORAWSKIE 4 KIRIGAMI 6 REGULAMIN KONKURSU MATEMATYCZNA BOMBKA 8 WYNIKI KONKURSU NA PLAT MOJA TABLICZKA MNOŻENIA 8
2 Str. 2 MATEMATYKA JEST CIEKAWA WIELOKĄTY GWIAŹDZISTE Gwiazdy nie tylko świecą na niebie ale i pięknie prezentują się na matematycznym firmamencie, gwiazdy te kryją się pod nazwą wielokątów gwiaździstych. Wielokąty gwiaździste posiadają różne kształty przy tej samej liczbie boków i kątów. Wielokąty te, a szczególnie wielokąty gwiaździste foremne, są szczególnymi przypadkami łamanych. A więc wypadało by przedstawić na początek łamaną. Łamana jest figurą geometryczną utworzoną ze skończonej liczby odcinków, z których żadne dwa następujące po sobie nie leżą na jednej prostej, oraz koniec każdego odcinka (oprócz ostatniego) jest początkiem odcinka następnego. Odcinki z których składa się łamana to jej boki, a końce boków to wierzchołki łamanej. Wielokąty gwiaździste budujemy na bazie wielokątów foremnych np. mając pięciokąt foremny (aby go otrzymać łączyliśmy punkty A-B-C-D-E-A), jeżeli połączymy punkty w innej kolejności: A-C-E-B-D-A to otrzymamy pięciokąt gwiaździsty. Kąty przy wierzchołkach wielokąta gwiaździstego nazywamy kątami sterczącymi (nazwę tę wprowadził polski uczony profesor Jan Brożka) Analogicznie możemy tworzyć inne wielokąty gwiaździste np. sześciokąty foremne, siedmiokąty foremne czy dziewięciokąty gwiaździste.
3 ROK 1 NUMER 2 Str. 3 Niektóre wielokąty gwiaździste mają swoje nazwy i tak sześciokąt gwiaździsty nazywa się Gwiazdą Dawida. Gwiazda ta złożona jest z dwóch zachodzących na siebie trójkątów równoramiennych (najczęściej równobocznych) obróconych względem siebie. Wierzchołki Gwiazdy Dawida w przypadku trójkątów równobocznych leżą na okręgu w punktach odpowiadających parzystym godzinom na tarczy zegara. Przez Żydów zwana tarczą Dawida, w gnozie i innych systemach wiedzy ezoterycznej znana jest jako pieczęć Salomona. Natomiast pięciokąt gwiaździsty, zwany pentagramem lub gwiazdą pitagorejską, to hołubiona figura geometryczna pitagorejczyków. Znakiem tym pitagorejczycy pozdrawiali się i wzajemnie rozpoznawali, kreśląc go na piasku. Gwiazda pitagorejska posiada właściwości wyróżniające ją spośród innych gwiazd. Suma kątów wewnętrznych pentagramu równa jest kątowi półpełnemu (180 ). Promienie gwiazdy pitagorejskiej "tworzą" trójkąty równoramienne z dwoma kątami u podstawy 72 i kątem przy wierzchołku równym 36. Możemy doszukać się więc trójkątów podobnych, z których wynika, że długość odcinka a + b równa jest długości odcinka c. Odcinek a + b jest przykładem złotej proporcji, czyli takiego podziału odcinka na dwie części, że większa część do mniejszej ma się tak samo jak całość do części większej. Takie złote cięcia odnajdujemy we wszystkich punktach skrzyżowania promieni gwiazdy pitagorejskiej.
4 Str. 4 MATEMATYKA JEST CIEKAWA GWIAZDY MORAWSKIE Zbliżają się Święta Bożego Narodzenia a poprzedza je czas Adwentu i to właśnie z tym okresem nierozerwalnie związana jest gwiazda morawska symbolizująca gwiazdę betlejemską. Gwiazda może stanowić swoisty kalendarz adwentowy, ponieważ liczba jej ramion jest zbliżona do liczby adwentowych dni. Gwiazdy morawskie lub gwiazdy herrnhuckie, są związane z kultem św. Jana Nepomucena, dlatego możemy je spotkać na jego pomnikach i figurach zwanych nepomukami. Nazwa gwiazdy herrnhuckiej pochodzi od miasta Herrnhut w Niemczech, które zostało założone przez emigrantów z czeskich Moraw. Pierwsza taka gwiazda powstała około 1830 roku w niemieckim miasteczku Niesky przy granicy z Polską, a zbudował ją tamtejszy nauczyciel matematyki na lekcji geometrii. Gwiazda ta miała być dla dzieci symbolem tęsknoty i rozłąki z rodziną, gdyż do tej szkoły uczęszczało wiele dzieci z rodzin misyjnych. Bardzo szybko gwiazda ta stała się popularnym elementem zdobniczym w wielu wspólnotach ewangelickich, gdzie jest symbolem gwiazdy betlejemskiej i oczekiwania na przyjście Zbawiciela. Tradycyjnie rodziny zbierały się aby wykonać taką gwiazdę i wywiesić ją w pierwszą niedzielę Adwentu, a zdjąć w uroczystość T rz ec h K r ól i. G wi a zd y t e wykonywane są ręcznie do dziś, na sprzedaż w Herrnhut, w wytwórni założonej w 1880 przez jednego z absolwenta szkoły w Niesky. Do wykonania gwiazdy morawskiej jest potrzebnych 18 ostrosłupów czworokątnych oraz 8 trójkątnych. Sklejone ostrosłupy należy dokleić do przygotowanego środka w postaci modelu sześcio ośmiościanu rombowego małego. Jeżeli chcemy aby, wszystkie wierzchołki naszej bryły układały się na powierzchni sfery, to piramidy trójkątne powinny być nieco niższe od kwadratowych.
5 ROK 1 NUMER 2 Str. 5 Taką gwiazdę morawską możecie wykonać jako pracę na coroczny konkurs Matematyczna bombka. Zapraszam do zapoznania się z regulaminem konkursu.
6 Str. 6 MATEMATYKA JEST CIEKAWA Kirigami to fajna zabawa papierem, którą można wykorzystać przygotowując prezenty świąteczne, a wiadomo, że te samodzielnie wykonane upominki są najfajniejsze. Słowo kirigami pochodzi z języka japońskiego, gdzie słowo gami oznacza papier, ori oznacza składanie a kiri to wycinanie. Chciałabym Wam zaproponować wykonanie w tej technice kartki świątecznej i zakładki do książki, upominki te możecie podarować bliskim lub znajomym, którym chcecie powiedzieć że są dla Was kimś ważnym w życiu. Do wykonania karty świątecznej potrzeby będzie Wam kwadrat zielonego papieru, którego spód jest biały. Wykonanie: z zielonego papieru wytnij prostokąt o wymiarach 9 cm na 13 cm złóż go na pół narysuj linię od rogu do rogu przetnij po linii obie warstwy papieru pod katem wykonaj równoległe do siebie nacięcia, zaczynając cięcie od krawędzi złożenia i kończąc w odległości ok. 0,5 cm od przeciwległej krawędzi rozłóż papier podnieś do góry wykonane pod kątem nacięcia naklej choinkę na czystą kolorową kartkę i dodaj świąteczne ozdoby według uznania. Schematy zostały zaczerpnięte z Kirigami. Okolicznościowe kartki i ozdobne opakowania autorstwa Florence Temko. Jak już dopracujesz swoją kartkę świąteczną to nie zapomnij wpisać życzenia takie płynące z serca, od siebie.
7 ROK 1 NUMER 2 Str. 7 Wykorzystując tą samą technikę możecie wykorzystać wykonując zakładkę do książki. Schematy zostały zaczerpnięte z Kirigami. Okolicznościowe kartki i ozdobne opakowania autorstwa Florence Temko. Ja wykonałam kilka zakładek tą metodą.
8 SZKOŁA PODSTAWOWA NR 1 REGULAMIN KONKURSU MATEMATYCZNA BOMBKA 1. W konkursie mogą brać udział uczniowie Szkoły Podstawowej nr 1 i Publicznego Gimnazjum nr 3 w Białej Podlaskiej. 2. Organizatorem konkursu są nauczyciele matematyki. 3. Udział w konkursie polega na wykonaniu, z dowolnego materiału, figury przestrzennej (bryły) w formie bombki świątecznej. 4. Celem konkursu jest: posługiwanie się własnościami figur czyli dostrzeganie kształtów figur geometrycznych w otaczającej rzeczywistości 5. Uczeń powinien oddać pracę nauczycielowi matematyki do 15 grudnia 2018 roku. 6. Praca powinna być wykonana estetycznie, posiadać uchwyt pozwalający ją zawiesić i informację o swoim wykonawcy (imię i nazwisko ucznia, klasę). 7. Najładniejsze prace zostaną zaprezentowane całej społeczności szkolnej i nagrodzone dyplomami. WYNIKI KONKURSU NA PLAT MOJA TABLICZKA MNOŻENIA imię ucznia klasa zajęte miejsce Małgosia V b I Dominika V b I Martyna V b II Maksymilian V b II Małgosia VII a II Jakub V a III Ania V a III Kornel IV a III Amelka V b III Julia V b III Marysia IV b wyróżnienie Ola VI a wyróżnienie Oliwka VI a wyróżnienie
W ŚWIECIE WIELOKĄTÓW GWIAŹDZISTYCH
ul. Konarskiego 2, 30-049 Kraków tel. 12 633 13 83 lub 12 633 02 47 W ŚWIECIE WIELOKĄTÓW GWIAŹDZISTYCH Arkadiusz Biel Kraków 2011 Wielokąty gwiaździste są ciekawym przypadkiem wielokątów, gdyż posiadają
WIELOKĄTY GWIAŹDZISTE. Paulina Bancerz
WIELOKĄTY GWIAŹDZISTE Paulina Bancerz Łamana Łamana to figura geometryczna utworzona ze skończonej liczby odcinków takich, że: żadne dwa następujące po sobie odcinki nie leżą na jednej prostej, koniec
Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2016/2017 Ćwiczenia nr 9
Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2016/2017 Ćwiczenia nr 9 Karta pracy: podzielność przez 9 Niektóre są dobre, z drobnymi usterkami. Największy błąd: nie ma sformułowanej
STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH
STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH Stereometria jest działem geometrii, którego przedmiotem badań są bryły przestrzenne oraz ich właściwości. WZAJEMNE POŁOŻENIE PROSTYCH W PRZESTRZENI 2 proste
Skrypt 19. Bryły. 14. Zastosowanie twierdzenia Pitagorasa do obliczania pól powierzchni ostrosłupów
Projekt Innowacyjny program nauczania matematyki dla gimnazjów współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 19 Bryły 11. Ostrosłupy - rozpoznawanie,
GEOMETRIA ELEMENTARNA
Bardo, 7 11 XII A. D. 2016 I Uniwersytecki Obóz Olimpiady Matematycznej GEOMETRIA ELEMENTARNA materiały przygotował Antoni Kamiński na podstawie zbiorów zadań: Przygotowanie do olimpiad matematycznych
PODSTAWY > Figury płaskie (1) KĄTY. Kąt składa się z ramion i wierzchołka. Jego wielkość jest mierzona w stopniach:
PODSTAWY > Figury płaskie (1) KĄTY Kąt składa się z ramion i wierzchołka. Jego wielkość jest mierzona w stopniach: Kąt możemy opisać wpisując w łuk jego miarę (gdy jest znana). Gdy nie znamy miary kąta,
PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1
PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1 Planimetria to dział geometrii, w którym przedmiotem badań są własności figur geometrycznych leżących na płaszczyźnie (patrz określenie płaszczyzny). Pojęcia
PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 3
DEFINICJE PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 3 Czworokąt to wielokąt o 4 bokach i 4 kątach. Przekątną czworokąta nazywamy odcinek łączący przeciwległe wierzchołki. Wysokością czworokąta nazywamy
Nawi zanie do gimnazjum Planimetria Trójk Rysujemy Rysujemy Rysujemy Zapisujemy t zewn trzny trójk ta, Trójk ty ze wzgl du na miary k tów Trójk
PLANIMETRIA Lekcja 102-103. Miary kątów w trójkącie str. 222-224 Nawiązanie do gimnazjum Planimetria to., czy planimetria zajmuje się. (Dział geometrii, który zajmuje się badaniem płaskich figur geometrycznych)
TABELA ODPOWIEDZI. kod ucznia
MAŁOPOLSKI KONKURS MATEMATYCZNY dla uczniów dotychczasowych gimnazjów i klas dotychczasowych gimnazjów prowadzonych w szkołach innego typu województwa małopolskiego Rok szkolny 018/019 ETAP SZKOLNY 5 października
Dydaktyka matematyki (III etap edukacyjny) IV rok matematyki Semestr letni 2017/2018 Ćwiczenia nr 6
Dydaktyka matematyki (III etap edukacyjny) IV rok matematyki Semestr letni 2017/2018 Ćwiczenia nr 6 Lang: Długość okręgu. pole pierścienia będę chciał znaleźć inne wyrażenie na pole pierścienia. oszacowanie
Stereometria bryły. Wielościany. Wielościany foremne
Stereometria bryły Stereometria - geometria przestrzeni trójwymiarowej. Przedmiotem jej badań są własności brył oraz przekształcenia izometryczne i afiniczne przestrzeni. Przyjęte oznaczenia: - Pole powierzchni
Krzyżówka oraz hasła do krzyżówki. Kalina R., Przewodnik po matematyce dla klas VII-VIII, część IV, SENS, Poznań 1997, s.20-22.
Omnibus matematyczny 1. Cele lekcji a) Wiadomości Uczeń: zna pojęcia matematyczne z zakresu szkoły podstawowej i gimnazjum. b) Umiejętności Uczeń: potrafi podać odpowiednie pojęcie matematyczne na podstawie
Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2018/2019 Ćwiczenia nr 9
Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2018/2019 Ćwiczenia nr 9 Karta pracy: podzielność przez 9 Niektóre są dobre, z drobnymi usterkami. Najlepsze: AO, LS. Największe
Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2011/2012
Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 011/01 KOD UCZNIA Etap: Data: Czas pracy: wojewódzki lutego 01 r. 90 minut Informacje dla ucznia:
SCENARIUSZ LEKCJI MATEMATYKI W KLASIE VI
SCENARIUSZ LEKCJI MATEMATYKI W KLASIE VI Temat: Oś symetrii figury. Cele operacyjne: Uczeń: - zna rodzaje trójkątów i ich własności, - zna rodzaje czworokątów ich własności, - odkrywa i formułuje definicję
Czy pamiętasz? Zadanie 1. Rozpoznaj wśród poniższych brył ostrosłupy i graniastosłupy.
1. Bryły Tradycyjna futbolówka jest zszyta z 3232 kawałków. Gdybyśmy ją rozcięli, ujrzelibyśmy siatkę dwudziestościanu ściętego. Kulisty kształt piłka otrzymuje dzięki wypełnieniu sprężonym powietrzem.
1.2. Ostrosłupy. W tym temacie dowiesz się: jak obliczać długości odcinków zawartych w ostrosłupach, jakie są charakterystyczne kąty w ostrosłupach.
12 Ostrosłupy W tym temacie dowiesz się: jak obliczać długości odcinków zawartych w ostrosłupach, jakie są charakterystyczne kąty w ostrosłupach Ostrosłup prosty to ostrosłup, który ma wszystkie krawędzie
Z przestrzeni na płaszczyznę
Z przestrzeni na płaszczyznę Wstęp W naszej pracy zajęłyśmy się nietypowymi parkietażami. Zwykle parkietaże związane są z wielokątami i innymi figurami płaskimi. Postanowiłyśmy zbadać jakie parkietaże
GEOMETRIA PRZESTRZENNA (STEREOMETRIA)
GEOMETRIA PRZESTRZENNA (STEREOMETRIA) WZAJEMNE POŁOŻENIE PROSTYCH W PRZESTRZENI Stereometria jest działem geometrii, którego przedmiotem badań są bryły przestrzenne oraz ich właściwości. Na początek omówimy
Praktyczne przykłady wykorzystania GeoGebry podczas lekcji na II etapie edukacyjnym.
Praktyczne przykłady wykorzystania GeoGebry podczas lekcji na II etapie edukacyjnym. Po uruchomieniu Geogebry (wersja 5.0) Pasek narzędzi Cofnij/przywróć Problem 1: Sprawdź co się stanie, jeśli połączysz
GEOPLAN Z SIATKĄ TRÓJKĄTNĄ
TEMAT NUMERU 9 GEOPLAN Z SIATKĄ TRÓJKĄTNĄ Marzenna Grochowalska W Matematyce w Szkole wiele miejsca poświęcono geoplanom z siatką kwadratową oraz ich zaletom 1. Równie ciekawą pomocą dydaktyczną jest geoplan
Wielokąty z papieru i ciągi
Wielokąty z papieru i ciągi Aneta Wyrębkowska kl. II B Paulina Wyrębkowska kl. II B Gimnazjum 37 w Krakowie Pod opieką mgr Teresy Sklepek Okazuje się, że można ułożyć wielokąty foremne zaginając odpowiednio
Konspekt do lekcji matematyki dn w klasie II d w Gimnazjum nr 7 w Zamościu.
Monika Łokaj Matematyka III (licencjat) Konspekt do lekcji matematyki dn. 07.04.2006 w klasie II d w Gimnazjum nr 7 w Zamościu. Nauczyciel: Prowadząca: Monika Łokaj Temat lekcji: Geometria kartki papieru
Konkurs dla gimnazjalistów Etap II 8 lutego 2017 roku
Konkurs dla gimnazjalistów Etap II 8 lutego 017 roku Instrukcja dla ucznia 1. W zadaniach o numerach od 1. do 15. są podane cztery warianty odpowiedzi: A, B, C, D. Dokładnie jedna z nich jest poprawna.
XII. GEOMETRIA PRZESTRZENNA GRANIASTOSŁUPY
pitagoras.d2.pl XII. GEOMETRIA PRZESTRZENNA GRANIASTOSŁUPY Graniastosłup to wielościan posiadający dwie identyczne i równoległe podstawy oraz ściany boczne będące równoległobokami. Jeśli podstawy graniastosłupa
Test kwalifikacyjny na I Warsztaty Matematyczne
Test kwalifikacyjny na I Warsztaty Matematyczne Na pytania odpowiada się tak lub nie poprzez wpisanie odpowiednio T bądź N w pole obok pytania. W danym trzypytaniowym zestawie możliwa jest dowolna kombinacja
Planimetria poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie
Planimetria poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie http://www.zadania.info/) 1. W trójkącie prostokątnym wysokość poprowadzona na przeciwprostokątną ma długość 10 cm, a promień okręgu
Test na koniec nauki w klasie trzeciej gimnazjum
8 Test na koniec nauki w klasie trzeciej gimnazjum imię i nazwisko ucznia...... data klasa Test 2 1 Na przeciwległych ścianach każdej z pięciu sześciennych kostek umieszczono odpowiednio liczby: 1 i 1,
KONKURS ZOSTAŃ PITAGORASEM MUM. Podstawowe własności figur geometrycznych na płaszczyźnie
KONKURS ZOSTAŃ PITAGORASEM MUM ETAP I TEST II Podstawowe własności figur geometrycznych na płaszczyźnie 1. A. Stosunek pola koła wpisanego w kwadrat o boku długości 6 do pola koła opisanego na tym kwadracie
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ W RUDKACH
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ W RUDKACH Marzena Zbrożyna DOPUSZCZAJĄCY: Uczeń potrafi: odczytać informacje z tabeli odczytać informacje z diagramu
Dydaktyka matematyki (III etap edukacyjny) IV rok matematyki Semestr letni 2017/2018 Ćwiczenia nr 7
Dydaktyka matematyki (III etap edukacyjny) IV rok matematyki Semestr letni 2017/2018 Ćwiczenia nr 7 Lang: Pole powierzchni kuli Nierówność dla objętości skorupki: (pow. małej kuli) h objętość skorupki
Geometria. Rodzaje i własności figur geometrycznych:
Geometria Jest jednym z działów matematyki, którego przedmiotem jest badanie figur geometrycznych i zależności między nimi. Figury geometryczne na płaszczyźnie noszą nazwę figur płaskich, w przestrzeni
MATURA probna listopad 2010
MATURA probna listopad 00 ZADANIA ZAMKNIĘTE W zadaniach od. do 5. wybierz i zaznacz poprawną odpowiedź. Zadanie. ( pkt) - 4 $ 4 Liczba 0 jest równa 4-0, 5 A. B. C. D. 4 Zadanie. ( pkt) Liczba log 6 - log
SPIS TREŚCI. PIERWIASTKI 1. Pierwiastki Działania na pierwiastkach Działania na pierwiastkach (cd.) Zadania testowe...
SPIS TREŚCI POTĘGI 1. Potęga o wykładniku naturalnym................................. 7 2. Iloczyn i iloraz potęg o jednakowych podstawach................ 8 3. Potęgowanie potęgi................................................
AUTOR : HANNA MARCINKOWSKA. TEMAT : Symetria osiowa i środkowa UWAGA:
SCENARIUSZ ZAJĘĆ Z MATEMATYKI DLA KLASY I GIMNAZJUM PRZYGOTOWANY W PROGRAMIE NARZĘDZIOWYM EXE LEARNING - SYMETRIA OSIOWA I ŚRODKOWA. Szkoła z klasą 2.0 Zastosowanie technologii informacyjnej AUTOR : HANNA
Ćwiczenia z Geometrii I, czerwiec 2006 r.
Waldemar ompe echy przystawania trójkątów 1. unkt leży na przekątnej kwadratu (rys. 1). unkty i R są rzutami prostokątnymi punktu odpowiednio na proste i. Wykazać, że = R. R 2. any jest trójkąt ostrokątny,
KONSPEKT LEKCJI MATEMATYKI
KONSPEKT LEKCJI MATEMATYKI Temat lekcji: Matematyka w codziennym zastosowaniu. Klasa: III gimnazjum Cele główne lekcji: Uczeń umie stosować wzory na obliczanie powierzchni całkowitej i objętości brył przestrzennych.
Graniastosłupy mają dwie podstawy, a ich ściany boczne mają kształt prostokątów.
GRANIASTOSŁUPY I OSTROSŁUPY Bryły czyli figury przestrzenne dzielimy na: graniastosłupy ostrosłupy bryły obrotowe Graniastosłupy i ostrosłupy nazywamy wielościanami Graniastosłupy mają dwie podstawy, a
Rozwiązania zadań. Arkusz maturalny z matematyki nr 1 POZIOM PODSTAWOWY
Rozwiązania zadań Arkusz maturalny z matematyki nr POZIOM PODSTAWOWY Zadanie (pkt) Sposób I Skoro liczba jest środkiem przedziału, więc odległość punktu x od zapisujemy przy pomocy wartości bezwzględnej.
Sprawdzian całoroczny kl. II Gr. A x
. Oblicz: a) (,5) 8 c) ( ) : ( ). Oblicz: Sprawdzian całoroczny kl. II Gr. A [ ] d) 6 a) ( : ) 5 6 6 8 50. Usuń niewymierność z mianownika: a). Oblicz obwód koła o polu,π dm. 5. Podane wyrażenia przedstaw
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ NA ROK SZKOLNY 2011/2012 DO PROGRAMU MATEMATYKA Z PLUSEM
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ NA ROK SZKOLNY 2011/2012 DO PROGRAMU MATEMATYKA Z PLUSEM LICZBY, WYRAŻENIA ALGEBRAICZNE umie obliczyć potęgę o wykładniku naturalnym; umie obliczyć
IX Olimpiada Matematyczna Gimnazjalistów
IX Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część testowa www.omg.edu.pl (3 października 2013 r.) Rozwiązania zadań testowych 1. Liczba 3 9 3 27 jest a) niewymierna; b) równa 3 27;
WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą
1. Statystyka odczytać informacje z tabeli odczytać informacje z diagramu 2. Mnożenie i dzielenie potęg o tych samych podstawach 3. Mnożenie i dzielenie potęg o tych samych wykładnikach 4. Potęga o wykładniku
Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2014/2015
Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2014/2015 KOD UCZNIA Etap: Data: Czas pracy: wojewódzki 4 marca 2015 r. 120 minut Informacje dla
Kurs ZDAJ MATURĘ Z MATEMATYKI - MODUŁ 13 Teoria stereometria
1 GRANIASTOSŁUPY i OSTROSŁUPY wiadomości ogólne Aby tworzyć wzory na OBJĘTOŚĆ i POLE CAŁKOWITE graniastosłupów musimy znać pola figur płaskich a następnie na ich bazie stosować się do zasady: Objętość
Skrypt 18. Bryły. 2. Inne graniastosłupy proste rozpoznawanie, opis, rysowanie siatek, brył
Projekt Innowacyjny program nauczania matematyki dla gimnazjów współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 18 Bryły 1. Prostopadłościan i sześcian rozpoznawanie,
Konkurs dla gimnazjalistów Etap szkolny 12 grudnia 2013 roku
Konkurs dla gimnazjalistów Etap szkolny 1 grudnia 01 roku Instrukcja dla ucznia 1. W zadaniach o numerach od 1. do 1. są podane cztery warianty odpowiedzi: A, B, C, D. Dokładnie jedna z nich jest poprawna.
Matematyka z kluczem. Układ treści w klasach 4 8 szkoły podstawowej. KLASA 4 (126 h) część 1 (59 h) część 2 (67 h)
Matematyka z kluczem Układ treści w klasach 4 8 szkoły podstawowej KLASA 4 (126 h) część 1 (59 h) I. LICZBY NATURALNE część 1 (23) 1. Jak się uczyć matematyki (1) 2. Oś liczbowa 3. Jak zapisujemy liczby
1 Odległość od punktu, odległość od prostej
24 Figury geometryczne 2 Figury geometryczne 1 Odległość od punktu, odległość od prostej P 1. Odległość punktu K od prostej p jest równa 4 cm. Który z odcinków ma długość równą 4 cm? K p A B C D A. AK
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE V. Temat lekcji Punkty z podstawy programowej z dnia 14 lutego 2017r.
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE V Temat lekcji Punkty z podstawy programowej z dnia 14 lutego 2017r. Działania pamięciowe Potęgowanie 1) dodaje i odejmuje w pamięci liczby naturalne dwucyfrowe
Matematyka z kluczem. Układ treści w klasach 4 8 szkoły podstawowej. KLASA 4 (126 h) część 1 (59 h) część 2 (67 h)
Matematyka z kluczem Układ treści w klasach 4 8 szkoły podstawowej KLASA 4 (126 h) część 1 (59 h) I. LICZBY NATURALNE część 1 (23) 1. Jak się uczyć matematyki (1) 2. Oś liczbowa 3. Jak zapisujemy liczby
XIV Olimpiada Matematyczna Juniorów
XIV Olimpiada Matematyczna Juniorów Zawody stopnia pierwszego część testowa (27 września 2018 r.) Rozwiązania zadań testowych 1. W sklepie U Bronka cena spodni była równa cenie sukienki. Cenę spodni najpierw
WIELOKĄTY FOREMNE I ICH PRZEKĄTNE
WIELOKĄTY FOREMNE I ICH PRZEKĄTNE Krzysztof Lisiecki Kl. V a SP nr 6 im. Unii Europejskiej w Kłodzku Praca pod kierunkiem: mgr Moniki Chosińskiej Spis treści Lp. Tytuł Str. 1. Wstęp. 2 2. Pojęcia używane
Temat: Konstrukcja prostej przechodzącej przez punkt A i prostopadłej do danej prostej k.
Temat: Konstrukcja prostej przechodzącej przez punkt A i prostopadłej do danej prostej k. Cel: Uczeń, przy użyciu programu GeoGebra, stworzy model konstrukcji prostej prostopadłej i wykorzysta go w zadaniach
9. Funkcje trygonometryczne. Elementy geometrii: twierdzenie
9. Funkcje trygonometryczne. Elementy geometrii: twierdzenie Pitagorasa i twierdzenie cosinusów, twierdzenie o kącie wpisanym i środkowym, okrąg wpisany i opisany na wielokącie, wielokąty foremne (c.d).
Treści zadań Obozu Naukowego OMG
STOWARZYSZENIE NA RZECZ EDUKACJI MATEMATYCZNEJ KOMITET GŁÓWNY OLIMPIADY MATEMATYCZNEJ GIMNAZJALISTÓW Treści zadań Obozu Naukowego OMG Poziom OM 2015 rok SZCZYRK 2015 Pierwsze zawody indywidualne Treści
Trójkąty Zad. 0 W trójkącie ABC, AB=40, BC=23, wyznacz AC wiedząc że jest ono sześcianem liczby naturalnej.
C Trójkąty Zad. 0 W trójkącie ABC, AB=40, BC=23, wyznacz AC wiedząc że jest ono sześcianem liczby naturalnej. Zad. 1 Oblicz pole trójkąta o bokach 13 cm, 14 cm, 15cm. Zad. 2 W trójkącie ABC rys. 1 kąty
Wymagania edukacyjne z matematyki dla klasy II gimnazjum wg programu Matematyka z plusem
Wymagania edukacyjne z matematyki dla klasy II gimnazjum wg programu Matematyka z plusem Ocenę dopuszczającą otrzymuje uczeń, który umie: 1.zapisywać potęgi w postaci iloczynów 2. zapisywać iloczyny jednakowych
SPRAWDZIAN NR Oceń prawdziwość zdania. 2. Zaznacz poprawną odpowiedź. 3. Na rysunkach przedstawiono dwie bryły. Nazwij każdą z nich.
SPRAWDZIAN NR 1 WIESŁAWA MALINOWSKA IMIĘ I NAZWISKO: KLASA: GRUPA A 1. Oceń prawdziwość zdania. Zaznacz P, jeśli zdanie jest prawdziwe, lub F, jeśli jest fałszywe. A. Rysunek nie przedstawia siatki ostrosłupa
Projekt Zobaczę-dotknę-wiem i umiem, dofinansowany przez Fundację mbanku w partnerstwie z Fundacją Dobra Sieć
Odkrywamy własności wielokątów metodą składania kartki papieru Uczniowie pracują z kartkami A4. Ćwiczenie 1 Wykonaj z kartki A4 kwadrat. D C A B Zegnij kartkę wzdłuż EF tak, aby wierzchołek A znalazł się
Mini tablice matematyczne. Figury geometryczne
Mini tablice matematyczne Figury geometryczne Spis treści Własności kwadratu Ciekawostka:Kwadrat magiczny Prostokąt Własności prostokąta Trapez Własności trapezu Równoległobok Własności równoległoboku
ZBIÓR ZADAŃ Z MATEMATYKI DLA KLASY II GIMNAZJUM W ZAKRESIE WYMAGAŃ KONIECZNYCH I PODSTAWOWYCH
ZBIÓR ZADAŃ Z MATEMATYKI DLA KLASY II GIMNAZJUM W ZAKRESIE WYMAGAŃ KONIECZNYCH I PODSTAWOWYCH Opracowała: nauczyciel matematyki mgr Małgorzata Drejka Legionowo 007 SPIS TREŚCI ALGEBRA potęgi i pierwiastki
SCENARIUSZ ZAJĘĆ KOŁA NAUKOWEGO z MATEMATYKI. prowadzonego w ramach projektu Uczeń OnLine
SCENARIUSZ ZAJĘĆ KOŁA NAUKOWEGO z MATEMATYKI 1. Autor: Anna Wołoszyn prowadzonego w ramach projektu Uczeń OnLine 2. Grupa docelowa: klasa 3 Gimnazjum 3. Liczba godzin: 1 4. Temat zajęć: Wykorzystanie własności
Podstawowe pojęcia geometryczne
PLANIMETRIA Podstawowe pojęcia geometryczne Geometria (słowo to pochodzi z języka greckiego i oznacza mierzenie ziemi) jest jednym z działów matematyki, którego przedmiotem jest badanie figur geometrycznych
KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM
KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM Na stopień dostateczny uczeń powinien umieć: Arytmetyka - zamieniać procent/promil na liczbę i odwrotnie, - zamieniać procent na promil i odwrotnie, - obliczać
Matematyka z plusem Klasa IV
Matematyka z plusem Klasa IV KLASA IV SZCZEGÓŁOWE CELE EDUKACYJNE KSZTAŁCENIE Rozwijanie sprawności rachunkowej Wykonywanie jednodziałaniowych obliczeń pamięciowych na liczbach naturalnych. Stosowanie
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IV
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IV Dział I. Liczby naturalne część 1 Jak się uczyć matematyki Oś liczbowa Jak zapisujemy liczby Szybkie dodawanie Szybkie odejmowanie Tabliczka mnożenia Tabliczka
WYMAGANIA EDUKACYJNE W KLASIE DRUGIEJ Z MATEMATYKI GIMNAZJUM NR 19 W KRAKOWIE
WYMAGANIA EDUKACYJNE W KLASIE DRUGIEJ Z MATEMATYKI GIMNAZJUM NR 19 W KRAKOWIE I. Szkolne zasady oceniania i sposoby sprawdzania osiągnięć edukacyjnych 1. Ocenianie ma charakter systematyczny i wieloaspektowy.
XIII Olimpiada Matematyczna Juniorów
XIII Olimpiada Matematyczna Juniorów Zawody stopnia pierwszego część testowa (8 września 017 r.) Rozwiązania zadań testowych 1. W każdym z trzech lat 018, 019 i 00 pensja pana Antoniego będzie o 5% większa
Figury geometryczne. 1. a) Narysuj prostą prostopadłą do prostej, przechodzącą przez punkt. b) Narysuj prostą równoległą do prostej,
Figury geometryczne str. 1/7...... imię i nazwisko lp. w dzienniku...... klasa data 1. a) Narysuj prostą prostopadłą do prostej, przechodzącą przez punkt. b) Narysuj prostą równoległą do prostej, przechodzącą
POZIOM PODSTAWOWY - GR 1 Czas pracy 170 minut
POZIOM PODSTAWOWY - GR 1 Czas pracy 170 minut Klasa Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 16 stron.. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym.. W zadaniach
VII Olimpiada Matematyczna Gimnazjalistów
VII Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część testowa www.omg.edu.pl (29 września 2011 r.) Rozwiązania zadań testowych 1. Istnieje taki graniastosłup, którego liczba krawędzi
ZBIÓR ZADAŃ - ROZUMOWANIE I ARGUMENTACJA
ZIÓR ZŃ - ROZUMOWNIE I RGUMENTJ 0--30 Strona ZIÓR ZO O WYMGNI EGZMINYJNEGO - ROZUMOWNIE I RGUMENTJ. Zapisz sumę trzech kolejnych liczb naturalnych, z których najmniejsza jest liczba n. zy suma ta jest
LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ UWAGI TEMAT 1. LICZBY I DZIAŁANIA 23
TEMAT LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ UWAGI 1. LICZBY I DZIAŁANIA 3 1. Rachunki pamięciowe, dodawanie i odejmowanie. O ile więcej, o ile mniej 3. Rachunki pamięciowe,
wymagania programowe z matematyki kl. III gimnazjum
wymagania programowe z matematyki kl. III gimnazjum 1. Liczby i wyrażenia algebraiczne Zna pojęcie notacji wykładniczej. Umie zapisać liczbę w notacji wykładniczej. Umie porównywać liczy zapisane w różny
Osiągnięcia ponadprzedmiotowe
Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego w klasie 3 gimnazjum uczeń potrafi: Umiejętności konieczne i podstawowe czytać teksty w stylu matematycznym wykorzystywać słownictwo
MATEMATYKA Z PLUSEM DLA KLASY IV W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ. II. Działania na liczbach naturalnych. Uczeń:
MATEMATYKA Z PLUSEM DLA KLASY IV W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ TEMAT LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ UWAGI. LICZBY I DZIAŁANIA 4 h. Rachunki pamięciowe
Siatki i sklejanie wielościanów Praca konkursowa Matematyka dla Młodych
Siatki i sklejanie wielościanów Praca konkursowa Matematyka dla Młodych Miłosz Tresenberg Zespół Szkół w Kleszczewie ul. Poznańska 2, 3-005 Kleszczewo klasa 3GB Spis treści Rozdział 1. Wstęp... 3 Rozdział
Wielokąty i Okręgi- zagadnienia
Wielokąty i Okręgi- zagadnienia 1. Okrąg opisany na trójkącie. na każdym trójkącie można opisać okrąg, środkiem okręgu opisanego na trójkącie jest punkt przecięcia symetralnych boków tego trójkąta, jeżeli
Klasa 3.Graniastosłupy.
Klasa 3.Graniastosłupy. 1. Uzupełnij nazwy odcinków oznaczonych literami: a........................................................... b........................................................... c...........................................................
WOJEWÓDZKI KONKURS PRZEDMIOTOWY z MATEMATYKI dla uczniów szkół podstawowych 2018/2019
Nr identyfikacyjny spma - 2018/2019 (numer porządkowy z kodowania) Nr identyfikacyjny - wyjaśnienie sp szkoła podstawowa, symbol przedmiotu MA matematyka, numer porządkowy wynika z numeru stolika wylosowanego
TEMAT 1. LICZBY I DZIAŁANIA Rachunki pamięciowe, dodawanie i odejmowanie. 2. O ile więcej, o ile mniej 2 LICZBA GODZIN LEKCYJNYCH
TEMAT 1. LICZBY I DZIAŁANIA 3 1. Rachunki pamięciowe, dodawanie i odejmowanie LICZBA GODZIN LEKCYJNYCH. O ile więcej, o ile mniej WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. Liczby naturalne w dziesiątkowym
KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. II GIMNAZJUM
KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. II GIMNAZJUM POTĘGI I PIERWIASTKI - pojęcie potęgi o wykładniku naturalnym; - wzór na mnożenie i dzielenie potęg o tych samych podstawach; - wzór na potęgowanie
KURS MATURA PODSTAWOWA Część 2
KURS MATURA PODSTAWOWA Część 2 LEKCJA 7 Planimetria ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 Kąt na poniższym rysunku ma miarę:
Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Biotechnologia w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era inżyniera
MATEMATYKA. WYMAGANIA EDUKACYJNE KLASA I, II, III Bożena Tarnowiecka, Arkadiusz Wolski. KLASA I Wymagania
MATEMATYKA WYMAGANIA EDUKACYJNE KLASA I, II, III Bożena Tarnowiecka, Arkadiusz Wolski Treści zapisane kursywą (i oznaczone gwiazdką) wykraczają poza podstawę programową. Nauczyciel może je realizować,
XV WOJEWÓDZKI KONKURS Z MATEMATYKI
XV WOJEWÓDZKI KONKURS Z MATEMATYKI DLA UCZNIÓW DOTYCHCZASOWYCH GIMNAZJÓW ORAZ KLAS DOTYCHCZASOWYCH GIMNAZJÓW PROWADZONYCH W SZKOŁACH INNEGO TYPU WOJEWÓDZTWA ŚWIĘTOKRZYSKIEGO W ROKU SZKOLNYM 2017/2018 ETAP
Spis treści. POLA WIELOKĄTÓW Pole prostokąta... 27 Pole równoległoboku i rombu... 30 Pole trójkąta... 31 Pole trapezu... 33 Sprawdź, czy umiesz...
Spis treści FIGURY NA PŁASZCZYŹNIE Proste, odcinki, okręgi, koła... 3 Trójkąty, czworokąty i inne wielokąty... 5 Kąty... 9 Kąty w trójkątach i czworokątach... 11 Konstrukcje geometryczne (część 1)... 14
SCENARIUSZ ZAJĘĆ KOŁA NAUKOWEGO z MATEMATYKI prowadzonego w ramach projektu Uczeń OnLine
SCENARIUSZ ZAJĘĆ KOŁA NAUKOWEGO z MATEMATYKI prowadzonego w ramach projektu Uczeń OnLine 1. Autor: Anna Wołoszyn 2. Grupa docelowa: Klasa 2 Gimnazjum 3. Liczba godzin: 2 4. Temat zajęć: Geometria brył
7. PLANIMETRIA.GEOMETRIA ANALITYCZNA
7. PLANIMETRIA.GEOMETRIA ANALITYCZNA ZADANIA ZAMKNIĘTE 1. Okrąg o równaniu : A) nie przecina osi, B) nie przecina osi, C) przechodzi przez początek układu współrzędnych, D) przechodzi przez punkt. 2. Stosunek
TEMAT 1. LICZBY I DZIAŁANIA Rachunki pamięciowe, dodawanie i odejmowanie. 2. O ile więcej, o ile mniej 2 LICZBA GODZIN LEKCYJNYCH
TEMAT 1. LICZBY I DZIAŁANIA 1. Rachunki pamięciowe, dodawanie i odejmowanie LICZBA GODZIN LEKCYJNYCH. O ile więcej, o ile mniej WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. Liczby naturalne w dziesiątkowym
Przedmiotowe zasady oceniania i wymagania edukacyjne z matematyki dla klasy drugiej gimnazjum
Przedmiotowe zasady oceniania i wymagania edukacyjne z matematyki dla klasy drugiej gimnazjum I. POTĘGI I PIERWIASTKI oblicza wartości potęg o wykładnikach całkowitych liczb różnych od zera zapisuje liczbę
Matematyka Matematyka z pomysłem Klasy 4 6
Szczegółowy rozkład materiału nauczania z odniesieniami do wymagań z podstawy programowej w klasach IV VI Klasa IV szczegółowe z DZIAŁ I. LICZBY NATURALNE W DZIESIĄTKOWYM UKŁADZIE POZYCYJNYM (19 godz.)
Pytania do spr / Własności figur (płaskich i przestrzennych) (waga: 0,5 lub 0,3)
Pytania zamknięte / TEST : Wybierz 1 odp prawidłową. 1. Punkt: A) jest aksjomatem in. pewnikiem; B) nie jest aksjomatem, bo można go zdefiniować. 2. Prosta: A) to zbiór punktów; B) to zbiór punktów współliniowych.
Konspekt do lekcji matematyki w klasie II gimnazjum
Agnieszka Raczkiewicz Konspekt do lekcji matematyki w klasie II gimnazjum Temat lekcji: Wielokąty foremne - konstrukcje i zadania. Temat poprzedniej lekcji: Wielokąt opisany na okręgu. Czas realizacji
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów Etap Szkolny 27 listopada 2012 Czas 90 minut
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów Etap Szkolny 27 listopada 2012 Czas 90 minut 1. Otrzymujesz do rozwiązania 10 zadań zamkniętych oraz 5 zadań otwartych. 2. Obok każdego zadania podana
PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI
PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Zestaw P POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 17 stron.. W zadaniach od 1. do 0. są podane 4 odpowiedzi:
XI Olimpiada Matematyczna Gimnazjalistów
XI Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część testowa www.omg.edu.pl (24 września 2015 r.) Rozwiązania zadań testowych 1. Dane są takie dodatnie liczby a i b, że 30% liczby a