Mikroskop sił atomowych

Wielkość: px
Rozpocząć pokaz od strony:

Download "Mikroskop sił atomowych"

Transkrypt

1 Mikroskop sił atomowych AFM: jak to działa? Krzysztof Zieleniewski Proseminarium ZFCS, 5 listopada 2009

2 Plan seminarium Łyczek historii Możliwości mikroskopu Budowa mikroskopu na Pasteura Podstawowe mody pracy Zasada działania i siły działające na próbkę Problemy Podsumowanie

3 Możliwości mikroskopu Franz J. Giessibl, Advances in atomic force microscopy, Rev. Mod. /Phys., Vol 75, No. 3, 2003, s

4 Łyczek historii - STM (1981) Źródło: Wikipedia, Scanning tunneling microscope

5 Łyczek historii - STM Prąd tunelowania It wyraża się wzorem: gdzie: I0 - funkcja przyłożonego napięcia i gęstości stanów z - wysokość nad próbką me- masa elektronu Ф - praca wyjścia elektronu z metalu

6 Łyczek historii - STM Nagroda Nobla dla Gerda Binninga i Heinricha Rohrera (1986) Ograniczenia: Tylko powierzchnie metaliczne Występowały duże siły, które należało uwzględniać Idea AFM i jego realizacja (1986)

7 Pierwszy mikroskop sił atomowych Rys. z MultiModeB SPM Instruction Manual [8]

8 Lepszy pomysł na kontrolę wychylenia Wadą poprzedniego systemu było mieszanie się oddziaływań Rys. z MultiModeB SPM Instruction Manual [8]

9 Budowa mikroskopu

10

11

12

13

14

15

16 Zasada działania AFM Rysunek z wniosku patentowego G. Binninga z roku 1986 [1].

17 Uzależnienie budowy od funkcji Rysunek z Electric Techniques on MultiModeTM Systems [5]

18 Tryb kontaktowy Nakładanie się orbitali atomowych Sprzężenie zwrotne wysokości głowicy Duże, jak na skalę atomową, siły oraz małe powierzchnie skutkują dużymi ciśnieniami Łatwość interpretacji wyników - mapa (x, y, F = const)

19 Tryb uderzania (tapping) o próbkę Wikipedia, Atomic force microscope [6] Relatywnie duże amplitudy drgań (do nm) oraz sztywne dźwignie Znacznie łagodniejszy dla próbki od trybu kontaktowego Możliwość oglądania nawet warstw lipidowych

20 Tryb uderzania (tapping) o próbkę Protonowana poly(2-winilopirydyna) w środowisku wodnym o różnym ph. Y. Roitier, S. Minko, AFM Single Molecule Experiments at the Solid-Liquid Interface [7]

21 Tryb stałej amplitudy - AM-AFM Badamy zmiany amplitudy w zależności od sił działających na próbkę (tip krzemowy, próbka mika): Ricardo García, Rubén Pérez, Dynamic atomic force microscopy methods, Surface Science Reports 47 (2002), s

22 Tryb stałej amplitudy - AM-AFM W czasie zbliżania i oddalania końcówki od próbki obserwuje się dwie gałęzie drgań: Ricardo García, Rubén Pérez, Dynamic atomic force microscopy methods, Surface Science Reports 47 (2002), s

23 Tryb stałej częstotliwości - FM-AFM Ograniczeniem AM-AFM jest z jednej strony wyginanie się tipa i tarcie. Z kolei w próżni trzeba by czekać długo (ok. 2 s/px) na dopasowanie się rezonansu do zmienionych warunków.

24 Tryb stałej częstotliwości - FM-AFM Zmiana sił działających na dźwignię powoduje zmianę częstotliwości rezonansowej Częstotliwość dostosowuje się znacznie szybciej. Osiągane dobrocie Q sięgają setek w powietrzu i setek tysięcy w próżni

25 Siły działające na tipa Rodzaje sił działających na dźwignię: kontaktowe van der Waalsa magnetostatyczne elektrostatyczne adhezja, menisk

26 Siły działające na tipa - kontaktowe Siły odpychające (kontaktowe): Potencjał Morse'a, Lennarda-Jonesa Siła van der Waalsa F : vdw gdzie: H - stała Hamakera, charakterystyczna dla danego materiału próbki R - promień końcówki sondy z - wysokość nad próbką

27 Siły działające na tipa elektrostatyczna W przybliżeniu z << R: gdzie ε0 - przewodniość elektryczna próżni U - napięcie między próbką a dźwignią

28 Siły dziłające na tipa - adhezja Adhezja - przyleganie molekuł płynów do powierzchni Kilka powodów przylegania: mechaniczne, van der Waalsa Istnieje kilka modeli wyliczania siły - ich stosowalność jest zależna od parametru elastyczności λ.

29 Siły działające na tipa - adhezja Przykładowe dwa modele: Model dla dużych k i małych R (λ ~ 0,01..0,1): Model (λ > 5): gdzie: γ - energia powierzchniowa a0 - odległość obcięcia modelu (cut-off)

30 Obróbka danych - co chcemy osiągnąć

31 Obróbka danych

32 Obróbka danych

33 Do czego może służyć AFM? Do szukania i obrazowania dyslokacji w próbkach - tu InSb:

34 Do czego może służyć AFM?

35 Problemy Szumy (napięciowe) - małe Szumy termiczne Możliwość "przyklejenia" się tipa do próbki Nie do końca rozumiane siły działające na ramię W szczególności: dwie gałęzie stabilnych oscylacji Wyzwaniem jest produkcja odpowiednich tipów

36 Podsumowanie - wady Wielkość próbek Nie bada stromych ścian Próby stosowania nanorurek jako tipów Rys. z MultiModeB Instruction Manual Franz J. Giessibl, Advances in atomic force microscopy, Rev. Mod. Phys., Vol 75, No. 3, 2003, s

37 Podsumowanie - wady

38 Podsumowanie - zalety AFM Rozdzielczość atomowa w ultra wysokiej próżni Kilka dostępnych obserwabli (amplituda, faza, częstotliwość, ugięcie dźwigni) Dowolność próbek - (nie)przewodzące, kryształy, polimery Praca w próżni, powietrzu lub wodzie - żywe organizmy

39 Gorące podziękowania dla mgra Rafała Bożka Dziękuję za uwagę

40 Bibliografia 1. Gerd Binning, "Atomic Force Microscope and Method for Imaging Surfaces with Atomic Resolution", US Patent No. 4,724,318. Cyt. za [2] 2. Franz J. Giessibl, Advances in atomic force microscopy, Rev. Mod. Phys., Vol 75, No. 3, 2003, s Wikipedia, Scanning tunneling microscope, dostępny: Scanning_tunneling_microscope, data dostępu: Ricardo García, Rubén Pérez, Dynamic atomic force microscopy methods, Surface Science Reports 47 (2002), s Electric Techniques on MultiModeTM Systems, s Wikipedia, Atomic force microscope, dostępny: Atomic_force_microscope, data dostępu: Yuri Roitier, Sergiy Minko, AFM Single Molecule Experiments at the Solid Liquid Interface: In Situ Conformation of Adsorbed Flexible Polyelectrolyte Chains, Journal of the American Society, 2005, 127 (45), dostępny: data dostępu [abstrakt] 8. MultiModeB Instruction Manual

41 Budowa: Tip Stała sprężystości nie może być za duża (w trybie kontaktowym) i nie za mała (w trybie niekontaktowym) [R. García, R. Pérez]: gdzie: L, w, t - wymiary belki Y - moduł Younga

42 Tryb stałej częstotliwości - FM-AFM W trybach rezonansowym i fazowym ważna jest częstotliwość własna f0 [R. García, R. Pérez]: gdzie: ρ - gęstość materiału tipu

43 Elastyczność gdzie: σ0 - naprężenie w stanie równowagi W - praca potrzebna do rozdzielenia jednostki powierzchni

I. Wstęp teoretyczny. Ćwiczenie: Mikroskopia sił atomowych (AFM) Prowadzący: Michał Sarna (sarna@novel.ftj.agh.edu.pl) 1.

I. Wstęp teoretyczny. Ćwiczenie: Mikroskopia sił atomowych (AFM) Prowadzący: Michał Sarna (sarna@novel.ftj.agh.edu.pl) 1. Ćwiczenie: Mikroskopia sił atomowych (AFM) Prowadzący: Michał Sarna (sarna@novel.ftj.agh.edu.pl) I. Wstęp teoretyczny 1. Wprowadzenie Mikroskop sił atomowych AFM (ang. Atomic Force Microscope) jest jednym

Bardziej szczegółowo

AFM. Mikroskopia sił atomowych

AFM. Mikroskopia sił atomowych AFM Mikroskopia sił atomowych Siły van der Waalsa F(r) V ( r) = c 1 r 1 12 c 2 r 1 6 Siły van der Waalsa Mod kontaktowy Tryby pracy AFM związane z zależnością oddziaływania próbka ostrze od odległości

Bardziej szczegółowo

NOWOCZESNE TECHNIKI BADAWCZE W INŻYNIERII MATERIAŁOWEJ. Beata Grabowska, pok. 84A, Ip

NOWOCZESNE TECHNIKI BADAWCZE W INŻYNIERII MATERIAŁOWEJ. Beata Grabowska, pok. 84A, Ip NOWOCZESNE TECHNIKI BADAWCZE W INŻYNIERII MATERIAŁOWEJ Beata Grabowska, pok. 84A, Ip http://home.agh.edu.pl/~graboska/ Mikroskopia Słowo mikroskop wywodzi się z języka greckiego: μικρός - mikros "mały

Bardziej szczegółowo

SPM Scanning Probe Microscopy Mikroskopia skanującej sondy STM Scanning Tunneling Microscopy Skaningowa mikroskopia tunelowa AFM Atomic Force

SPM Scanning Probe Microscopy Mikroskopia skanującej sondy STM Scanning Tunneling Microscopy Skaningowa mikroskopia tunelowa AFM Atomic Force SPM Scanning Probe Microscopy Mikroskopia skanującej sondy STM Scanning Tunneling Microscopy Skaningowa mikroskopia tunelowa AFM Atomic Force Microscopy Mikroskopia siły atomowej MFM Magnetic Force Microscopy

Bardziej szczegółowo

Podstawy fizyki wykład 2

Podstawy fizyki wykład 2 D. Halliday, R. Resnick, J.Walker: Podstawy Fizyki, tom 5, PWN, Warszawa 2003. H. D. Young, R. A. Freedman, Sear s & Zemansky s University Physics with Modern Physics, Addison-Wesley Publishing Company,

Bardziej szczegółowo

1 k. AFM: tryb bezkontaktowy

1 k. AFM: tryb bezkontaktowy AFM: tryb bezkontaktowy Ramię igły wprowadzane w drgania o małej amplitudzie (rzędu 10 nm) Pomiar zmian amplitudy drgań pod wpływem sił (na ogół przyciągających) Zbliżanie igły do próbki aż do osiągnięcia

Bardziej szczegółowo

Rodzaje mikroskopów ze skanującą sondą (SPM, Scanning Probe Microscopy)

Rodzaje mikroskopów ze skanującą sondą (SPM, Scanning Probe Microscopy) Spis treści 1 Historia 2 Rodzaje mikroskopów ze skanującą sondą (SPM, Scanning Probe Microscopy) 2.1 Skaningowy mikroskop tunelowy (STM od ang. Scanning Tunneling Microscope) 2.1.1 Uzyskiwanie obrazu metodą

Bardziej szczegółowo

Badanie powierzchni materiałów z za pomocą skaningowej mikroskopii sił atomowych (AFM)

Badanie powierzchni materiałów z za pomocą skaningowej mikroskopii sił atomowych (AFM) 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z techniką obrazowania powierzchni za pomocą skaningowego mikroskopu sił atomowych (AFM). Badanie powierzchni materiałów z za pomocą skaningowej mikroskopii

Bardziej szczegółowo

Wykład 12 V = 4 km/s E 0 =.08 e V e = = 1 Å

Wykład 12 V = 4 km/s E 0 =.08 e V e  = = 1 Å Wykład 12 Fale materii: elektrony, neutrony, lekkie atomy Neutrony generowane w reaktorze są spowalniane w wyniku zderzeń z moderatorem (grafitem) do V = 4 km/s, co odpowiada energii E=0.08 ev a energia

Bardziej szczegółowo

Skaningowy mikroskop tunelowy STM

Skaningowy mikroskop tunelowy STM Skaningowy mikroskop tunelowy STM Skaningowy mikroskop tunelowy (ang. Scanning Tunneling Microscope; STM) należy do szerszej rodziny mikroskopów ze sondą skanującą. Wykorzystuje on zjawisko tunelowania

Bardziej szczegółowo

Mikroskop sił atomowych (AFM)

Mikroskop sił atomowych (AFM) Mikroskop sił atomowych (AFM) 1. Wprowadzenie Mikroskop sił atomowych (ang. Atomic Force Microscope AFM) został skonstruowany w 1986 r. w laboratorium IBM w Zurichu (Binnig G., Quate C.F., Gerber C., Phys.

Bardziej szczegółowo

Nanoskopowe metody charakteryzacji materiałów. Obrazek: Helsinki University of Technology tfy.tkk.fi/sin/research/

Nanoskopowe metody charakteryzacji materiałów. Obrazek: Helsinki University of Technology tfy.tkk.fi/sin/research/ Nanoskopowe metody charakteryzacji materiałów Obrazek: Helsinki University of Technology tfy.tkk.fi/sin/research/ STM i AFM: podstawy konstrukcji STM AFM Scanning tunelling microscope (STM) Heinrich Rohrer

Bardziej szczegółowo

Mikroskopia Sił Atomowych (AFM)

Mikroskopia Sił Atomowych (AFM) Narzędzia dla nanotechnologii Mikroskopia Sił Atomowych (AFM) Tomasz Kruk* Wprowadzenie Wśród wielu urządzeń kojarzonych z nanotechnologią żadne nie jest tak dobrze rozpoznawalne i proste w założeniu swojej

Bardziej szczegółowo

M2 Mikroskopia sił atomowych: badanie nanostruktur.

M2 Mikroskopia sił atomowych: badanie nanostruktur. M2 Mikroskopia sił atomowych: badanie nanostruktur. Celem ćwiczenia jest poznanie mikroskopii sił atomowych i zbadanie otrzymanych próbek. Wymagane zagadnienia Podstawy fizyczne mikroskopii sił atomowych:

Bardziej szczegółowo

M1/M3 Zastosowanie mikroskopii sił atomowych do badania nanostruktur

M1/M3 Zastosowanie mikroskopii sił atomowych do badania nanostruktur M1/M3 Zastosowanie mikroskopii sił atomowych do badania nanostruktur Prowadzący: Kontakt e-mail: Rafał Bożek rafal.bozek@fuw.edu.pl Celem ćwiczenia jest zapoznanie się z zasadami mikroskopii sił atomowych

Bardziej szczegółowo

Mikroskopia skaningowa tunelowa i siłowa

Mikroskopia skaningowa tunelowa i siłowa Zakład Fizyki Magnetyków Uniwersytet w Białymstoku Instytut Fizyki Doświadczalnej Lipowa 41, 15-424 Białystok Tel: (85) 7457228 http://physics.uwb.edu.pl/zfmag Mikroskopia skaningowa tunelowa i siłowa

Bardziej szczegółowo

Wady ostrza. Ponieważ ostrze ma duży promień niektóre elementy ukształtowania powierzchni nie są rejestrowane (fioletowy element)

Wady ostrza. Ponieważ ostrze ma duży promień niektóre elementy ukształtowania powierzchni nie są rejestrowane (fioletowy element) Wady ostrza Ponieważ ostrze ma duży promień niektóre elementy ukształtowania powierzchni nie są rejestrowane (fioletowy element) Ponieważ ostrze ma kilka zakończeń w obrazie pojawiają się powtórzone struktury

Bardziej szczegółowo

Wykład 21: Studnie i bariery cz.2.

Wykład 21: Studnie i bariery cz.2. Wykład 21: Studnie i bariery cz.2. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Przykłady tunelowania: rozpad alfa, synteza

Bardziej szczegółowo

Fizyka powierzchni. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska

Fizyka powierzchni. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Fizyka powierzchni 11 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Lista zagadnień Fizyka powierzchni i międzypowierzchni, struktura

Bardziej szczegółowo

Elementy pomiaru AFM

Elementy pomiaru AFM Elementy pomiaru AFM - Dobór właściwej metody i konfiguracji mikroskopu - Przygotowanie i zamocowanie próbki - Dobranie i zamocowanie igły - Regulacja i ustawienie parametrów pracy: Regulacja pozycji fotodiody

Bardziej szczegółowo

ĆWICZENIE 4a. Analiza struktury kompozytów polimerowych

ĆWICZENIE 4a. Analiza struktury kompozytów polimerowych Nanomateriały ĆWICZENIE 4a 5 Analiza struktury kompozytów polimerowych Określenie stopnia rozproszenia i rozmiaru modyfikowanych bentonitów oraz nanonapełniaczy w matrycy epoksydowej Analiza topografii

Bardziej szczegółowo

Zaawansowane Metody Badań Strukturalnych. Dyfrakcja rentgenowska cz.2 Mikroskopia Sił Atomowych AFM

Zaawansowane Metody Badań Strukturalnych. Dyfrakcja rentgenowska cz.2 Mikroskopia Sił Atomowych AFM Zaawansowane Metody Badań Strukturalnych Dyfrakcja rentgenowska cz.2 Mikroskopia Sił Atomowych AFM Rentgenowska fazowa analiza ilościowa Parametry komórki elementarnej Wielkości krystalitów Budowa mikroskopu

Bardziej szczegółowo

Dyfrakcja rentgenowska cz.2 Mikroskopia Sił Atomowych AFM

Dyfrakcja rentgenowska cz.2 Mikroskopia Sił Atomowych AFM Zaawansowane Metody Badań Strukturalnych Dyfrakcja rentgenowska cz.2 Mikroskopia Sił Atomowych AFM Fazowa analiza ilościowa Obliczenia strukturalne prawo Vegarda Pomiary cienkich warstw Budowa mikroskopu

Bardziej szczegółowo

Warsztaty metod fizyki teoretycznej Zestaw 1 Mikroskopia sił atomowych (AFM) - opis drgań ostrza

Warsztaty metod fizyki teoretycznej Zestaw 1 Mikroskopia sił atomowych (AFM) - opis drgań ostrza Warsztaty metod fizyki teoretycznej Zestaw 1 Mikroskopia sił atomowych (AFM) - opis drgań ostrza Jan Kaczmarczyk, Szymon Godlewski, Marcin Zagórski 2.1.28 1 Wprowadzenie Mikroskopia sił atomowych (Atomic

Bardziej szczegółowo

Mikroskop tunelowy skaningowy Scaning tuneling microscopy (STM)

Mikroskop tunelowy skaningowy Scaning tuneling microscopy (STM) Mikroskop tunelowy skaningowy Scaning tuneling microscopy (STM) Zasada działania Historia odkryć Zastosowane rozwiązania Przykłady zastosowania Bolesław AUGUSTYNIAK Zasada działania mikroskopu skanującego

Bardziej szczegółowo

WARSZAWA LIX Zeszyt 257

WARSZAWA LIX Zeszyt 257 WARSZAWA LIX Zeszyt 257 SPIS TRE CI STRESZCZENIE... 9 WYKAZ SKRÓTÓW... 10 1. WPROWADZENIE... 13 2. MIKROSKOPIA SI ATOMOWYCH PODSTAWY... 17 2.1. Podstawy oddzia ywa ostrze próbka... 23 2.1.1. Modele fizyczne

Bardziej szczegółowo

Mikroskopia polowa. Efekt tunelowy Historia odkryć Uwagi o tunelowaniu Zastosowane rozwiązania. Bolesław AUGUSTYNIAK

Mikroskopia polowa. Efekt tunelowy Historia odkryć Uwagi o tunelowaniu Zastosowane rozwiązania. Bolesław AUGUSTYNIAK Mikroskopia polowa Efekt tunelowy Historia odkryć Uwagi o tunelowaniu Zastosowane rozwiązania Bolesław AUGUSTYNIAK Efekt tunelowy Efekt kwantowy, którym tłumaczy się przenikanie elektronu w sposób niezgodny

Bardziej szczegółowo

Laboratorium nanotechnologii

Laboratorium nanotechnologii Laboratorium nanotechnologii Zakres zagadnień: - Mikroskopia sił atomowych AFM i STM (W. Fizyki) - Skaningowa mikroskopia elektronowa SEM (WIM) - Transmisyjna mikroskopia elektronowa TEM (IF PAN) - Nanostruktury

Bardziej szczegółowo

(Pieczęć Wykonawcy) Załącznik nr 8 do SIWZ Nr postępowania: ZP/259/050/D/11. Opis oferowanej dostawy OFERUJEMY:

(Pieczęć Wykonawcy) Załącznik nr 8 do SIWZ Nr postępowania: ZP/259/050/D/11. Opis oferowanej dostawy OFERUJEMY: . (Pieczęć Wykonawcy) Załącznik nr 8 do SIWZ Nr postępowania: ZP/259/050/D/11 Opis oferowanej dostawy OFERUJEMY: 1) Mikroskop AFM według pkt 1 a) załącznika nr 7 do SIWZ, model / producent..... Detekcja

Bardziej szczegółowo

Oglądanie świata w nanoskali mikroskop STM

Oglądanie świata w nanoskali mikroskop STM FOTON 112, Wiosna 2011 23 Oglądanie świata w nanoskali mikroskop STM Szymon Godlewski Instytut Fizyki UJ Od zarania dziejów człowiek przejawiał wielką ciekawość otaczającego go świata. Prowadził obserwacje

Bardziej szczegółowo

METODY BADAŃ BIOMATERIAŁÓW

METODY BADAŃ BIOMATERIAŁÓW METODY BADAŃ BIOMATERIAŁÓW 1 Cel badań: ograniczenie ryzyka związanego ze stosowaniem biomateriałów w medycynie Rodzaje badań: 1. Badania biofunkcyjności implantów, 2. Badania degradacji implantów w środowisku

Bardziej szczegółowo

DOTYCZY: Sygn. akt SZ /12/6/6/2012

DOTYCZY: Sygn. akt SZ /12/6/6/2012 Warszawa dn. 2012-07-26 SZ-222-20/12/6/6/2012/ Szanowni Państwo, DOTYCZY: Sygn. akt SZ-222-20/12/6/6/2012 Przetargu nieograniczonego, którego przedmiotem jest " sprzedaż, szkolenie, dostawę, montaż i uruchomienie

Bardziej szczegółowo

Model wiązania kowalencyjnego cząsteczka H 2

Model wiązania kowalencyjnego cząsteczka H 2 Model wiązania kowalencyjnego cząsteczka H 2 + Współrzędne elektronu i protonów Orbitale wiążący i antywiążący otrzymane jako kombinacje orbitali atomowych Orbital wiążący duża gęstość ładunku między jądrami

Bardziej szczegółowo

Wykład 9: Fale cz. 1. dr inż. Zbigniew Szklarski

Wykład 9: Fale cz. 1. dr inż. Zbigniew Szklarski Wykład 9: Fale cz. 1 dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Klasyfikacja fal fale mechaniczne zaburzenie przemieszczające się w ośrodku sprężystym, fale elektromagnetyczne

Bardziej szczegółowo

O manipulacji w nanoskali

O manipulacji w nanoskali FOTON 113, Lato 2011 23 O manipulacji w nanoskali Szymon Godlewski Instytut Fizyki UJ Skonstruowany w 1981 roku przez dwóch pracowników IBM Gerda Binniga i Heinricha Rohrera skaningowy mikroskop tunelowy

Bardziej szczegółowo

Badanie strutury powierzchni z atomową zdolnością rozdzielczą. Powierzchnia jak ją zdefiniować?

Badanie strutury powierzchni z atomową zdolnością rozdzielczą. Powierzchnia jak ją zdefiniować? Badanie strutury powierzchni z atomową zdolnością rozdzielczą Powierzchnia jak ją zdefiniować? Obszar kryształu, dla którego nie da się zastosować trójwymiarowych równań opisujących własności wnętrza.

Bardziej szczegółowo

BIOTRIBOLOGIA. Wykład 1. TRIBOLOGIA z języka greckiego tribo (tribos) oznacza tarcie

BIOTRIBOLOGIA. Wykład 1. TRIBOLOGIA z języka greckiego tribo (tribos) oznacza tarcie BIOTRIBOLOGIA Wykład TRIBOLOGIA z języka greckiego tribo (tribos) oznacza tarcie Nauka o oddziaływaniu powierzchni ciał znajdujących cię w relatywnym ruchu Nauka o tarciu, zużywaniu i smarowaniu Biotribologia

Bardziej szczegółowo

Nanotechnologia wkracza do szkół: model Mikroskopu Sił Atomowych

Nanotechnologia wkracza do szkół: model Mikroskopu Sił Atomowych FOTON 101, Lato 2008 29 Nanotechnologia wkracza do szkół: model Mikroskopu Sił Atomowych Gorazd Planinšič Wydział Matematyki i Fizyki, Uniwersytet w Lublanie Janez Kovač Instytut Josefa Stefana, Lublana

Bardziej szczegółowo

PROJEKT STUDENCKIEGO SKANINGOWEGO MIKROSKOPU TUNELOWEGO

PROJEKT STUDENCKIEGO SKANINGOWEGO MIKROSKOPU TUNELOWEGO Słowa kluczowe: mikroskop, ostrze, prąd tunelowy, próbka Łukasz Bednarz Sebastian Bednarz PROJEKT STUDENCKIEGO SKANINGOWEGO MIKROSKOPU TUNELOWEGO Skaningowy mikroskop tunelowy (STM) jest urządzeniem o

Bardziej szczegółowo

OPTYKA. Leszek Błaszkieiwcz

OPTYKA. Leszek Błaszkieiwcz OPTYKA Leszek Błaszkieiwcz Ojcem optyki jest Witelon (1230-1314) Zjawisko odbicia fal promień odbity normalna promień padający Leszek Błaszkieiwcz Rys. Zjawisko załamania fal normalna promień padający

Bardziej szczegółowo

Mikroskopia Sił Atomowych. AFM Atomic Force Microscopy. G. Binning, C.F. Quate, Ch. Gerber Phys.Rev.Lett., 1986

Mikroskopia Sił Atomowych. AFM Atomic Force Microscopy. G. Binning, C.F. Quate, Ch. Gerber Phys.Rev.Lett., 1986 Mikroskopia Sił Atomowych AFM Atomic Force Microscopy G. Binning, C.F. Quate, Ch. Gerber Phys.Rev.Lett., 1986 Narodziny AFM Dane: wibr >10 13 Hz. m at 10-25 kg K=m 2 wibr K=10 N/m GB Dla porównania: folia

Bardziej szczegółowo

Kamil Zalewski, Wojciech Nath, Marcin Ewiak, Grzegorz Gabryel

Kamil Zalewski, Wojciech Nath, Marcin Ewiak, Grzegorz Gabryel Kamil Zalewski, Wojciech Nath, Marcin Ewiak, Grzegorz Gabryel Ogólny opis mikroskopów Wstęp do idei mikroskopów skanujących Rodziny mikroskopów skanujących Ogólna zasada działania mikroskopów AFM i STM

Bardziej szczegółowo

1. Kryształy jonowe omówić oddziaływania w kryształach jonowych oraz typy struktur jonowych.

1. Kryształy jonowe omówić oddziaływania w kryształach jonowych oraz typy struktur jonowych. Tematy opisowe 1. Kryształy jonowe omówić oddziaływania w kryształach jonowych oraz typy struktur jonowych. 2. Dlaczego do kadłubów statków, doków, falochronów i filarów mostów przymocowuje się płyty z

Bardziej szczegółowo

Liniowe układy scalone w technice cyfrowej

Liniowe układy scalone w technice cyfrowej Liniowe układy scalone w technice cyfrowej Wykład 6 Zastosowania wzmacniaczy operacyjnych: konwertery prąd-napięcie i napięcie-prąd, źródła prądowe i napięciowe, przesuwnik fazowy Konwerter prąd-napięcie

Bardziej szczegółowo

Mikroskopia Sił Atomowych AFM Atomic Force Microscopy

Mikroskopia Sił Atomowych AFM Atomic Force Microscopy Mikroskopia Sił Atomowych AFM Atomic Force Microscopy G. Binning, C.F. Quate, Ch. Gerber Phys.Rev.Lett., 1986 Narodziny AFM Dane: wibr >10 13 Hz. m at 10-25 kg K=m 2 wibr K=10 N/m GB Dla porównania: folia

Bardziej szczegółowo

Promotor: prof. nadzw. dr hab. Jerzy Ratajski. Jarosław Rochowicz. Wydział Mechaniczny Politechnika Koszalińska

Promotor: prof. nadzw. dr hab. Jerzy Ratajski. Jarosław Rochowicz. Wydział Mechaniczny Politechnika Koszalińska Promotor: prof. nadzw. dr hab. Jerzy Ratajski Jarosław Rochowicz Wydział Mechaniczny Politechnika Koszalińska Praca magisterska Wpływ napięcia podłoża na właściwości mechaniczne powłok CrCN nanoszonych

Bardziej szczegółowo

Prof. dr hab. Maria Kozioł-Montewka

Prof. dr hab. Maria Kozioł-Montewka Mikroskop sił atomowych jako nowe narzędzie w bezpośredniej identyfikacji drobnoustrojów stanowiących broń biologiczną Prof. dr hab. Maria Kozioł-Montewka Katedra i Zakład Mikrobiologii Lekarskiej Uniwersytet

Bardziej szczegółowo

ZASTOSOWANIE MIKROSKOPII SIŁ ATOMOWYCH (AFM) W DIAGNOSTYCE WARSTWY WIERZCHNIEJ

ZASTOSOWANIE MIKROSKOPII SIŁ ATOMOWYCH (AFM) W DIAGNOSTYCE WARSTWY WIERZCHNIEJ Mirosław BRAMOWICZ Uniwersytet Warmińsko-Mazurski w Olsztynie Sylwester KŁYSZ Instytut Techniczny Wojsk Lotniczych PRACE NAUKOWE ITWL Zeszyt 22, s. 159 166, 2007 r. DOI 10.2478/v10041-008-0009-z ZASTOSOWANIE

Bardziej szczegółowo

Elektrochemiczne metody skaningowe i ich zastosowanie w in ynierii korozyjnej

Elektrochemiczne metody skaningowe i ich zastosowanie w in ynierii korozyjnej Elektrochemiczne metody skaningowe i ich zastosowanie w in ynierii korozyjnej 1 2 NR 147 Julian Kubisztal Elektrochemiczne metody skaningowe i ich zastosowanie w in ynierii korozyjnej Wydawnictwo Uniwersytetu

Bardziej szczegółowo

Dobór materiałów konstrukcyjnych cz.13

Dobór materiałów konstrukcyjnych cz.13 Dobór materiałów konstrukcyjnych cz.13 dr inż. Hanna Smoleńska Katedra Inżynierii Materiałowej i Spajania Wydział Mechaniczny, Politechnika Gdańska Materiały edukacyjne ROZSZERZALNOŚĆ CIEPLNA LINIOWA Ashby

Bardziej szczegółowo

DOTYCZY: Sygn. akt SZ-222-20/12/6/6/2012

DOTYCZY: Sygn. akt SZ-222-20/12/6/6/2012 Warszawa dn. 2012-08-03 SZ-222-20/12/6/6/2012/ Szanowni Państwo, DOTYCZY: Sygn. akt SZ-222-20/12/6/6/2012 Przetargu nieograniczonego, którego przedmiotem jest " sprzedaż, szkolenie, dostawę, montaż i uruchomienie

Bardziej szczegółowo

Mikroskopie skaningowe

Mikroskopie skaningowe SPM Scanning Probe Microscopy Mikroskopie skaningowe (SPM- Sharp Probe Microscopy) Mikroskopy skanujące 1. Efekt tunelowania (STM). Stały prąd, stała wysokość. 2. Oddziaływania sił atomowych(afm). W kontakcie,

Bardziej szczegółowo

LABORATORIUM ELEKTROAKUSTYKI. ĆWICZENIE NR 1 Drgania układów mechanicznych

LABORATORIUM ELEKTROAKUSTYKI. ĆWICZENIE NR 1 Drgania układów mechanicznych LABORATORIUM ELEKTROAKUSTYKI ĆWICZENIE NR Drgania układów mechanicznych Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z właściwościami układów drgających oraz metodami pomiaru i analizy drgań. W ramach

Bardziej szczegółowo

Uniwersytet Łódzki, Wydział Chemii Katedra Chemii Nieorganicznej i Analitycznej Zakład Elektroanalizy i Elektrochemii Łódź, ul.

Uniwersytet Łódzki, Wydział Chemii Katedra Chemii Nieorganicznej i Analitycznej Zakład Elektroanalizy i Elektrochemii Łódź, ul. Uniwersytet Łódzki, Wydział Chemii 91-403 Łódź, ul. Tamka 12 Andrzej Leniart Akademia Ciekawej Chemii 11 czerwiec 2014 r. Z czego zbudowana jest materia? Demokryt z Abdery (ur. ok. 460 p.n.e., zm. ok.

Bardziej szczegółowo

S. Baran - Podstawy fizyki materii skondensowanej Wiązania chemiczne w ciałach stałych. Wiązania chemiczne w ciałach stałych

S. Baran - Podstawy fizyki materii skondensowanej Wiązania chemiczne w ciałach stałych. Wiązania chemiczne w ciałach stałych Wiązania chemiczne w ciałach stałych Wiązania chemiczne w ciałach stałych typ kowalencyjne jonowe metaliczne Van der Waalsa wodorowe siła* silne silne silne pochodzenie uwspólnienie e- (pary e-) przez

Bardziej szczegółowo

Politechnika Gdańska. Wydział Chemiczny. Katedra Elektrochemii, Korozji i Inżynierii Materiałowej. Rozprawa doktorska

Politechnika Gdańska. Wydział Chemiczny. Katedra Elektrochemii, Korozji i Inżynierii Materiałowej. Rozprawa doktorska Politechnika Gdańska Wydział Chemiczny Katedra Elektrochemii, Korozji i Inżynierii Materiałowej Rozprawa doktorska Dynamiczna spektroskopia impedancyjna w mikroskopowej analizie powierzchni metalicznych

Bardziej szczegółowo

Na wykresie przedstawiono zależność drogi od czasu trwania ruchu dla ciał A i B.

Na wykresie przedstawiono zależność drogi od czasu trwania ruchu dla ciał A i B. Imię i nazwisko Pytanie 1/ Na wykresie przedstawiono zależność drogi od czasu trwania ruchu dla ciał A i Wskaż poprawną odpowiedź Które stwierdzenie jest prawdziwe? Prędkości obu ciał są takie same Ciało

Bardziej szczegółowo

Zaawansowane Metody Badań Strukturalnych. Dyfrakcja rentgenowska cz.2 Mikroskopia Sił Atomowych AFM

Zaawansowane Metody Badań Strukturalnych. Dyfrakcja rentgenowska cz.2 Mikroskopia Sił Atomowych AFM Zaawansowane Metody Badań Strukturalnych Dyfrakcja rentgenowska cz.2 Mikroskopia Sił Atomowych AFM Rentgenowska fazowa analiza jakościowa i ilościowa Parametry komórki elementarnej Wielkości krystalitów

Bardziej szczegółowo

MECHANIKA 2. Drgania punktu materialnego. Wykład Nr 8. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Drgania punktu materialnego. Wykład Nr 8. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 8 Drgania punktu materialnego Prowadzący: dr Krzysztof Polko Wstęp Drgania Okresowe i nieokresowe Swobodne i wymuszone Tłumione i nietłumione Wstęp Drgania okresowe ruch powtarzający

Bardziej szczegółowo

Leon Murawski, Katedra Fizyki Ciała Stałego Wydział Fizyki Technicznej i Matematyki Stosowanej

Leon Murawski, Katedra Fizyki Ciała Stałego Wydział Fizyki Technicznej i Matematyki Stosowanej Nanomateriałów Leon Murawski, Katedra Fizyki Ciała Stałego Wydział Fizyki Technicznej i Matematyki Stosowanej POLITECHNIKA GDAŃSKA Centrum Zawansowanych Technologii Pomorze ul. Al. Zwycięstwa 27 80-233

Bardziej szczegółowo

CZUŁOŚĆ CHEMICZNA W MIKROSKOPII SIŁ ATOMOWYCH

CZUŁOŚĆ CHEMICZNA W MIKROSKOPII SIŁ ATOMOWYCH CZUŁOŚĆ CHEMICZNA W MIKROSKOPII SIŁ ATOMOWYCH Marek Szymoński Centrum Badań Układów Nanoskopowych i Zaawansowanych Materiałów (NANOSAM) Wydział Fizyki, Astronomii i Informatyki Stosowanej Uniwersytet Jagielloński

Bardziej szczegółowo

Nauka o Materiałach. Wykład VIII. Odkształcenie materiałów właściwości sprężyste. Jerzy Lis

Nauka o Materiałach. Wykład VIII. Odkształcenie materiałów właściwości sprężyste. Jerzy Lis Nauka o Materiałach Wykład VIII Odkształcenie materiałów właściwości sprężyste Jerzy Lis Nauka o Materiałach Treść wykładu: 1. Właściwości materiałów -wprowadzenie 2. Klasyfikacja reologiczna odkształcenia

Bardziej szczegółowo

Rezonanse magnetyczne oraz wybrane techniki pomiarowe fizyki ciała stałego

Rezonanse magnetyczne oraz wybrane techniki pomiarowe fizyki ciała stałego Paweł Szroeder Rezonanse magnetyczne oraz wybrane techniki pomiarowe fizyki ciała stałego Wykład XI Badania powierzchni ciała stałego: elektronowy mikroskop skaningowy (SEM), skaningowy mikroskop tunelowy

Bardziej szczegółowo

Drgania wymuszone - wahadło Pohla

Drgania wymuszone - wahadło Pohla Zagadnienia powiązane Częstość kołowa, częstotliwość charakterystyczna, częstotliwość rezonansowa, wahadło skrętne, drgania skrętne, moment siły, moment powrotny, drgania tłumione/nietłumione, drgania

Bardziej szczegółowo

WZMACNIACZ ODWRACAJĄCY.

WZMACNIACZ ODWRACAJĄCY. Ćwiczenie 19 Temat: Wzmacniacz odwracający i nieodwracający. Cel ćwiczenia Poznanie zasady działania wzmacniacza odwracającego. Pomiar przebiegów wejściowego wyjściowego oraz wzmocnienia napięciowego wzmacniacza

Bardziej szczegółowo

5.2.3. Układy detekcji i przetwarzania bliskiego pola... 80 5.2.4. Układy pętli sprzężenia zwrotnego... 82 5.2.5. Zasilacze systemu i układy

5.2.3. Układy detekcji i przetwarzania bliskiego pola... 80 5.2.4. Układy pętli sprzężenia zwrotnego... 82 5.2.5. Zasilacze systemu i układy Moim Rodzicom Spis treści Spis oznaczeń i akronimów... 9 1. Wstęp... 17. Metody pomiarowe mikroskopii bliskich oddziaływań....1. Mikroskopia tunelowa... 3.. Mikroskopia sił atomowych... 4..1. Statyczna

Bardziej szczegółowo

PL B1. UNIWERSYTET ŁÓDZKI, Łódź, PL BUP 15/13

PL B1. UNIWERSYTET ŁÓDZKI, Łódź, PL BUP 15/13 PL 219529 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 219529 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 397845 (22) Data zgłoszenia: 19.01.2012 (51) Int.Cl.

Bardziej szczegółowo

Gwidon Szefer NANOMECHANIKA MATERIAŁÓW I STRUKTUR MATERIALNYCH

Gwidon Szefer NANOMECHANIKA MATERIAŁÓW I STRUKTUR MATERIALNYCH Gwidon Szefer NANOMECHANIKA MATERIAŁÓW I STRUKTUR MATERIALNYCH Wydawnictwo Politechniki Poznańskiej 2017 Recenzent prof. dr hab. inż. Mieczysław Kuczma Redakcja Katarzyna Muzia Opracowanie komputerowe

Bardziej szczegółowo

WIĄZANIA. Co sprawia, że ciała stałe istnieją i są stabilne? PRZYCIĄGANIE ODPYCHANIE

WIĄZANIA. Co sprawia, że ciała stałe istnieją i są stabilne? PRZYCIĄGANIE ODPYCHANIE WIĄZANIA Co sprawia, że ciała stałe istnieją i są stabilne? PRZYCIĄGANIE ODPYCHANIE Przyciąganie Wynika z elektrostatycznego oddziaływania między elektronami a dodatnimi jądrami atomowymi. Może to być

Bardziej szczegółowo

Materiały Reaktorowe. Właściwości mechaniczne

Materiały Reaktorowe. Właściwości mechaniczne Materiały Reaktorowe Właściwości mechaniczne Naprężenie i odkształcenie F A 0 l i l 0 l 0 l l 0 a. naprężenie rozciągające b. naprężenie ściskające c. naprężenie ścinające d. Naprężenie torsyjne Naprężenie

Bardziej szczegółowo

Analityczne Modele Tarcia. Tadeusz Stolarski Katedra Podstaw Konstrukcji I Eksploatacji Maszyn

Analityczne Modele Tarcia. Tadeusz Stolarski Katedra Podstaw Konstrukcji I Eksploatacji Maszyn Analityczne Modele Tarcia Tadeusz Stolarski Katedra odstaw Konstrukcji I Eksploatacji Maszyn owierzchnia rzeczywista Struktura powierzchni Warstwa zanieczyszczeo - 30 A Warstwa tlenków - 100 A Topografia

Bardziej szczegółowo

LIV OLIMPIADA FIZYCZNA 2004/2005 Zawody II stopnia

LIV OLIMPIADA FIZYCZNA 2004/2005 Zawody II stopnia LIV OLIMPIADA FIZYCZNA 004/005 Zawody II stopnia Zadanie doświadczalne Masz do dyspozycji: cienki drut z niemagnetycznego metalu, silny magnes stały, ciężarek o masie m=(100,0±0,5) g, statyw, pręty stalowe,

Bardziej szczegółowo

CIEPLNE I MECHANICZNE WŁASNOŚCI CIAŁ

CIEPLNE I MECHANICZNE WŁASNOŚCI CIAŁ CIEPLNE I MECHANICZNE WŁASNOŚCI CIAŁ Ciepło i temperatura Pojemność cieplna i ciepło właściwe Ciepło przemiany Przejścia między stanami Rozszerzalność cieplna Sprężystość ciał Prawo Hooke a Mechaniczne

Bardziej szczegółowo

Dwa w jednym teście. Badane parametry

Dwa w jednym teście. Badane parametry Dwa w jednym teście Rys. Jacek Kubiś, Wimad Schemat zawieszenia z zaznaczeniem wprowadzonych pojęć Urządzenia do kontroli zawieszeń metodą Boge badają ich działanie w przebiegach czasowych. Wyniki zależą

Bardziej szczegółowo

PRACOWNIA MIKROSKOPII

PRACOWNIA MIKROSKOPII 1. Kierownik Pracowni: Dr hab. Andrzej Wojtczak, prof. UMK 2. Wykonujący badania: Mgr Grzegorz Trykowski 3. Adres: Uniwersytet Mikołaja Kopernika Wydział Chemii Pracownia Analiz Instrumentalnych ul. Gagarina

Bardziej szczegółowo

Zastosowanie deflektometrii do pomiarów kształtu 3D. Katarzyna Goplańska

Zastosowanie deflektometrii do pomiarów kształtu 3D. Katarzyna Goplańska Zastosowanie deflektometrii do pomiarów kształtu 3D Plan prezentacji Metody pomiaru kształtu Deflektometria Zasada działania Stereo-deflektometria Kalibracja Zalety Zastosowania Przykład Podsumowanie Metody

Bardziej szczegółowo

Fotolitografia. xlab.me..me.berkeley.

Fotolitografia.  xlab.me..me.berkeley. Fotolitografia http://xlab xlab.me..me.berkeley.edu/ http://nanopatentsandinnovations.blogspot.com/2010/03/flyingplasmonic-lens-at-near-field-for.html Fotolitografia Przygotowanie powierzchni Nałożenie

Bardziej szczegółowo

WŁASNOŚCI CIAŁ STAŁYCH I CIECZY

WŁASNOŚCI CIAŁ STAŁYCH I CIECZY WŁASNOŚCI CIAŁ STAŁYCH I CIECZY Polimery Sieć krystaliczna Napięcie powierzchniowe Dyfuzja 2 BUDOWA CIAŁ STAŁYCH Ciała krystaliczne (kryształy): monokryształy, polikryształy Ciała amorficzne (bezpostaciowe)

Bardziej szczegółowo

Ćwiczenie 2: Elektrochemiczny pomiar szybkości korozji metali. Wpływ inhibitorów korozji

Ćwiczenie 2: Elektrochemiczny pomiar szybkości korozji metali. Wpływ inhibitorów korozji Ćwiczenie 2: Elektrochemiczny pomiar szybkości korozji metali. Wpływ inhibitorów korozji Wymagane wiadomości Podstawy korozji elektrochemicznej, podstawy kinetyki procesów elektrodowych, równanie Tafela,

Bardziej szczegółowo

Elementy teorii powierzchni metali

Elementy teorii powierzchni metali prof. dr hab. Adam Kiejna Elementy teorii powierzchni metali Wykład 4 v.16 Wiązanie metaliczne Wiązanie metaliczne Zajmujemy się tylko metalami dlatego w zasadzie interesuje nas tylko wiązanie metaliczne.

Bardziej szczegółowo

DOTYCZY: Sygn. akt SZ-222-20/12/6/6/2012

DOTYCZY: Sygn. akt SZ-222-20/12/6/6/2012 Warszawa dn. 2012-07-20 SZ-222-20/12/6/6/2012/2713 Szanowni Państwo, DOTYCZY: Sygn. akt SZ-222-20/12/6/6/2012 Przetargu nieograniczonego, którego przedmiotem jest " sprzedaż, szkolenie, dostawę, montaż

Bardziej szczegółowo

1 Źródła i detektory. I. Badanie charakterystyki spektralnej nietermicznych źródeł promieniowania elektromagnetycznego

1 Źródła i detektory. I. Badanie charakterystyki spektralnej nietermicznych źródeł promieniowania elektromagnetycznego 1 I. Badanie charakterystyki spektralnej nietermicznych źródeł promieniowania elektromagnetycznego Cel ćwiczenia: Wyznaczenie charakterystyki spektralnej nietermicznego źródła promieniowania (dioda LD

Bardziej szczegółowo

Generatory sinusoidalne LC

Generatory sinusoidalne LC Ćw. 5 Generatory sinusoidalne LC. Cel ćwiczenia Tematem ćwiczenia są podstawowe zagadnienia dotyczące generacji napięcia sinusoidalnego. Ćwiczenie składa się z dwóch części. Pierwsza z nich, mająca charakter

Bardziej szczegółowo

Pytania do ćwiczeń na I-szej Pracowni Fizyki

Pytania do ćwiczeń na I-szej Pracowni Fizyki Ćw. nr 5 Oscylator harmoniczny. 1. Ruch harmoniczny prosty. Pojęcia: okres, wychylenie, amplituda. 2. Jaka siła powoduje ruch harmoniczny spręŝyny i ciała do niej zawieszonego? 3. Wzór na okres (Studenci

Bardziej szczegółowo

Fizyka, technologia oraz modelowanie wzrostu kryształów

Fizyka, technologia oraz modelowanie wzrostu kryształów Fizyka, technologia oraz modelowanie wzrostu kryształów Stanisław Krukowski i Michał Leszczyński Instytut Wysokich Ciśnień PAN 0-42 Warszawa, ul Sokołowska 29/37 tel: 88 80 244 e-mail: stach@unipress.waw.pl,

Bardziej szczegółowo

Studnie i bariery. Fizyka II, lato

Studnie i bariery. Fizyka II, lato Studnie i bariery Fizyka II, lato 017 1 Nieskończona studnia potencjału Nieskończenie duży potencjał na krawędziach studni nie pozwala elektronom opuścić obszaru 0

Bardziej szczegółowo

Menu. Badające rozproszenie światła,

Menu. Badające rozproszenie światła, Menu Badające rozproszenie światła, Instrumenty badające pole magnetyczne Ziemi Pole magnetyczne Ziemi mierzy się za pomocą magnetometrów. Instrumenty badające pole magnetyczne Ziemi Rodzaje magnetometrów:»

Bardziej szczegółowo

Zestaw ćwiczeń laboratoryjnych z Biofizyki dla kierunku Fizjoterapia

Zestaw ćwiczeń laboratoryjnych z Biofizyki dla kierunku Fizjoterapia Zestaw ćwiczeń laboratoryjnych z Biofizyki dla kierunku Fizjoterapia 1. Ćwiczenie wprowadzające: Wielkości fizyczne i błędy pomiarowe. Pomiar wielkości fizjologicznych 2. Prąd elektryczny: Pomiar oporu

Bardziej szczegółowo

Podstawy fizyki sezon 1 VII. Ruch drgający

Podstawy fizyki sezon 1 VII. Ruch drgający Podstawy fizyki sezon 1 VII. Ruch drgający Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Ruch skutkiem działania

Bardziej szczegółowo

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 11: Moduł Younga

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 11: Moduł Younga Nazwisko i imię: Zespół: Data: Ćwiczenie nr 11: Moduł Younga Cel ćwiczenia: Wyznaczenie modułu Younga i porównanie otrzymanych wartości dla różnych materiałów. Literatura [1] Wolny J., Podstawy fizyki,

Bardziej szczegółowo

Metoda Elementów Skończonych

Metoda Elementów Skończonych Projekt Metoda Elementów Skończonych w programie COMSOL Multiphysics 3.4 Wykonali: Helak Bartłomiej Kruszewski Jacek Wydział, kierunek, specjalizacja, semestr, rok: BMiZ, MiBM, KMU, VII, 2011-2012 Prowadzący:

Bardziej szczegółowo

Statyka Cieczy i Gazów. Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał

Statyka Cieczy i Gazów. Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał Statyka Cieczy i Gazów Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał 1. Podstawowe założenia teorii kinetyczno-molekularnej budowy ciał: Ciała zbudowane są z cząsteczek. Pomiędzy cząsteczkami

Bardziej szczegółowo

DRGANIA ELEMENTÓW KONSTRUKCJI

DRGANIA ELEMENTÓW KONSTRUKCJI DRGANIA ELEMENTÓW KONSTRUKCJI (Wprowadzenie) Drgania elementów konstrukcji (prętów, wałów, belek) jak i całych konstrukcji należą do ważnych zagadnień dynamiki konstrukcji Przyczyna: nawet niewielkie drgania

Bardziej szczegółowo

Termodynamika i właściwości fizyczne stopów - zastosowanie w przemyśle

Termodynamika i właściwości fizyczne stopów - zastosowanie w przemyśle Termodynamika i właściwości fizyczne stopów - zastosowanie w przemyśle Marcela Trybuła Władysław Gąsior Alain Pasturel Noel Jakse Plan: 1. Materiał badawczy 2. Eksperyment Metodologia 3. Teoria Metodologia

Bardziej szczegółowo

Tranzystorowe wzmacniacze OE OB OC. na tranzystorach bipolarnych

Tranzystorowe wzmacniacze OE OB OC. na tranzystorach bipolarnych Tranzystorowe wzmacniacze OE OB OC na tranzystorach bipolarnych Wzmacniacz jest to urządzenie elektroniczne, którego zadaniem jest : proporcjonalne zwiększenie amplitudy wszystkich składowych widma sygnału

Bardziej szczegółowo

Wzmacniacze operacyjne

Wzmacniacze operacyjne Wzmacniacze operacyjne Cel ćwiczenia Celem ćwiczenia jest badanie podstawowych układów pracy wzmacniaczy operacyjnych. Wymagania Wstęp 1. Zasada działania wzmacniacza operacyjnego. 2. Ujemne sprzężenie

Bardziej szczegółowo

Oddziaływanie elektrostatyczne ostrza z powierzchnią w kelwinowskiej mikroskopii sił atomowych

Oddziaływanie elektrostatyczne ostrza z powierzchnią w kelwinowskiej mikroskopii sił atomowych Oddziaływanie elektrostatyczne ostrza z powierzchnią w kelwinowskiej mikroskopii sił atomowych Krzysztof Sajewicz Wydział Fizyki, Astronomii i Informatyki Stosowanej Uniwersytet Jagielloński Praca doktorska

Bardziej szczegółowo

TOPOGRAFIA WSPÓŁPRACUJĄCYCH POWIERZCHNI ŁOŻYSK TOCZNYCH POMIERZONA NA MIKROSKOPIE SIŁ ATOMOWYCH

TOPOGRAFIA WSPÓŁPRACUJĄCYCH POWIERZCHNI ŁOŻYSK TOCZNYCH POMIERZONA NA MIKROSKOPIE SIŁ ATOMOWYCH 5-2011 T R I B O L O G I A 31 Adam CZABAN *, Andrzej MISZCZAK * TOPOGRAFIA WSPÓŁPRACUJĄCYCH POWIERZCHNI ŁOŻYSK TOCZNYCH POMIERZONA NA MIKROSKOPIE SIŁ ATOMOWYCH TOPOGRAPHY OF ROLLING BEARINGS COOPERATING

Bardziej szczegółowo