ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI
|
|
- Klaudia Olejniczak
- 9 lat temu
- Przeglądów:
Transkrypt
1 ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI KLASA I Lb TECHNIKUM \ rok. LICZBY I DZIAŁANIA Liczby naturalne, całkowite, wymierne i niewymierne Działania na liczbach Przedziały liczbowe,działania na przedziałach Definicja wartości bezwzględnej Proste równania z zastosowaniem wartości bezwzględnej Proste nierówności z zastosowaniem wartości bezwzględnej Graficzna interpretacja nierówności z wartością bezwzględną. PROCENTY Pojęcie procentu Obliczanie procentu danej liczby Obliczanie liczby na podstawie danego jej procentu Odczytywanie informacji danych za pomocą diagramów, wykresów Punkt procentowy Zastosowania obliczeń procentowych w zadaniach tekstowych. PRZYBLIŻENIA Sposób zaokrąglania liczb Błąd bezwzględny i błąd względny. POTĘGI I PIERWIASTKI Potęga o wykładniku naturalnym i całkowitym ujemnym. Notacja wykładnicza Prawa działań na potęgach (wzory) Definicja pierwiastka. Prawa działań na pierwiastkach Potęga o wykładniku wymiernym Działania na potęgach z zastosowaniem wzorów Działania na pierwiastkach z zastosowaniem wzorów Usuwanie niewymierności z mianownika 5. RÓWNANIA I NIERÓWNOŚCI PIERWSZEGO STOPNIA Z JEDNĄ NIEWIADOMĄ Pojęcie równania i nierówności. Zasady rozwiązywania Równania równoważne, tożsamościowe i sprzeczne Sposoby przekształcania równań Wzory skróconego mnożenia Zastosowania równań i nierówności do rozwiązywania zadań tekstowych 6. UKŁADY RÓWNAŃ PIERWSZEGO STOPNIA
2 Układ oznaczony, nieoznaczony i sprzeczny Algebraiczne metody rozwiązywania układów równań (podstawiania i przeciwnych współczynników) Zastosowania układów równań do rozwiązywania zadań tekstowych 7. KĄTY W TRÓJKĄTACH I CZWOROKĄTACH TRÓJKĄTY, CZWOROKĄTY, WIELOKĄTY, KOŁA, OKRĘGI I PROSTE Kąty wierzchołkowe, przyległe, odpowiadające i naprzemianległe Własności kątów w trójkątach, równoległobokach i trapezach Rodzaje i własności trójkątów. Nierówność trójkąta Twierdzenie Pitagorasa i twierdzenie do niego odwrotne Rodzaje i własności czworokątów Wzory na obliczanie pól i obwodów trójkątów, czworokątów, wielokątów Liczba przekątnych wielokąta i suma miar kątów wewnętrznych Pojęcie koła i okręgu. Kąt wpisany i kąty środkowy Twierdzenia dotyczące kątów wpisanych i środkowych Wzajemne położenie prostej i okręgu na płaszczyźnie Wzajemne położenie dwóch okręgów na płaszczyźnie 8. FUNKCJE, FUNKCJA LINIOWA Pojęcie funkcji. Dziedzina, zbiór wartości, miejsce zerowe funkcji, monotoniczność funkcji Najmniejsza i największa wartość funkcji Wzory i wykresy funkcji Odczytywanie własności funkcji z wykresu Przesuwanie wykresu funkcji: y f ( ) q, y f ( p), y f ( p) q Pojęcie funkcji liniowej Współczynnik kierunkowy Graficzna interpretacja układów równań liniowych 9. FUNKCJE TRYGONOMETRYCZNE Funkcje trygonometryczne w trójkącie prostokątnym Wartości funkcji trygonometrycznych kątów, 5, 6
3 ,( ZESTAW PRZYKŁADOWYCH ZADAŃ NA EGZAMIN POPRAWKOWY Z MATEMATYKI klasa TECHNIKUM, / rok Na egzamin obowiązuje znajomość zagadnień oraz ich zastosowania w zadaniach (zadania z zestawu, z podręcznika, z zeszytu) ZADANIE : Która z podanych liczb jest mniejsza od,5? A.,6,5 B. C. 8 D., 5 8 ZADANIE : Liczba o 7% mniejsza od 5% liczby a to: A.,,5% a B. 5% a 7% a C. %,5 a D.,7,5a ZADANIE : Nierównością, której zbiorem rozwiązań jest suma przedziałów (, )7 ) jest: A. 5 B. 5 C. 5 D. 5 ZADANIE. Liczbę 8, 5 można zapisać w postaci: A.,8 B., 8 C., 8 D. 8 6 ZADANIE 5: Które ze zdao jest prawdziwe?: 9 A. ; B. C., D. 6 ZADANIE 6: Liczba jest równa: 5 A. 5 7 B. 8 7 C. 6 7 D. 7 ZADANIE 7: Kąt wpisany oparty na 9 długości okręgu ma miarę: A. B. 8 C. 6 D. ZADANIE 8: W trójkącie prostokątnym o przyprostokątnych i wysokość poprowadzona z wierzchołka kąta prostego ma długość: A., B. C. D., ZADANIE 9: Stosunek pól kół wpisanego w kwadrat i opisanego na kwadracie o boku wynosi: A. B. C. D. ZADANIE : Pole trójkąta o kątach, 6, 9 wpisanego w okrąg o promieniu wynosi: A. B. C. D. 8 ZADANIE. Rozwiązaniem równania 7 8 jest: A. B. C. D.
4 ,: ZADANIE. Liczbą niewymierną jest: 7 A.,... B. 8 C. 8 D. ZADANIE. Największą liczbą w zbiorze ;9;98;8 A B C D jest: A. A B. D C. B D. C ZADANIE : Liczba o 75% większa od różnicy sześcianów liczb a i b to: a B) b A), 75, 75 b a C) a D) 75% a b, 75, 75 b ZADANIE 5: Ile jest liczb całkowitych niedodatnich spełniających nierówność 6? A. 7 B. 6 C. 5 D. nieskończenie wiele ZADANIE 6. Prosta równoległa do y, ma postać: y B. y C. y, D. y 5 A. 5 ZADANIE 7. Dziedziną funkcji f () jest zbiór: A. ;5 B. \ 5 R C. ;5 D. R \, 5 ZADANIE 8. Punkt, który należy do wykresu funkcji y ma współrzędne: A. ( -, ) B. (, ) C. ( -, ) D. ( -, ) ZADANIE 9: a) Wyznacz liczbę, której 65% to 9. b) Jakim procentem liczby jest liczba,? c) O ile procent liczba jest większa od liczby ZADANIE : Oblicz: a)? 9 8 b) 5, : c) : () d) 9 () (9 ) e) 8: 9 5 f) 9 : 9 5 h),(): 7 g) 856
5 ZADANIE : Zapisz w postaci jednej potęgi: 7 9 a),() b) c) 9 8 ZADANIE : Rozwiąż nierówność i przedstaw wynik na osi liczbowej i w postaci przedziałów. Wskaż najmniejszą liczbę naturalną dodatnią spełniającą tę nierówność. a) 5 b) ZADANIE : W firmie Ąlegancja w sondażu na optymistę miesiąca pan Ącki uzyskiwał następujące wyniki: styczeń: 5%, luty: 8%, marzec: %. O ile procent i o ile punktów procentowych zmalało poparcie dla pana Ąckiego w marcu (w stosunku do lutego)? O ile procent i o ile punktów procentowych wzrosło poparcie dla pana Ąckiego w lutym (w stosunku do stycznia)? ZADANIE : Pewien towar kosztuje,5zł. Przybliż tę cenę z nadmiarem do wartości całkowitej i oblicz błąd względny tego przybliżenia. Wynik podaj w procentach. ZADANIE 5: Wyznacz A B, A B, B \ A, jeżeli: a) A= ; B= 7; b) A=,7,,,, B=,,,,... ZADANIE 6: Przedstaw bez symbolu wartości bezwzględnej: a),, b) 7,, c), 75 ZADANIE 7: Krótsza przekątna rombu ma długość 6 dm, a jego kąt rozwarty jest dwa razy większy od kąta ostrego. Oblicz pole i obwód rombu. ZADANIE 8: Punkty A, B, C są położone na okręgu o środku w punkcie S tak, że miary kątów środkowych ASB, BSC, CSA wynoszą odpowiednio 6, 8,. Zrób rysunek z czytelnymi oznaczeniami i wyznacz miary kątów trójkąta ABC. ZADANIE 9: W pewnym jedenastokącie dwa sąsiadujące kąty mają miary Wyznacz miary pozostałych kątów tego wielokąta oraz liczbę jego przekątnych. i 89. Pozostałe kąty są równe. ZADANIE : W trapezie prostokątnym krótsza podstawa ma długość cm, a ramiona cm i 6 cm. Oblicz pole i obwód tego trapezu. ZADANIE. Na powierzchni jeziora rozlała się plama oleju i przyjęła kształt koła. Jeśli ratownikom uda się zmniejszyć średnicę plamy o m, to jej powierzchnia zmniejszy się o m. Jaki jest promień plamy oleju? ZADANIE : Uprość wyrażenie: a bababab 5 ba ZADANIE : Rozwiąż: a) 5 b) y y 8 y 96 c) 5 5 e) d) ( )( )6 5 ZADANIE : Podaj wszystkie elementy zbioru A jeśli: a) A C : b) : NA to liczba nieparzyst a wieksza ż 9 w ZADANIE 5: Z podanego wzoru wyznacz a i zapisz odpowiednie założenia: gf k 9 a
6 ZADANIE 6: a) Pan Zabłocki od trzech lat handluje mydłem. W pierwszym roku interes szedł świetnie, w drugim roku sprzedał o % mydła mniej, a w trzecim roku połowę tego, co w roku poprzednim. w ciągu trzech lat sprzedał,8 tony mydła. Ile mydła sprzedał w ostatnim roku? b) Rok temu Basia była razy starsza od Agnieszki. Dziś jest od niej starsza o 5 lat. Ile lat ma Basia, a ile Agnieszka? c) Na odcinku 79 m zbudowano rurociąg. Zużyto do tego celu 6 rur o długościach 7 cm i 85cm. Ile rur dłuższych, a ile krótszych użyto do budowy tego rurociągu? d) Córka jest trzy razy młodsza od matki. Pięć lat temu matka była czterokrotnie starsza od swej córki. Ile lat mają córka i matka? ZADANIE 7. Wyznacz wzór funkcji, której wykres jest a) prostopadły b) równoległy do prostej y i przechodzi przez punkt ; ZADANIE 8. Wykres funkcji f( ) 5. jak najprostszej postaci wzór powstałej w ten sposób funkcji g (). przesunięto o jednostki w prawo i jednostki w dół. Zapisz w ZADANIE 9: Narysuj wykres funkcji h() i wyznacz współrzędne punktów przecięcia wykresu z osiami układu. ; h () ; ; ZADANIE : Sprawdź, czy do wykresu funkcji g () należą punkty:, ZADANIE : Dla jakiej wartości m funkcja f ( ) 6( ) m jest malejąca?,,,, ZADANIE : Punkt A= (, ) należy do wykresu funkcji y b. a) Znajdź wzór tej funkcji. b) Oblicz współrzędne punktów przecięcia wykresu tej funkcji z osiami układu. c) Napisz równanie dowolnej prostej równoległej do wykresu tej funkcji i przechodzącej przez I, II i IV dwiartkę układu współrzędnych. ZADANIE : Odczytaj z poniższego wykresu funkcji f () : a) dziedzinę funkcji b) zbiór wartości funkcji c) przedziały monotoniczności funkcji d) miejsce zerowe e) współrzędne punktu przecięcia z osią OY f) jaką wartość funkcja ta przyjmuje dla argumentu 5. g) dla jakich argumentów funkcja ta przyjmuje wartości ujemne ZADANIE : Oblicz długość przeciwprostokątnej w trójkącie prostokątnym o bokach a=, b, c, w którym kąt 6 jest przyległy do przyprostokątnej a. ZADANIE 5: W trójkącie prostokątnym przyprostokątne mają długości i, a mniejszy z kątów ostrych ma miarę. Oblicz pole, obwód oraz miary kątów tego trójkąta.
7 ZADANIE 6: W trójkącie ABC o kącie ostrym wtedy: ABC dane są długości boków BC5 cm, AC cm, a) sin 5 b) sin 5 c) sin d) 5 sin ZADANIE 7: W trójkącie prostokątnym o bokach a=, b, c, w którym kąt 6 jest przyległy do przyprostokątnej a, przeciwprostokątna c jest równa: a) 8 b) c) 8 d) 8 ZADANIE 8: Bok rombu ma 8 cm, a jeden z jego kątów 7. Oblicz długości jego przekątnych. ZADANIE 9:Przekształć nierówność do najprostszej postaci, a następnie rozwiąż ją wiedząc, że kąt tg 6 : ZADANIE 5: Trójkąt prostokątny o przyprostokątnych a i b i przeciwprostokątnej c ma kąt ostry przyległy do krótszej przyprostokątnej. Uzupełnij tabelkę: a 6 5 b c sin cos tg ctg
Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 TŻiUG
Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 TŻiUG Podstawowa wiedza zawiera się w pisemnych sprawdzianach które odbyły się w ciągu całego roku szkolnego. Umiejętność
Zakres materiału obowiązujący do egzaminu poprawkowego z matematyki klasa 1 d LO
Zakres materiału obowiązujący do egzaminu poprawkowego z matematyki klasa 1 d LO Dział programowy. Zakres realizacji 1. Liczby, działania i procenty Liczby wymierne i liczby niewymierne-działania, kolejność
Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 TLog
Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 TLog Podstawowa wiedza zawiera się w pisemnych sprawdzianach które odbyły się w ciągu całego roku szkolnego. Umiejętność rozwiązywania
Wymagania na egzamin poprawkowy z matematyki dla klasy I C LO (Rok szkolny 2015/16) Wykaz zakładanych osiągnięć ucznia klasy I liceum
Wymagania na egzamin poprawkowy z matematyki dla klasy I C LO (Rok szkolny 05/6) Wykaz zakładanych osiągnięć ucznia klasy I liceum (osiągnięcia ucznia w zakresie podstawowym) I. Liczby rzeczywiste. Język
Wymagania edukacyjne matematyka klasa 1 zakres podstawowy 1. LICZBY RZECZYWISTE
Wymagania edukacyjne matematyka klasa 1 zakres podstawowy 1. LICZBY RZECZYWISTE podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i złożonych oraz przyporządkowuje
ZAKRES PODSTAWOWY CZĘŚĆ I. Liczby rzeczywiste
CZĘŚĆ I ZAKRES PODSTAWOWY W nawiasach proponowane oceny: 2 poziom konieczny wymagań edukacyjnych 3 poziom podstawowy wymagań edukacyjnych 4 poziom rozszerzający wymagań edukacyjnych 5 poziom dopełniający
Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas II w roku szkolnym 2016/2017 w Zespole Szkół Ekonomicznych w Zielonej Górze
Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas II w roku szkolnym 2016/2017 w Zespole Szkół Ekonomicznych w Zielonej Górze I. Funkcja i jej własności POZIOM PODSTAWOWY Pojęcie
MATEMATYKA KLASY III gimnazjum LICZBY I WYRAŻENIA ALGEBRAICZNE
MATEMATYKA KLASY III gimnazjum LICZBY I WYRAŻENIA ALGEBRAICZNE - pojęcie liczby naturalnej, całkowitej, wymiernej, niewymiernej, - sposób i potrzebę zaokrąglania liczb, - pojęcie wartości bezwzględnej,
Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu
Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z obowiązkowych
Zagadnienia z matematyki dla klasy II oraz przykładowe zadania
Zagadnienia z matematyki dla klasy II oraz przykładowe zadania FUNKCJA KWADRATOWA Wykres funkcji f () = a Przesunięcie wykresu funkcji f() = a o wektor Postać kanoniczna i postać ogólna funkcji kwadratowej
Wymagania edukacyjne na poszczególne oceny z matematyki w klasie I poziom rozszerzony
Wymagania edukacyjne na poszczególne oceny z matematyki w klasie I poziom rozszerzony Na ocenę dopuszczającą, uczeń: podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych
WYMAGANIA EDUKACYJNE KLASA I Pogrubieniem oznaczono wymagania, które wykraczają poza podstawę programową dla zakresu podstawowego.
WYMAGANIA EDUKACYJNE KLASA I Pogrubieniem oznaczono wymagania, które wykraczają poza podstawę programową dla zakresu podstawowego. 1. LICZBY RZECZYWISTE podaje przykłady liczb: naturalnych, całkowitych,
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ NA ROK SZKOLNY 2011/2012 DO PROGRAMU MATEMATYKA Z PLUSEM
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ NA ROK SZKOLNY 2011/2012 DO PROGRAMU MATEMATYKA Z PLUSEM LICZBY, WYRAŻENIA ALGEBRAICZNE umie obliczyć potęgę o wykładniku naturalnym; umie obliczyć
Klasa 1 technikum. Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne:
Klasa 1 technikum Przedmiotowy system oceniania wraz z wymaganiami edukacyjnymi Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i
Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2017/2018 klasa pierwsza Branżowa Szkoła
Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2017/2018 klasa pierwsza Branżowa Szkoła Podstawowa wiedza zawiera się w pisemnych sprawdzianach które odbyły się w ciągu całego roku szkolnego.
Wymagania na egzamin poprawkowy z matematyki dla klasy I A LO (Rok szkolny 2015/16)
Wymagania na egzamin poprawkowy z matematyki dla klasy I A LO (Rok szkolny 05/6) Wykaz zakładanych osiągnięć ucznia klasy I liceum (osiągnięcia ucznia w zakresie podstawowym) I. Liczby rzeczywiste. Język
KRYTERIA OCENIANIA Z MATEMATYKI W OPARCIU O PODSTAWĘ PROGRAMOWĄ I PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLASY DRUGIEJ
KRYTERIA OCENIANIA Z MATEMATYKI W OPARCIU O PODSTAWĘ PROGRAMOWĄ I PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLASY DRUGIEJ TREŚCI KSZTAŁCENIA WYMAGANIA PODSTAWOWE WYMAGANIA PONADPODSTAWOWE Liczby wymierne i
MATeMAtyka 1. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony Klasa pierwsza
MATeMAtyka 1 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Klasa pierwsza Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe
Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 b BS
Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 b BS Podstawowa wiedza zawiera się w pisemnych sprawdzianach które odbyły się w ciągu całego roku szkolnego. Umiejętność rozwiązywania
Wymagania na ocenę dopuszczającą z matematyki klasa I Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS /02
Wymagania na ocenę dopuszczającą z matematyki klasa I Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS 4015-99/02 Temat lekcji Zakres treści Osiągnięcia ucznia 1. Liczby naturalne definicja dzielnika
? 14. Dana jest funkcja. Naszkicuj jej wykres. Dla jakich argumentów funkcja przyjmuje wartości dodatnie? 15. Dana jest funkcja f x 2 a x
FUNKCE FUNKCJA LINIOWA Sporządź tabelkę i narysuj wykres funkcji ( ) Dla jakich argumentów wartości funkcji są większe od 5 Podaj warunek równoległości prostych Wyznacz równanie prostej równoległej do
Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa 1
Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa 1 Liczby rzeczywiste: Uczeń otrzymuje ocenę ( jeśli rozumie i stosuje podpowiedź nauczyciela)oraz
ZESTAW PRZYKŁADOWYCH ZADAŃ Z MATEMATYKI ZAKRES ROZSZERZONY
ZESTAW PRZYKŁADOWYCH ZADAŃ Z MATEMATYKI ZAKRES ROZSZERZONY Zadanie Wskaż w zbiorze A = Zadanie Usuń niewymierność z wyrażenia,(0); 0,9; ; 0; 8; 0; 0 liczby wymierne 6 Zadanie Rozwiąż nierówność x + > Rozwiązanie
WYMAGANIA EDUKACYJNE Z MATEMATYKI dla klasy I ba Rok szk. 2012/2013
Dział LICZBY RZECZYWISTE Uczeń otrzymuje ocenę dopuszczającą lub dostateczną, jeśli: podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i złożonych oraz przyporządkowuje
MATEMATYKA WYKAZ UMIEJĘTNOŚCI WYMAGANYCH NA POSZCZEGÓLNE OCENY DLA KLASY PIERWSZEJ
MATEMATYKA WYKAZ UMIEJĘTNOŚCI WYMAGANYCH NA POSZCZEGÓLNE OCENY 1. LICZBY RZECZYWISTE DLA KLASY PIERWSZEJ 1. Podawanie przykładów liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i
Przedmiotowy system oceniania z matematyki klasa I i II ZSZ 2013/2014
I. Liczby rzeczywiste K-2 P-3 R-4 D-5 W-6 Rozpoznaje liczby: naturalne (pierwsze i złożone),całkowite, wymierne, niewymierne, rzeczywiste Stosuje cechy podzielności liczb przez 2, 3,5, 9 Podaje dzielniki
Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy)
Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Wymagania konieczne (K) dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, zatem powinny być
I. Funkcja kwadratowa
Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas III w roku szkolnym 2017/2018 w Zespole Szkół Ekonomicznych w Zielonej Górze Dla każdej klasy 3 obowiązuje taka ilość poniższego
Przygotowanie do poprawki klasa 1li
Zadanie Rozwiąż równanie x 6 5 x 4 Przygotowanie do poprawki klasa li Zadanie Rozwiąż nierówność x 4 x 5 Zadanie Oblicz: a) 9 b) 6 5 c) 64 4 d) 6 0 e) 8 f) 7 5 6 Zadanie 4 Zapisz podane liczby bez znaku
I. Funkcja kwadratowa
Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy w roku szkolnym 2018/2019 w CKZiU nr 3 Ekonomik w Zielonej Górze KLASA III fl POZIOM PODSTAWOWY I. Funkcja kwadratowa narysować wykres funkcji
PYTANIA TEORETYCZNE Z MATEMATYKI
Zbiory liczbowe: 1. Wymień znane Ci zbiory liczbowe. 2. Co to są liczby rzeczywiste? 3. Co to są liczby naturalne? 4. Co to są liczby całkowite? 5. Co to są liczby wymierne? 6. Co to są liczby niewymierne?
WYMAGANIA EDUKACYJNE - matematyka - poziom rozszerzony Dariusz Drabczyk
WYMAGANIA EDUKACYJNE - matematyka - poziom rozszerzony Dariusz Drabczyk str 1 Klasa 1d: wpisy oznaczone jako: LICZBY RZECZYWISTE, JĘZYK MATEMATYKI, FUNKCJA LINIOWA, (F) FUNKCJE, FUNKCJA KWADRATOWA. Przypisanie
I. LICZBY RZECZYWISTE I/1 1 Liczby naturalne, całkowite, wymierne i niewymierne.
Dział/l.p. Ilość godz. Typ szkoły: TECHNIKUM Zawód: TECHNIK USŁUG FRYZJERSKICH Rok szkolny 2016/2017 Przedmiot: MATEMATYKA Klasa: I 80 godzin numer programu T5/O/5/12 Rozkład materiału nauczania Temat
1. LICZBY RZECZYWISTE. Uczeń otrzymuje ocenę dopuszczającą, jeśli:
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI WYMAGANIA EDUKACYJNE POZIOM PODSTAWOWY KLASA 1 1. LICZBY RZECZYWISTE podaje przykłady
Wymagania edukacyjne z matematyki
Wymagania edukacyjne z matematyki Liceum Ogólnokształcące Klasa I Poniżej przedstawiony został podział wymagań edukacyjnych na poszczególne oceny. Wiedza i umiejętności konieczne do opanowania (K) to zagadnienia,
Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu
Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z obowiązkowych
Egzamin ustny z matematyki semestr II Zakres wymaganych wiadomości i umiejętności
Egzamin ustny z matematyki semestr II Zakres wymaganych wiadomości i umiejętności I. Pojęcie funkcji definicja różne sposoby opisu funkcji określenie dziedziny, zbioru wartości, miejsc zerowych. Należy
ZAKRES WYMAGAŃ Z MATEMATYKI DLA KLASY III
ZAKRES WYMAGAŃ Z MATEMATYKI DLA KLASY III Ocena dopuszczająca: Liczby i wyrażenia algebraiczne: Pojęcie liczby naturalnej, całkowitej, wymiernej, niewymiernej, rzeczywistej Sposób zaokrąglania liczb Pojęcie
Wymagania z matematyki na poszczególne stopnie szkolne w klasie trzeciej gimnazjum
Wymagania z matematyki na poszczególne stopnie szkolne w klasie trzeciej gimnazjum I LICZBY I WYRAŻENIA ALGEBRAICZNE podawanie przykładów liczb naturalnych, całkowitych, wymiernych i niewymiernych; porównywanie
WYMAGANIA EDUKACYJNE Z MATEMATYKI Szkoła Branżowa I Stopnia
WYMAGANIA EDUKACYJNE Z MATEMATYKI Szkoła Branżowa I Stopnia KLASA I 1. Liczby rzeczywiste i wyrażenia algebraiczne 1) Liczby naturalne, cechy podzielności stosuje cechy podzielności liczby przez 2, 3,
Dział I FUNKCJE I ICH WŁASNOŚCI
MATEMATYKA ZAKRES PODSTAWOWY Rok szkolny 01/013 Klasa: II Nauczyciel: Mirosław Kołomyjski Dział I FUNKCJE I ICH WŁASNOŚCI Lp. Zagadnienie Osiągnięcia ucznia. 1. Podstawowe własności funkcji.. Podaje określenie
Matematyka wykaz umiejętności wymaganych na poszczególne oceny
Matematyka wykaz umiejętności wymaganych na poszczególne oceny KLASA I 1.Liczby rzeczywiste 1. Podawanie przykładów liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i złożonych oraz
WYMAGANIA NA POSZCZEGÓLNE STOPNIE KLASA III GIMNAZJUM
WYMAGANIA NA POSZCZEGÓLNE STOPNIE KLASA III GIMNAZJUM OCENA DOPUSZCZAJĄCA -pojęcie liczby naturalnej, całkowitej, wymiernej, niewymiernej, rzeczywistej, -sposób zaokrąglania liczb, -pojęcie wartości bezwzględnej,
MATEMATYKA. WYMAGANIA EDUKACYJNE KLASA I, II, III Bożena Tarnowiecka, Arkadiusz Wolski. KLASA I Wymagania
MATEMATYKA WYMAGANIA EDUKACYJNE KLASA I, II, III Bożena Tarnowiecka, Arkadiusz Wolski Treści zapisane kursywą (i oznaczone gwiazdką) wykraczają poza podstawę programową. Nauczyciel może je realizować,
Wymagania na poszczególne oceny z matematyki w Zespole Szkół im. St. Staszica w Pile. Kl. I poziom rozszerzony
Wymagania na poszczególne oceny z matematyki w Zespole Szkół im. St. Staszica w Pile. LICZBY RZECZYWISTE Kl. I poziom rozszerzony podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych,
ZESPÓŁ SZKÓŁ W OBRZYCKU
Matematyka na czasie Program nauczania matematyki w gimnazjum ZGODNY Z PODSTAWĄ PROGRAMOWĄ I z dn. 23 grudnia 2008 r. Autorzy: Agnieszka Kamińska, Dorota Ponczek ZESPÓŁ SZKÓŁ W OBRZYCKU Wymagania edukacyjne
KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. III GIMNAZJUM LICZBY I WYRAŻENIA ALGEBRAICZNE
KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. III GIMNAZJUM OCENA DOPUSZCZAJĄCA LICZBY I WYRAŻENIA ALGEBRAICZNE - pojęcie liczby naturalnej, całkowitej, wymiernej, niewymiernej, rzeczywistej; - sposób zaokrąglania
Przedmiotowe zasady oceniania i wymagania edukacyjne z matematyki dla klasy drugiej gimnazjum
Przedmiotowe zasady oceniania i wymagania edukacyjne z matematyki dla klasy drugiej gimnazjum I. POTĘGI I PIERWIASTKI oblicza wartości potęg o wykładnikach całkowitych liczb różnych od zera zapisuje liczbę
WYMAGANIA I KRYTERIA OCENIANIA Z MATEMATYKI W 3 LETNIM LICEUM OGÓLNOKSZTAŁCĄCYM
WYMAGANIA I KRYTERIA OCENIANIA Z MATEMATYKI W 3 LETNIM LICEUM OGÓLNOKSZTAŁCĄCYM Klasa pierwsza A, B, C, D, E, G, H zakres podstawowy. LICZBY RZECZYWISTE Uczeń otrzymuje ocenę dopuszczającą jeśli: podaje
ZADANIA PRZED EGZAMINEM KLASA I LICEUM
ZADANIA PRZED EGZAMINEM KLASA I LICEUM + 7. Równanie = 0 : + A. ma tylko jedno rozwiązanie równe 7 B. ma tylko jedno rozwiązania równe 7 C. ma tylko jedno rozwiązanie równe D. nie ma rozwiązań.. Do przedziału,
ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE II TECHNIKUM.
I. Funkcje. ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE II TECHNIKUM. 1. Pojęcie funkcji i jej dziedzina. 2. Zbiór wartości funkcji. 3. Wykres funkcji liczbowej i odczytywanie jej własności
KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. II GIMNAZJUM
KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. II GIMNAZJUM POTĘGI I PIERWIASTKI - pojęcie potęgi o wykładniku naturalnym; - wzór na mnożenie i dzielenie potęg o tych samych podstawach; - wzór na potęgowanie
ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY
ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY Numer lekcji 1 2 Nazwa działu Lekcja organizacyjna. Zapoznanie z programem nauczania i kryteriami wymagań Zbiór liczb rzeczywistych i jego 3 Zbiór
Klasa pierwsza: I TE 1, I TE 2, 1 TG, 1 TH, I TRA, 1TI Poziom podstawowy 3 godz. x 30 tyg.= 90 nr programu DKOS /07 I. Liczby rzeczywiste
Klasa pierwsza: I TE 1, I TE 2, 1 TG, 1 TH, I TRA, 1TI Poziom podstawowy 3 godz. x 30 tyg.= 0 nr programu DKOS-5002-7/07 I. Liczby rzeczywiste Liczby naturalne Liczby całkowite. Liczby wymierne. 1 Wykonalność
PODSTAWOWY 1. ROZUMOWANIE I ARGUMENTACJA W ZBIORZE LICZB RZECZYWISTYCH
1. ROZUMOWANIE I ARGUMENTACJA W ZBIORZE LICZB RZECZYWISTYCH stosuje ogólny zapis liczb naturalnych parzystych, nieparzystych, podzielnych przez 3 itp. wykorzystuje dzielenie z resztą do przedstawienia
MATeMAtyka cz.1. Zakres podstawowy
MATeMAtyka cz.1 Zakres podstawowy Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające poza program nauczania (W). Wymienione
Kryteria ocen z matematyki w Gimnazjum. Klasa I. Liczby i działania
Kryteria ocen z matematyki w Gimnazjum Klasa I Liczby i działania obliczać wartości wyrażeń arytmetycznych, w których występują liczby wymierne skracać i rozszerzać ułamki zwykłe porównywać dwa ułamki
Wymagania edukacyjne z matematyki dla klasy VII
Wymagania edukacyjne z matematyki dla klasy VII Szkoły Podstawowej nr 100 w Krakowie Na podstawie programu Matematyka z plusem Na ocenę dopuszczającą Uczeń: rozumie rozszerzenie osi liczbowej na liczby
Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy. Klasa I (60 h)
Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy (według podręczników z serii MATeMAtyka) Temat Klasa I (60 h) Liczba godzin 1. Liczby rzeczywiste 15 1. Liczby naturalne
Wymagania edukacyjne z matematyki dla uczniów klasy VII szkoły podstawowej
Wymagania edukacyjne z matematyki dla uczniów klasy VII szkoły podstawowej Ocenę dopuszczającą otrzymuje uczeń, który: rozumie rozszerzenie osi liczbowej na liczby ujemne umie porównywać liczby wymierne,
Wymagania z wiedzy i umiejętności na poszczególne stopnie szkolne z matematyki w Zasadniczej Szkole Zawodowej nr 14
z wiedzy i umiejętności na poszczególne stopnie szkolne z matematyki w Zasadniczej Szkole Zawodowej nr 14 Liczby rzeczywiste Wiadomości i umiejętności rozpoznać liczby naturalne w tym pierwsze i złożone,
Wymagania dla kl. 1. Zakres podstawowy. podaje przykłady liczb pierwszych, parzystych i nieparzystych cechy podzielności liczb naturalnych
Wymagania dla kl. 1 Zakres podstawowy Temat lekcji Zakres treści Osiągnięcia ucznia 1. LICZBY RZECZYWISTE 1. Liczby naturalne definicja dzielnika liczby naturalnej definicja liczby pierwszej podaje przykłady
KLASA 3 Wiedza i umiejętności ucznia na poszczególne oceny
Kryteria oceniania z matematyki KLASA 3 Wiedza i umiejętności ucznia na poszczególne oceny Arytmetyka: Ocenę dopuszczającą otrzymuje uczeń, który potrafi : - określić pojęcie liczby naturalnej, całkowitej,
WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM
Na ocenę dopuszczającą uczeń umie : WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM stosować cztery podstawowe działania na liczbach wymiernych, zna kolejność wykonywania działań
NaCoBeZU z matematyki dla klasy 7
NaCoBeZU z matematyki dla klasy 7 I. LICZBY I DZIAŁANIA 1. Znam pojęcia: liczby naturalne, całkowite, wymierne, dodatnie, ujemne, niedodatnie, odwrotne, przeciwne. 2. Zaznaczam i odczytuję położenie liczby
RAMOWY ROZKŁAD MATERIAŁU Z MATEMATYKI DLA KLAS I-III LICEUM OGÓLNOKSZTAŁCĄCEGO PRZY CKU NR 1
RAMOWY ROZKŁAD MATERIAŁU Z MATEMATYKI DLA KLAS I-III LICEUM OGÓLNOKSZTAŁCĄCEGO PRZY CKU NR 1 Zakres podstawowy Kl. 1-60 h ( 30 h w semestrze) Kl. 2-60 h (30 h w semestrze) Kl. 3-90 h (45 h w semestrze)
PRÓBNA MATURA ZADANIA PRZYKŁADOWE
ZESPÓŁ SZKÓŁ HOTELARSKO TURYSTYCZNO GASTRONOMICZNYCH NR UL. KRASNOŁĘCKA, WARSZAWA Z A D AN I A Z A M K N I Ę T E ) Liczba, której 5% jest równe 6, to : A. 0, C. 0. D. 0 5% 6 II sposób: x nieznana liczba
BAZA ZADAŃ KLASA 2 TECHNIKUM FUNKCJA KWADRATOWA
BAZA ZADAŃ KLASA 2 TECHNIKUM FUNKCJA KWADRATOWA 1. Podaj zbiór wartości i monotoniczność funkcji: b) c) j) k) l) wskazówka: - oblicz wierzchołek (bez miejsc zerowych!) i naszkicuj wykres (zwróć uwagę na
Ostatnia aktualizacja: 30 stycznia 2015 r.
Ostatnia aktualizacja: 30 stycznia 2015 r. Spis treści 1. Funkcja liniowa 5 2. Funkcja kwadratowa 7 3. Trygonometria 11 4. Ciagi liczbowe 13 5. Wielomiany 15 6. Funkcja wykładnicza 17 7. Funkcja wymierna
WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą
1. Statystyka odczytać informacje z tabeli odczytać informacje z diagramu 2. Mnożenie i dzielenie potęg o tych samych podstawach 3. Mnożenie i dzielenie potęg o tych samych wykładnikach 4. Potęga o wykładniku
PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI DLA KLASY 1LO i 1TI ROK SZKOLNY 2018/2019
PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI DLA KLASY 1LO i 1TI ROK SZKOLNY 2018/2019 Przedmiotowy system oceniania jest zgodny z Rozporządzeniem Ministra Edukacji Narodowej z dnia 10 czerwca 2015 r. w
Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klasy Ich w roku szkolnym 2018/2019 w CKZiU nr 3 "EKONOMIK" w Zielonej Górze
Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klasy Ich w roku szkolnym 2018/2019 w CKZiU nr 3 "EKONOMIK" w Zielonej Górze I. Pierwiastki (w tym usuwanie niewymierności), potęgi, działania
MATeMAtyka zakres podstawowy
MATeMAtyka zakres podstawowy Proponowany rozkład materiału kl. I (100 h) 1. Liczby rzeczywiste 15 1. Liczby naturalne 1 2. Liczby całkowite. Liczby wymierne 1 1.1, 1.2 3. Liczby niewymierne 1 1.3 4. Rozwinięcie
Wymagania edukacyjne z matematyki - klasa I (poziom podstawowy) wg programu nauczania Matematyka Prosto do matury
LICZBY RZECZYWISTE Na poziomie wymagań koniecznych - na ocenę dopuszczającą (2) uczeń potrafi: zamieniać ułamek zwykły na ułamek dziesiętny podać przykłady liczb niewymiernych podać przybliżenie dziesiętne
ZAKRES PODSTAWOWY. Proponowany rozkład materiału kl. I (100 h)
ZAKRES PODSTAWOWY Proponowany rozkład materiału kl. I (00 h). Liczby rzeczywiste. Liczby naturalne. Liczby całkowite. Liczby wymierne. Liczby niewymierne 4. Rozwinięcie dziesiętne liczby rzeczywistej 5.
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM POZIOMY WYMAGAŃ EDUKACYJNYCH: K - ocena dopuszczająca (2) K, P - ocena dostateczna (3) K, P, R ocena dobra (4) K, P, R, D - ocena bardzo dobra
Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa druga.
Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa druga. Funkcja liniowa. Uczeń otrzymuje ocenę dopuszczającą, jeśli: - rozpoznaje funkcję liniową
Opis założonych osiągnięć ucznia klasy ZSZ (od 2012r.)
Opis założonych osiągnięć ucznia klasy ZSZ (od 2012r.) Zastosowanie przez nauczyciela wcześniej opisanych metod nauczania, form pracy i środków dydaktycznych oraz korzystanie z niniejszego programu nauczania
Matematyka z plusem Wymagania programowe na poszczególne oceny dla klasy II. Szczegółowe kryteria oceniania po pierwszym półroczu klasy I:
Matematyka z plusem Wymagania programowe na poszczególne oceny dla klasy II Szczegółowe kryteria oceniania po pierwszym półroczu klasy I: DZIAŁ 1. POTĘGI zna podręcznik i zeszyt ćwiczeń, z których będzie
KRYTERIA WYMAGAŃ Z MATEMATYKI NA POSZCZEGÓLNE OCENY KLASA II
1 KRYTERIA WYMAGAŃ Z MATEMATYKI NA POSZCZEGÓLNE OCENY KLASA II POTĘGI umie zapisać potęgę w postaci iloczynu umie zapisać iloczyn jednakowych czynników w postaci potęgi umie obliczyć potęgę o wykładniku
Wymagania edukacyjne dla klasy 1 Liceum zakres podstawowy i rozszerzony
Wymagania edukacyjne dla klasy Liceum zakres podstawowy i rozszerzony Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne: ocena dopuszczająca (K) ocena dostateczna (K) i (P) ocena
Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć. Kształcenie w zakresie podstawowym.
Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie podstawowym. Klasa 1 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego
Kryteria oceniania wiadomości i umiejętności matematycznych uczniów III klasy gimnazjum
Kryteria oceniania wiadomości i umiejętności matematycznych uczniów III klasy gimnazjum A leksan d er D uda Nauczyciel matematyki Zespół Szkół Ogólnokształcących im. św. Wincentego a Paulo w Pabianicach
Plan wynikowy z matematyki dla klasy I liceum ogólnokształcącego, liceum profilowanego i technikum
Kształcenie ogólne w zakresie podstawowym Program nauczania:dkos-4015-21/02 Liczby i ich zbiory Plan wynikowy z matematyki dla klasy I liceum ogólnokształcącego, liceum profilowanego i technikum Pojęcie
Zagadnienia na egzamin poprawkowy z matematyki - klasa I 1. Liczby rzeczywiste
Zagadnienia na egzamin poprawkowy z matematyki - klasa I 1. Liczby rzeczywiste Liczby naturalne Liczby całkowite. Liczby wymierne Liczby niewymierne Rozwinięcie dziesiętne liczby rzeczywistej Pierwiastek
KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. III GIMNAZJUM BRYŁY
KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. III GIMNAZJUM OCENA DOPUSZCZAJĄCA BRYŁY UCZEŃ ZNA: - pojęcie graniastosłupa, prostopadłościanu i sześcianu; - pojęcie graniastosłupa prostego i prawidłowego;
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA II GIMNAZJUM Małgorzata Janik
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA II GIMNAZJUM Małgorzata Janik DOPUSZCZAJĄCY DOSTATECZNY DOBRY BARDZO DOBRY Potęgi i pierwiastki Uczeń: Zna i rozumie pojęcie potęgi o wykładniku naturalnym Umie
MATeMAtyka klasa II poziom rozszerzony
MATeMAtyka klasa II poziom rozszerzony W klasie drugiej na poziomie rozszerzonym realizujemy materiał z klasy pierwszej tylko z poziomu rozszerzonego (na czerwono) oraz cały materiał z klasy drugiej. Rozkład
PLAN PRACY ZAJĘĆ WYRÓWNAWCZYCH Z MATEMATYKI W KLASIE I LO
Poziomy wymagań edukacyjnych: K konieczny ocena dopuszczający (2) P podstawowy ocena dostateczna (3) Projekt nr WND-POKL.09.01.02-10-104/09 tytuł Z dysleksją bez barier PLAN PRACY ZAJĘĆ WYRÓWNAWCZYCH Z
PRÓBNA MATURA ZADANIA PRZYKŁADOWE
ZESPÓŁ SZKÓŁ HOTELARSKO TURYSTYCZNO GASTRONOMICZNYCH NR UL. KRASNOŁĘCKA 3, WARSZAWA Z A D AN I A Z A M K N I Ę T E ) Liczba, której 5% jest równe 6, to : A. 0,3 C. 30. D. 0 5% 6 II sposób: x nieznana liczba
ROK SZKOLNY 2017/2018 WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY:
ROK SZKOLNY 2017/2018 WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY: KLASA II GIMNAZJUM Wymagania konieczne K dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, powinien je zatem opanować
MATEMATYKA WYKAZ UMIEJĘTNOŚCI WYMAGANYCH NA POSZCZEGÓLNE OCENY DLA KLASY DRUGIEJ
MATEMATYKA WYKAZ UMIEJĘTNOŚCI WYMAGANYCH NA POSZCZEGÓLNE OCENY 1. SUMY ALGEBRAICZNE DLA KLASY DRUGIEJ 1. Rozpoznawanie jednomianów i sum algebraicznych Obliczanie wartości liczbowych wyrażeń algebraicznych
Wymagania edukacyjne na poszczególne oceny Matematyka klasa III Gimnazjum
Wymagania edukacyjne na poszczególne oceny Matematyka klasa III Gimnazjum Wymagania konieczne (na ocenę dopuszczającą) obejmują wiadomości i umiejętności umożliwiające uczniowi dalszą naukę, bez których
SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI
SPIS TREŚCI WSTĘP.................................................................. 8 1. LICZBY RZECZYWISTE Teoria............................................................ 11 Rozgrzewka 1.....................................................
Plan wynikowy z przedmiotu: MATEMATYKA
Plan wynikowy z przedmiotu: MATEMATYKA Szkoła: Liceum Ogólnokształcące Klasa: pierwsza Poziom nauczania: podstawowy Numer programu: DPN-5002-31/08 Podręcznik: MATEMATYKA Anna Jatczak, Monika Ciołkosz,
Wymagania na poszczególne oceny w klasie II gimnazjum do programu nauczania MATEMATYKA NA CZASIE
Wymagania na poszczególne oceny w klasie II gimnazjum do programu nauczania MATEMATYKA NA CZASIE Wymagania konieczne K dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, powinien je
Dopuszczający Dostateczny Dobry Bardzo dobry Celujący
Liczby i wyrażenia zna pojęcie liczby naturalnej, całkowitej, wymiernej zna pojęcie liczby niewymiernej, rzeczywistej zna sposób zaokrąglania liczb umie zapisać i odczytać liczby naturalne dodatnie w systemie
Szczegółowe wymagania edukacyjne z matematyki Klasa II. na ocenę dopuszczającą
Szczegółowe wymagania edukacyjne z matematyki Klasa II na ocenę dopuszczającą UCZEŃ zna podręcznik i zeszyt ćwiczeń, z których będzie korzystał w ciągu roku szkolnego na lekcjach matematyki; W zakresie
wymagania programowe z matematyki kl. III gimnazjum
wymagania programowe z matematyki kl. III gimnazjum 1. Liczby i wyrażenia algebraiczne Zna pojęcie notacji wykładniczej. Umie zapisać liczbę w notacji wykładniczej. Umie porównywać liczy zapisane w różny