PLAN PRACY ZAJĘĆ WYRÓWNAWCZYCH Z MATEMATYKI W KLASIE I LO
|
|
- Tadeusz Dariusz Matysiak
- 9 lat temu
- Przeglądów:
Transkrypt
1 Poziomy wymagań edukacyjnych: K konieczny ocena dopuszczający (2) P podstawowy ocena dostateczna (3) Projekt nr WND-POKL /09 tytuł Z dysleksją bez barier PLAN PRACY ZAJĘĆ WYRÓWNAWCZYCH Z MATEMATYKI W KLASIE I LO Dział programowy Jedn. tematyczna Liczby wymierne i niewymierne podstawowe Uczeń zna: Uczeń rozumie: Uczeń potrafi: pojęcia: liczba naturalna, całkowita, wymierna, niewymierna i rzeczywista definicję wartości bezwzględnej róŝnicę między rozwinięciem dziesiętnym liczby wymiernej i niewymiernej znajdować rozwinięcia dziesiętne liczby wymiernej LICZBY I DZIAŁANIA Obliczenia Procenty kolejność wykonywania działań pojęcia: liczba przeci-wna i odwrotność sposoby wykonywania czterech podstawowych działań na ułamkach zwykłych i dziesiętnych pojęcie procentu pojęcie punktu procentowego potrzebę zamiany ułamków zwykłych na dziesiętne i odwrotnie przy wykonywaniu działań potrzebę stosowania procentów w Ŝyciu codziennym róŝnicę między pojęciem procentu i punktu procentowego wykonywać działania na liczbach wymiernych (K-P) porównywać liczby wymierne zamieniać procent pewnej wielkości na ułamek i odwrotnie (K P) obliczać, jakim procentem jednej liczby jest druga liczba (K P) obliczać procent danej liczby (K P) obliczać liczbę na podstawie danego jej procentu (K P) odczytywać informacje dane za pomocą diagramów procentowych (K P) sporządzać diagramy procentowe (KP) rozwiązywać zadania z zastosowaniem obliczeń 1
2 procentowych PrzybliŜenia Potęgi Pierwiastki. sposoby zaokrąglania liczb definicję potęgi o wykładniku naturalnym i całkowitym ujemnym pojęcie notacji wykładniczej wzory na mnoŝenie i dzielenie potęg o jednakowych podstawach wzory na mnoŝenie i dzielenie potęg o jednakowych wykładnikach i na potęgowanie potęgi definicję pierwiastka arytmetycznego n tego stopnia (n N i n>1) zna definicję pierwiastka nieparzystego stopnia z liczby ujemnej prawa działań na pierwiastkach wzór na obliczanie pierwiastka n tego stopnia z n tej potęgi potrzebę zaokrąglania liczb róŝnicę między błędem bezwzględnym a względnym potrzebę stosowania notacji wykładniczej w praktyce sposoby wykonywania działań na potęgach definicję pierwiastka arytmetycznego n tego stopnia (n N i n>1) definicję pierwiastka nieparzystego stopnia z liczby ujemnej jak oblicza się pierwiastki iloczynu i ilorazu oraz znajdować przybliŝenia liczb wykonywać obliczenia na liczbach rzeczywistych oraz szacować róŝne wielkości i wyniki obliczać błędy bezwzględne i względne przybliŝeń obliczać potęgi o wykładnikach naturalnych i całkowitych ujemnych (K P) zapisywać liczby w postaci potęg zapisywać liczby w postaci iloczynu potęg zapisywać liczby w notacji wykładniczej mnoŝyć i dzielić potęgi o jednakowych podstawach mnoŝyć i dzielić potęgi o jednakowych wykładnikach przedstawiać potęgi w postaci iloczynu i ilorazu potęg o jednakowych podstawach przedstawiać potęgi w postaci iloczynu i ilorazu potęg o jednakowych wykładnikach potęgować potęgi przedstawiać potęgi jako potęgi potęg porównywać potęgi potęgować iloczyny i ilorazy doprowadzać wyraŝenia do najprostszych postaci, stosując działania na potęgach obliczać pierwiastki n tego stopnia (n N i n>1) obliczać pierwiastki nieparzystego stopnia z liczb ujemnych obliczać wartości wyraŝeń zawierających pierwiastki obliczać pierwiastki iloczynu i ilorazu obliczać iloczyny i ilorazy pierwiastków wyłączać czynnik przed symbol pierwiastka 2
3 Potęgi o wykładniku wymiernym wzór na obliczanie n tej potęgi pierwiastka n tego stopnia pojęcie potęgi o wykładniku wymiernym pojęcie potęgi o wykładniku rzeczywistym prawa działań na potęgach iloczyn i iloraz pierwiastków jak oblicza się pierwiastek n tego stopnia z n tej potęgi oraz jak oblicza się n tą potęgę pierwiastka n tego stopnia z liczby nieujemnej pojęcie potęgi o wykładniku wymiernym pojęcie potęgi o wykładniku rzeczywistym prawa działań na potęgach włączać czynnik pod pierwiastek obliczać potęgi o wykładnikach wymiernych zapisywać potęgi o wykładnikach wymiernych w postaci pierwiastków stosować prawa działań na potęgach o wykładnikach wymiernych porównywać potęgi o wykładnikach rzeczywistych RÓWNANIA I NIERÓWNOŚCI Przedziały liczbowe Zapisywanie i przekształcanie wyraŝeń algebraicznych pojęcie przedziału otwartego i domkniętego pojęcie wyraŝenia algebraicznego pojęcie jednomianu i pojęcie jednomianu uporządkowanego pojęcie jednomianów podobnych wzory skróconego mnoŝenia (kwadrat sumy, kwadrat róŝnicy, róŝnica kwadratów) wzory skróconego mnoŝenia (kwadrat sumy, kwadrat róŝnicy, róŝnica kwadratów) pojęcie przedziału otwartego i domkniętego zasadę redukowania wyrazów podobnych zasady zapisywania i nazywania wyraŝeń algebraicznych zasady dodawania i odejmowania sum algebraicznych zasadę mnoŝenia sumy algebraicznej przez jednomian zasadę mnoŝenia sumy algebraicznej przez sumę algebraiczną zaznaczać podane przedziały na osi liczbowej zapisywać podane przedziały liczbowe za pomocą nierówności i odwrotnie wykonywać działania na przedziałach liczbowych budować proste wyra-ŝenia algebraiczne odczytywać wyraŝenia algebraiczne (K P) redukować wyrazy podobne (K P) dodawać i odejmować sumy algebraiczne (K P) mnoŝyć sumy algebra-iczne przez jednomiany (K P) mnoŝyć sumy algebraiczne (K R) doprowadzać wyraŝenia algebraiczne do prostszych postaci wyłączać wspólne czy-nniki poza nawias obliczać wartości liczbowe wyraŝeń algebraicznych stosować wzory skró-conego mnoŝenia przekształcać wyraŝenia algebraiczne, stosując wzory skróconego mnoŝenia 3
4 Równania i układy równań pierwszego stopnia Wartość bezwzględna w równaniach i nierównościach. pojęcia: równanie i nierówność pojęcia: rozwiązanie równania, rozwiązanie nierówności pojęcia: równania równowaŝne, równania toŝsamościowe, sprzeczne sposoby przekształcania równań pojęcie układu równań pojęcia: układ oznaczony, nieoznaczony, sprzeczny metody rozwiązywania układów równań: podstawiania, przeciwnych współczynników pojęcie wartości bezwzględnej liczby rzeczywistej interpretację geometry-czną nierówności typu x <a oraz x >a x a >b, x a <b interpretację geometryczną równości x a = b pojęcia: rozwiązanie równania, rozwiązanie nierówności pojęcie rozwiązania układu równań pojęcie wartości bezwzględnej liczby rzeczywistej związek między nierównością typu x <ai x >a, x a >b, x a <b i jej interpretacją na osi liczbowej rozwiązywać równania i nierówności (K P) podawać interpretację geometryczną rozwiązania nierówności zapisywać treści zadań za pomocą równań i nierówności rozwiązywać układy równań pierwszego stopnia metodą podstawiania (K P) rozwiązywać układy równań metodą przeciwnych współczynników zapisywać treści zadań w postaci układów równań zaznaczać na osi liczbowej przedziały opisane za pomocą równań i nierów-ności typu: x a = b, x a >b, x a <b rozwiązywać równania typu ax+ b = c rozwiązywać nierówno-ści postaci ax+ b >c, ax+ b <c, ax+ b c, ax+ b ci interpretować graficznie rozwiązania tych nierówności Przekształcanie wzorów. konieczność zapisywania załoŝeń dla wielkości występujących we wzorach wyznaczać wskazaną wielkość z danego wzoru (K P) zapisywać odpowiednie załoŝenia dla wielkości występujących we wzorach (K P) Równania kwadratowe pojęcie równania kwadratowego wzór na wyróŝnik równania kwadratowego wzory na pierwiastki równania kwadratowego jak się oblicza wyróŝnik równania kwadratowego jak się oblicza pierwiastki równania kwadratowego rozwiązywać równania kwadratowe postaci ax 2 + c=0, a 0 rozwiązywać równania kwadratowe postaci ax 2 + bx=0, a 0 (K P) rozwiązywać równania postaci (px+ q) 2 = r (K P) doprowadzać równania z postaci ogólnej do postaci (px+ q) 2 = r 4
5 rozwiązywać równania kwadratowe, stosując wzory na pierwiastki równania kwadratowego FIGURY GEOMETRYCZNE Kąty Trójkąty Czworokąty Wielokąty pojęcia kątów: wierzchołkowych, przyległych, odpowiadających, naprzemianległych oraz własności tych kątów twierdzenie o sumie miar kątów wewnę-trznych trójkąta twierdzenia dotyczące własności kątów w trapezach i równoległobokach pojęcie dwusiecznej kąta nierówność trójkąta rodzaje trójkątów pojęcie wysokości trójkąta wzór na pole trójkąta twierdzenie Pitagorasa i twierdzenie do niego odwrotne rodzaje i własności czworokątów wzory na obliczanie pól i obwodów czworokątów pojęcie wielokąta wypukłego i niewypukłego wzory na liczbę przekątnych i sumę miar kątów wewnętrznych n kąta wypukłego pojęcie wielokąta foremnego pojęcie kąta sposoby obliczania pól trójkątów sens twierdzenia Pitagorasa i twierdzenia do niego odwrotnego zasadę klasyfikacji czworokątów wyprowadzanie wzorów na liczbę przekątnych i sumę miar kątów wewnętrznych n kąta wypukłego sposób wyznaczania miary kąta wewnętrznego n kąta foremnego wskazywać kąty wierzchołkowe, przyległe, odpowiadające i naprzemianległe stosować własności kątów w zadaniach (K-P) obliczać pola trójkątów (K-P) stosować twierdzenie Pitagorasa i twierdzenie do niego odwrotne w zadaniach stosować własności czworokątów w zadaniach obliczać pola i obwody czworokątów (K P) stosować wzory na liczbę przekątnych i sumę miar kątów wewnętrznych n kąta wypukłego obliczać miarę kąta wewnętrznego n kąta foremnego obliczać pola wielokątów foremnych Koła i okręgi pojęcia koła i okręgu, kąta wpisanego i środkowego twierdzenia dotyczące kątów wpisanych i środkowych wzory na obliczanie obwodu i pola pojęcie kąta wpisanego i środkowego opartego na danym łuku stosować twierdzenia dotyczące kątów wpisanych i środkowych (K P) obliczać pole i obwód koła (K P) obliczać długość łuku i pole wycinka koła 5
6 koła Okręgi i proste wszystkie moŝliwe wzajemne połoŝenia prostej i okręgu na płaszczyźnie wszystkie moŝliwe wzajemne połoŝenia dwóch okręgów na płaszczyźnie rozwiązywać zadania dotyczące wzajemnego połoŝenia prostej i okręgu oraz wzajemnego połoŝenia dwóch okrę-gów na płaszczyźnie korzystać ze związków między kątem środkowym, kątem wpi-sanym i kątem między styczną a cięciwą okręgu Pojęcie funkcji pojęcie funkcji pojęcia: dziedzina funkcji, argument, wartość funkcji, zmienna niezaleŝna, zmienna zaleŝna pojęcie miejsca zerowego pojęcie funkcji odczytywać wartości funkcji dla danego argumentu lub argument dla danej wartości z: tabelki, grafu, wykresu wskazywać miejsca zerowe funkcji podawać argumenty, dla których funkcja przyjmuje wartości dodatnie lub ujemne FUNKCJE Monotoniczność funkcji Wzory i wykresy funkcji Funkcja liniowa pojęcia: funkcja rosnąca, malejąca, stała róŝne sposoby zapisu tej samej funkcji pojęcie funkcji liniowej połoŝenie wykresu funkcji liniowej w zaleŝności od współczynnika kierunkowego podawać przedziały monotoniczności sporządzać wykresy funkcji spełniających określone warunki ustalać dziedzinę funkcji określonej wzorem (P R) analizować zaleŝności między dwiema wielkościami opisane za pomocą wzoru lub wykresu funkcji (K P) sporządzać wykres funkcji określonej wzorem sporządzać wykres funkcji liniowej sprawdzać algebraicznie i graficznie, czy punkt naleŝy do wykresu wyznaczać argument dla danej wartości funkcji i odwrotnie obliczać i odczytywać miejsca zerowe obliczać i odczytywać z wykresu argumenty, dla których wartości spełniają określone warunki korzystając ze wzoru funkcji liniowej, określać jej monotoniczność i znajdować współrzędne punktów 6
7 WŁASNOŚCI FUNKCJI KWADRATOWEJ Przesuwanie wykresów funkcji Przekształcanie wykresów funkcji Przesuwanie paraboli Funkcja kwadratowa zasady sporządzania wykresów funkcji: y=f(x) +q, y=f(x+p), y=f(x+p)+q, gdy dany jest wykres funkcji y=f(x) zasady sporządzania wykresów funkcji: y=f(-x), y=-f(x), y=-f(-x),, gdy dany jest wykres funkcji y=f(x) pojęcie paraboli połoŝenie wykresu funkcji y= ax 2 w zaleŝności od wartości współczynnika a połoŝenia parabol: y= ax+ q, y= a(x+ p) 2, y= a(x+ p) 2 + q pojęcie funkcji kwadratowej wzory określające współrzędne wierzchołka paraboli postać ogólną, postać kanoniczną oraz iloczynową funkcji kwadratowej zasady sporządzania wykresów funkcji: y=f(x) +q, y=f(x+p), y=f(x+p)+q, gdy dany jest wykres funkcji y=f(x) zasady sporządzania wykresów funkcji: y=f(-x), y=-f(x), y=-f(-x), gdy dany jest wykres funkcji y=f(x) związek między wzorami określającymi współrzędne wierzchołka paraboli i postacią kanoniczną wzoru funkcji kwadratowej (R) przecięcia wykresu z osiami podawać wzór funkcji liniowej, której wykres: przechodzi przez dane dwa punkty, przechodzi przez dany punkt i jest równoległy do wykresu danej funkcji liniowej, której wzór jest dany (R) obliczać współrzędne punktu przecięcia wykresów funkcji liniowych sporządzać wykres funkcji: y=f(x) +q, y=f(x+p), y=f(x+p)+q, gdy dany jest wykres funkcji y=f(x) zapisywać wzory funkcji powstałych w wyniku przesunięcia wykresu danej funkcji określać sposób przesunięcia wykresu jednej funkcji tak, aby otrzymać wykres drugiej funkcji sporządzać wykres funkcji: y=f(-x), y=-f(x), y=-f(-x) gdy dany jest wykres funkcji y=f(x) zapisywać wzory funkcji powstałych przez symetrię wykresu danej funkcji względem obu osi i początku układu sporządzać wykresy funkcji: y= ax 2 wykorzystywać zasady przesuwania wykresów funkcji do rysowania parabol postaci: y= ax 2 + q, y= a(x+ p) 2, y= a(x+ p) 2 + q podawać wzór paraboli o danym wierzchołku i przechodzącej przez dany punkt podawać wzór funkcji, której wykresem jest dana parabola zapisywać wzór funkcji kwadratowej w postaci kanonicznej rysować wykres funkcji kwadratowej i określać jej własności zapisywać wzór funkcji kwadratowej spełniającej dane warunki 7
8 TRYGONOMETRIA Nierówności kwadratowe Zastosowania funkcji kwadratowej Funkcje trygonometryczne kąta ostrego Zastosowania trygonometrii obliczać współrzędne punktów przecięcia paraboli z osiami układu oraz współrzędne jej wierzchołka obliczać miejsca zero-we funkcji kwadratowej określać liczbę miejsc zerowych funkcji kwadratowej w zaleŝności od wartości wyróŝnika pojęcie nierówności kwadratowej rozwiązywać nierówno-ści kwadratowe określać argumenty, dla których wartości jednej funkcji są większe od wartości drugiej funkcji znajdować liczby spełniające koniunkcję pewnych nierówności opisywać zaleŝności między wielkościami za pomocą funkcji kwadratowej rozwiązywać zadania tekstowe stosując funkcji kwadratowej pojęcie tangensa kata ostrego w trójkącie prostokątnym związek między tangensem kąta nachylenia prostej y=ax+b do osi x a jej współczynnikiem kierunkowym pojęcia: cotangens, sinus o cosinus kąta ostrego w trójkącie prostokątnym wzór na pole trójkąta z zastosowaniem sinusa kąta pojęcia: cotangens, sinus o cosinus kąta ostrego w trójkącie prostokątnym wzór na pole trójkąta z zastosowaniem sinusa kata pojęcie tangensa kąta ostrego w trójkącie prostokątnym związek między tangensem kąta i cechami podobieństwa trójkątów prostokątnych (R) obliczać tangensy kątów ostrych obliczać długości boków trójkąta prosto-kątnego, mając wśród danych tangens jednego z kątów ostrych (K-P) odczytywać z tablic lub obliczać za pomocą kalkulatora wartość tangensa danego kąta lub miarę kąta, mając dany jego tangens obliczać tangens kąta nachylenia prostej y=ax+b do osi x obliczać wartości funkcji trygonometrycznych katów ostrych rozwiązywać trójkąty prostokątne konstruować kąty ostre, mając dane wartości funkcji trygonometrycz-nych tych katów (K-P) odczytywać z tablic lub obliczać za pomocą kalkulatora wartość funkcji trygonometrycznych danego kąta lub miarę kąta, gdy dana jest wartość funkcji trygonometrycznej tego kąta 8
9 Wartości funkcji trygonometrycznych dla kątów 30,45 i 60 wartości funkcji trygonometrycznych dla kątów 30,45 i 60 sposób wyznaczania wartości funkcji trygonometrycznych kątów 30,45 i 60 rozwiązywać trójkąty prostokątne Związki między funkcjami trygonometrycznymi podstawowe toŝsamości trygonometryczne związki między funkcjami trygonometrycznymi kąta α i kąta 90 α obliczać wartości funkcji trygonometrycznych mając dana wartość jednej z nich przekształcać wyraŝenia, stosując toŝ-samości trygonometryczne sprawdzać toŝsamości trygonometryczne 9
ZAKRES PODSTAWOWY CZĘŚĆ I. Liczby rzeczywiste
CZĘŚĆ I ZAKRES PODSTAWOWY W nawiasach proponowane oceny: 2 poziom konieczny wymagań edukacyjnych 3 poziom podstawowy wymagań edukacyjnych 4 poziom rozszerzający wymagań edukacyjnych 5 poziom dopełniający
PLAN REALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE I WRAZ Z PLANEM WYNIKOWYM (ZAKRES PODSTAWOWY)
PLAN REALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE I WRAZ Z PLANEM WYNIKOWYM (ZAKRES PODSTAWOWY) Kategorie celów nauczania: A zapamiętanie wiadomości B rozumienie wiadomości C stosowanie wiadomości
Matematyka z plusem dla szkoły ponadgimnazjalnej. ZAŁOŻENIA DO PLANU REALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE I (zakres podstawowy)
1 ZAŁOŻENIA DO PLANU REALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE I (zakres podstawowy) Program nauczania: Matematyka z plusem, numer dopuszczenia DKW-4015-37/01. Liczba godzin nauki w tygodniu:
PLAN REALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE I WRAZ Z PLANEM WYNIKOWYM (ZAKRES PODSTAWOWY)
PLAN REALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE I WRAZ Z PLANEM WYNIKOWYM (ZAKRES PODSTAWOWY) Kategorie celów nauczania: A zapamiętanie wiadomości B rozumienie wiadomości C stosowanie wiadomości
PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI
NAUCZYCIEL GRZEGORZ ZAJĄC PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI KONTRAKT MIĘDZY NAUCZYCIELEM A UCZNIEM I 1. Sprawdzian i praca klasowa są zapowiedziane i poprzedzone lekcją powtórzeniową. 2. Nieusprawiedliwiona
Wymagania edukacyjne matematyka klasa 1 zakres podstawowy 1. LICZBY RZECZYWISTE
Wymagania edukacyjne matematyka klasa 1 zakres podstawowy 1. LICZBY RZECZYWISTE podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i złożonych oraz przyporządkowuje
Wymagania edukacyjne na poszczególne oceny z matematyki w klasie I poziom rozszerzony
Wymagania edukacyjne na poszczególne oceny z matematyki w klasie I poziom rozszerzony Na ocenę dopuszczającą, uczeń: podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych
MATEMATYKA. WYMAGANIA EDUKACYJNE KLASA I, II, III Bożena Tarnowiecka, Arkadiusz Wolski. KLASA I Wymagania
MATEMATYKA WYMAGANIA EDUKACYJNE KLASA I, II, III Bożena Tarnowiecka, Arkadiusz Wolski Treści zapisane kursywą (i oznaczone gwiazdką) wykraczają poza podstawę programową. Nauczyciel może je realizować,
KRYTERIA OCENIANIA Z MATEMATYKI W OPARCIU O PODSTAWĘ PROGRAMOWĄ I PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLASY DRUGIEJ
KRYTERIA OCENIANIA Z MATEMATYKI W OPARCIU O PODSTAWĘ PROGRAMOWĄ I PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLASY DRUGIEJ TREŚCI KSZTAŁCENIA WYMAGANIA PODSTAWOWE WYMAGANIA PONADPODSTAWOWE Liczby wymierne i
MATeMAtyka cz.1. Zakres podstawowy
MATeMAtyka cz.1 Zakres podstawowy Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające poza program nauczania (W). Wymienione
Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa 1
Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa 1 Liczby rzeczywiste: Uczeń otrzymuje ocenę ( jeśli rozumie i stosuje podpowiedź nauczyciela)oraz
1. FUNKCJE DZIAŁ Z PODRĘCZNIKA L.P. NaCoBeZu kryteria sukcesu w języku ucznia
L.P. DZIAŁ Z PODRĘCZNIKA 1. FUNKCJE 2. POTĘGI I PIERWIASTKI NaCoBeZu kryteria sukcesu w języku ucznia 1. Wiem, co to jest układ współrzędnych, potrafię nazwać osie układu. 2. Rysuję układ współrzędnych
Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu
Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z obowiązkowych
Przedmiotowy system oceniania z matematyki klasa I i II ZSZ 2013/2014
I. Liczby rzeczywiste K-2 P-3 R-4 D-5 W-6 Rozpoznaje liczby: naturalne (pierwsze i złożone),całkowite, wymierne, niewymierne, rzeczywiste Stosuje cechy podzielności liczb przez 2, 3,5, 9 Podaje dzielniki
Opis założonych osiągnięć ucznia klasy ZSZ (od 2012r.)
Opis założonych osiągnięć ucznia klasy ZSZ (od 2012r.) Zastosowanie przez nauczyciela wcześniej opisanych metod nauczania, form pracy i środków dydaktycznych oraz korzystanie z niniejszego programu nauczania
Matematyka z plusem dla szkoły ponadgimnazjalnej. ZAŁOŻENIA DO PLANU REALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE I (zakres podstawowy)
1 ZAŁOŻENIA DO PLANU REALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE I (zakres podstawowy) Liczba godzin nauki w tygodniu: 3 Planowana liczba godzin w ciągu roku: 100 Podkreślenie dotyczy treści, które
WYMAGANIA EDUKACYJNE Z MATEMATYKI dla klasy I ba Rok szk. 2012/2013
Dział LICZBY RZECZYWISTE Uczeń otrzymuje ocenę dopuszczającą lub dostateczną, jeśli: podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i złożonych oraz przyporządkowuje
Klasa 1 technikum. Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne:
Klasa 1 technikum Przedmiotowy system oceniania wraz z wymaganiami edukacyjnymi Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i
WYMAGANIA EDUKACYJNE KLASA I Pogrubieniem oznaczono wymagania, które wykraczają poza podstawę programową dla zakresu podstawowego.
WYMAGANIA EDUKACYJNE KLASA I Pogrubieniem oznaczono wymagania, które wykraczają poza podstawę programową dla zakresu podstawowego. 1. LICZBY RZECZYWISTE podaje przykłady liczb: naturalnych, całkowitych,
Kryteria ocen z matematyki w Gimnazjum. Klasa I. Liczby i działania
Kryteria ocen z matematyki w Gimnazjum Klasa I Liczby i działania obliczać wartości wyrażeń arytmetycznych, w których występują liczby wymierne skracać i rozszerzać ułamki zwykłe porównywać dwa ułamki
PRZEDMIOTOWY SYSTEM OCENIANIA
ZESPÓŁ SZKÓŁ OGÓLNOKSZTAŁCĄCYCH ul. M.Curie-Skłodowskiej 2 58-400 Kamienna Góra tel.: (+48) 75-645-01-82 fax: (+48) 75-645-01-83 E-mail: zso@kamienna-gora.pl WWW: http://www.zso.kamienna-gora.pl PRZEDMIOTOWY
Wymagania edukacyjne z matematyki dla klasy VII
Wymagania edukacyjne z matematyki dla klasy VII Szkoły Podstawowej nr 100 w Krakowie Na podstawie programu Matematyka z plusem Na ocenę dopuszczającą Uczeń: rozumie rozszerzenie osi liczbowej na liczby
Wymagania na ocenę dopuszczającą z matematyki klasa I Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS /02
Wymagania na ocenę dopuszczającą z matematyki klasa I Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS 4015-99/02 Temat lekcji Zakres treści Osiągnięcia ucznia 1. Liczby naturalne definicja dzielnika
WYMAGANIA EDUKACYJNE - matematyka - poziom rozszerzony Dariusz Drabczyk
WYMAGANIA EDUKACYJNE - matematyka - poziom rozszerzony Dariusz Drabczyk str 1 Klasa 1d: wpisy oznaczone jako: LICZBY RZECZYWISTE, JĘZYK MATEMATYKI, FUNKCJA LINIOWA, (F) FUNKCJE, FUNKCJA KWADRATOWA. Przypisanie
Matematyka z plusem dla szkoły ponadgimnazjalnej. ZAŁOŻENIA DO PLANU REALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE I (zakres rozszerzony)
1 ZAŁOŻENIA DO PLANU REALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE I (zakres rozszerzony) Liczba godzin nauki w tygodniu: 4 Planowana liczba godzin w ciągu roku: 130 Podkreślenie dotyczy treści, które
Przedmiotowe Zasady Oceniania
Strona tytułowa Przedmiotowe Zasady Oceniania Matematyka Liceum podstawa Krzysztof Pietrasik Podręcznik: 1. Matematyka I 2. M. Dobrowolska, M. Karpiński, J. Lech 3. GWO Forma 1. Formy sprawdzania wiedzy
Wymagania edukacyjne z matematyki dla uczniów klasy VII szkoły podstawowej
Wymagania edukacyjne z matematyki dla uczniów klasy VII szkoły podstawowej Ocenę dopuszczającą otrzymuje uczeń, który: rozumie rozszerzenie osi liczbowej na liczby ujemne umie porównywać liczby wymierne,
MATEMATYKA WYKAZ UMIEJĘTNOŚCI WYMAGANYCH NA POSZCZEGÓLNE OCENY DLA KLASY DRUGIEJ
MATEMATYKA WYKAZ UMIEJĘTNOŚCI WYMAGANYCH NA POSZCZEGÓLNE OCENY 1. SUMY ALGEBRAICZNE DLA KLASY DRUGIEJ 1. Rozpoznawanie jednomianów i sum algebraicznych Obliczanie wartości liczbowych wyrażeń algebraicznych
Wymagania edukacyjne z matematyki
Wymagania edukacyjne z matematyki Liceum Ogólnokształcące Klasa I Poniżej przedstawiony został podział wymagań edukacyjnych na poszczególne oceny. Wiedza i umiejętności konieczne do opanowania (K) to zagadnienia,
MATEMATYKA WYKAZ UMIEJĘTNOŚCI WYMAGANYCH NA POSZCZEGÓLNE OCENY DLA KLASY PIERWSZEJ
MATEMATYKA WYKAZ UMIEJĘTNOŚCI WYMAGANYCH NA POSZCZEGÓLNE OCENY 1. LICZBY RZECZYWISTE DLA KLASY PIERWSZEJ 1. Podawanie przykładów liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i
Wymagania edukacyjne z matematyki dla zasadniczej szkoły zawodowej na poszczególne oceny
Wymagania edukacyjne z matematyki dla zasadniczej szkoły zawodowej na poszczególne oceny Podstawa programowa z 23 grudnia 2008r. do nauczania matematyki w zasadniczych szkołach zawodowych Podręcznik: wyd.
WYMAGANIA I KRYTERIA OCENIANIA Z MATEMATYKI W 3 LETNIM LICEUM OGÓLNOKSZTAŁCĄCYM
WYMAGANIA I KRYTERIA OCENIANIA Z MATEMATYKI W 3 LETNIM LICEUM OGÓLNOKSZTAŁCĄCYM Klasa pierwsza A, B, C, D, E, G, H zakres podstawowy. LICZBY RZECZYWISTE Uczeń otrzymuje ocenę dopuszczającą jeśli: podaje
MATeMAtyka 1. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony Klasa pierwsza
MATeMAtyka 1 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Klasa pierwsza Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe
WYMAGANIA EDUKACYJNE DLA KLASY III GIMNAZJUM W ZSPiG W CZARNYM DUNAJCU NA ROK SZKOLNY 2016/2017 ROCZNE
WYMAGANIA EDUKACYJNE DLA KLASY III GIMNAZJUM W ZSPiG W CZARNYM DUNAJCU NA ROK SZKOLNY 2016/2017 ROCZNE Przekształcenia algebraiczne Równania i układy równań Pojęcie funkcji. Własności funkcji. WYRAŻENIA
MATEMATYKA KLASY III gimnazjum LICZBY I WYRAŻENIA ALGEBRAICZNE
MATEMATYKA KLASY III gimnazjum LICZBY I WYRAŻENIA ALGEBRAICZNE - pojęcie liczby naturalnej, całkowitej, wymiernej, niewymiernej, - sposób i potrzebę zaokrąglania liczb, - pojęcie wartości bezwzględnej,
Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu
Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z obowiązkowych
Lista działów i tematów
Lista działów i tematów Gimnazjum. Klasa 1 Liczby i działania Liczby Rozwinięcia dziesiętne liczb wymiernych Zaokrąglenia liczb. Szacowanie wyników Dodawanie i odejmowanie liczb dodatnich Mnożenie i dzielenie
ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY
ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY Numer lekcji 1 2 Nazwa działu Lekcja organizacyjna. Zapoznanie z programem nauczania i kryteriami wymagań Zbiór liczb rzeczywistych i jego 3 Zbiór
WYMAGANIA EGZAMINACYJNE DLA KLASY III GIMNAZJUM
WYMAGANIA EGZAMINACYJNE DLA KLASY III GIMNAZJUM TEMAT WYMAGANIA SZCZEGÓŁOWE 1. LICZBY I WYRAŻENIA ALGEBRAICZNE 2. System dziesiątkowy 1. Liczby wymierne dodatnie. Uczeń: 1) zaokrągla rozwinięcia dziesiętne
Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy)
Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Wymagania konieczne (K) dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, zatem powinny być
PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI
NAUCZYCIEL KARINA SURMA PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI KONTRAKT Zasady oceniania 1. Ocenianiu podlegają następujące formy aktywności ucznia: prace klasowe, sprawdziany, testy, odpowiedzi ustne,
Wymagania programowe na poszczególne oceny. Klasa 2. Potęgi o wykładnikach naturalnych i całkowitych. Poziom wymagań edukacyjnych:
Wymagania programowe na poszczególne oceny Poziom wymagań edukacyjnych: K konieczny (ocena dopuszczająca) P podstawowy (ocena dostateczna) R rozszerzający (ocena dobra) D dopełniający (ocena bardzo dobra)
KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. II GIMNAZJUM
KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. II GIMNAZJUM POTĘGI I PIERWIASTKI - pojęcie potęgi o wykładniku naturalnym; - wzór na mnożenie i dzielenie potęg o tych samych podstawach; - wzór na potęgowanie
KRYTERIA OCEN Z MATEMATYKI DLA KLASY VII
KRYTERIA OCEN Z MATEMATYKI DLA KLASY VII Na ocenę dopuszczającą uczeń powinien : Na ocenę dostateczną uczeń powinien: Na ocenę dobrą uczeń powinie: Na ocenę bardzo dobrą uczeń powinien: Na ocenę celującą
Matematyka wykaz umiejętności wymaganych na poszczególne oceny
Matematyka wykaz umiejętności wymaganych na poszczególne oceny KLASA I 1.Liczby rzeczywiste 1. Podawanie przykładów liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i złożonych oraz
PRZEDMIOTOWY SYSTEM OCENIANIA PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY
PRZEDMIOTOWY SYSTEM OCENIANIA PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY Warszawa 2019 LICZBY RZECZYWISTE stosować prawidłowo pojęcie zbioru, podzbioru, zbioru pustego; zapisywać zbiory w różnej postaci
2) R stosuje w obliczeniach wzór na logarytm potęgi oraz wzór na zamianę podstawy logarytmu.
ZAKRES ROZSZERZONY 1. Liczby rzeczywiste. Uczeń: 1) przedstawia liczby rzeczywiste w różnych postaciach (np. ułamka zwykłego, ułamka dziesiętnego okresowego, z użyciem symboli pierwiastków, potęg); 2)
WYMAGANIA EDUKACYJNE Z MATEMATYKI Szkoła Branżowa I Stopnia
WYMAGANIA EDUKACYJNE Z MATEMATYKI Szkoła Branżowa I Stopnia KLASA I 1. Liczby rzeczywiste i wyrażenia algebraiczne 1) Liczby naturalne, cechy podzielności stosuje cechy podzielności liczby przez 2, 3,
WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM
Na ocenę dopuszczającą uczeń umie : WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM stosować cztery podstawowe działania na liczbach wymiernych, zna kolejność wykonywania działań
Wymagania edukacyjne klasa trzecia.
TEMAT Wymagania edukacyjne klasa trzecia. WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. LICZBY I WYRAŻENIA ALGEBRAICZNE Lekcja organizacyjna System dziesiątkowy System rzymski Liczby wymierne i niewymierne
Plan wynikowy z rozkładem materiału
Plan wynikowy z rozkładem materiału Plan wynikowy oraz rozkład materiału nauczania są indywidualnymi dokumentami nauczycielskimi związanymi z realizowanym programem nauczania. Uwzględniają specyfikę danej
Plan wynikowy z matematyki dla klasy I liceum ogólnokształcącego, liceum profilowanego i technikum
Kształcenie ogólne w zakresie podstawowym Program nauczania:dkos-4015-21/02 Liczby i ich zbiory Plan wynikowy z matematyki dla klasy I liceum ogólnokształcącego, liceum profilowanego i technikum Pojęcie
Wymagania edukacyjne z matematyki dla klasy I gimnazjum wg programu Matematyka z plusem
Wymagania edukacyjne z matematyki dla klasy I gimnazjum wg programu Matematyka z plusem pojęcie liczby naturalnej, całkowitej, wymiernej rozszerzenie osi liczbowej na liczby ujemne sposób i potrzebę zaokrąglania
REALIZACJA TREŚCI PODSTAWY PROGRAMOWEJ PRZEZ PROGRAM MATEMATYKA Z PLUSEM
REALIZACJA TREŚCI PODSTAWY PROGRAMOWEJ PRZEZ PROGRAM MATEMATYKA Z PLUSEM Treści nauczania wg podstawy programowej Podręcznik M+ Klasa I Klasa II Klasa III 1. Liczby wymierne dodatnie. Uczeń: 1) odczytuje
ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.
ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. TEMAT Równania i nierówności (30h) LICZBA GODZIN LEKCYJNYCH Liczby wymierne 3 Liczby niewymierne 1 Zapisywanie
Ułamki i działania 20 h
Propozycja rozkładu materiału Klasa I Razem h Ułamki i działania 0 h I. Ułamki zwykłe II. Ułamki dziesiętne III. Ułamki zwykłe i dziesiętne. Przypomnienie wiadomości o ułamkach zwykłych.. Dodawanie i odejmowanie
Wymagania dla kl. 1. Zakres podstawowy. podaje przykłady liczb pierwszych, parzystych i nieparzystych cechy podzielności liczb naturalnych
Wymagania dla kl. 1 Zakres podstawowy Temat lekcji Zakres treści Osiągnięcia ucznia 1. LICZBY RZECZYWISTE 1. Liczby naturalne definicja dzielnika liczby naturalnej definicja liczby pierwszej podaje przykłady
Kształcenie w zakresie podstawowym. Klasa 2
Kształcenie w zakresie podstawowym. Klasa 2 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego działu, aby uzyskać poszczególne stopnie. Na ocenę dopuszczającą uczeń powinien opanować
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY 1. FUNKCJA KWADRATOWA rysuje wykres funkcji i podaje jej własności sprawdza algebraicznie, czy dany punkt należy
WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą
1. Statystyka odczytać informacje z tabeli odczytać informacje z diagramu 2. Mnożenie i dzielenie potęg o tych samych podstawach 3. Mnożenie i dzielenie potęg o tych samych wykładnikach 4. Potęga o wykładniku
Przedmiotowe Zasady Oceniania
Strona tytułowa Przedmiotowe Zasady Oceniania Matematyka Liceum podstawa Krzysztof Pietrasik Podręcznik: 1. Prosto do matury 2 2. M. Antek, K. Belka, P. Grabowski 3. Nowa era Forma 1. Formy sprawdzania
Przedmiotowe zasady oceniania i wymagania edukacyjne z matematyki dla klasy drugiej gimnazjum
Przedmiotowe zasady oceniania i wymagania edukacyjne z matematyki dla klasy drugiej gimnazjum I. POTĘGI I PIERWIASTKI oblicza wartości potęg o wykładnikach całkowitych liczb różnych od zera zapisuje liczbę
1. Potęga o wykładniku naturalnym Iloczyn i iloraz potęg o jednakowych podstawach Potęgowanie potęgi 1 LICZBA GODZIN LEKCYJNYCH
TEMAT LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ UWAGI 1. POTĘGI 1. Potęga o wykładniku naturalnym 2-3 2. Iloczyn i iloraz potęg o jednakowych podstawach 3. Potęgowanie potęgi
Wymagania edukacyjne z matematyki. w Zasadniczej Szkole Zawodowej
Ogólne kryteria oceny z matematyki Ocena niedostateczna Otrzymuje ją uczeń, który: Wymagania edukacyjne z matematyki w Zasadniczej Szkole Zawodowej nie opanował elementarnych wiadomości wynikających z
Wymagania przedmiotowe dla klasy 3as i 3b gimnazjum matematyka
Wymagania przedmiotowe dla klasy 3as i 3b gimnazjum matematyka TEMAT 5. Przekątna kwadratu. Wysokość trójkąta równobocznego 6. Trójkąty o kątach 90º, 45º, 45º oraz 90º, 30º, 60º 1. Okrąg opisany na trójkącie
Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć
Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka Poznać, zrozumieć Kształcenie w zakresie podstawowym Klasa 1 (4 godziny tygodniowo) Poniżej podajemy umiejętności, jakie powinien
Nie tylko wynik Plan wynikowy dla klasy 2 gimnazjum
Poziomy wymagań edukacyjnych: K konieczny P podstawowy R rozszerzający D dopełniający W wykraczający Nie tylko wynik Plan wynikowy dla klasy 2 gimnazjum Potęgi o wykładnikach naturalnych i całkowitych
6. Notacja wykładnicza stosuje notację wykładniczą do przedstawiania bardzo dużych liczb
LICZBY I DZIAŁANIA PROCENTY str. 1 Przedmiot: matematyka Klasa: 2 ROK SZKOLNY 2015/2016 temat Wymagania podstawowe P 2. Wartość bezwzględna oblicza wartość bezwzględną liczby wymiernej 3. Potęga o wykładniku
PLAN WYNIKOWY PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY
PLAN WYNIKOWY PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY Copyright by Nowa Era Sp. z o.o. Warszawa 019 Liczba godzin TEMAT ZAJĘĆ EDUKACYJNYCH Język matematyki 1 Wzory skróconego mnożenia 3 Liczby pierwsze,
Wymagania dla klasy siódmej. Treści na 2 na 3 na 4 na 5 na 6 Uczeń: Uczeń: Uczeń: Uczeń: Uczeń: DZIAŁ 1. LICZBY
Wymagania dla klasy siódmej Treści na 2 na 3 na 4 na 5 na 6 Uczeń: Uczeń: Uczeń: Uczeń: Uczeń: DZIAŁ 1. LICZBY Rzymski sposób zapisu liczb Liczby pierwsze i złożone. Dzielenie z resztą Rozwinięcia dziesiętne
Plan realizacji materiału nauczania wraz z określeniem wymagań edukacyjnych
Plan realizacji materiału nauczania wraz z określeniem wymagań edukacyjnych Poziomy wymagań edukacyjnych: K konieczny ocena dopuszczająca (2) P podstawowy ocena dostateczna (3) R rozszerzający ocena dobra
Wymagania edukacyjne z matematyki do programu pracy z podręcznikiem Matematyka wokół nas
Wymagania edukacyjne z matematyki do programu pracy z podręcznikiem Matematyka wokół nas klasa I 1)Działania na liczbach: dopuszczający: uczeń potrafi poprawnie wykonać cztery podstawowe działania na ułamkach
Mgr Kornelia Uczeń. WYMAGANIA na poszczególne oceny-klasa VII-Szkoła Podstawowa
Mgr Kornelia Uczeń WYMAGANIA na poszczególne oceny-klasa VII-Szkoła Podstawowa Oceny z plusem lub minusem otrzymują uczniowie, których wiadomości i umiejętności znajdują się na pograniczu wymagań danej
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ NA ROK SZKOLNY 2011/2012 DO PROGRAMU MATEMATYKA Z PLUSEM
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ NA ROK SZKOLNY 2011/2012 DO PROGRAMU MATEMATYKA Z PLUSEM LICZBY, WYRAŻENIA ALGEBRAICZNE umie obliczyć potęgę o wykładniku naturalnym; umie obliczyć
Wymagania edukacyjne klasa druga.
Wymagania edukacyjne klasa druga. TEMAT WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. POTĘGI Potęga o wykładniku naturalnym Iloczyn i iloraz potęg o jednakowych podstawach Potęgowanie potęgi Potęgowanie
1. LICZBY RZECZYWISTE. Uczeń otrzymuje ocenę dopuszczającą, jeśli:
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI WYMAGANIA EDUKACYJNE POZIOM PODSTAWOWY KLASA 1 1. LICZBY RZECZYWISTE podaje przykłady
Osiągnięcia ponadprzedmiotowe
Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego w klasie 2 gimnazjum uczeń potrafi: Umiejętności konieczne i podstawowe czytać teksty w stylu matematycznym tworzyć teksty w stylu
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ LICEUM
Potęgi, pierwiastki i logarytmy 23 h DZIAŁ PROGRAMOWY JEDNOSTKA LEKCYJNA Matematyka z plusem dla szkoły ponadgimnazjalnej 1 WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ LICEUM POZIOMY WYMAGAŃ EDUKACYJNYCH:
PODSTAWOWY 1. ROZUMOWANIE I ARGUMENTACJA W ZBIORZE LICZB RZECZYWISTYCH
1. ROZUMOWANIE I ARGUMENTACJA W ZBIORZE LICZB RZECZYWISTYCH stosuje ogólny zapis liczb naturalnych parzystych, nieparzystych, podzielnych przez 3 itp. wykorzystuje dzielenie z resztą do przedstawienia
Określenie wymagań edukacyjnych z matematyki w klasie II
Określenie wymagań edukacyjnych z matematyki w klasie II Potęgi Na ocenę dopuszczającą uczeń : Zna i rozumie pojęcie potęgi o wykładniku naturalnym, zna wzory na mnożenie i dzielenie potęg o tych samych
Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy
Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy Wariant nr (klasa I 4 godz., klasa II godz., klasa III godz.) Klasa I 7 tygodni 4 godziny = 48 godzin Lp. Tematyka zajęć
PRZEDMIOTOWY SYSTEM OCENIANIA PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY I ROZSZERZONY
PRZEDMIOTOWY SYSTEM OCENIANIA PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY I ROZSZERZONY Copyright by Nowa Era Sp. z o.o. Warszawa 2019 LICZBY RZECZYWISTE Na poziomie wymagań koniecznych lub podstawowych
Wymagania na poszczególne oceny w klasie II gimnazjum do programu nauczania MATEMATYKA NA CZASIE
Wymagania na poszczególne oceny w klasie II gimnazjum do programu nauczania MATEMATYKA NA CZASIE Wymagania konieczne K dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, powinien je
WYMAGANIA EDUKACYJNE
GIMNAZJUM NR 2 W RYCZOWIE WYMAGANIA EDUKACYJNE niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z MATEMATYKI w klasie II gimnazjum str. 1 Wymagania edukacyjne niezbędne
Wymagania edukacyjne z matematyki dla klasy II gimnazjum wg programu Matematyka z plusem
Wymagania edukacyjne z matematyki dla klasy II gimnazjum wg programu Matematyka z plusem pojęcie potęgi o wykładniku naturalnym wzór na mnożenie i dzielenie potęg o tych samych podstawach wzór na potęgowanie
Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć. Kształcenie w zakresie podstawowym.
Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie podstawowym. Klasa 1 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego
Wymagania z matematyki na poszczególne stopnie szkolne w klasie trzeciej gimnazjum
Wymagania z matematyki na poszczególne stopnie szkolne w klasie trzeciej gimnazjum I LICZBY I WYRAŻENIA ALGEBRAICZNE podawanie przykładów liczb naturalnych, całkowitych, wymiernych i niewymiernych; porównywanie
ZESPÓŁ SZKÓŁ W OBRZYCKU
Matematyka na czasie Program nauczania matematyki w gimnazjum ZGODNY Z PODSTAWĄ PROGRAMOWĄ I z dn. 23 grudnia 2008 r. Autorzy: Agnieszka Kamińska, Dorota Ponczek ZESPÓŁ SZKÓŁ W OBRZYCKU Wymagania edukacyjne
ROK SZKOLNY 2017/2018 WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY:
ROK SZKOLNY 2017/2018 WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY: KLASA II GIMNAZJUM Wymagania konieczne K dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, powinien je zatem opanować
NaCoBeZU z matematyki dla klasy 7
NaCoBeZU z matematyki dla klasy 7 I. LICZBY I DZIAŁANIA 1. Znam pojęcia: liczby naturalne, całkowite, wymierne, dodatnie, ujemne, niedodatnie, odwrotne, przeciwne. 2. Zaznaczam i odczytuję położenie liczby
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ W RUDKACH
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ W RUDKACH Marzena Zbrożyna DOPUSZCZAJĄCY: Uczeń potrafi: odczytać informacje z tabeli odczytać informacje z diagramu
WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA KLASY VII Matematyka z plusem
WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA KLASY VII Matematyka z plusem Ocena dopuszczająca: Pojęcie liczby naturalnej, całkowitej, wymiernej Rozszerzenie osi liczbowej na liczby ujemne Porównywanie
ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY III A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi
ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY III A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi Rozkład materiału nauczania został opracowany na podstawie programu
1. LICZBY DZIAŁ Z PODRĘCZNIKA L.P. NaCoBeZu kryteria sukcesu w języku ucznia
L.P. DZIAŁ Z PODRĘCZNIKA NaCoBeZu kryteria sukcesu w języku ucznia 1. LICZBY 1. Znam pojęcie liczby naturalne, całkowite, wymierne, dodatnie, ujemne, niedodatnie, odwrotne, przeciwne. 2. Potrafię zaznaczyć
Wymagania na poszczególne oceny szkolne Klasa 7
1 Wymagania na poszczególne oceny szkolne Klasa 7 Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane
Konieczne Podstawowe Rozszerzające Dopełniające Wykraczające
12 OSIĄGNIĘCIA PONADPRZEDMIOTOWE W rezultacie kształcenia matematycznego w klasie 2 gimnazjum uczeń potrafi: Umiejętności konieczne i podstawowe czytać teksty w stylu tworzyć teksty w stylu wykorzystywać
Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa druga.
Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa druga. Funkcja liniowa. Uczeń otrzymuje ocenę dopuszczającą, jeśli: - rozpoznaje funkcję liniową
Wymagania edukacyjne z matematyki
Wymagania edukacyjne z matematyki Klasa I - program Matematyka z plusem" Dział: LICZBY I DZIAŁANIA Poziom konieczny - ocena dopuszczająca porównywać liczby wymierne, zaznaczać liczby wymierne na osi liczbowej,
Plan wynikowy z przedmiotu: MATEMATYKA
Plan wynikowy z przedmiotu: MATEMATYKA Szkoła: Liceum Ogólnokształcące Klasa: pierwsza Poziom nauczania: podstawowy Numer programu: DPN-5002-31/08 Podręcznik: MATEMATYKA Anna Jatczak, Monika Ciołkosz,