Mechanika ogólna kinematyka i dynamika

Wielkość: px
Rozpocząć pokaz od strony:

Download "Mechanika ogólna kinematyka i dynamika"

Transkrypt

1 KTEDR ECHNIKI 0$7(5,$àÏ: DEPRTENT OF ECHNICS OF TERILS 32/,7(&+1,$àÏ'=$ 7(&+1,&$/81,9(56,7<2)àÏ'' lpolitechniki 6, 93-àyG(3RODQG7HO)D[ echanika ogólna kineatyka i dynaika kierunek Budownictwo, se III PDWHULDá\SRPRFQLF]HGRüZLF]H opracowanie GULQ*3LRWU'EVNL GULQ*,UHQD:DJQHU àyg(sd(g]lhuqln

2 75(û:<à$'8 Kineatyka=DNUHVSU]HGPLRWX3U]HVWU]HF]DVXNáDGRGQLHVLHQLD Kineatyka punktuwrusxqnwxrslvuxfkxsxqnwxsugnrülsu]\vslhv]hqlhsxqnwx przyspieszenie styczne i noralne LQHPDW\NDEU\á\V]W\ZQHVWRSQLHVZRERG\WZLHUG]HQLHRU]XWDFKSUGNRFLSXQNWyZEU\á\ V]W\ZQH5XFK\EU\á\SRVWSRZ\LREURWRZ\GRNRáDRVLQLHUXFKRPH 5XFKSáDVNLSUGNRüLSU]\VSLHV]HQLHFKZLORZHURGNLSUGNRFLLSU]\VSLHV]HQLD 5XFKNXOLVW\FKZLORZDRREURWXSUGNRüSU]\VSLHV]HQLDSXQNWyZEU\á\ 5XFKGRZROQ\EU\á\UHGXNFDGRUXFKXUXERZHJRRFHQWUDOna 5XFK]áR*RQ\SXQNWXLEU\á\ Dynaika Dynaika punktu3rfldlsrgvwdzrzhsudzd1hzwrqdxnádglqhufdoq\]dvdgdg laberta 5yZQDQLDUXFKXLPHWRG\LFKUR]ZL]\ZDQLD 3GNUWHQHUJLDNLQHW\F]QDLWZLHUG]HQLDRLFK]PLDQDFK3ROHVLá3UDFDPRc, energia potencjalna, Zasada zachowania energii echanicznej Dynaika punktu aterialnego nieswobodnego '\QDPLNDUXFKX]áR*RQHJRSXQNWX6Lá\EH]ZáDGQRFL '\QDPLNDXNáDGXSXQNWyZPDWHULDOQ\FKLEU\á\V]W\ZQH 3GNUWHQHUJLDRGG]LDá\ZDZHZQWU]nych, energia kinetyczna, energia potencjalna, zasada ]DFKRZDQLDHQHUJLLPHFKDQLF]QH0DVRZHPRPHQW\EH]ZáDGQRFL '\QDPLNDUXFKXSRVWSRZHJRREURWRZHJRLSáDVNLHJREU\á\ Eleenty echaniki analitycznej Zasada prac przygotowanych LITERTUR: 1 JLeyko, echanika ogólna, to 2, PWN 'EVNL2*DO,:DJQHU=ELyU]DGD]PHFKDQLNLWHRUHW\F]QHLQHPDW\ND3à 3 PWilde, Wizur, echanika teoretyczna, PWN 1984 Fora zaliczenia przediotu: wykonanie prac 2 projektowych 2 kolokwia egzaiq]]dgdl]whrull

3 3URJUDPüZLF]H 1 LQHPDW\ND SXQNWX ]QDGRZDQLH UyZQD UXFKX QD SRGVWDZLH RSLVX UXFKX znajdowanie paraetrów ruchu - WRUX UyZQDQLD GURJL SUGNRFL L SU]\SLHV]HQLD]UyZQDUXFKXSXQNWX 2, 3 5XFK SáDVNLáDFXFK\NLQHPDW\F]QHUy*QHVSRVRE\Z\]QDF]DQLDSUGNRFL FKZLORZHZ\]QDF]DQLHSODQXSUGNRFL 3, 4 5XFKSáDVNLZ\]QDF]DQLHSU]\SLHV]H 5, 6 5XFK]áR*RQ\SXQNWXZ\]QDF]DQLHSUGNRFLLSU]\SLHV]H 7 Kolokwiu z kineatyki 8, 9 5y*QLF]NRZH UyZQDQLD UXFKX SXQNWX PDWHULDOQHJR FDáNRZDQLH UyZQD ruchu -Z\]QDF]DQLHVLáLUHDNFL]QDGRZDQLHUyZQDUXFKXUXFKGUJDF\ 9, 10 '\QDPLNDUXFKX]áR*RQHJRSXQNWX]QDGRZDQLHUyZQDUXFKXZ\]QDF]DQLH reakcji, tarcie ) 11 Zasady zachowania dla punktu aterialnego (zasada zachowania energii, ]DVDGD]DFKRZDQLDSGX 12 '\QDPLND UXFKX SáDVNLHJR EU\á\ Z\]QDF]DQLH UHDNFL G\QDPLF]Q\FK WDUFLH przy toczeniu) 13 Kolokwiu z dynaiki 14 Zasada zachowanldhqhujllgodeu\á\ Prace projektowe P1 :\]QDF]DQLHSUGNRFLLSU]\SLHV]HZáDFXFKXNLQHPDW\F]Q\P P2 Dynaika punktu

4 =DGDQLDSU]\NáDGRZHZVHPHVWU]H,,, 1 Kineatyka punktu (znajdowdqlh UyZQD UXFKX QD SRGVWDZLH RSLVX UXFKX znajdowanie paraetrów ruchu - WRUX UyZQDQLD GURJL SUGNRFL L SU]\- SLHV]HQLD]UyZQDUXFKXSXQNWX =QDOH(üWRUUyZQDQLHGURJLSUGNRüLSU]\SLHV]HQLHSXQNWXSRUXV]DFHJRVL]JRGQLH] podanyi równaniai: (t) = sin 2 t y(t) = cos 2 t (t) =k cosωt y(t) =k sinωt z(t) =kωt =QDOH(üUyZQDQLDUXFKXSXQNWX0OH*FHJR QDREZRG]LHWRF]FHJRVLNU*NDURGHN NU*NDSU]HVXZDVL]HVWDáSUGNRFL9o :FKZLOLSRF]WNRZHUXFKXSXQNW0VW\NDá VL]QLHUXFKRP\PSRGáR*HP r 2,3 5XFKSáDVNLáDFXFK\NLQHPDW\F]QHUy*QHVSRVRE\Z\]QDF]DQLDSUGNRFL FKZLORZHZ\]QDF]DQLHSODQXSUGNRFL :\]QDF]\üSODQSUGNRFLGODSRGDQ\FKáDFXFKyZNLQHPDWycznych V - V -?

5 3,4 5XFKSáDVNLZ\]QDF]DQLHSU]\SLHV]H :\]QDF]\üSODQSU]\SLHV]HGODSRGDQ\FKáDFXFKyZNLQHPDW\F]Q\FK r 0o a o a o K 0o a -? 0 o a K -? & o 5,6 5XFK]áR*RQ\SXQNWXZ\]QDF]DQLHSUGNRFLLSU]\SLHV]H :\]QDF]\üSUGNRFLLSU]\SLHV]HQLD 0o 0o 0

6 8,9 5y*QLF]NRZHUyZQDQLDUXFKXSXQNWXPDWHULDOQHJRFDáNRZDQLHUyZQDUXFKX- Z\]QDF]DQLHVLáLUHDNFL]QDGRZDQLHUyZQDUXFKXUXFKGUJDF\ 5y*QLF]NRZDQLHUyZQDUXFKX =QDOH(üVLáZ\ZRáXFUXFKSXQNWXRPDVLHPHOLZLDGRPR*HSRUXV]DVLRQ]JRGQLH] równaniai: (t) =a cosωt y(t) =b sinωt 2EOLF]\üDNLHVWZVSyáF]\QQLNWDUFLDµHOL ZLDGRPR*HPDVDPSRUXV]DVLZ]GáX*UyZQLD zgodnie z równanie (t) =g t 2 /8 &DáNRZDQLHUy*QLF]NRZ\FKUyZQDUXFKX =QDOH(üUyZQDQLDUXFKXPDV\PSRUXV]DFHVLSRGG]LDáDQLHPVLá\)HOLZLDGRPR*HUXFK UR]SRF]\QDVLEH]SUGNRFLSRF]WNRZHL) +VLQNW :DNLPSRáR*HQLXPDVDP]VXZDFDVLSR ]DNU]\ZLRQ\PSRGáR*XRGHUZLHVLRGQLHJR"5XFK UR]SRF]\QDVL]SRáR*HQLDDNQDU\VXQNX] SUGNRFL9o r -DNSUGNRüSRF]WNRZ9o PXVLPLHüPDVDP ]QDGXFDVLZFKZLOLSRF]WNRZHZRGOHJáRFL ERGPDV\0DE\SU]\FLJDQDGRQLHVLá F = k 2 PRJáDVLRGQLHRGHUZDü" F =QDOH(üUyZQDQLHUXFKXPDV\P UR]SRF]\QDFHUXFK]SUGNRFL9o QDFK\ORQSRGNWHPα do poziou w polu grawitacyjny z opore Opór wynosi R = kv =QDOH(üUyZQDQLHUXFKXPDV\P]DF]HSLRQHQDVSU*\QLH RVWDáHFZ\FK\ORQH]SRáR*HQLDUyZQRZDJLR[o HOL SRUXV]DVLRQDSRSRGáR*X]WDUFLHP]HZVSµ c

7 9,10 '\QDPLNDUXFKX]áR*RQHJRSXQNWX]QDGRZDQLHUyZQDUXFKXZ\]QDF]DQLH reakcji, tarcie ) =QDOH(üUyZQDQLDUXFKXZ]JOGQHJRPDV\PSU]\]DGDQ\FKZDUXQNDFKSRF]WNRZ\FK c ZDUXQNLSRF]WNRZH (0)=l, v(0)=0 ZDUXQNLSRF]WNRZH (0)=l, v(0)=0 :\]QDF]\üUHDNFSLHUFLHQLD QDSUW ZDUXQNLSRF]WNRZH (0)=l, v(0)=0 tarcie ze wsp µ 5yZQLDSU]HVXZDVL]SU]\SLHV]HQLHPDo W jakich JUDQLFDFKPR*HVLRQR]PLHQLDüDE\]QDGXFDVL na QLPPDVDPSR]RVWDáDZ]JOGHPUyZQL nieruchoa? 7DUFLHPLG]\PDVPLSRGáR*HPRSLVXH ZVSyáF]\QQLNµ a o 11 Zasady zachowania dla punktu aterialnego (zasada zachowania energii, zasada ]DFKRZDQLDSGXHQHUJLDVSU*\VWRFLVSU*\Q\ c o R H-? 0DVDPUR]SRF]\QDUXFKZ\ZRáDQ\FLQLW o λ o VSU*\Q-DNLHXJLFLHVSU*\Q\ spowoduje ona po powrocie z równi, na której SRUXV]DVL]WDUFLHP]HZVSyáF]\QQLNLHPµ? =DNLHZ\VRNRFLPXVLZ\UXV]\üPDVDP DE\GRWU]HüGRNRFDWRUX" 4 h R 5XFKUR]SRF]\QDVLEH]SUGNRFLSRF]WNRwe=DNSUGNRFLPDVDPXGHU]\Z :DNLPSRáR*HQLXPDVDP]VXZDFDVLSR ]DNU]\ZLRQ\PSRGáR*XRGHUZLHVLRGQLHJR" SRGáR*H" 5XFKUR]SRF]\QDVL]SRáR*HQLDDNQD U\VXQNX]SUGNRFL9o 0DV\PL0SRUXV]DVLSRJáDGNLPSRGáR*X2EOLF]\üLFKSUGNRFL SR]GHU]HQLX5R]ZD*\ü]GHU]HQLHVSU*\VWHLSODVW\czne

8 12 Dynaika rufkxsádvnlhjreu\á\z\]qdf]dqlhuhdnflg\qdplf]q\fkwduflhsu]\ toczeniu) =QDOH(ü SU]\SLHV]HQLH URGNDNU*NDR asie, z którego odwija VLQLü5XFK UR]SRF]\QDVL, R R, r R EH]SUGNRFL SRF]WNRZH =QDOH(üQDFLJQLFLSU]\SLHV]HQLHZDOFDRUD]PLQµ GODWRF]HQLDEH]SROL]JX'DQH5 r,,, α, f, r l 3l -DNLPXVLE\üPLQZDUWRü ZVSyáF]\QQLNDWDUFLDµ, aby walec o PDVLHPWRF]\áVLEH]SROL]JX" 2EOLF]\üUHDNFHZSRGSRU]HSRRGFLFLX FLJQD 14 =DVDGD]DFKRZDQLDHQHUJLLGODEU\á\ V=0, R V 0 H 1 l 3l V=0 =QDOH(üQDZLNV]SUGNRüNRFD$, R EHONLSRRGFLFLXFLJQD H 2 V 0 -DNZ\VRNRüRVLJQLHZDOHFZFKZLOL]DWU]\PDQLD HOLXSRGVWDZ\UyZQLSUGNRüHJRURGNDZ\QRVL 5R]ZD*\üGZDSU]\SDGNLWRF]HQLHEH]SROL]JX L]SROL]JLHP:VSyáF]\QQLNLWDUFLD I

Mechanika ogólna II Kinematyka i dynamika

Mechanika ogólna II Kinematyka i dynamika KATEDRA ECHANIKI 0$7(5,$àÏ: DEPARTENT OF ECHANICS OF ATERIALS 32/,7(&+1,$àÏ'=$ 7(&+1,&$/81,9(56,7

Bardziej szczegółowo

Mechanika ogólna II Kinematyka i dynamika

Mechanika ogólna II Kinematyka i dynamika Mechanika ogólna II Kineatyka i dynaika kierunek Budownictwo, se. III ateriały poocnicze do ćwiczeń opracowanie: dr inŝ. Piotr Dębski, dr inŝ. Irena Wagner TREŚĆ WYKŁADU Kineatyka: Zakres przediotu. Przestrzeń,

Bardziej szczegółowo

Więzy z y tarciem W w W ię w zach a,, w w kt k órych y nie występuje tarcie, reakcja jest prostopadł topa a a do płas a zczyzny zny

Więzy z y tarciem W w W ię w zach a,, w w kt k órych y nie występuje tarcie, reakcja jest prostopadł topa a a do płas a zczyzny zny Mechanika ogólna Wykład nr 8 Zjawisko tarcia. rawa tarcia. Literatura [] J. Leyko: Mechanika ogólna [2] J. Leyko: Mechanika ogólna w zadaniach [3] J. Misiak: Mechanika ogólna [4] J. Misiak: Zadania z mechaniki

Bardziej szczegółowo

Kinematyka: opis ruchu

Kinematyka: opis ruchu Kinematyka: opis ruchu Fizyka I (B+C) Wykład IV: Ruch jednostajnie przyspieszony Ruch harmoniczny Ruch po okręgu Klasyfikacja ruchów Ze względu na tor wybrane przypadki szczególne prostoliniowy, odbywajacy

Bardziej szczegółowo

Dynamika punktu materialnego nieswobodnego

Dynamika punktu materialnego nieswobodnego Dynaika punktu aterianego nieswobodnego dr inż. Sebastian Pakuła Wydział Inżynierii Mechanicznej i Robotyki Katedra Mechaniki i Wibroakustyki ai: spakua@agh.edu.p www: hoe.agh.edu.p/~spakua/ dr inż. Sebastian

Bardziej szczegółowo

Kinematyka: opis ruchu

Kinematyka: opis ruchu Kinematyka: opis ruchu Fizyka I (Mechanika) Wykład II: Pojęcia podstawowe punkt materialny, układ odniesienia, układ współrzędnych tor, prędkość, przyspieszenie Ruch jednostajny, ruch jednostajnie przyspieszony

Bardziej szczegółowo

I. DYNAMIKA PUNKTU MATERIALNEGO

I. DYNAMIKA PUNKTU MATERIALNEGO I. DYNAMIKA PUNKTU MATERIALNEGO A. RÓŻNICZKOWE RÓWNANIA RUCHU A1. Bryła o masie m przesuwa się po chropowatej równi z prędkością v M. Podać dynamiczne równania ruchu bryły i rozwiązać je tak, aby wyznaczyć

Bardziej szczegółowo

Lista 2 + Rozwiązania BLiW - niestacjonarne

Lista 2 + Rozwiązania BLiW - niestacjonarne Dynaika 1. Oblicz wartość siły, z jaką siłacz usiałby działać na cięŝar o asie 100 kg, jeŝeli chciałby podnieść go na wysokość 0,5 w czasie 1 sekundy ruche jednostajnie przyspieszony. ( g Q + b g + a a

Bardziej szczegółowo

Ż ż Ł ż ż ż Ż Ś ż ż ż Ł Ż Ż ć ż Ż Ż Ż Ń Ż Ź ż Ź Ź ż Ż ż ż Ż Ł Ż Ł Ż ż Ż ż Ż Ż Ń Ą Ż Ń Ż Ń ć ż Ż ź Ś ć Ł Ł Ź Ż Ż ż Ł ż Ż Ł Ż Ł ź ć ż Ż Ż ż ż Ó ż Ł Ż ć Ż Ż Ę Ż Ż Ż ż Ż ż ż Ś ż Ż ż ż ź Ż Ń ć Ż ż Ż Ż ż ż ż

Bardziej szczegółowo

Ś Ł Ą Ś Ś ź Ś ń ż ż Ó ż ż Ś Ł ż ń ń ń ż ń Ś ń ć ŚĘ Ó Ł Ę Ł Ś Ę Ę ń ń ń ń ń Ź ń ń ń ń ń ż ń ń ń ń ń Ę ż ż ć Ść ń ń ż Ń ż ż ń ń Ś Ą ń Ś ń ń ż Ó ż Ź ń ż ń Ś Ń Ó ż Ł ż Ą ź ź Ś Ł ć Ś ć ż ź ż ć ć Ę Ó Ś Ó ż ż

Bardziej szczegółowo

Ł Ł Ś Ę ź ń ź ź Ś Ę Ę Ś Ą Ś Ę Ż Ł ń Ę Ś ć ć ń ć ń ń ń ź ń Ę ź ń ń ń ź ź Ś ź ź ć ń ń ń ń Ś ć Ś ń ń Ś ź ń Ę ń Ś ź ź ź ź ź Ę Ę Ę Ś ń Ś ć ń ń ń ń ń ń Ę ń ń ń ń ć ń ń ń ń ć ń Ś ć Ł ń ń ń ć ń ć ź ń ź ć ń ń ć

Bardziej szczegółowo

Ł Ł Ś ź ń ź ź ź Ś Ł Ę Ę Ś ż Ś ń Ą Ś Ą Ł ż ż ń ż ć ż ż ż ź ż ć ź Ę Ę ń ć ż Ł ń ż ż ż Ś ż Ś ż ż ż ż ż ż ż ń ń ż ż ż ć ż ń ż ń ź ż ć ż ż ć ń ż Ę Ę ć ń Ę ż ż ń ń ź Ę ź ż ń ż ń ź ż ż ż ń ż ż ż ż ż ż ż ż ń ń

Bardziej szczegółowo

dr inż. Zbigniew Szklarski

dr inż. Zbigniew Szklarski Wykład 5: Dynaika dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Przyczyny ruchu - zasady dynaiki dla punktu aterialnego Jeśli ciało znajduje się we właściwy iejscu,

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Mechatronika Rodzaj przedmiotu: obowiązkowy przedmiot podstawowy Rodzaj zajęć: Wykład, Ćwiczenia I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE C1. Uzyskanie przez

Bardziej szczegółowo

Kinematyka: opis ruchu

Kinematyka: opis ruchu Kinematyka: opis ruchu Fizyka I (Mechanika) Wykład II: Pojęcia podstawowe punkt materialny, układ odniesienia, układ współrzędnych tor, prędkość, przyspieszenie Ruch jednostajny, ruch jednostajnie przyspieszony

Bardziej szczegółowo

Zasady dynamiki Isaak Newton (1686 r.)

Zasady dynamiki Isaak Newton (1686 r.) Zasady dynamiki Isaak Newton (1686 r.) I (zasada bezwładności) Istnieje taki układ odniesienia, w którym ciało pozostaje w spoczynku lub porusza się ruchem jednostajnym prostoliniowym, jeśli nie działają

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Mechanika i Budowa Maszyn Rodzaj przedmiotu: obowiązkowy przedmiot podstawowy Rodzaj zajęć: Wykład, Ćwiczenia I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE C1.

Bardziej szczegółowo

Mechanika ogólna / Tadeusz Niezgodziński. - Wyd. 1, dodr. 5. Warszawa, Spis treści

Mechanika ogólna / Tadeusz Niezgodziński. - Wyd. 1, dodr. 5. Warszawa, Spis treści Mechanika ogólna / Tadeusz Niezgodziński. - Wyd. 1, dodr. 5. Warszawa, 2010 Spis treści Część I. STATYKA 1. Prawa Newtona. Zasady statyki i reakcje więzów 11 1.1. Prawa Newtona 11 1.2. Jednostki masy i

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Inżynieria Biomedyczna Rodzaj przedmiotu: obowiązkowy moduł kierunkowy ogólny Rodzaj zajęć: Wykład, Ćwiczenia MECHANIKA Mechanics Forma studiów: studia stacjonarne Poziom kwalifikacji:

Bardziej szczegółowo

v = v i e i v 1 ] T v = = v 1 v n v n ] a r +q = a a r 3q =

v = v i e i v 1 ] T v = = v 1 v n v n ] a r +q = a a r 3q = v U = e i,..., e n ) v = n v i e i i= e i i v T v = = v v n v v v v n 3q q q q r q = r 3q = E = E q E 3q E q = k q rq 3 k 3q r 3q 3 r q = k q rq 3 = kq 4 3 ) 4 q d b d c d d X d ± = d r = x y T d ± r ±

Bardziej szczegółowo

Zasady dynamiki Newtona. Ilość ruchu, stan ruchu danego ciała opisuje pęd

Zasady dynamiki Newtona. Ilość ruchu, stan ruchu danego ciała opisuje pęd Zasady dynamiki Newtona Ilość ruchu, stan ruchu danego ciała opisuje pęd Zasady dynamiki Newtona I Każde ciało trwa w stanie spoczynku lub porusza się ruchem prostoliniowym i jednostajnym, jeśli siły przyłożone

Bardziej szczegółowo

Podstawy fizyki sezon 1 VII. Ruch drgający

Podstawy fizyki sezon 1 VII. Ruch drgający Podstawy fizyki sezon 1 VII. Ruch drgający Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Ruch skutkiem działania

Bardziej szczegółowo

KĄCIK ZADAŃ Drugi stopień olimpiady fizycznej na Ukrainie (rok 2000)

KĄCIK ZADAŃ Drugi stopień olimpiady fizycznej na Ukrainie (rok 2000) KĄCIK ZADAŃ Drugi stopień oipiady fizycznej na Ukrainie (rok 000) Jadwiga Saach Redakcja prezentuje trzy przykładowe zadania z drugiego stopnia oipiady fizycznej na Ukrainie (rok 000) Zadania z tej oipiady

Bardziej szczegółowo

Całki krzywoliniowe. SNM - Elementy analizy wektorowej - 1

Całki krzywoliniowe. SNM - Elementy analizy wektorowej - 1 SNM - Elementy analizy wektorowej - 1 Całki krzywoliniowe Definicja (funkcja wektorowa jednej zmiennej) Funkcją wektorową jednej zmiennej nazywamy odwzorowanie r : I R 3, gdzie I oznacza przedział na prostej,

Bardziej szczegółowo

Tematy: oscylator harmoniczny, oscylator tłumiony, oscylator wymuszony, zjawisko rezonansu, przykłady układ RLC, jądrowy rezonans magnetyczny

Tematy: oscylator harmoniczny, oscylator tłumiony, oscylator wymuszony, zjawisko rezonansu, przykłady układ RLC, jądrowy rezonans magnetyczny Wykład 8 Drgania haroniczne Teaty: oscylator haroniczny, oscylator tłuiony, oscylator wyuszony, zjawisko rezonansu, przykłady układ RLC, jądrowy rezonans agnetyczny 1. Oscylator haroniczny 1.1 Równanie

Bardziej szczegółowo

KO OF Szczecin:

KO OF Szczecin: OF_I_ Źródło: XX OLIMPIADA FIZYCZNA (97/97). Stopień I, zadanie teoretyczne Nazwa zadania: Działy: Słowa kluczowe: Koitet Główny Olipiady Fizycznej; Waldear Gorzkowski: Olipiady fizyczne XIX i XX. WSiP,

Bardziej szczegółowo

Fizyka I (mechanika), rok akad. 2011/2012 Zadania z kolokwium I

Fizyka I (mechanika), rok akad. 2011/2012 Zadania z kolokwium I Fizyka I (echanika), rok akad. 0/0 Zadania z kolokwiu I Zadanie (zadanie doowe, seria II) Masy, i, połączone linkai zawieszone są na bloczkach jak na rysunku. Jakie uszą być spełnione warunki, aby ożliwe

Bardziej szczegółowo

y(t) = y 0 + R sin t, t R. z(t) = h 2π t

y(t) = y 0 + R sin t, t R. z(t) = h 2π t SNM - Elementy analizy wektorowej - 1 Całki krzywoliniowe Definicja (funkcja wektorowa jednej zmiennej) Funkcją wektorową jednej zmiennej nazywamy odwzorowanie r : I R 3, gdzie I oznacza przedział na prostej,

Bardziej szczegółowo

Mechanika i Budowa Maszyn I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

Mechanika i Budowa Maszyn I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) Karta w przygotowaniu KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Mechanika ogólna II Nazwa modułu w języku angielskim Engineering Mechanics Obowiązuje od roku akademickiego 2013/2014 A. USYTUOWANIE

Bardziej szczegółowo

Ruch drgajacy. Drgania harmoniczne. Drgania harmoniczne... Drgania harmoniczne... Notatki. Notatki. Notatki. Notatki. dr inż.

Ruch drgajacy. Drgania harmoniczne. Drgania harmoniczne... Drgania harmoniczne... Notatki. Notatki. Notatki. Notatki. dr inż. Ruch drgajacy dr inż. Ireneusz Owczarek CNMiF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 1 dr inż. Ireneusz Owczarek Ruch drgajacy Drgania harmoniczne Drgania oscylacje to cykliczna

Bardziej szczegółowo

Promieniowanie dipolowe

Promieniowanie dipolowe Promieniowanie dipolowe Potencjały opóźnione φ i A dla promieniowanie punktowego dipola elektrycznego wygodnie jest wyrażać przez wektor Hertza Z φ = ϵ 0 Z, spełniający niejednorodne równanie falowe A

Bardziej szczegółowo

MECHANIKA II. Drgania wymuszone

MECHANIKA II. Drgania wymuszone MECHANIKA II. Drgania wymuszone Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny Daniel Lewandowski (I-19) MECHANIKA II. Drgania wymuszone 1 / 30 Układ drgajacy o jednym stopniu swobody

Bardziej szczegółowo

Podstawy Procesów i Konstrukcji Inżynierskich. Praca, moc, energia INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA

Podstawy Procesów i Konstrukcji Inżynierskich. Praca, moc, energia INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA Podstawy Procesów i Konstrukcji Inżynierskich Praca, moc, energia Energia Energia jest to wielkość skalarna, charakteryzująca stan, w jakim znajduje się jedno lub wiele ciał. Energia jest miarą różnych

Bardziej szczegółowo

LABORATORIUM Z FIZYKI

LABORATORIUM Z FIZYKI POLITECHNIKA ŚLĄSKA WYDZIAŁ CHEMICZNY KATEDRA FIZYKOCHEMII I TECHNOLOGII POLIMERÓW LABORATORIUM Z FIZYKI Badanie sił tarcia Wprowadzenie BADANIE SIŁ TARCIA 2 Tarcie jest to zjawisko fizycznej dyssypacji

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: ENERGETYKA Rodzaj przedmiotu: Kierunkowy ogólny Rodzaj zajęć: Wykład, ćwiczenia MECHANIKA Mechanics Forma studiów: studia stacjonarne Poziom kwalifikacji: I stopnia Liczba godzin/tydzień:

Bardziej szczegółowo

Drgania układu o wielu stopniach swobody

Drgania układu o wielu stopniach swobody Drgania układu o wielu stopniach swobody Rozpatrzmy układ składający się z n ciał o masach m i (i =,,..., n, połączonych między sobą i z nieruchomym podłożem za pomocą elementów sprężystych o współczynnikach

Bardziej szczegółowo

Jaki musi być kąt b, aby siła S potrzebna do wywołania poślizgu była minimalna G S

Jaki musi być kąt b, aby siła S potrzebna do wywołania poślizgu była minimalna G S Jaki musi być kąt b, aby siła potrzebna do wywołania poślizgu była minimalna G N b T PRAWA COULOMBA I MORENA: 1. iła tarcia jest niezależna od wielkości stykających się powierzchni i zależy tylko (jedynie)

Bardziej szczegółowo

Wprowadzenie: Dynamika

Wprowadzenie: Dynamika Wprowadzenie: Dynaika dr inż. ebastian Pakuła Wydział Inżynierii Mechanicznej i Robotyki Katedra Mechaniki i Wibroakustyki ail: spakula@agh.edu.pl www: hoe.agh.edu.pl/~spakula/ dr inż. ebastian Pakuła

Bardziej szczegółowo

Mechanika ogólna Kierunek: budownictwo, sem. II studia zaoczne, I stopnia inżynierskie

Mechanika ogólna Kierunek: budownictwo, sem. II studia zaoczne, I stopnia inżynierskie Mechanika ogólna Kierunek: budownictwo, sem. II studia zaoczne, I stopnia inżynierskie materiały pomocnicze do zajęć audytoryjnych i projektowych opracowanie: dr inż. Piotr Dębski, dr inż. Dariusz Zaręba

Bardziej szczegółowo

Praca. Siły zachowawcze i niezachowawcze. Pole Grawitacyjne.

Praca. Siły zachowawcze i niezachowawcze. Pole Grawitacyjne. PRACA Praca. Siły zachowawcze i niezachowawcze. Pole Grawitacyjne. Rozważmy sytuację, gdy w krótkim czasie działająca siła spowodowała przemieszczenie ciała o bardzo małą wielkość Δs Wtedy praca wykonana

Bardziej szczegółowo

PODSTAWY FIZYKI - WYKŁAD 3 ENERGIA I PRACA SIŁA WYPORU. Piotr Nieżurawski. Wydział Fizyki. Uniwersytet Warszawski

PODSTAWY FIZYKI - WYKŁAD 3 ENERGIA I PRACA SIŁA WYPORU. Piotr Nieżurawski. Wydział Fizyki. Uniwersytet Warszawski PODSTAWY FIZYKI - WYKŁAD 3 ENERGIA I PRACA SIŁA WYPORU Piotr Nieżurawski pniez@fuw.edu.pl Wydział Fizyki Uniwersytet Warszawski http://www.fuw.edu.pl/~pniez/bioinformatyka/ 1 Co to jest praca? Dla punktu

Bardziej szczegółowo

Mechanika Techniczna I Engineering Mechanics I. Transport I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

Mechanika Techniczna I Engineering Mechanics I. Transport I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny) Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014

Bardziej szczegółowo

Mechanika Ogólna General Mechanics. Inżynieria Bezpieczeństwa I stopień (I stopień / II stopień) ogólnoakademicki (ogólnoakademicki / praktyczny)

Mechanika Ogólna General Mechanics. Inżynieria Bezpieczeństwa I stopień (I stopień / II stopień) ogólnoakademicki (ogólnoakademicki / praktyczny) Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014

Bardziej szczegółowo

mechanika analityczna 1 nierelatywistyczna L.D.Landau, E.M.Lifszyc Krótki kurs fizyki teoretycznej

mechanika analityczna 1 nierelatywistyczna L.D.Landau, E.M.Lifszyc Krótki kurs fizyki teoretycznej mechanika analityczna 1 nierelatywistyczna L.D.Landau, E.M.Lifszyc Krótki kurs fizyki teoretycznej ver-28.06.07 współrzędne uogólnione punkt materialny... wektor wodzący: prędkość: przyspieszenie: liczba

Bardziej szczegółowo

Zadania z dynamiki. Maciej J. Mrowiński 11 marca mω 2. Wyznacz położenie i prędkość ciała w funkcji czasu. ma t + f 0. ma 2 (e at 1), v gr = f 0

Zadania z dynamiki. Maciej J. Mrowiński 11 marca mω 2. Wyznacz położenie i prędkość ciała w funkcji czasu. ma t + f 0. ma 2 (e at 1), v gr = f 0 Zadania z dynamiki Maciej J. Mrowiński 11 marca 2010 Zadanie DYN1 Na ciało działa siła F (t) = f 0 cosωt (przy czym f 0 i ω to stałe). W chwili początkowej ciało miało prędkość v(0) = 0 i znajdowało się

Bardziej szczegółowo

LXVII OLIMPIADA FIZYCZNA ZAWODY II STOPNIA

LXVII OLIMPIADA FIZYCZNA ZAWODY II STOPNIA LXVII OLIMPIADA FIZYCZNA ZAWODY II STOPNIA CZĘŚĆ TEORETYCZNA Za każde zadanie można otrzymać maksymalnie 0 punktów. Zadanie 1. przedmiot. Gdzie znajduje się obraz i jakie jest jego powiększenie? Dla jakich

Bardziej szczegółowo

1.5. ZWIĄZKI KONSTYTUTYWNE STRONA FIZYCZNA

1.5. ZWIĄZKI KONSTYTUTYWNE STRONA FIZYCZNA J. Wyrwał, Wykłady z echaniki ateriałów.5. ZWIĄZKI KONSTYTUTYWN STRONA FIZYCZNA.5.. Wprowadzenie Wyprowadzone w rozdziałach.3 (strona statyczna) i.4 (strona geoetryczna) równania (.3.36) i (.4.) są niezależne

Bardziej szczegółowo

Zasada zachowania pędu

Zasada zachowania pędu Zasada zachowania pędu Fizyka I (B+C) Wykład XIII: Zasada zachowania pędu Zasada zachowania oentu pędu Ruch ciał o ziennej asie Zasada zachowania pędu Układ izolowany Każde ciało oże w dowolny sposób oddziaływać

Bardziej szczegółowo

dr inż. Zbigniew Szklarski

dr inż. Zbigniew Szklarski Wykład 4: Dynaika dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Przyczyny ruchu - zasady dynaiki dla punktu aterialnego Jeśli ciało znajduje się we właściwy iejscu,

Bardziej szczegółowo

PODSTAWY FIZYKI - WYKŁAD 1 WSTEP KINEMATYKA - OPIS RUCHU DYNAMIKA - OPIS ODDZIAŁYWAŃ. Piotr Nieżurawski.

PODSTAWY FIZYKI - WYKŁAD 1 WSTEP KINEMATYKA - OPIS RUCHU DYNAMIKA - OPIS ODDZIAŁYWAŃ. Piotr Nieżurawski. PODSTAWY FIZYKI - WYKŁAD 1 WSTEP KINEMATYKA - OPIS RUCHU DYNAMIKA - OPIS ODDZIAŁYWAŃ Piotr Nieżurawski pniez@fuw.edu.pl Wydział Fizyki Uniwersytet Warszawski http://www.fuw.edu.pl/~pniez/bioinformatyka/

Bardziej szczegółowo

DYNAMIKA dr Mikolaj Szopa

DYNAMIKA dr Mikolaj Szopa dr Mikolaj Szopa 17.10.2015 Do 1600 r. uważano, że naturalną cechą materii jest pozostawanie w stanie spoczynku. Dopiero Galileusz zauważył, że to stan ruchu nie zmienia się, dopóki nie ingerujemy I prawo

Bardziej szczegółowo

v = v i e i v 1 ] T v =

v = v i e i v 1 ] T v = v U = e i,..., e n ) v = n v i e i i= e i i v T v = = v v n v n U v v v +q 3q +q +q b c d XY X +q Y 3q r +q = r 3q = r +q = r +q = r 3q = r +q = E = E +q + E 3q + E +q = k q r+q 3 + k 3q r 3q 3 b V = kq

Bardziej szczegółowo

Fizyka I dla ZFBM-FMiNI+ Projektowanie Molek. i Bioinformatyka 2015/2016

Fizyka I dla ZFBM-FMiNI+ Projektowanie Molek. i Bioinformatyka 2015/2016 Fizyka I dla ZFBM-FMiNI+ Projektowanie Molek. i Bioinformatyka 2015/2016 Streszczenie Wykład przedstawia podstawowe zagadnienia mechaniki klasycznej od kinematyki punktu materialnego, przez prawa Newtona

Bardziej szczegółowo

Podstawy Automatyki Zbiór zadań dla studentów II roku AiR oraz MiBM

Podstawy Automatyki Zbiór zadań dla studentów II roku AiR oraz MiBM Aademia GórniczoHutnicza im. St. Staszica w Kraowie Wydział Inżynierii Mechanicznej i Robotyi Katedra Automatyzacji Procesów Podstawy Automatyi Zbiór zadań dla studentów II rou AiR oraz MiBM Tomasz Łuomsi

Bardziej szczegółowo

MECHANIKA 2 Wykład 7 Dynamiczne równania ruchu

MECHANIKA 2 Wykład 7 Dynamiczne równania ruchu MECHANIKA 2 Wykład 7 Dynamiczne równania ruchu Prowadzący: dr Krzysztof Polko Dynamiczne równania ruchu Druga zasada dynamiki zapisana w postaci: Jest dynamicznym wektorowym równaniem ruchu. Dynamiczne

Bardziej szczegółowo

PRZYCZYNY RUCHU ZASADY DYNAMIKI DLA PUNKTU MATERIALNEGO

PRZYCZYNY RUCHU ZASADY DYNAMIKI DLA PUNKTU MATERIALNEGO PRZYCZYNY RUCHU ZASADY DYNAMIKI DLA PUNKTU MATERIALNEGO Wykład 3 008/009, zia 1 Poglądy na echanikę przed Newtone Arystoteles uważał, że każdy ruch wynika albo z natury poruszającego się ciała (ruch naturalny)

Bardziej szczegółowo

Z-ETI-1027 Mechanika techniczna II Technical mechanics II. Stacjonarne. Katedra Inżynierii Produkcji Dr inż. Stanisław Wójcik

Z-ETI-1027 Mechanika techniczna II Technical mechanics II. Stacjonarne. Katedra Inżynierii Produkcji Dr inż. Stanisław Wójcik Załącznik nr 7 do Zarządzenia Rektora nr../12 z dnia.... 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego Z-ETI-1027 Mechanika

Bardziej szczegółowo

Mechanika analityczna. Małe drgania układów zachowawczych

Mechanika analityczna. Małe drgania układów zachowawczych Mechanika analityczna. Małe drgania układów zachowawczych. Drgania swobodne układów o jednym stopniu swobody.. Wprowadzenie teoretyczne Załóżmy, że układ materialny o jednym stopniu swobody i więzach idealnych,

Bardziej szczegółowo

Wprowadzenie: Dynamika

Wprowadzenie: Dynamika Wprowadzenie: Dynaika dr inż. ebastian Pakuła Wydział Inżynierii Mechanicznej i Robotyki Katedra Mechaniki i Wibroakustyki ail: spakula@agh.edu.pl www: hoe.agh.edu.pl/~spakula/ dr inż. ebastian Pakuła

Bardziej szczegółowo

5) W czterech rogach kwadratu o boku a umieszczono ładunki o tej samej wartości q jak pokazano na rysunku. k=1/(4πε 0 )

5) W czterech rogach kwadratu o boku a umieszczono ładunki o tej samej wartości q jak pokazano na rysunku. k=1/(4πε 0 ) Zadania zamknięte 1 1) Ciało zostało wyrzucono z prędkością V 0 skierowną pod kątem α względem poziomu (x). Wiedząc iż porusza się ono w polu grawitacyjnym o przyspieszeniu g skierowanym pionowo w dół

Bardziej szczegółowo

Prawa ruchu: dynamika

Prawa ruchu: dynamika Prawa ruchu: dynamika Fizyka I (B+C) Wykład X: Równania ruchu Więzy Rozwiazywanie równań ruchu oscylator harminiczny, wahadło ruch w jednorodnym polu elektrycznym i magnetycznym spektroskop III zasada

Bardziej szczegółowo

wszystkie elementy modelu płaskiego są w jednej płaszczyźnie, zwanej płaszczyzną modelu

wszystkie elementy modelu płaskiego są w jednej płaszczyźnie, zwanej płaszczyzną modelu Schemat statyczny zawiera informacje, takie jak: geometria i połoŝenie tarcz (ciał sztywnych), połączenia tarcz z fundamentem i ze sobą, rodzaj, połoŝenie i wartość obciąŝeń czynnych. wszystkie elementy

Bardziej szczegółowo

gdzie x jest wychyleniem z położenia równowagi. Współczynnik k jest tutaj współczynnikiem proporcjonalności.

gdzie x jest wychyleniem z położenia równowagi. Współczynnik k jest tutaj współczynnikiem proporcjonalności. RUCH DRGJĄCY Ruche drgający (drganiai) nazywa się każdy ruch, który charakteryzuje powtarzalność w czasie wielkości fizycznych (np wychylenia) określających ten ruch Występujące w przyrodzie drgania ożna

Bardziej szczegółowo

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2016/ /20 (skrajne daty)

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2016/ /20 (skrajne daty) Załącznik nr 4 do Uchwały Senatu nr 430/01/2015 SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2016/17 2019/20 (skrajne daty) 1.1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE/MODULE Nazwa przedmiotu/ modułu Mechanika Techniczna

Bardziej szczegółowo

Tarcie poślizgowe

Tarcie poślizgowe 3.3.1. Tarcie poślizgowe Przy omawianiu więzów w p. 3.2.1 reakcję wynikającą z oddziaływania ciała na ciało B (rys. 3.4) rozłożyliśmy na składową normalną i składową styczną T, którą nazwaliśmy siłą tarcia.

Bardziej szczegółowo

Zasady dynamiki Newtona

Zasady dynamiki Newtona Zasady dynamiki Newtona Każde ciało trwa w stanie spoczynku lub porusza się ruchem prostoliniowym i jednostajnym, jeśli siły przyłożone nie zmuszają ciała do zmiany tego stanu Jeżeli na ciało nie działa

Bardziej szczegółowo

Mechanika Analityczna

Mechanika Analityczna Mechanika Analityczna Wykład 2 - Zasada prac przygotowanych i ogólne równanie dynamiki Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej 29 lutego 2016 Plan wykładu

Bardziej szczegółowo

Fizyka 2 Wróbel Wojciech

Fizyka 2 Wróbel Wojciech Fizyka w poprzednim odcinku 1 Prawo Faradaya Fizyka B Bd S Strumień magnetyczny Jednostka: Wb (Weber) = T m d SEM B Siła elektromotoryczna Praca, przypadająca na jednostkę ładunku, wykonana w celu wytworzenia

Bardziej szczegółowo

Metody Lagrange a i Hamiltona w Mechanice

Metody Lagrange a i Hamiltona w Mechanice Metody Lagrange a i Hamiltona w Mechanice Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 8 M. Przybycień (WFiIS AGH) Metody Lagrange a i Hamiltona... Wykład

Bardziej szczegółowo

Prawa ruchu: dynamika

Prawa ruchu: dynamika Prawa ruchu: dynamika Fizyka I (Mechanika) Wykład V: Bezwładność I zasada dynamiki, układ inercjalny II zasada dynamiki III zasada dynamiki Równania ruchu Więzy Bezwładność Bezwładność (inercja) PWN 1998:

Bardziej szczegółowo

MAGNETYZM. PRĄD PRZEMIENNY

MAGNETYZM. PRĄD PRZEMIENNY Włodzimierz Wolczyński 47 POWTÓRKA 9 MAGNETYZM. PRĄD PRZEMIENNY Zadanie 1 W dwóch przewodnikach prostoliniowych nieskończenie długich umieszczonych w próżni, oddalonych od siebie o r = cm, płynie prąd.

Bardziej szczegółowo

Napęd pojęcia podstawowe

Napęd pojęcia podstawowe Napęd pojęcia podstawowe Równanie ruchu obrotowego (bryły sztywnej) moment - prędkość kątowa Energia kinetyczna Praca E W k Fl Fr d de k dw d ( ) Równanie ruchu obrotowego (bryły sztywnej) d ( ) d d d

Bardziej szczegółowo

Ruch obrotowy bryły sztywnej. Bryła sztywna - ciało, w którym odległości między poszczególnymi punktami ciała są stałe

Ruch obrotowy bryły sztywnej. Bryła sztywna - ciało, w którym odległości między poszczególnymi punktami ciała są stałe Ruch obrotowy bryły sztywnej Bryła sztywna - ciało, w którym odległości między poszczególnymi punktami ciała są stałe Ruch obrotowy ruch po okręgu P, t 1 P 1, t 1 θ 1 θ Ruch obrotowy ruch po okręgu P,

Bardziej szczegółowo

Podstawy fizyki. Wykład 2. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, W11, PWr

Podstawy fizyki. Wykład 2. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, W11, PWr Podstawy fizyki Wykład 2 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Dynamika Zasady dynamiki Newtona Układy inercjalne i nieinercjalne Siła Masa Przykłady sił Tarcie Opór Ruch jednostajny

Bardziej szczegółowo

IV.3 Ruch swobodny i nieswobodny. Więzy. Reakcje więzów

IV.3 Ruch swobodny i nieswobodny. Więzy. Reakcje więzów IV.3 Ruch swobodny i nieswobodny. Więzy. Reakcje więzów Jan Królikowski Fizyka IBC 1 Ruch swobodny i nieswobodny. Stany równowagi Rozważamy ciało w pewnym układzie inercjalnym (UI). Gdy: prędkość tego

Bardziej szczegółowo

KARTA MODUŁU KSZTAŁCENIA

KARTA MODUŁU KSZTAŁCENIA KARTA MODUŁU KSZTAŁCENIA I. 1 Nazwa modułu kształcenia Mechanika teoretyczna Informacje ogólne 2 Nazwa jednostki prowadzącej moduł Państwowa Szkoła Wyższa im. Papieża Jana Pawła II,Katedra Nauk Technicznych,

Bardziej szczegółowo

WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII.

WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII. ĆWICZENIE 3. WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII. 1. Oscylator harmoniczny. Wprowadzenie Oscylatorem harmonicznym nazywamy punt materialny, na tóry,działa siła sierowana do pewnego centrum,

Bardziej szczegółowo

J. Szantyr Wykład nr 27 Przepływy w kanałach otwartych I

J. Szantyr Wykład nr 27 Przepływy w kanałach otwartych I J. Szantyr Wykład nr 7 Przepływy w kanałach otwartych Przepływy w kanałach otwartych najczęściej wymuszane są działaniem siły grawitacji. Jako wstępny uproszczony przypadek przeanalizujemy spływ warstwy

Bardziej szczegółowo

Zasada ruchu środka masy i zasada d Alemberta 6

Zasada ruchu środka masy i zasada d Alemberta 6 Zaada ruchu środka ay i zaada d Aleerta 6 Wprowadzenie Zaada ruchu środka ay Środek ay układu punktów aterialnych poruza ię tak, jaky w ty punkcie yła kupiona cała aa układu i jaky do teo punktu przyłożone

Bardziej szczegółowo

Matematyczny model obci¹ enia elementu roboczego

Matematyczny model obci¹ enia elementu roboczego AUTOMATYKA 011 To 15 Zeszyt Bogdan Kosturkiewicz* Mateatyczny odel obci¹ enia eleentu roboczego zasilacza œliakowego 1. Wprowadzenie Istotny czynnikie warunkuj¹cy otrzyanie dobrych jakoœciowo brykietów

Bardziej szczegółowo

Mechanika ogólna I Engineering Mechanics

Mechanika ogólna I Engineering Mechanics Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014

Bardziej szczegółowo

Zastosowania zasad dynamiki Newtona Katarzyna Sznajd-Weron. Wykład dla Matematyki Stosowanej

Zastosowania zasad dynamiki Newtona Katarzyna Sznajd-Weron. Wykład dla Matematyki Stosowanej Zastosowania zasad dynamiki Newtona Katarzyna Sznajd-Weron Wykład dla Matematyki Stosowanej Zasady Dynamiki Newtona skrót (inercjalne układy odniesienia) 1. σ F = 0 a = 0 (definicja układu inercjalnego)

Bardziej szczegółowo

Z-LOG-1005I Mechanika techniczna Mechanics for Engineers

Z-LOG-1005I Mechanika techniczna Mechanics for Engineers KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013 Z-LOG-1005I Mechanika techniczna Mechanics for Engineers A. USYTUOWANIE

Bardziej szczegółowo

Politechnika Śląska w Gliwicach Wydział Organizacji i Zarządzania Katedra Podstaw Systemów Technicznych

Politechnika Śląska w Gliwicach Wydział Organizacji i Zarządzania Katedra Podstaw Systemów Technicznych Przedmiot: Mechanika stosowana Liczba godzin zajęć dydaktycznych: Politechnika Śląska w Gliwicach Wydział Organizacji i Zarządzania Katedra Podstaw Systemów Technicznych Studia magisterskie: wykład 30

Bardziej szczegółowo

Laboratorium Mechaniki Technicznej

Laboratorium Mechaniki Technicznej Laboratorium Mechaniki Technicznej Ćwiczenie nr 5 Badanie drgań liniowych układu o jednym stopniu swobody Katedra Automatyki, Biomechaniki i Mechatroniki 90-924 Łódź, ul. Stefanowskiego 1/15, budynek A22

Bardziej szczegółowo

Podstawy fizyki sezon 1 V. Ruch obrotowy 1 (!)

Podstawy fizyki sezon 1 V. Ruch obrotowy 1 (!) Podstawy fizyki sezon 1 V. Ruch obrotowy 1 (!) Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Kinematyka ruchu

Bardziej szczegółowo

MECHANIKA 2. Praca, moc, energia. Wykład Nr 11. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Praca, moc, energia. Wykład Nr 11. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 11 Praca, moc, energia Prowadzący: dr Krzysztof Polko PRACA MECHANICZNA SIŁY STAŁEJ Pracą siły stałej na prostoliniowym przemieszczeniu w kierunku działania siły nazywamy iloczyn

Bardziej szczegółowo

Podstawy fizyki. Wykład 2. Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska

Podstawy fizyki. Wykład 2. Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska Podstawy fizyki Wykład 2 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Janusz Andrzejewski 2 Dynamika Zasady dynamiki Newtona Układy inercjalne i nieinercjalne Siła Masa Przykłady sił Tarcie

Bardziej szczegółowo

Aparaty elektryczne Electrical apparatus. Elektrotechnika II stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

Aparaty elektryczne Electrical apparatus. Elektrotechnika II stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) KARTA MODUŁU / KARTA PRZEDMIOTU Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. Kod odułu Nazwa odułu Nazwa odułu w języku angielski Obowiązuje od roku akadeickiego 2011/2012 Aparaty

Bardziej szczegółowo

MECHANIKA II. Drgania wymuszone

MECHANIKA II. Drgania wymuszone MECHANIKA II. Drgania wymuszone Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/ daniel.lewandowski@pwr.edu.pl

Bardziej szczegółowo

Karta (sylabus) modułu/przedmiotu INŻYNIERIA MATERIAŁOWA Studia pierwszego stopnia

Karta (sylabus) modułu/przedmiotu INŻYNIERIA MATERIAŁOWA Studia pierwszego stopnia Karta (sylabus) modułu/przedmiotu INŻYNIERIA MATERIAŁOWA Studia pierwszego stopnia Przedmiot: Mechanika Rodzaj przedmiotu: Obowiązkowy Kod przedmiotu: IM 1 S 0 2 24-0_1 Rok: I Semestr: 2 Forma studiów:

Bardziej szczegółowo

O ruchu. 10 m. Założenia kinematyki. Najprostsza obserwowana zmiana. Opis w kategoriach przestrzeni i czasu ( geometria fizyki ).

O ruchu. 10 m. Założenia kinematyki. Najprostsza obserwowana zmiana. Opis w kategoriach przestrzeni i czasu ( geometria fizyki ). O ruchu Założenia kinematyki Najprostsza obserwowana zmiana. Ignorujemy czynniki sprawcze ruchu, rozmiar, kształt, strukturę ciała (punkt materialny). Opis w kategoriach przestrzeni i czasu ( geometria

Bardziej szczegółowo

09-TYP-2015 DYNAMIKA RUCHU PROSTOLINIOWEGO

09-TYP-2015 DYNAMIKA RUCHU PROSTOLINIOWEGO Włodzimierz Wolczyński 09-TYP-2015 POWTÓRKA PRÓBNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII ROZSZERZONY DYNAMIKA RUCHU PROSTOLINIOWEGO Obejmuje działy u mnie wyszczególnione w konspektach jako 01 WEKTORY,

Bardziej szczegółowo

MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 12 Zasady pracy i energii Prowadzący: dr Krzysztof Polko WEKTOR POLA SIŁ Wektor pola sił możemy zapisać w postaci: (1) Prawa strona jest gradientem funkcji Φ, czyli (2) POTENCJAŁ

Bardziej szczegółowo

Zasady i kryteria zaliczenia: Zaliczenie pisemne w formie pytań opisowych, testowych i rachunkowych.

Zasady i kryteria zaliczenia: Zaliczenie pisemne w formie pytań opisowych, testowych i rachunkowych. Jednostka prowadząca: Wydział Techniczny Kierunek studiów: Inżynieria bezpieczeństwa Nazwa przedmiotu: Mechanika techniczna Charakter przedmiotu: podstawowy, obowiązkowy Typ studiów: inżynierskie pierwszego

Bardziej szczegółowo

Prawa Maxwella. C o p y rig h t b y p lec iu g 2.p l

Prawa Maxwella. C o p y rig h t b y p lec iu g 2.p l Prawa Maxwella Pierwsze prawo Maxwella Wyobraźmy sobie sytuację przedstawioną na rysunku. Przewodnik kołowy i magnes zbliżają się do siebie z prędkością v. Sytuację tę można opisać z punktu widzenia dwóch

Bardziej szczegółowo