Programowanie dynamiczne

Wielkość: px
Rozpocząć pokaz od strony:

Download "Programowanie dynamiczne"

Transkrypt

1 Programowanie dynamiczne Patryk Żywica 5 maja

2 Spis treści 1 Problem wydawania reszty Sformułowanie problemu Algorytm Prosty algorytm zachłanny Algorytm dynamiczny Problem znajdowania najdłuższego niemalejacego podciagu Sformułowanie problemu Algorytm

3 1 Problem wydawania reszty 1.1 Sformułowanie problemu W najprostszy sposób problem ten definiuje się następująco: mamy do dyspozycji nieskończenie wiele monet o nominałach c 1, c 2,..., c n. Chcemy wypłacić kwotę k tak, aby ilość użytych monet była jak najmniejsza. W dalszej części zakładam, że poszczególne nominały przechowywane są w tablicy c o rozmiarze n+1 tak, że c[0] = 0, c[1] = c 1... c[n] = c n oraz, że wszystkie tablice indeksowane są od zera. 1.2 Algorytm Prosty algorytm zachłanny Stosujemy go praktycznie codziennie, zawsze gdy musimy za coś zapłacić. Polega on na wypłacaniu danej kwoty największym nominałem tak długo jak kwota nie jest mniejsza od jego wartości, następnie powtarzamy postępowanie dla mniejszego nominału. Pseudokod tego rozwiązania wygląda następująco: 1. dla wszystkich nominałów c i w kolejności malejącej 2. while k >= c i 3. i i c i Jeśli zmienna k po zakończeniu algorytmu będzie większa od zera, to znaczy, że danej kwoty nie da się wypłacić Algorytm dynamiczny Jednak algorytm przedstawiony powyżej nie wystarcza. Można odpowiednio dobrać nominały, np: dla monet 1, 4, 9 algorytm zachłanny nie zawsze zwróci poprawny wynik. Zatem widać, że problem ten w ogólnym przypadku nie jest taki prosty jak sie wydawało. Z pomocą przychodzi tu technika programowania dynamicznego. Wcześniej jednak przydałoby się bardziej sprecyzować użyteczność algorytmu zachłannego. Wiemy już, że jest on poprawny dla nominałów 1, 2, 5. Z tego też 3

4 powodu są to nominały używane w większości krajów na świecie. Jednak nie jest to jedyny przypadek. Można udowodnić, że algorytm zachłanny wystarcza również dla nominałow spełniających następujące założenie: dla dowolnego c N oraz k N i nominałach postaci c 0, c 1... c k Wracając do algorytmu. Zdefiniujmy tablicę dwuwymiarową T o rozmiarze k na n. W komórce o indeksie T[i][j] znajduje sie najmniejsza liczba monet potrzebna do wypłacenia kwoty i używając pierwszych j monet. W naszym przykładzie będą to kolejno zbiory dostępnych monet: {0}, {1}, {1, 4}, {1, 4, 9}. Monetę o nominale 0 możemy bez straty ogólności dołożyć do dostępnego zbioru, ponieważ żadna kwota nie może zostać wypłacona przy jej użyciu stąd wartość dla wszystkich kwot większych od 0. W każdym kroku algorytmu musimy zdecydować, który sposób wypłaty kwoty i przy użyciu pierwszych j monet, jest optymalny. Wiersze przetwarzamy kolejno po sobie, w taki sposób, aby wszystkie wiersze o kwocie mniejszej od i były przetworzone przed wierszem i. Wiersze przetwarzamy zgodnie ze wzrostem mnogości zbioru nominałów. Łatwo zauważyć, że dzieki takiej kolejności przetwarzania, mamy tylko dwie możliwości w każdym kroku. Dodanie nowego nominału może nie wpłynąć na ilość monet potrzebnych do wypłacenia danej kwoty, wtedy T [i][j] = T [i][j 1]. Drugi przypadek jest przeciwny, czyli dodanie nowego nominału c j wpływa na ilość monet, wtedy wynikiem jest rozwiązanie optymalne dla kwoty i c j (używąjac tego samego zbioru monet) powiększone o jedną monetę nominału c j. Wartość w tablicy T to T [i][j] = T [i c j ][j] + 1. Pozostaje tylko kwestia zdecydowania, który przypadek zachodzi dla danego pola. Jest to bardzo łatwe, wystarczy sprawdzić, która z tych wartości jest mniejsza. Poniżej przedstawione jest działanie tego algorytmu dla nominałów 1, 4, 9 i kwot od 0 do 17. 4

5 Kwota algorytm Kwota Stan tablicy T przed i po wykonaniu algorytmu dla kwoty 17 oraz nominałów 1, 4 oraz 9. Pogrubione liczby w wierszach 12 i 16 pokazują miejsca, w których algorytm zachłanny zwróciłby nieoptymalny wynik. Strzałki w tabelach wykorzystywane są do odtworzenia wyboru monet dającego optymalne rozwiązanie. Zdefiniujmy tablicę B o rozmiarze k na n. B[i][j] przyjmuje jedną z dwóch wartości lub w zależności od tego czy wypłacając kwotę i bieżemy monetę o nominale c j (wartość ), lub wypłacamy tę kwotę nie używając monety c j (wartość ). Odtworzenia wyboru monet dokonujemy zaczynając od pola T[k][n] idąc zgodnie z kierunkiem strzałek do początku tablicy. Jeśli poruszamy się w górę, to znaczy, że moneta o numerze aktualnej kolumny została wybrana. 5

6 Oto pseudokod dynamicznego algorytmu wydawania reszty. 1. for i 0 to n 2. do T[0][i] 0 3. for i 1 to k 4. do T[i][0] 5. for i 1 to k 6. do for j 1 to n 7. do if i<c[j] 8. then T[i][j] min(t [i c[j]][j] + 1, T [i][j 1]) 9. B[i][j] 10. else T[i][j] T[i][j-1] 11. B[i][j] T[k][n] zawiera ilość monet potrzebnych do optymalnego wypłacenia kwoty k, jeśli jest to możliwe, lub jeśli nie jest to możliwe. Złożoność czasowa i pamięciowa algorytmu to Θ(nk) 2 Problem znajdowania najdłuższego niemalejacego podciagu 2.1 Sformułowanie problemu Jest dany ciag a 1, a 2,..., a n liczb rzeczywistych. Chcemy wyszukać najdłuższy podciąg b 1, b 2,..., b m tego ciągu, taki aby spełniony był warunek: b 1 b 2... b n Problem oczywiście można przeformułować na znajdowanie najdłuższego podciągu nierosnącego, malejącego lub rosnącego. 2.2 Algorytm Algorytm z wykorzystaniem programowania dynamicznego działa w czasie O(n lg n). Jego idea polega na pamiętaniu w tablicy T[i] największego elementu w podciągu niemalejącym o długości i. 6

7 W czasie przetwarzania kolejnych wyrazów ciągu (a n ) aktualizujemy tablicę T wstawiając wartość a i pod najmniejszm takim indeksem i tablicy T, aby aktualna wartość pod tym indeksem była najmniejszą wartością wiekszą lub równą od a i. Poniżej przedstawiam przykład działania, a następnie pseudokod algorytmu. a) T[i] b) T[i] 1 c) T[i] 1 7 d) T[i] 1 2 e) T[i] f) T[i] g) T[i] h) T[i] i) T[i] (a) przedstawia początkowe ustawienie tablicy T. (b) tablica T po wstawieniu pierwszego elementu. (c)-(i) tablica T po wstawieniu elementu pogrubionego. Z tablicy (i) możemy odczytać, że najdłuższy podciąg niemalający ma długość 5. Aby móc odczytać, które wyrazy ciągu (a n ) tworzą najdłuższy niemalejący podciąg trzeba wprowadzić dodatkową tablicę, w której dla każdego a i będziemy przechowywali indeks wyrazu go poprzedzającego w najdłuższym podciągu. 7

8 Kluczowym spostrzeżeniem, dzięki któremu algorytm ten jest szybki jest to, że zawartość tablicy T jest zawsze niemalejąca. Można więc użyć wyszukania binarnego w celu odnalezienia miejsca, w które należy wstawić dany element. 1. for i 1 to n 2. do T[i] 3. T[0] 4. for i 1 to n 5. do p WYSZUKAJ-BINARNIE(T, a i ) 6. T[p] a i Procedura WYSZUKAJ-BINARNIE(T, a i ) zwraca najmniejszy indeks najmniejszego elementu wiekszego lub równego a i. Długość podciągu odczytujemy jako najmniejszy indeks tablicy T, którego wartość jest mniejsza od. 8

Zadanie 1 Przygotuj algorytm programu - sortowanie przez wstawianie.

Zadanie 1 Przygotuj algorytm programu - sortowanie przez wstawianie. Sortowanie Dane wejściowe: ciąg n-liczb (kluczy) (a 1, a 2, a 3,..., a n 1, a n ) Dane wyjściowe: permutacja ciągu wejściowego (a 1, a 2, a 3,..., a n 1, a n) taka, że a 1 a 2 a 3... a n 1 a n. Będziemy

Bardziej szczegółowo

Programowanie w VB Proste algorytmy sortowania

Programowanie w VB Proste algorytmy sortowania Programowanie w VB Proste algorytmy sortowania Sortowanie bąbelkowe Algorytm sortowania bąbelkowego polega na porównywaniu par elementów leżących obok siebie i, jeśli jest to potrzebne, zmienianiu ich

Bardziej szczegółowo

Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie:

Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie: Ciągi rekurencyjne Zadanie 1 Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie: w dwóch przypadkach: dla i, oraz dla i. Wskazówka Należy poszukiwać rozwiązania w postaci, gdzie

Bardziej szczegółowo

Strategia "dziel i zwyciężaj"

Strategia dziel i zwyciężaj Strategia "dziel i zwyciężaj" W tej metodzie problem dzielony jest na kilka mniejszych podproblemów podobnych do początkowego problemu. Problemy te rozwiązywane są rekurencyjnie, a następnie rozwiązania

Bardziej szczegółowo

Programowanie od pierwszoklasisty do maturzysty. Grażyna Koba

Programowanie od pierwszoklasisty do maturzysty. Grażyna Koba Programowanie od pierwszoklasisty do maturzysty Grażyna Koba Krąg trzydziestolecia nauki programowania C++, Java Scratch, Baltie, Logo, Python? 2017? Informatyka SP, GIMN, PG 1987 Elementy informatyki

Bardziej szczegółowo

Algorytmy i złożoność obliczeniowa. Wojciech Horzelski

Algorytmy i złożoność obliczeniowa. Wojciech Horzelski Algorytmy i złożoność obliczeniowa Wojciech Horzelski 1 Tematyka wykładu Ø Ø Ø Ø Ø Wprowadzenie Poprawność algorytmów (elementy analizy algorytmów) Wyszukiwanie Sortowanie Elementarne i abstrakcyjne struktury

Bardziej szczegółowo

Zaawansowane algorytmy i struktury danych

Zaawansowane algorytmy i struktury danych Zaawansowane algorytmy i struktury danych u dr Barbary Marszał-Paszek Opracowanie pytań teoretycznych z egzaminów. Strona 1 z 12 Pytania teoretyczne z egzaminu pisemnego z 25 czerwca 2014 (studia dzienne)

Bardziej szczegółowo

Ciąg monotoniczny. Autorzy: Katarzyna Korbel

Ciąg monotoniczny. Autorzy: Katarzyna Korbel Ciąg monotoniczny Autorzy: Katarzyna Korbel 07 Ciąg monotoniczny Autor: Katarzyna Korbel Ciągi, tak jak funkcje, mogą mieć różne własności, których znajomość może przyczynić się do dalszej analizy ich

Bardziej szczegółowo

Algorytmy i struktury danych

Algorytmy i struktury danych Letnie Warsztaty Matematyczno-Informatyczne Algorytmy i struktury danych Mariusz Różycki University of Cambridge Zajęcia będą mieć formę wykładową. Slajdy można znaleźć na stronie kursu: http://lw.mi.edu.pl/informatyka/algorytmy.

Bardziej szczegółowo

Programowanie dynamiczne i algorytmy zachłanne

Programowanie dynamiczne i algorytmy zachłanne Programowanie dynamiczne i algorytmy zachłanne Tomasz Głowacki tglowacki@cs.put.poznan.pl Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii

Bardziej szczegółowo

Plan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA?

Plan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA? /9/ Zagadnienie transportowe Optymalizacja w procesach biznesowych Wykład --9 Plan wykładu Przykład zagadnienia transportowego Sformułowanie problemu Własności zagadnienia transportowego Metoda potencjałów

Bardziej szczegółowo

Wstęp do Informatyki zadania ze złożoności obliczeniowej z rozwiązaniami

Wstęp do Informatyki zadania ze złożoności obliczeniowej z rozwiązaniami Wstęp do Informatyki zadania ze złożoności obliczeniowej z rozwiązaniami Przykład 1. Napisz program, który dla podanej liczby n wypisze jej rozkład na czynniki pierwsze. Oblicz asymptotyczną złożoność

Bardziej szczegółowo

Złożoność obliczeniowa zadania, zestaw 2

Złożoność obliczeniowa zadania, zestaw 2 Złożoność obliczeniowa zadania, zestaw 2 Określanie złożoności obliczeniowej algorytmów, obliczanie pesymistycznej i oczekiwanej złożoności obliczeniowej 1. Dana jest tablica jednowymiarowa A o rozmiarze

Bardziej szczegółowo

Zaawansowane algorytmy i struktury danych

Zaawansowane algorytmy i struktury danych Zaawansowane algorytmy i struktury danych u dr Barbary Marszał-Paszek Opracowanie pytań praktycznych z egzaminów. Strona 1 z 12 Pytania praktyczne z kolokwium zaliczeniowego z 19 czerwca 2014 (studia dzienne)

Bardziej szczegółowo

Podejście zachłanne, a programowanie dynamiczne

Podejście zachłanne, a programowanie dynamiczne Podejście zachłanne, a programowanie dynamiczne Algorytm zachłanny pobiera po kolei elementy danych, za każdym razem wybierając taki, który wydaje się najlepszy w zakresie spełniania pewnych kryteriów

Bardziej szczegółowo

Algorytmy i Struktury Danych

Algorytmy i Struktury Danych Algorytmy i Struktury Danych Kopce Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 11 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych Wykład 11 1 / 69 Plan wykładu

Bardziej szczegółowo

Zadania do wykonania. Rozwiązując poniższe zadania użyj pętlę for.

Zadania do wykonania. Rozwiązując poniższe zadania użyj pętlę for. Zadania do wykonania Rozwiązując poniższe zadania użyj pętlę for. 1. apisz program, który przesuwa w prawo o dwie pozycje zawartość tablicy 10-cio elementowej liczb całkowitych tzn. element t[i] dla i=2,..,9

Bardziej szczegółowo

Wykład 1. Na początku zajmować się będziemy zbiorem liczb całkowitych

Wykład 1. Na początku zajmować się będziemy zbiorem liczb całkowitych Arytmetyka liczb całkowitych Wykład 1 Na początku zajmować się będziemy zbiorem liczb całkowitych Z = {0, ±1, ±2,...}. Zakładamy, że czytelnik zna relację

Bardziej szczegółowo

Analiza algorytmów zadania podstawowe

Analiza algorytmów zadania podstawowe Analiza algorytmów zadania podstawowe Zadanie 1 Zliczanie Zliczaj(n) 1 r 0 2 for i 1 to n 1 3 do for j i + 1 to n 4 do for k 1 to j 5 do r r + 1 6 return r 0 Jaka wartość zostanie zwrócona przez powyższą

Bardziej szczegółowo

0 + 0 = 0, = 1, = 1, = 0.

0 + 0 = 0, = 1, = 1, = 0. 5 Kody liniowe Jak już wiemy, w celu przesłania zakodowanego tekstu dzielimy go na bloki i do każdego z bloków dodajemy tak zwane bity sprawdzające. Bity te są w ścisłej zależności z bitami informacyjnymi,

Bardziej szczegółowo

WYKŁAD 9. Algorytmy sortowania elementów zbioru (tablic) Programy: c4_1.c... c4_3.c. Tomasz Zieliński

WYKŁAD 9. Algorytmy sortowania elementów zbioru (tablic) Programy: c4_1.c... c4_3.c. Tomasz Zieliński WYKŁAD 9 Algorytmy sortowania elementów zbioru (tablic) Programy: c4_1.c... c4_3.c Tomasz Zieliński /* Przyklad 4.1 - SORTOWANIE TABLIC - metoda najprostsza */ #include #define ROZMIAR 11 void

Bardziej szczegółowo

Programowanie dynamiczne

Programowanie dynamiczne Programowanie dynamiczne Ciąg Fibonacciego fib(0)=1 fib(1)=1 fib(n)=fib(n-1)+fib(n-2), gdzie n 2 Elementy tego ciągu stanowią liczby naturalne tworzące ciąg o takiej własności, że kolejny wyraz (z wyjątkiem

Bardziej szczegółowo

Funkcje wyszukiwania i adresu PODAJ.POZYCJĘ

Funkcje wyszukiwania i adresu PODAJ.POZYCJĘ Funkcje wyszukiwania i adresu PODAJ.POZYCJĘ Mariusz Jankowski autor strony internetowej poświęconej Excelowi i programowaniu w VBA; Bogdan Gilarski właściciel firmy szkoleniowej Perfect And Practical;

Bardziej szczegółowo

Złożoność obliczeniowa algorytmu ilość zasobów komputera jakiej potrzebuje dany algorytm. Pojęcie to

Złożoność obliczeniowa algorytmu ilość zasobów komputera jakiej potrzebuje dany algorytm. Pojęcie to Złożoność obliczeniowa algorytmu ilość zasobów komputera jakiej potrzebuje dany algorytm. Pojęcie to wprowadzili J. Hartmanis i R. Stearns. Najczęściej przez zasób rozumie się czas oraz pamięć dlatego

Bardziej szczegółowo

Uwaga: Funkcja zamień(a[j],a[j+s]) zamienia miejscami wartości A[j] oraz A[j+s].

Uwaga: Funkcja zamień(a[j],a[j+s]) zamienia miejscami wartości A[j] oraz A[j+s]. Zadanie 1. Wiązka zadań Od szczegółu do ogółu Rozważmy następujący algorytm: Dane: Algorytm 1: k liczba naturalna, A[1...2 k ] tablica liczb całkowitych. n 1 dla i=1,2,,k wykonuj n 2n s 1 dopóki s

Bardziej szczegółowo

Wykład 4. Określimy teraz pewną ważną klasę pierścieni.

Wykład 4. Określimy teraz pewną ważną klasę pierścieni. Wykład 4 Określimy teraz pewną ważną klasę pierścieni. Twierdzenie 1 Niech m, n Z. Jeśli n > 0 to istnieje dokładnie jedna para licz q, r, że: m = qn + r, 0 r < n. Liczbę r nazywamy resztą z dzielenia

Bardziej szczegółowo

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Politechnika Poznańska Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Joanna Józefowska POZNAŃ 2010/11 Spis treści Rozdział 1. Metoda programowania dynamicznego........... 5

Bardziej szczegółowo

Wstęp do programowania

Wstęp do programowania Wstęp do programowania Algorytmy zachłanne, programowanie dynamiczne Paweł Daniluk Wydział Fizyki Jesień 2014 P. Daniluk(Wydział Fizyki) WP w. IX Jesień 2014 1 / 26 Algorytmy zachłanne Strategia polegająca

Bardziej szczegółowo

INFORMATYKA Z MERMIDONEM. Programowanie. Moduł 5 / Notatki

INFORMATYKA Z MERMIDONEM. Programowanie. Moduł 5 / Notatki INFORMATYKA Z MERMIDONEM Programowanie Moduł 5 / Notatki Projekt współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego. Realizator projektu: Opracowano w ramach projektu

Bardziej szczegółowo

Algorytmy i struktury danych.

Algorytmy i struktury danych. Algorytmy i struktury danych. Wykład 4 Krzysztof M. Ocetkiewicz Krzysztof.Ocetkiewicz@eti.pg.gda.pl Katedra Algorytmów i Modelowania Systemów, WETI, PG Problem plecakowy mamy plecak o określonej pojemności

Bardziej szczegółowo

Podstawowe algorytmy i ich implementacje w C. Wykład 9

Podstawowe algorytmy i ich implementacje w C. Wykład 9 Wstęp do programowania 1 Podstawowe algorytmy i ich implementacje w C Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 9 Element minimalny i maksymalny zbioru Element minimalny

Bardziej szczegółowo

2.8. Algorytmy, schematy, programy

2.8. Algorytmy, schematy, programy https://app.wsipnet.pl/podreczniki/strona/38766 2.8. Algorytmy, schematy, programy DOWIESZ SIĘ co oznaczają pojęcia: algorytm, schemat blokowy, język programowania, jakie są sposoby obliczania największego

Bardziej szczegółowo

Zmienne i struktury dynamiczne

Zmienne i struktury dynamiczne Zmienne i struktury dynamiczne Zmienne dynamiczne są to zmienne, które tworzymy w trakcie działania programu za pomocą operatora new. Usuwa się je operatorem delete. Czas ich występowania w programie jest

Bardziej szczegółowo

Def. Kod jednoznacznie definiowalny Def. Kod przedrostkowy Def. Kod optymalny. Przykłady kodów. Kody optymalne

Def. Kod jednoznacznie definiowalny Def. Kod przedrostkowy Def. Kod optymalny. Przykłady kodów. Kody optymalne Załóżmy, że mamy źródło S, które generuje symbole ze zbioru S={x, x 2,..., x N } z prawdopodobieństwem P={p, p 2,..., p N }, symbolom tym odpowiadają kody P={c, c 2,..., c N }. fektywność danego sposobu

Bardziej szczegółowo

zajęcia 3. Marcin Andrychowicz, Tomasz Kulczyński,

zajęcia 3. Marcin Andrychowicz, Tomasz Kulczyński, zajęcia 3. Marcin Andrychowicz, Tomasz Kulczyński, Błażej Osiński Dane Metoda pozwalajaca sortować w czasie liniowym Ciag liczb z zakresu O, 1,..., M 5, 1, 4, 5, 1, 0, 4, 5, 1, 3, 5 Zliczamy wystapienia

Bardziej szczegółowo

Sortowanie bąbelkowe

Sortowanie bąbelkowe 1/98 Sortowanie bąbelkowe (Bubble sort) prosty i nieefektywny algorytm sortowania wielokrotnie przeglądamy listę elementów, porównując dwa sąsiadujące i zamieniając je miejscami, jeśli znajdują się w złym

Bardziej szczegółowo

Algorytmy przeszukiwania wzorca

Algorytmy przeszukiwania wzorca Algorytmy i struktury danych Instytut Sterowania i Systemów Informatycznych Wydział Elektrotechniki, Informatyki i Telekomunikacji Uniwersytet Zielonogórski Algorytmy przeszukiwania wzorca 1 Wstęp Algorytmy

Bardziej szczegółowo

EGZAMIN - Wersja A. ALGORYTMY I STRUKTURY DANYCH Lisek89 opracowanie kartki od Pani dr E. Koszelew

EGZAMIN - Wersja A. ALGORYTMY I STRUKTURY DANYCH Lisek89 opracowanie kartki od Pani dr E. Koszelew 1. ( pkt) Dany jest algorytm, który dla dowolnej liczby naturalnej n, powinien wyznaczyd sumę kolejnych liczb naturalnych mniejszych od n. Wynik algorytmu jest zapisany w zmiennej suma. Algorytm i=1; suma=0;

Bardziej szczegółowo

Układy równań i nierówności liniowych

Układy równań i nierówności liniowych Układy równań i nierówności liniowych Wiesław Krakowiak 1 grudnia 2010 1 Układy równań liniowych DEFINICJA 11 Układem równań m liniowych o n niewiadomych X 1,, X n, nazywamy układ postaci: a 11 X 1 + +

Bardziej szczegółowo

Drzewa BST i AVL. Drzewa poszukiwań binarnych (BST)

Drzewa BST i AVL. Drzewa poszukiwań binarnych (BST) Drzewa ST i VL Drzewa poszukiwań binarnych (ST) Drzewo ST to dynamiczna struktura danych (w formie drzewa binarnego), która ma tą właściwość, że dla każdego elementu wszystkie elementy w jego prawym poddrzewie

Bardziej szczegółowo

Wstęp do Programowania potok funkcyjny

Wstęp do Programowania potok funkcyjny Wstęp do Programowania potok funkcyjny Marcin Kubica 2010/2011 Outline Wyszukiwanie wzorców w tekście 1 Wyszukiwanie wzorców w tekście Problem wyszukiwania wzorca w tekście Na tym wykładzie zajmiemy się

Bardziej szczegółowo

Programowanie dynamiczne (optymalizacja dynamiczna).

Programowanie dynamiczne (optymalizacja dynamiczna). Programowanie dynamiczne (optymalizacja dynamiczna). W wielu przypadkach zadania, których złożoność wynikająca z pełnego przeglądu jest duża (zwykle wyk ładnicza) można rozwiązać w czasie wielomianowym

Bardziej szczegółowo

ZAGADNIENIE TRANSPORTOWE

ZAGADNIENIE TRANSPORTOWE ZAGADNIENIE TRANSPORTOWE ZT jest specyficznym problemem z zakresu zastosowań programowania liniowego. ZT wykorzystuje się najczęściej do: optymalnego planowania transportu towarów, przy minimalizacji kosztów,

Bardziej szczegółowo

TABLICE W JĘZYKU C/C++ typ_elementu nazwa_tablicy [wymiar_1][wymiar_2]... [wymiar_n] ;

TABLICE W JĘZYKU C/C++ typ_elementu nazwa_tablicy [wymiar_1][wymiar_2]... [wymiar_n] ; Ogólna postać definicji tablicy: TABLICE W JĘZYKU C/C++ typ_elementu nazwa_tablicy [wymiar_1][wymiar_2]... [wymiar_n] ; np. int tablica [ 10 ]; // 10-cio elementowa tablica liczb całkowitych char tekst

Bardziej szczegółowo

Zagadnienie transportowe

Zagadnienie transportowe 9//9 Zagadnienie transportowe Optymalizacja w procesach biznesowych Wykład Plan wykładu Przykład zagadnienia transportowego Sformułowanie problemu Własności zagadnienia transportowego Metoda potencjałów

Bardziej szczegółowo

Tablice jednowymiarowe

Tablice jednowymiarowe Tablice jednowymiarowe Gdy mamy do czynienia z zestawem zmiennych, to można z nich zrobić tablicę. Tablica jest ciągiem elementów tego samego typu, który zajmuje ciągły obszar pamięci. Korzyść z zastosowania

Bardziej szczegółowo

Tablice mgr Tomasz Xięski, Instytut Informatyki, Uniwersytet Śląski Katowice, 2011

Tablice mgr Tomasz Xięski, Instytut Informatyki, Uniwersytet Śląski Katowice, 2011 Tablice mgr Tomasz Xięski, Instytut Informatyki, Uniwersytet Śląski Katowice, 2011 Załóżmy, że uprawiamy jogging i chcemy monitorować swoje postępy. W tym celu napiszemy program, który zlicza, ile czasu

Bardziej szczegółowo

Temat: Algorytm kompresji plików metodą Huffmana

Temat: Algorytm kompresji plików metodą Huffmana Temat: Algorytm kompresji plików metodą Huffmana. Wymagania dotyczące kompresji danych Przez M oznaczmy zbiór wszystkich możliwych symboli występujących w pliku (alfabet pliku). Przykład M = 2, gdy plik

Bardziej szczegółowo

Obliczenia iteracyjne

Obliczenia iteracyjne Lekcja Strona z Obliczenia iteracyjne Zmienne iteracyjne (wyliczeniowe) Obliczenia iteracyjne wymagają zdefiniowania specjalnej zmiennej nazywanej iteracyjną lub wyliczeniową. Zmienną iteracyjną od zwykłej

Bardziej szczegółowo

Wprowadzenie do programu Mathcad 15 cz. 1

Wprowadzenie do programu Mathcad 15 cz. 1 Wpisywanie tekstu Wprowadzenie do programu Mathcad 15 cz. 1 Domyślnie, Mathcad traktuje wpisywany tekst jako wyrażenia matematyczne. Do trybu tekstowego można przejść na dwa sposoby: Zaczynając wpisywanie

Bardziej szczegółowo

Instrukcja obsługi programu SWWS autorstwa Michała Krzemińskiego

Instrukcja obsługi programu SWWS autorstwa Michała Krzemińskiego Instrukcja obsługi programu SWWS autorstwa Michała Krzemińskiego Krótkie informacje o programie można znaleźć zarówno w pliku readme.txt zamieszczonym w podkatalogu DANE jak i w zakładce O programie znajdującej

Bardziej szczegółowo

Dwa równania kwadratowe z częścią całkowitą

Dwa równania kwadratowe z częścią całkowitą Dwa równania kwadratowe z częścią całkowitą Andrzej Nowicki Wydział Matematyki i Informatyki Uniwersytet M. Kopernika w Toruniu anow @ mat.uni.torun.pl 4 sierpnia 00 Jeśli r jest liczbą rzeczywistą, to

Bardziej szczegółowo

Rozwiązanie Ad 1. Model zadania jest następujący:

Rozwiązanie Ad 1. Model zadania jest następujący: Przykład. Hodowca drobiu musi uzupełnić zawartość dwóch składników odżywczych (A i B) w produktach, które kupuje. Rozważa cztery mieszanki: M : M, M i M. Zawartość składników odżywczych w poszczególnych

Bardziej szczegółowo

Rekurencja. Dla rozwiązania danego problemu, algorytm wywołuje sam siebie przy rozwiązywaniu podobnych podproblemów. Przykład: silnia: n! = n(n-1)!

Rekurencja. Dla rozwiązania danego problemu, algorytm wywołuje sam siebie przy rozwiązywaniu podobnych podproblemów. Przykład: silnia: n! = n(n-1)! Rekurencja Dla rozwiązania danego problemu, algorytm wywołuje sam siebie przy rozwiązywaniu podobnych podproblemów. Przykład: silnia: n! = n(n-1)! Pseudokod: silnia(n): jeżeli n == 0 silnia = 1 w przeciwnym

Bardziej szczegółowo

Podstawy Programowania C++

Podstawy Programowania C++ Wykład 3 - podstawowe konstrukcje Instytut Automatyki i Robotyki Warszawa, 2014 Wstęp Plan wykładu Struktura programu, instrukcja przypisania, podstawowe typy danych, zapis i odczyt danych, wyrażenia:

Bardziej szczegółowo

Każdy węzeł w drzewie posiada 3 pola: klucz, adres prawego potomka i adres lewego potomka. Pola zawierające adresy mogą być puste.

Każdy węzeł w drzewie posiada 3 pola: klucz, adres prawego potomka i adres lewego potomka. Pola zawierające adresy mogą być puste. Drzewa binarne Każdy węzeł w drzewie posiada pola: klucz, adres prawego potomka i adres lewego potomka. Pola zawierające adresy mogą być puste. Uporządkowanie. Zakładamy, że klucze są różne. Klucze leżące

Bardziej szczegółowo

Algorytm. a programowanie -

Algorytm. a programowanie - Algorytm a programowanie - Program komputerowy: Program komputerowy można rozumieć jako: kod źródłowy - program komputerowy zapisany w pewnym języku programowania, zestaw poszczególnych instrukcji, plik

Bardziej szczegółowo

Przykładowe B+ drzewo

Przykładowe B+ drzewo Przykładowe B+ drzewo 3 8 1 3 7 8 12 Jak obliczyć rząd indeksu p Dane: rozmiar klucza V, rozmiar wskaźnika do bloku P, rozmiar bloku B, liczba rekordów w indeksowanym pliku danych r i liczba bloków pliku

Bardziej szczegółowo

Projektowanie i analiza algorytmów

Projektowanie i analiza algorytmów POLITECHNIKA KRAKOWSKA - WIEiK KATEDRA AUTOMATYKI i TECHNIK INFORMACYJNYCH Projektowanie i analiza algorytmów www.pk.edu.pl/~zk/piaa_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl Wykład

Bardziej szczegółowo

1 Funkcje uniwersalne

1 Funkcje uniwersalne 1 1 Funkcje uniwersalne 1.1 Konstrukcja funkcji uniweralnej Niech P będzie najmniejszym zbiorem liczb spełniającym warunki 1) 0, 2, 0, 0, 2, 1, 0, 2, 2 P, 2) 0, n, 3, k P dla wszystkich n > 0 oraz k takich,

Bardziej szczegółowo

Języki formalne i techniki translacji

Języki formalne i techniki translacji Języki formalne i techniki translacji Laboratorium - Projekt Termin oddania: ostatnie zajęcia przed 17 stycznia 2016 Wysłanie do wykładowcy: przed 23:59 28 stycznia 2016 Używając BISON-a i FLEX-a napisz

Bardziej szczegółowo

Algorytmy równoległe. Rafał Walkowiak Politechnika Poznańska Studia inżynierskie Informatyka 2010

Algorytmy równoległe. Rafał Walkowiak Politechnika Poznańska Studia inżynierskie Informatyka 2010 Algorytmy równoległe Rafał Walkowiak Politechnika Poznańska Studia inżynierskie Informatyka Znajdowanie maksimum w zbiorze n liczb węzły - maksimum liczb głębokość = 3 praca = 4++ = 7 (operacji) n - liczność

Bardziej szczegółowo

Wprowadzenie do algorytmiki

Wprowadzenie do algorytmiki Wprowadzenie do algorytmiki Pojecie algorytmu Powszechnie przyjmuje się, że algorytm jest opisem krok po kroku rozwiązania postawionego problemu lub sposób osiągnięcia jakiegoś celu. Wywodzi się z matematyki

Bardziej szczegółowo

3. Macierze i Układy Równań Liniowych

3. Macierze i Układy Równań Liniowych 3. Macierze i Układy Równań Liniowych Rozważamy równanie macierzowe z końcówki ostatniego wykładu ( ) 3 1 X = 4 1 ( ) 2 5 Podstawiając X = ( ) x y i wymnażając, otrzymujemy układ 2 równań liniowych 3x

Bardziej szczegółowo

Analiza matematyczna. 1. Ciągi

Analiza matematyczna. 1. Ciągi Analiza matematyczna 1. Ciągi Definicja 1.1 Funkcję a: N R odwzorowującą zbiór liczb naturalnych w zbiór liczb rzeczywistych nazywamy ciągiem liczbowym. Wartość tego odwzorowania w punkcie n nazywamy n

Bardziej szczegółowo

tablica: dane_liczbowe

tablica: dane_liczbowe TABLICE W JĘZYKU C/C++ tablica: dane_liczbowe float dane_liczbowe[5]; dane_liczbowe[0]=12.5; dane_liczbowe[1]=-0.2; dane_liczbowe[2]= 8.0;... 12.5-0.2 8.0...... 0 1 2 3 4 indeksy/numery elementów Tablica

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Inżynieria i Gospodarka Wodna w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt

Bardziej szczegółowo

Wykład 6. Drzewa poszukiwań binarnych (BST)

Wykład 6. Drzewa poszukiwań binarnych (BST) Wykład 6 Drzewa poszukiwań binarnych (BST) 1 O czym będziemy mówić Definicja Operacje na drzewach BST: Search Minimum, Maximum Predecessor, Successor Insert, Delete Struktura losowo budowanych drzew BST

Bardziej szczegółowo

Przeszukiwanie z nawrotami. Wykład 8. Przeszukiwanie z nawrotami. J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 238 / 279

Przeszukiwanie z nawrotami. Wykład 8. Przeszukiwanie z nawrotami. J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 238 / 279 Wykład 8 J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 238 / 279 sformułowanie problemu przegląd drzewa poszukiwań przykłady problemów wybrane narzędzia programistyczne J. Cichoń, P. Kobylański

Bardziej szczegółowo

Wybrane podstawowe rodzaje algorytmów

Wybrane podstawowe rodzaje algorytmów Wybrane podstawowe rodzaje algorytmów Tomasz Głowacki tglowacki@cs.put.poznan.pl Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii informatycznych

Bardziej szczegółowo

Algorytmy sortujące i wyszukujące

Algorytmy sortujące i wyszukujące Algorytmy sortujące i wyszukujące Zadaniem algorytmów sortujących jest ułożenie elementów danego zbioru w ściśle określonej kolejności. Najczęściej wykorzystywany jest porządek numeryczny lub leksykograficzny.

Bardziej szczegółowo

Podstawą w systemie dwójkowym jest liczba 2 a w systemie dziesiętnym liczba 10.

Podstawą w systemie dwójkowym jest liczba 2 a w systemie dziesiętnym liczba 10. ZAMIANA LICZB MIĘDZY SYSTEMAMI DWÓJKOWYM I DZIESIĘTNYM Aby zamienić liczbę z systemu dwójkowego (binarnego) na dziesiętny (decymalny) należy najpierw przypomnieć sobie jak są tworzone liczby w ww systemach

Bardziej szczegółowo

Konstrukcja liczb rzeczywistych przy pomocy ciągów Cauchy ego liczb wymiernych

Konstrukcja liczb rzeczywistych przy pomocy ciągów Cauchy ego liczb wymiernych Konstrukcja liczb rzeczywistych przy pomocy ciągów Cauchy ego liczb wymiernych Marcin Michalski 14.11.014 1 Wprowadzenie Jedną z intuicji na temat liczb rzeczywistych jest myślenie o nich jako liczbach,

Bardziej szczegółowo

Komentarz. Pieniądze wielkie pieniądze

Komentarz. Pieniądze wielkie pieniądze Komentarz Pieniądze wielkie pieniądze Pieniądze wielkie pieniądze Jak donosi prasa branżowa, w pierwszym dniu po wdrożeniu nowego systemu bankomatów, akcje Kupakasi Bank na nowojorskiej giełdzie zyskały

Bardziej szczegółowo

Gala boksu zawodowego

Gala boksu zawodowego Gala boksu zawodowego Don Bajton organizuje galę boksu zawodowego w Bajtocji. Właśnie zabrał się za ułożenie spisu walk. W tym celu spojrzał do swojego notatnika, gdzie są zapisane nazwiska bokserów, a

Bardziej szczegółowo

Algorytmy i str ruktury danych. Metody algorytmiczne. Bartman Jacek

Algorytmy i str ruktury danych. Metody algorytmiczne. Bartman Jacek Algorytmy i str ruktury danych Metody algorytmiczne Bartman Jacek jbartman@univ.rzeszow.pl Metody algorytmiczne - wprowadzenia Znamy strukturę algorytmów Trudność tkwi natomiast w podaniu metod służących

Bardziej szczegółowo

Scenariusz zajęć. Moduł VI. Projekt Gra logiczna zgadywanie liczby

Scenariusz zajęć. Moduł VI. Projekt Gra logiczna zgadywanie liczby Scenariusz zajęć Moduł VI Projekt Gra logiczna zgadywanie liczby Moduł VI Projekt Gra logiczna zgadywanie liczby Cele ogólne: przypomnienie i utrwalenie poznanych wcześniej poleceń i konstrukcji języka

Bardziej szczegółowo

Drzewa poszukiwań binarnych

Drzewa poszukiwań binarnych 1 Drzewa poszukiwań binarnych Kacper Pawłowski Streszczenie W tej pracy przedstawię zagadnienia związane z drzewami poszukiwań binarnych. Przytoczę poszczególne operacje na tej strukturze danych oraz ich

Bardziej szczegółowo

1. Napisz program, który wyświetli Twoje dane jako napis Witaj, Imię Nazwisko. 2. Napisz program, który wyświetli wizytówkę postaci:

1. Napisz program, który wyświetli Twoje dane jako napis Witaj, Imię Nazwisko. 2. Napisz program, który wyświetli wizytówkę postaci: 1. Napisz program, który wyświetli Twoje dane jako napis Witaj, Imię Nazwisko. 2. Napisz program, który wyświetli wizytówkę postaci: * Jan Kowalski * * ul. Zana 31 * 3. Zadeklaruj zmienne przechowujące

Bardziej szczegółowo

Pętla for. Matematyka dla ciekawych świata -19- Scilab. for i=1:10... end. for k=4:-1:1... end. k=3 k=4. k=1. k=2

Pętla for. Matematyka dla ciekawych świata -19- Scilab. for i=1:10... end. for k=4:-1:1... end. k=3 k=4. k=1. k=2 Pętle wielokrotne wykonywanie ciągu instrukcji. Bardzo często w programowaniu wykorzystuje się wielokrotne powtarzanie określonego ciągu czynności (instrukcji). Rozróżniamy sytuacje, gdy liczba powtórzeń

Bardziej szczegółowo

ALGORYTMY. 1. Podstawowe definicje Schemat blokowy

ALGORYTMY. 1. Podstawowe definicje Schemat blokowy ALGORYTMY 1. Podstawowe definicje Algorytm (definicja nieformalna) to sposób postępowania (przepis) umożliwiający rozwiązanie określonego zadania (klasy zadań), podany w postaci skończonego zestawu czynności

Bardziej szczegółowo

ĆWICZENIE NR 1 WPROWADZENIE DO INFORMATYKI

ĆWICZENIE NR 1 WPROWADZENIE DO INFORMATYKI J.NAWROCKI, M. ANTCZAK, H. ĆWIEK, W. FROHMBERG, A. HOFFA, M. KIERZYNKA, S.WĄSIK ĆWICZENIE NR 1 WPROWADZENIE DO INFORMATYKI ZAD. 1. Narysowad graf nieskierowany. Zmodyfikowad go w taki sposób, aby stał

Bardziej szczegółowo

VIII Wojewódzki Konkurs Matematyczny "W Świecie Matematyki im. Prof. Włodzimierza Krysickiego Etap drugi - 3 marca 2016 r.

VIII Wojewódzki Konkurs Matematyczny W Świecie Matematyki im. Prof. Włodzimierza Krysickiego Etap drugi - 3 marca 2016 r. VIII Wojewódzki Konkurs Matematyczny "W Świecie Matematyki im. Prof. Włodzimierza Krysickiego Etap drugi - 3 marca 2016 r. Maksymalna liczba punktów do zdobycia: 80. 1. Drugi etap Konkursu składa się z

Bardziej szczegółowo

Zestaw 1 ZESTAWY A. a 1 a 2 + a 3 ± a n, gdzie skªadnik a n jest odejmowany, gdy n jest liczb parzyst oraz dodawany w przeciwnym.

Zestaw 1 ZESTAWY A. a 1 a 2 + a 3 ± a n, gdzie skªadnik a n jest odejmowany, gdy n jest liczb parzyst oraz dodawany w przeciwnym. ZESTAWY A Zestaw 1 Organizacja plików: Wszystkie pliki oddawane do sprawdzenia nale»y zapisa we wspólnym folderze o nazwie b d cej numerem indeksu, umieszczonym na pulpicie. Oddajemy tylko ¹ródªa programów

Bardziej szczegółowo

Stosowanie, tworzenie i modyfikowanie stylów.

Stosowanie, tworzenie i modyfikowanie stylów. Stosowanie, tworzenie i modyfikowanie stylów. We wstążce Narzędzia główne umieszczone są style, dzięki którym w prosty sposób możemy zmieniać tekst i hurtowo modyfikować. Klikając kwadrat ze strzałką w

Bardziej szczegółowo

2 Arytmetyka. d r 2 r + d r 1 2 r 1...d d 0 2 0,

2 Arytmetyka. d r 2 r + d r 1 2 r 1...d d 0 2 0, 2 Arytmetyka Niech b = d r d r 1 d 1 d 0 będzie zapisem liczby w systemie dwójkowym Zamiana zapisu liczby b na system dziesiętny odbywa się poprzez wykonanie dodawania d r 2 r + d r 1 2 r 1 d 1 2 1 + d

Bardziej szczegółowo

Programowanie równoległe

Programowanie równoległe Programowanie równoległe ELEMENTARNE ALGORYTMY (PODSTAWA: Z.CZECH. WPROWADZENIE DO OBLICZEŃ RÓWNOLEGŁYCH. PWN, 2010) Andrzej Baran baran@kft.umcs.lublin.pl Charakterystyka ilościowa algorytmów Przez algorytm

Bardziej szczegółowo

1. Liczby naturalne, podzielność, silnie, reszty z dzielenia

1. Liczby naturalne, podzielność, silnie, reszty z dzielenia 1. Liczby naturalne, podzielność, silnie, reszty z dzielenia kwadratów i sześcianów przez małe liczby, cechy podzielności przez 2, 4, 8, 5, 25, 125, 3, 9. 26 września 2009 r. Uwaga: Przyjmujemy, że 0 nie

Bardziej szczegółowo

Największy wspólny dzielnik Algorytm Euklidesa (także rozszerzony) WZAiP1: Chińskie twierdzenie o resztach

Największy wspólny dzielnik Algorytm Euklidesa (także rozszerzony) WZAiP1: Chińskie twierdzenie o resztach Największy wspólny dzielnik Algorytm Euklidesa (także rozszerzony) Chińskie twierdzenie o resztach Wybrane zagadnienia algorytmiki i programowania I 27 października 2010 Największy wspólny dzielnik - definicja

Bardziej szczegółowo

- wszystkie elementy - wszystkie elementy

- wszystkie elementy - wszystkie elementy Tablice: indeksy całkowite >=0 tworzenie: TABLICA[0]=45 TABLICA[1]=23 TABLICA[2]=78 lub TABLICA=(45 23 78) lub TABLICA=($@) odwołanie echo ${TABLICA[3] echo ${TABLICA[*] echo ${TABLICA[@] Długość zmiennej:

Bardziej szczegółowo

Funkcje i tabele. Paweł Bednarz 29 marca Funkcje Funckja liniowa Własności funkcji liniowej Funkcja kwadratowa...

Funkcje i tabele. Paweł Bednarz 29 marca Funkcje Funckja liniowa Własności funkcji liniowej Funkcja kwadratowa... Funkcje i tabele Paweł Bednarz 29 marca 2015 Spis treści 1 Funkcje 2 1.1 Funckja liniowa............................ 2 1.1.1 Własności funkcji liniowej.................. 2 1.2 Funkcja kwadratowa.........................

Bardziej szczegółowo

Matematyka Dyskretna 2/2008 rozwiązania. x 2 = 5x 6 (1) s 1 = Aα 1 + Bβ 1. A + B = c 2 A + 3 B = d

Matematyka Dyskretna 2/2008 rozwiązania. x 2 = 5x 6 (1) s 1 = Aα 1 + Bβ 1. A + B = c 2 A + 3 B = d C. Bagiński Materiały dydaktyczne 1 Matematyka Dyskretna /008 rozwiązania 1. W każdym z następujących przypadków podać jawny wzór na s n i udowodnić indukcyjnie jego poprawność: (a) s 0 3, s 1 6, oraz

Bardziej szczegółowo

Egzamin, AISDI, I termin, 18 czerwca 2015 r.

Egzamin, AISDI, I termin, 18 czerwca 2015 r. Egzamin, AISDI, I termin, 18 czerwca 2015 r. 1 W czasie niezależnym do danych wejściowych działają algorytmy A. sortowanie bąbelkowego i Shella B. sortowanie szybkiego i przez prosty wybór C. przez podział

Bardziej szczegółowo

Za pierwszy niebanalny algorytm uważa się algorytm Euklidesa wyszukiwanie NWD dwóch liczb (400 a 300 rok przed narodzeniem Chrystusa).

Za pierwszy niebanalny algorytm uważa się algorytm Euklidesa wyszukiwanie NWD dwóch liczb (400 a 300 rok przed narodzeniem Chrystusa). Algorytmy definicja, cechy, złożoność. Algorytmy napotykamy wszędzie, gdziekolwiek się zwrócimy. Rządzą one wieloma codziennymi czynnościami, jak np. wymiana przedziurawionej dętki, montowanie szafy z

Bardziej szczegółowo

Metoda bisekcji (inaczej połowienia przedziału lub równych podziałów)

Metoda bisekcji (inaczej połowienia przedziału lub równych podziałów) Metoda bisekcji (inaczej połowienia przedziału lub równych podziałów) Metoda służy do wyznaczenia miejsca zerowego danej funkcji i polega na cyklicznym połowieniu zadanego z góry przedziału (w którym znajduje

Bardziej szczegółowo

Klasyczne zagadnienie przydziału

Klasyczne zagadnienie przydziału Klasyczne zagadnienie przydziału Można wyodrębnić kilka grup problemów, w których zadaniem jest odpowiednie rozmieszczenie posiadanych zasobów. Najprostszy problem tej grupy nazywamy klasycznym zagadnieniem

Bardziej szczegółowo

Optymalizacja systemów

Optymalizacja systemów Optymalizacja systemów Laboratorium Zadanie nr 3 Sudoku autor: A. Gonczarek Cel zadania Celem zadania jest napisanie programu rozwiązującego Sudoku, formułując problem optymalizacji jako zadanie programowania

Bardziej szczegółowo

Zagadnienie transportowe

Zagadnienie transportowe Zagadnienie transportowe Firma X zawarła kontrakt na dostarczenie trawnika do wykończenia terenów wokół trzech zakładów U, V i W. Trawnik ma być dostarczony z trzech farm A, B i C. Zapotrzebowanie zakładów

Bardziej szczegółowo

Algorytm simplex i dualność

Algorytm simplex i dualność Algorytm simplex i dualność Łukasz Kowalik Instytut Informatyki, Uniwersytet Warszawski April 15, 2016 Łukasz Kowalik (UW) LP April 15, 2016 1 / 35 Przypomnienie 1 Wierzchołkiem wielościanu P nazywamy

Bardziej szczegółowo

Operacje na wektorach i macierzach.

Operacje na wektorach i macierzach. (C) -8 by B.Gudowski & J. Wąs & L.Dutkiewicz Operacje na wektorach i macierzach. Ponieważ wymiary wektorów i macierzy w MathCADzie są w pełni dynamiczne często zachodzi potrzeba ich ustalenia np. przy

Bardziej szczegółowo