REGRESJA I KORELACJA MODEL REGRESJI LINIOWEJ

Wielkość: px
Rozpocząć pokaz od strony:

Download "REGRESJA I KORELACJA MODEL REGRESJI LINIOWEJ"

Transkrypt

1 REGRESJA I KORELACJA MODEL REGRESJI LINIOWEJ Korelacja oznacza fakt współzależności zmiennych, czyli istnienie powiązania pomiędzy nimi. Siłę i kierunek powiązania określa się za pomocą współczynnika korelacji (r). Regresja odnosi się natomiast do modelu matematycznego ( w postaci równania lub wykresu) opisującego współzależność zmiennych (objaśnianej i objaśniającej). Regresja linowa Zakłada, że pomiędzy zmiennymi objaśniającymi (wejściowymi) i objaśnianymi (wyjściowymi) istnieje mniej lub bardziej wyrazista zależność liniowa. Mając zatem zbiór danych do analizy, informacje opisujące te dane możemy podzielić na objaśniane i objaśniające. Wtedy też wartości tych pierwszych będziemy mogli zgadywać znając wartości tych drugich. Oczywiście tak się dzieje tylko w sytuacji, gdy faktycznie między tymi zmiennymi istnieje zależność liniowa. Przewidywanie wartości zmiennych objaśnianych (y) na podstawie wartości zmiennych objaśniających (x) jest możliwe dzięki znalezieniu tzw. modelu regresji. W praktyce polega to na znalezieniu równania prostej, zwanej prostą regresji o postaci: Y = b0 + b1 x, r =? gdzie: y - jest zmienną objaśnianą, x - objaśniającą. W równaniu tym bardzo istotną rolę odgrywają współczynniki b0 i b1, gdzie b1 jest nachyleniem linii regresji, zaś b0 punktem przecięcia linii regresji z osią x (wyrazem wolnym) a więc przewidywaną wartością zmiennej objaśnianej gdy zmienna objaśniająca jest równa 0. r współczynnik korelacji liniowej Pearsona. Im jego wartość jest bliższa 1, tym lepsze dopasowanie modelu do danych empirycznych r =0 zmienne nie są skorelowane 0,0 r < 0,1 korelacja nikła 0,1 r < 0,3 korelacja słaba 0,3 r < 0,5 korelacja przeciętna 0,5 r < 0,7 korelacja wysoka 0,7 r < 0,9 korelacja bardzo wysoka 0,9 r < 1 korelacja prawie pełna r 2 współczynnik determinacji, przyjmujący wartości z przedziału [0,1], jest miarą stopnia w jakim model wyjaśnia kształtowanie się zmiennej Y.

2 dla modelu liniowego regresji prostej używamy: -- Statystyka -- Statystyki podstawowe i tabele -- Macierze korelacji Zadania: Zadanie 1. Plik reg_gaz.sta zawiera dane do budowy modelu opisującego dzienne zużycie gazu w zależności od średniej temperatury dobowej, dobowej prędkości wiatru oraz dni wolnych. Dane dotyczą jednego sezonu grzewczego w kilku miastach. a. Sporządź macierz korelacji. b. Sprawdź, czy ZUŻYCIE gazu jest skorelowane z PRĘDKOŚCIĄ WIATRU oraz faktem, czy dzień jest wolny czy pracujący; c. Zbuduj model regresji liniowej do oceny wpływu średniej temperatury dobowej na zużycie gazu. Zweryfikuj i zinterpretuj otrzymany model; korelacja istotna statystycznie ad. (b) Wykres rozrzutu dla dwóch zmiennych:

3

4 Budowanie modelu regresji: MODEL REGRESJI: Zużycie = 237,10 6,94 * Śr. temp; r = 0,96; r 2 = 0,91; p=0,00 p = 0,00 < 0,05 skąd wniosek, że współczynnik korelacji liniowej istnieje i jest istotny statystycznie

5 INTERPRETACJA modelu i WNIOSKI: współczynnik korelacji: r istnieje korelacja? jeśli r=0, brak zależności liniowej jaki jest jej kierunek? jaki jest jej stopień? współczynnik determinacji: R 2 jaki procent zmienności zmiennej zależnej wyjaśniony jest przez model regresji liniowej? co możemy powiedzieć o tej zależności na podstawie wyrazu wolnego? co możemy powiedzieć na podstawie współczynnika regresji? Interpretacja i WNIOSKI: współczynnik korelacji: r = 0,96 korelacja istnieje (jest istotna statystycznie) jest ujemna, co oznacza, że wraz ze spadkiem temperatury wzrasta zużycie gazu jest prawie pełna współczynnik determinacji: r 2 = 0,91 91% zmienności zmiennej zużycia gazu wyjaśniono przez model regresji liniowej przy temperaturze 0 C zużycie wynosi 237,1 (wyraz wolny) każdy spadek temperatury o 1 C oznacza wzrost zużycia gazu o 6,94 (współczynnik regresji) Odpowiedź: Zużycie gazu skorelowane jest jedynie ze średnią temperaturą. Pozostałe zmienne: Prędkość wiatru i dni wolne nie wykazują korelacji ze zużyciem gazu. W obu przypadkach korelacja nie jest istotna statystycznie, p> 0,05 (podpowiedź: STATISTICA oznacza istotne statystycznie korelacje kolorem czerwonym). Model regresji dla zużycia względem średniej temperatury: MODEL REGRESJI: Zużycie = 237,10 6,94 * Śr. temp; r = 0,96; r 2 = 0,91; p=0,00

6 Zadanie 2. Aby ocenić efektywność szkolenia sprzedawców, postanowiono przeprowadzić następujący eksperyment. Grupę wylosowanych 18 sprzedawców podzielono na 6 podgrup po 3 osoby. Pierwsza podgrupa była szkolona przez okres 5 dni, druga 10 dni, trzecia 15 dni itd. Następnie rejestrowano sprzedaż osiąganą przez każdego ze sprzedawców w ciągu miesiąca. Wyniki eksperymentu przedstawiono w pliku reg_sprzedawcy.sta a. Zbuduj model regresji liniowej do oceny wpływu czasu trwania szkolenia sprzedawców na uzyskiwane przez nich wyniki sprzedaży Zweryfikuj i zinterpretuj otrzymany model. b. Pan Nowak będzie szkolony przez okres 12 dni. Jakich wyników sprzedaży można się spodziewać po zakończeniu szkolenia? Zadanie 3. Zespół badawczy złożony ze studentów pewnego uniwersytetu postanowił sprawdzić, czy istnieje zależność pomiędzy ceną produktu sprzedawanego w różnych sieciach supermarketów a ilością oferowanych marek (rodzajów) tego produktu. Jako przykład pilotażowy wybrano wodę mineralną Dobra Woda. Badania przeprowadzono w 12 supermarketach obserwując w nich cenę tej wody mineralnej i liczbę rodzajów sprzedawanych wód mineralnych. Wyniki badań przedstawiono w pliku reg_ceny_oferta.sta. Zbuduj model regresji liniowej opisujący badaną zależność. Zweryfikuj otrzymany model.

Wprowadzenie do analizy korelacji i regresji

Wprowadzenie do analizy korelacji i regresji Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący

Bardziej szczegółowo

Ćwiczenie: Wybrane zagadnienia z korelacji i regresji.

Ćwiczenie: Wybrane zagadnienia z korelacji i regresji. Ćwiczenie: Wybrane zagadnienia z korelacji i regresji. W statystyce stopień zależności między cechami można wyrazić wg następującej skali: Skala Guillforda Przedział Zależność Współczynnik [0,00±0,20)

Bardziej szczegółowo

Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1.

Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1. tel. 44 683 1 55 tel. kom. 64 566 811 e-mail: biuro@wszechwiedza.pl Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: gdzie: y t X t y t = 1 X 1

Bardziej szczegółowo

Wielowymiarowa analiza regresji. Regresja wieloraka, wielokrotna

Wielowymiarowa analiza regresji. Regresja wieloraka, wielokrotna Wielowymiarowa analiza regresji. Regresja wieloraka, wielokrotna Badanie współzależności zmiennych Uwzględniając ilość zmiennych otrzymamy 4 odmiany zależności: Zmienna zależna jednowymiarowa oraz jedna

Bardziej szczegółowo

Dopasowanie prostej do wyników pomiarów.

Dopasowanie prostej do wyników pomiarów. Dopasowanie prostej do wyników pomiarów. Graficzna analiza zależności liniowej Założenie: każdy z pomiarów obarczony jest taką samą niepewnością pomiarową (takiej samej wielkości prostokąty niepewności).

Bardziej szczegółowo

Analiza zależności liniowych

Analiza zależności liniowych Narzędzie do ustalenia, które zmienne są ważne dla Inwestora Analiza zależności liniowych Identyfikuje siłę i kierunek powiązania pomiędzy zmiennymi Umożliwia wybór zmiennych wpływających na giełdę Ustala

Bardziej szczegółowo

ANALIZA KORELACJI Korelacja między zmiennymi X i Y jest miarą siły liniowego związku między tymi zmiennymi.

ANALIZA KORELACJI Korelacja między zmiennymi X i Y jest miarą siły liniowego związku między tymi zmiennymi. ANALIZA KORELACJI Większość zjawisk w otaczającym nas świecie występuje nie samotnie a w różnorodnych związkach. Odnosi się to również do zjawisk biologiczno-medycznych. O powiązaniach między nimi mówią

Bardziej szczegółowo

Regresja prosta. Sylwia Bedyńska Szkoła Wyższa Psychologii Społecznej w Warszawie Monika Książek Szkoła Główna Handlowa w Warszawie

Regresja prosta. Sylwia Bedyńska Szkoła Wyższa Psychologii Społecznej w Warszawie Monika Książek Szkoła Główna Handlowa w Warszawie ROZDZIAŁ 1 Regresja prosta 15 Sylwia Bedyńska Szkoła Wyższa Psychologii Społecznej w Warszawie Monika Książek Szkoła Główna Handlowa w Warszawie Regresja prosta część i modele regresji rozdział 1 W tym

Bardziej szczegółowo

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com Analiza korelacji i regresji KORELACJA zależność liniowa Obserwujemy parę cech ilościowych (X,Y). Doświadczenie jest tak pomyślane, aby obserwowane pary cech X i Y (tzn i ta para x i i y i dla różnych

Bardziej szczegółowo

PRZYKŁADY BUDOWY MODELI REGRESYJNYCH I KLASYFIKACYJNYCH. Wprowadzenie do problematyki modelowania statystycznego

PRZYKŁADY BUDOWY MODELI REGRESYJNYCH I KLASYFIKACYJNYCH. Wprowadzenie do problematyki modelowania statystycznego PRZYKŁADY BUDOWY MODELI REGRESYJNYCH I KLASYFIKACYJNYCH Janusz Wątroba, StatSoft Polska Sp. z o.o. Tematyka artykułu obejmuje wprowadzenie do problematyki modelowania statystycznego i jego roli w badaniu

Bardziej szczegółowo

istocie dziedzina zajmująca się poszukiwaniem zależności na podstawie prowadzenia doświadczeń jest o wiele starsza: tak na przykład matematycy

istocie dziedzina zajmująca się poszukiwaniem zależności na podstawie prowadzenia doświadczeń jest o wiele starsza: tak na przykład matematycy MODEL REGRESJI LINIOWEJ. METODA NAJMNIEJSZYCH KWADRATÓW Analiza regresji zajmuje się badaniem zależności pomiędzy interesującymi nas wielkościami (zmiennymi), mające na celu konstrukcję modelu, który dobrze

Bardziej szczegółowo

Pojęcie korelacji. Korelacja (współzależność cech) określa wzajemne powiązania pomiędzy wybranymi zmiennymi.

Pojęcie korelacji. Korelacja (współzależność cech) określa wzajemne powiązania pomiędzy wybranymi zmiennymi. Pojęcie korelacji Korelacja (współzależność cech) określa wzajemne powiązania pomiędzy wybranymi zmiennymi. Charakteryzując korelację dwóch cech podajemy dwa czynniki: kierunek oraz siłę. Korelacyjne wykresy

Bardziej szczegółowo

1. Opis tabelaryczny. 2. Graficzna prezentacja wyników. Do technik statystyki opisowej można zaliczyć:

1. Opis tabelaryczny. 2. Graficzna prezentacja wyników. Do technik statystyki opisowej można zaliczyć: Wprowadzenie Statystyka opisowa to dział statystyki zajmujący się metodami opisu danych statystycznych (np. środowiskowych) uzyskanych podczas badania statystycznego (np. badań terenowych, laboratoryjnych).

Bardziej szczegółowo

Analiza Współzależności

Analiza Współzależności Statystyka Opisowa z Demografią oraz Biostatystyka Analiza Współzależności Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2 82-300 Elblag oraz Biostatystyka

Bardziej szczegółowo

Ekonometria. Modele regresji wielorakiej - dobór zmiennych, szacowanie. Paweł Cibis pawel@cibis.pl. 1 kwietnia 2007

Ekonometria. Modele regresji wielorakiej - dobór zmiennych, szacowanie. Paweł Cibis pawel@cibis.pl. 1 kwietnia 2007 Modele regresji wielorakiej - dobór zmiennych, szacowanie Paweł Cibis pawel@cibis.pl 1 kwietnia 2007 1 Współczynnik zmienności Współczynnik zmienności wzory Współczynnik zmienności funkcje 2 Korelacja

Bardziej szczegółowo

Analiza statystyczna trudności tekstu

Analiza statystyczna trudności tekstu Analiza statystyczna trudności tekstu Łukasz Dębowski ldebowsk@ipipan.waw.pl Problem badawczy Chcielibyśmy mieć wzór matematyczny,...... który dla dowolnego tekstu...... na podstawie pewnych statystyk......

Bardziej szczegółowo

Analiza wpływu zmian poziomu wody gruntowej na stabilność anteny stacji permanentnej Wrocław

Analiza wpływu zmian poziomu wody gruntowej na stabilność anteny stacji permanentnej Wrocław XX JUBILEUSZOWA JESIENNA SZKOŁA GEODEZJI im. Jacka Rejmana WSPÓŁCZESNE METODY POZYSKIWANIA I MODELOWANIA GEODANYCH Analiza wpływu zmian poziomu wody gruntowej na stabilność anteny stacji permanentnej Wrocław

Bardziej szczegółowo

Statystyka. Tematyka wykładów. Przykładowe pytania. dr Tomasz Giętkowski www.krajobraz.ukw.edu.pl. wersja 20.01.2013/13:40

Statystyka. Tematyka wykładów. Przykładowe pytania. dr Tomasz Giętkowski www.krajobraz.ukw.edu.pl. wersja 20.01.2013/13:40 Statystyka dr Tomasz Giętkowski www.krajobraz.ukw.edu.pl wersja 20.01.2013/13:40 Tematyka wykładów 1. Definicja statystyki 2. Populacja, próba 3. Skale pomiarowe 4. Miary położenia (klasyczne i pozycyjne)

Bardziej szczegółowo

Statystyka opisowa Opracował: dr hab. Eugeniusz Gatnar, prof. WSBiF

Statystyka opisowa Opracował: dr hab. Eugeniusz Gatnar, prof. WSBiF Statystyka opisowa Opracował: dr hab. Eugeniusz Gatnar, prof. WSBiF 120 I. Ogólne informacje o przedmiocie Cel przedmiotu: Opanowanie podstaw teoretycznych, poznanie przykładów zastosowań metod statystycznych.

Bardziej szczegółowo

Michał Kusy, StatSoft Polska Sp. z o.o.

Michał Kusy, StatSoft Polska Sp. z o.o. CZY MÓJ PROCES JEST TRENDY, CZYLI ANALIZA TRENDÓW Michał Kusy, StatSoft Polska Sp. z o.o. Wprowadzenie Analiza danych w kontroli środowiska produkcji i magazynowania opiera się między innymi na szeregu

Bardziej szczegółowo

( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie:

( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie: ma postać y = ax + b Równanie regresji liniowej By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : xy b = a = b lub x Gdzie: xy = też a = x = ( b ) i to dane empiryczne, a ilość

Bardziej szczegółowo

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16 Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego

Bardziej szczegółowo

METODY CHEMOMETRYCZNE W IDENTYFIKACJI ŹRÓDEŁ POCHODZENIA

METODY CHEMOMETRYCZNE W IDENTYFIKACJI ŹRÓDEŁ POCHODZENIA METODY CHEMOMETRYCZNE W IDENTYFIKACJI ŹRÓDEŁ POCHODZENIA AMFETAMINY Waldemar S. Krawczyk Centralne Laboratorium Kryminalistyczne Komendy Głównej Policji, Warszawa (praca obroniona na Wydziale Chemii Uniwersytetu

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA Zadanie 0.1 Zmienna losowa X ma rozkład określony funkcją prawdopodobieństwa: x k 0 4 p k 1/3 1/6 1/ obliczyć EX, D X. (odp. 4/3;

Bardziej szczegółowo

Zadanie 1. a) Przeprowadzono test RESET. Czy model ma poprawną formę funkcyjną? 1

Zadanie 1. a) Przeprowadzono test RESET. Czy model ma poprawną formę funkcyjną? 1 Zadanie 1 a) Przeprowadzono test RESET. Czy model ma poprawną formę funkcyjną? 1 b) W naszym przypadku populacja są inżynierowie w Tajlandii. Czy można jednak przypuszczać, że na zarobki kobiet-inżynierów

Bardziej szczegółowo

kod nr w planie ECTS Przedmiot studiów PODSTAWY STATYSTYKI 7 2

kod nr w planie ECTS Przedmiot studiów PODSTAWY STATYSTYKI 7 2 kod nr w planie ECTS Przedmiot studiów PODSTAWY STATYSTYKI 7 2 Kierunek Turystyka i Rekreacja Poziom kształcenia II stopień Rok/Semestr 1/2 Typ przedmiotu (obowiązkowy/fakultatywny) obowiązkowy y/ ćwiczenia

Bardziej szczegółowo

Spis treści. Laboratorium III: Testy statystyczne. Inżynieria biomedyczna, I rok, semestr letni 2013/2014 Analiza danych pomiarowych

Spis treści. Laboratorium III: Testy statystyczne. Inżynieria biomedyczna, I rok, semestr letni 2013/2014 Analiza danych pomiarowych 1 Laboratorium III: Testy statystyczne Spis treści Laboratorium III: Testy statystyczne... 1 Wiadomości ogólne... 2 1. Krótkie przypomnienie wiadomości na temat testów statystycznych... 2 1.1. Weryfikacja

Bardziej szczegółowo

Analiza regresji część II. Agnieszka Nowak - Brzezińska

Analiza regresji część II. Agnieszka Nowak - Brzezińska Analiza regresji część II Agnieszka Nowak - Brzezińska Niebezpieczeństwo ekstrapolacji Analitycy powinni ograniczyć predykcję i estymację, które są wykonywane za pomocą równania regresji dla wartości objaśniającej

Bardziej szczegółowo

Ekonometria_FIRJK Arkusz1

Ekonometria_FIRJK Arkusz1 Rok akademicki: Grupa przedmiotów Numer katalogowy: Nazwa przedmiotu 1) : łumaczenie nazwy na jęz. angielski 3) : Kierunek studiów 4) : Ekonometria Econometrics Ekonomia ECS 2) Koordynator przedmiotu 5)

Bardziej szczegółowo

Analiza Statystyczna

Analiza Statystyczna Lekcja 5. Strona 1 z 12 Analiza Statystyczna Do analizy statystycznej wykorzystać można wbudowany w MS Excel pakiet Analysis Toolpak. Jest on instalowany w programie Excel jako pakiet dodatkowy. Oznacza

Bardziej szczegółowo

Modelowanie Ekonometryczne i Prognozowanie

Modelowanie Ekonometryczne i Prognozowanie Modelowanie Ekonometryczne i Prognozowanie David Ramsey e-mail: david.ramsey@pwr.edu.pl strona domowa: www.ioz.pwr.edu.pl/pracownicy/ramsey 27 lutego 2015 1 / 77 Opis Kursu 1. Podstawy oraz Cele Modelowania

Bardziej szczegółowo

KARTA PRZEDMIOTU / SYLABUS

KARTA PRZEDMIOTU / SYLABUS Załącznik nr 5b do Uchwały nr 21/2013 Senatu KARTA PRZEDMIOTU / SYLABUS Wydział Nauk o Zdrowiu Kierunek Profil kształcenia Nazwa jednostki realizującej moduł/przedmiot: Kontakt (tel./email): Osoba odpowiedzialna

Bardziej szczegółowo

METODY STATYSTYCZNE STOSOWANE DO ANALIZY

METODY STATYSTYCZNE STOSOWANE DO ANALIZY METODY STATYSTYCZNE STOSOWANE DO ANALIZY ZADOWOLENIA I LOJALNOŚCI KLIENTÓW Janusz Wątroba StatSoft Polska Sp. z o.o. Wprowadzenie Opracowanie zostało poświęcone ogólnej charakterystyce kolejnego etapu

Bardziej szczegółowo

PYTANIA NA EGZAMIN MAGISTERSKI KIERUNEK: EKONOMIA STUDIA DRUGIEGO STOPNIA. CZĘŚĆ I dotyczy wszystkich studentów kierunku Ekonomia pytania podstawowe

PYTANIA NA EGZAMIN MAGISTERSKI KIERUNEK: EKONOMIA STUDIA DRUGIEGO STOPNIA. CZĘŚĆ I dotyczy wszystkich studentów kierunku Ekonomia pytania podstawowe PYTANIA NA EGZAMIN MAGISTERSKI KIERUNEK: EKONOMIA STUDIA DRUGIEGO STOPNIA CZĘŚĆ I dotyczy wszystkich studentów kierunku Ekonomia pytania podstawowe 1. Cele i przydatność ujęcia modelowego w ekonomii 2.

Bardziej szczegółowo

KARTA INFORMACYJNA PRZEDMIOTU

KARTA INFORMACYJNA PRZEDMIOTU Uniwersytet Rzeszowski WYDZIAŁ KIERUNEK Matematyczno-Przyrodniczy Fizyka techniczna SPECJALNOŚĆ RODZAJ STUDIÓW stacjonarne, studia pierwszego stopnia KARTA INFORMACYJNA PRZEDMIOTU NAZWA PRZEDMIOTU WG PLANU

Bardziej szczegółowo

Raport Testy Trenerskie. Kadr Makroregionalnych Polskiego Związku Podnoszenia Ciężarów

Raport Testy Trenerskie. Kadr Makroregionalnych Polskiego Związku Podnoszenia Ciężarów Raport Testy Trenerskie Kadr Makroregionalnych Polskiego Związku Podnoszenia Ciężarów W trakcie zgrupowań Kadr Makroregionalnych Polskiego Związku Podnoszenia Ciężarów, poddano zawodników Testom Trenerskim.

Bardziej szczegółowo

E2 - PROBABILISTYKA - Zadania do oddania

E2 - PROBABILISTYKA - Zadania do oddania E - PROBABILISTYKA - Zadania do oddania Parametr k = liczba trzycyfrowa dwie ostatnie cyfry to dwie ostatnie cyfry numeru indeksu pierwsza cyfra to pierwsza cyfra liczby liter pierwszego imienia. Poszczególne

Bardziej szczegółowo

Analiza korespondencji

Analiza korespondencji Analiza korespondencji Kiedy stosujemy? 2 W wielu badaniach mamy do czynienia ze zmiennymi jakościowymi (nominalne i porządkowe) typu np.: płeć, wykształcenie, status palenia. Punktem wyjścia do analizy

Bardziej szczegółowo

Wstęp do analizy matematycznej

Wstęp do analizy matematycznej Wstęp do analizy matematycznej Andrzej Marciniak Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii informatycznych i ich zastosowań w

Bardziej szczegółowo

Kształtowanie się cen m 2 mieszkania we Wrocławiu w krótkim okresie

Kształtowanie się cen m 2 mieszkania we Wrocławiu w krótkim okresie Kształtowanie się cen m 2 mieszkania we Wrocławiu w krótkim okresie Projekt prognostyczny ElŜbieta Bulak Piotr Olszewski Michał Tomanek Tomasz Witka IV ZI gr. 13. Wrocław 2007 I. Sformułowanie zadania

Bardziej szczegółowo

dr Dominik M. Marciniak Analizy statystyczne w pracach naukowych czego unikać, na co zwracać uwagę.

dr Dominik M. Marciniak Analizy statystyczne w pracach naukowych czego unikać, na co zwracać uwagę. dr Dominik M. Marciniak Analizy statystyczne w pracach naukowych czego unikać, na co zwracać uwagę. Statistics in academic papers, what to avoid and what to focus on. Uniwersytet Medyczny im. Piastów Śląskich

Bardziej szczegółowo

Sterowanie jakością badań i analiza statystyczna w laboratorium

Sterowanie jakością badań i analiza statystyczna w laboratorium Sterowanie jakością badań i analiza statystyczna w laboratorium CS-17 SJ CS-17 SJ to program wspomagający sterowanie jakością badań i walidację metod badawczych. Może działać niezależnie od innych składników

Bardziej szczegółowo

Streszczenie pracy doktorskiej Autor: mgr Wojciech Wojaczek Tytuł: Czynniki poznawcze a kryteria oceny przedsiębiorczych szans Wstęp W ciągu

Streszczenie pracy doktorskiej Autor: mgr Wojciech Wojaczek Tytuł: Czynniki poznawcze a kryteria oceny przedsiębiorczych szans Wstęp W ciągu Streszczenie pracy doktorskiej Autor: mgr Wojciech Wojaczek Tytuł: Czynniki poznawcze a kryteria oceny przedsiębiorczych szans Wstęp W ciągu ostatnich kilku dekad diametralnie zmienił się charakter prowadzonej

Bardziej szczegółowo

WSPOMAGANIE ANALIZY DANYCH ZA POMOCĄ NARZĘDZI STATISTICA

WSPOMAGANIE ANALIZY DANYCH ZA POMOCĄ NARZĘDZI STATISTICA WSPOMAGANIE ANALIZY DANYCH ZA POMOCĄ NARZĘDZI STATISTICA Janusz Wątroba i Grzegorz Harańczyk, StatSoft Polska Sp. z o.o. Zakres zastosowań analizy danych w różnych dziedzinach działalności biznesowej i

Bardziej szczegółowo

EKONOMETRIA PRZESTRZENNA

EKONOMETRIA PRZESTRZENNA EKONOMETRIA PRZESTRZENNA Wstęp podstawy ekonometrii Uniwersytet Ekonomiczny w Krakowie, 2012 1 EKONOMETRIA wybrane definicje (Osińska) Ekonometria dziedzina ekonomii wykorzystująca modele i sposoby wnioskowania

Bardziej szczegółowo

Materiał dla studentów

Materiał dla studentów Materiał dla studentów Metoda zmiennych instrumentalnych Nazwa przedmiotu: metody ekonometryczne, ekonometria stosowana Kierunek studiów: Metody Ilościowe w ekonomii i systemy informacyjne Studia I stopnia/studia

Bardziej szczegółowo

STRATY ENERGII ELEKTRYCZNEJ W KRAJOWYM SYSTEMIE ELEKTROENERGETYCZNYM

STRATY ENERGII ELEKTRYCZNEJ W KRAJOWYM SYSTEMIE ELEKTROENERGETYCZNYM Elżbieta NIEWIEDZIAŁ, Ryszard NIEWIEDZIAŁ Wyższa Szkoła Kadr Menedżerskich w Koninie STRATY ENERGII ELEKTRYCZNEJ W KRAJOWYM SYSTEMIE ELEKTROENERGETYCZNYM Streszczenie: W artykule przedstawiono charakterystykę

Bardziej szczegółowo

Plan wynikowy i przedmiotowy system oceniania

Plan wynikowy i przedmiotowy system oceniania Plan wynikowy i przedmiotowy system oceniania Przedmiot: Pracownia ekonomiczna Klasa II Technikum Ekonomiczne Nr programu nauczania: 341[02]/MEN/2008.05.20 (technik ekonomista) Podręcznik: R. Seidel, S.

Bardziej szczegółowo

Satysfakcja z życia rodziców dzieci niepełnosprawnych intelektualnie

Satysfakcja z życia rodziców dzieci niepełnosprawnych intelektualnie Satysfakcja z życia rodziców dzieci niepełnosprawnych intelektualnie Zadanie Zbadano satysfakcję z życia w skali 1 do 10 w dwóch grupach rodziców: a) Rodzice dzieci zdrowych oraz b) Rodzice dzieci z niepełnosprawnością

Bardziej szczegółowo

SPIS TREŚCI. Do Czytelnika... 7

SPIS TREŚCI. Do Czytelnika... 7 SPIS TREŚCI Do Czytelnika.................................................. 7 Rozdział I. Wprowadzenie do analizy statystycznej.............. 11 1.1. Informacje ogólne..........................................

Bardziej szczegółowo

Funkcja jednej zmiennej - przykładowe rozwiązania 1. Badając przebieg zmienności funkcji postępujemy według poniższego schematu:

Funkcja jednej zmiennej - przykładowe rozwiązania 1. Badając przebieg zmienności funkcji postępujemy według poniższego schematu: Funkcja jednej zmiennej - przykładowe rozwiązania Zadanie 4 c) Badając przebieg zmienności funkcji postępujemy według poniższego schematu:. Analiza funkcji: (a) Wyznaczenie dziedziny funkcji (b) Obliczenie

Bardziej szczegółowo

Prywatne nakłady na kształcenie na poziomie wyższym: wysokość, zróżnicowanie, konsekwencje dla spójności społecznej

Prywatne nakłady na kształcenie na poziomie wyższym: wysokość, zróżnicowanie, konsekwencje dla spójności społecznej Prywatne nakłady na kształcenie na poziomie wyższym: wysokość, zróżnicowanie, konsekwencje dla spójności społecznej dr Leszek Wincenciak dr hab. Leszek Morawski Warszawa, 19 października 2015 r. Struktura

Bardziej szczegółowo

Związki bezpośrednich inwestycji zagranicznych ze zmianami struktury eksportu i importu w Polsce

Związki bezpośrednich inwestycji zagranicznych ze zmianami struktury eksportu i importu w Polsce Dr Wojciech Zysk Katedra Handlu Zagranicznego Akademii Ekonomicznej w Krakowie Związki bezpośrednich zagranicznych ze zmianami struktury eksportu i importu w Polsce W opracowaniu podjęta zostanie próba

Bardziej szczegółowo

MYSTERY SHOPPING - JAK ANALIZOWAĆ UZYSKANE DANE? Badania Mystery shopping

MYSTERY SHOPPING - JAK ANALIZOWAĆ UZYSKANE DANE? Badania Mystery shopping MYSTERY SHOPPING - JAK ANALIZOWAĆ UZYSKANE DANE? Małgorzata Michalak, Cegedim Customer Information Badania Mystery Shopping (Tajemniczego Klienta) polegają na zbieraniu danych dotyczących oceny funkcjonowania

Bardziej szczegółowo

Ćwiczenie 12. Metody eksploracji danych

Ćwiczenie 12. Metody eksploracji danych Ćwiczenie 12. Metody eksploracji danych Modelowanie regresji (Regression modeling) 1. Zadanie regresji Modelowanie regresji jest metodą szacowania wartości ciągłej zmiennej celu. Do najczęściej stosowanych

Bardziej szczegółowo

PROGNOZOWANIE ROZWOJU RYNKU UBEZPIECZEŃ MAJĄTKOWYCH I OSOBOWYCH W POLSCE NA PODSTAWIE ZMIAN W BUDŻETACH GOSPODARSTW DOMOWYCH

PROGNOZOWANIE ROZWOJU RYNKU UBEZPIECZEŃ MAJĄTKOWYCH I OSOBOWYCH W POLSCE NA PODSTAWIE ZMIAN W BUDŻETACH GOSPODARSTW DOMOWYCH PROGNOZOWANIE ROZWOJU RYNKU UBEZPIECZEŃ MAJĄTKOWYCH I OSOBOWYCH W POLSCE NA PODSTAWIE ZMIAN W BUDŻETACH GOSPODARSTW DOMOWYCH Robert Lisowski Katedra Mikroekonomii, Wydział Zarządzania, Akademia Górniczo-Hutnicza

Bardziej szczegółowo

Zarządzanie ryzykiem. Opracował: Dr inŝ. Tomasz Zieliński

Zarządzanie ryzykiem. Opracował: Dr inŝ. Tomasz Zieliński Zarządzanie ryzykiem Opracował: Dr inŝ. Tomasz Zieliński I. OGÓLNE INFORMACJE O PRZEDMIOCIE Cel przedmiotu: Celem przedmiotu jest zaprezentowanie studentom podstawowych pojęć z zakresu ryzyka w działalności

Bardziej szczegółowo

Analiza statystyczna rozkładów cech determinujących rozwój sektora kreatywnego w powiatach. Polska (na podstawie danych 2009-2012)

Analiza statystyczna rozkładów cech determinujących rozwój sektora kreatywnego w powiatach. Polska (na podstawie danych 2009-2012) Analiza statystyczna rozkładów cech determinujących rozwój sektora kreatywnego w powiatach. Polska (na podstawie danych 2009-2012) Część I. Opis bazy danych. Podstawą analizy zmian były dane statystyczne

Bardziej szczegółowo

PODSTAWY STATYSTYCZNEJ ANALIZY DANYCH

PODSTAWY STATYSTYCZNEJ ANALIZY DANYCH Wykład 3 Liniowe metody klasyfikacji. Wprowadzenie do klasyfikacji pod nadzorem. Fisherowska dyskryminacja liniowa. Wprowadzenie do klasyfikacji pod nadzorem. Klasyfikacja pod nadzorem Klasyfikacja jest

Bardziej szczegółowo

ROZDZIAŁ 7 WPŁYW SZOKÓW GOSPODARCZYCH NA RYNEK PRACY W STREFIE EURO

ROZDZIAŁ 7 WPŁYW SZOKÓW GOSPODARCZYCH NA RYNEK PRACY W STREFIE EURO Samer Masri ROZDZIAŁ 7 WPŁYW SZOKÓW GOSPODARCZYCH NA RYNEK PRACY W STREFIE EURO Najbardziej rewolucyjnym aspektem ogólnej teorii Keynesa 1 było jego jasne i niedwuznaczne przesłanie, że w odniesieniu do

Bardziej szczegółowo

Studia podyplomowe w zakresie przetwarzanie, zarządzania i statystycznej analizy danych

Studia podyplomowe w zakresie przetwarzanie, zarządzania i statystycznej analizy danych Studia podyplomowe w zakresie przetwarzanie, zarządzania i statystycznej analizy danych PRZEDMIOT (liczba godzin konwersatoriów/ćwiczeń) Statystyka opisowa z elementami analizy regresji (4/19) Wnioskowanie

Bardziej szczegółowo

WYCHODZĄC POZA PROSTĄ REGRESJĘ MODELOWANIE STATYSTYCZNE W OBSZARZE UBEZPIECZEŃ

WYCHODZĄC POZA PROSTĄ REGRESJĘ MODELOWANIE STATYSTYCZNE W OBSZARZE UBEZPIECZEŃ WYCHODZĄC POZA PROSTĄ REGRESJĘ MODELOWANIE STATYSTYCZNE W OBSZARZE UBEZPIECZEŃ Grzegorz Harańczyk, StatSoft Polska Sp. z o.o. Wiele zjawisk i procesów występujących w otaczającej nas rzeczywistości ma

Bardziej szczegółowo

ZALICZENIA. W celu uzyskania zaliczenia należy wybrać jeden z trzech poniższych wariantów I, II lub III

ZALICZENIA. W celu uzyskania zaliczenia należy wybrać jeden z trzech poniższych wariantów I, II lub III ZALICZENIA W celu uzyskania zaliczenia należy wybrać jeden z trzech poniższych wariantów I, II lub III 1 Wariant I. PROBLEM WŁASNY Sformułować własne zadanie statystyczne związane z własną pracą badawczą

Bardziej szczegółowo

Jego Magnificencji Wielce Szanownemu Jubilatowi Panu Prof. Jerzemu Koplowi dla którego zawsze żyć, to znaczy myśleć Autorka

Jego Magnificencji Wielce Szanownemu Jubilatowi Panu Prof. Jerzemu Koplowi dla którego zawsze żyć, to znaczy myśleć Autorka Jego Magnificencji Wielce Szanownemu Jubilatowi Panu Prof. Jerzemu Koplowi dla którego zawsze żyć, to znaczy myśleć Autorka W ostatnim okresie daje się zaobserwować tendencję do unikania matematyczno-statystycznych

Bardziej szczegółowo

Technikum Ekonomiczne Klasa II Wymiar godzin: 2 godziny tygodniowo Nr programu nauczania: 2302/T-5/SP/MEN/1998.02.24 (technik ekonomista)

Technikum Ekonomiczne Klasa II Wymiar godzin: 2 godziny tygodniowo Nr programu nauczania: 2302/T-5/SP/MEN/1998.02.24 (technik ekonomista) Plan pracy dydaktycznej (jest to wstępna wersja planu, który będzie doskonalony) STATYSTYKA Technikum Ekonomiczne Klasa II Wymiar godzin: 2 godziny tygodniowo Nr programu nauczania: 2302/T-5/SP/MEN/1998.02.24

Bardziej szczegółowo

Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje

Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje Opracował: Zbigniew Rudnicki Powtórka z poprzedniego wykładu 2 1 Dokument, regiony, klawisze: Dokument Mathcada realizuje

Bardziej szczegółowo

Michigan, 4,2 mld m 3 w Indiana, 3,7 mld m 3 w Wisconsin i 1,9 mld m 3 w Iowa.

Michigan, 4,2 mld m 3 w Indiana, 3,7 mld m 3 w Wisconsin i 1,9 mld m 3 w Iowa. Rynek energii zależy mocno od przebiegu pogody w sezonie grzewczym. Analiza korelacji zużycia energii elektrycznej, oleju opałowego lub gazu ziemnego względem liczby stopniodni grzania daje odpowiedź czy

Bardziej szczegółowo

Podstawowe umiejętności matematyczne - przypomnienie

Podstawowe umiejętności matematyczne - przypomnienie Podstawowe umiejętności matematyczne - przypomnienie. Podstawy działań na potęgach założenie:. założenie: założenie: a>0, n jest liczbą naturalną założenie: Uwaga:. Zapis dużych i małych wartości w postaci

Bardziej szczegółowo

Podstawy statystyki i obsługa SPSSa na przykładach z ekonomii

Podstawy statystyki i obsługa SPSSa na przykładach z ekonomii Podstawy statystyki i obsługa SPSSa na przykładach z ekonomii p. 1/30 Podstawy statystyki i obsługa SPSSa na przykładach z ekonomii Kurs letni dla studentów studiów zamawianych na kierunku Matematyka w

Bardziej szczegółowo

PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W KONINIE WYDZIAŁ SPOŁECZNO-HUMANISTYCZNY. Katedra Zarządzania i Logistyki. Kierunek: Zarządzanie SYLABUS

PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W KONINIE WYDZIAŁ SPOŁECZNO-HUMANISTYCZNY. Katedra Zarządzania i Logistyki. Kierunek: Zarządzanie SYLABUS PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W KONINIE WYDZIAŁ SPOŁECZNO-HUMANISTYCZNY Katedra Zarządzania i Logistyki Kierunek: Zarządzanie SYLABUS Nazwa przedmiotu w języku polskim / angielskim STATYSTYKA OPISOWA

Bardziej szczegółowo

WYKRESY FUNKCJI LINIOWEJ

WYKRESY FUNKCJI LINIOWEJ GIMNAZJUM NR 2 W KAMIENNEJ GÓRZE WYKRESY FUNKCJI LINIOWEJ Oprcowała Wiesława Kurnyta Kamienna Góra, 2006 Oto wypisy z Podstawy programowej o nauczaniu matematyki w gimnazjum Cele edukacyjne 1. E Przyswajanie

Bardziej szczegółowo

Wykład z dnia 8 lub 15 października 2014 roku

Wykład z dnia 8 lub 15 października 2014 roku Wykład z dnia 8 lub 15 października 2014 roku Istota i przedmiot statystyki oraz demografii. Prezentacja danych statystycznych Znaczenia słowa statystyka Znaczenie I - nazwa zbioru danych liczbowych prezentujących

Bardziej szczegółowo

Statystyczną ideę szacowania wskaźników EWD dobrze ilustrują dwa poniższe wykresy:

Statystyczną ideę szacowania wskaźników EWD dobrze ilustrują dwa poniższe wykresy: 1 Metoda EWD (edukacyjna wartość dodana) to zestaw technik statystycznych pozwalających zmierzyć wkład szkoły w wyniki nauczania. By można ją zastosować, potrzebujemy wyników przynajmniej dwóch pomiarów

Bardziej szczegółowo

ANALIZA SPRZEDAŻY: - rozproszenia

ANALIZA SPRZEDAŻY: - rozproszenia KOŁO NAUKOWE CONTROLLINGU UNIWERSYTET ZIELONOGÓRSKI ANALIZA SPRZEDAŻY: - rozproszenia - koncentracji - sezonowości Spis treści Wstęp... 3 Analiza rozproszenia sprzedaży... 4 Analiza koncentracji sprzedaży...

Bardziej szczegółowo

Zadanie 10. W zakładzie produkującym obuwie sportowe zbadano pracowników pod względem wieku rozpoczęcia pracy w tym zakładzie. Okazało się, że 25%

Zadanie 10. W zakładzie produkującym obuwie sportowe zbadano pracowników pod względem wieku rozpoczęcia pracy w tym zakładzie. Okazało się, że 25% STATYSTYKA OPISOWA Zadanie. Wzrost [cm] pewnej grupy dziewcząt przedstawia się następująco: 50, 5, 5, 5, 52, 52, 52, 52, 53, 53, 53, 53,, 55, 55, 55, 55, 55, 55, 56, 56, 56, 56, 56, 57, 57, 57, 57, 58,

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki 3. Zmienne losowe 4. Populacje i próby danych 5. Testowanie hipotez i estymacja parametrów 6. Test t 7. Test

Bardziej szczegółowo

Kalkulator EWD 100 co warto wiedzieć? materiały Pracowni EWD

Kalkulator EWD 100 co warto wiedzieć? materiały Pracowni EWD Kalkulator EWD 100 co warto wiedzieć? materiały Pracowni EWD Struktury danych Podstawowa struktura danych szkoła-rocznik-klasauczeń-cecha Podstawowa struktura danych szkoła-rocznik-klasauczeń-cecha cechy

Bardziej szczegółowo

1.INFORMACJE O PRZEDMIOCIE A. Podstawowe dane

1.INFORMACJE O PRZEDMIOCIE A. Podstawowe dane Kod przedmiotu:. Pozycja planu: B.1., B.1a 1.INFORMACJE O PRZEDMIOCIE A. Podstawowe dane Nazwa przedmiotu Metody badań na zwierzętach Kierunek studiów Poziom studiów Profil studiów Forma studiów Specjalność

Bardziej szczegółowo

Sylabus modułu: Matematyka stosowana z elementami chemometrii (0310-CH-S1-018)

Sylabus modułu: Matematyka stosowana z elementami chemometrii (0310-CH-S1-018) Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: chemia, poziom pierwszy Sylabus modułu: Matematyka stosowana z elementami chemometrii (018) 1. Informacje ogólne koordynator modułu dr

Bardziej szczegółowo

Ćwiczenia 7. Badanie istotności róŝnic część II.

Ćwiczenia 7. Badanie istotności róŝnic część II. Ćwiczenia 7. Badanie istotności róŝnic część II. Zadania obowiązkowe UWAGA! Elementy zadań oznaczone kolorem czerwonym naleŝy przygotować lub wypełnić. Zadanie 7.1. (STATISTICA/R) W pliku Serce2.sta (porównaj

Bardziej szczegółowo

STATYSTYCZNE METODY BADANIA ZWIĄZKÓW MIĘDZY RENTOWNOŚCIĄ A PŁYNNOŚCIĄ BANKOWĄ. 1. Płynność a rentowność

STATYSTYCZNE METODY BADANIA ZWIĄZKÓW MIĘDZY RENTOWNOŚCIĄ A PŁYNNOŚCIĄ BANKOWĄ. 1. Płynność a rentowność B A D A N I A O P E R A C Y J N E I D E C Y Z J E Nr 3 4 2006 Bogusław GUZIK* STATYSTYCZNE METODY BADANIA ZWIĄZKÓW MIĘDZY RENTOWNOŚCIĄ A PŁYNNOŚCIĄ BANKOWĄ W artykule opisano najczęściej spotykane podejścia

Bardziej szczegółowo

DETERMINANTY KSZTAŁTOWANIA STRUKTURY KAPITAŁU W PRAKTYCE ZARZĄDZANIA PRZEDSIĘBIORSTWEM

DETERMINANTY KSZTAŁTOWANIA STRUKTURY KAPITAŁU W PRAKTYCE ZARZĄDZANIA PRZEDSIĘBIORSTWEM SZKOŁA GŁÓWNA HANDLOWA W WARSZAWIE KOLEGIUM GOSPODARKI ŚWIATOWEJ mgr Michał Szudejko DETERMINANTY KSZTAŁTOWANIA STRUKTURY KAPITAŁU W PRAKTYCE ZARZĄDZANIA PRZEDSIĘBIORSTWEM Streszczenie rozprawy doktorskiej

Bardziej szczegółowo

Otwórz R. Zmień katalog roboczy za pomocą File/Change Dir. Wczytaj plik przypisując go obiektowi o nazwie students:

Otwórz R. Zmień katalog roboczy za pomocą File/Change Dir. Wczytaj plik przypisując go obiektowi o nazwie students: 1. Wczytywanie danych do programu R Otwórz R. Zmień katalog roboczy za pomocą File/Change Dir. Wczytaj plik przypisując go obiektowi o nazwie students: > students

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III ZAKRES ROZSZERZONY (90 godz.) , x

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III ZAKRES ROZSZERZONY (90 godz.) , x WYMAGANIA EDUACYJNE Z MATEMATYI LASA III ZARES ROZSZERZONY (90 godz.) Oznaczenia: wymagania konieczne (dopuszczający); P wymagania podstawowe (dostateczny); R wymagania rozszerzające (dobry); D wymagania

Bardziej szczegółowo

Budowa praktycznego modelu regresji opisującego zależności występujące na rynku nieruchomości mieszkaniowych

Budowa praktycznego modelu regresji opisującego zależności występujące na rynku nieruchomości mieszkaniowych 291 Zeszyty Naukowe Wyższej Szkoły Bankowej we Wrocławiu Nr 20/2011 Politechnika Opolska Budowa praktycznego modelu regresji opisującego zależności występujące na rynku nieruchomości mieszkaniowych Streszczenie.

Bardziej szczegółowo

Statystyka opisowa SYLABUS A. Informacje ogólne

Statystyka opisowa SYLABUS A. Informacje ogólne Statystyka opisowa SYLABUS A. Informacje ogólne Elementy składowe sylabusu Nazwa jednostki prowadzącej kierunek Nazwa kierunku studiów Poziom kształcenia Profil studiów Forma studiów Kod Język Rodzaj Rok

Bardziej szczegółowo

Wycena nieruchomości za pomocą wyboru wielokryterialnego w warunkach niepewności rozmytej oraz klasycznie: metodą pp i kcś

Wycena nieruchomości za pomocą wyboru wielokryterialnego w warunkach niepewności rozmytej oraz klasycznie: metodą pp i kcś Wycena nieruchomości za pomocą wyboru wielokryterialnego w warunkach niepewności rozmytej oraz klasycznie: metodą pp i kcś Materiały reklamowe ZAWAM-Marek Zawadzki Wybór wielokryterialny jako jadna z metod

Bardziej szczegółowo

ANALITYK DANYCH Kto to jest analityk danych? Na czym polega praca analityka danych?

ANALITYK DANYCH Kto to jest analityk danych? Na czym polega praca analityka danych? ANALITYK DANYCH Kto to jest analityk danych? Współczesny świat oraz nowoczesna gospodarka bazują w znacznej mierze na umiejętności analizy i opracowywania napływających danych. Działania te są niezbędne

Bardziej szczegółowo

TREŚCI NAUCZANIA z przedmiotu pracowania ekonomiczno - informatyczna na podstawie programu nr 341[02]/MEN/2008.05.20. klasa 3 TE

TREŚCI NAUCZANIA z przedmiotu pracowania ekonomiczno - informatyczna na podstawie programu nr 341[02]/MEN/2008.05.20. klasa 3 TE TREŚCI NAUCZANIA z przedmiotu pracowania ekonomiczno - informatyczna na podstawie programu nr [0]/MEN/008.05.0 klasa TE LP TREŚCI NAUCZANIA NAZWA JEDNOSTKI DYDAKTYCZNEJ Lekcja organizacyjna Zapoznanie

Bardziej szczegółowo

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

A B. Modelowanie reakcji chemicznych: numeryczne rozwiązywanie równań na szybkość reakcji chemicznych B: 1. da dt. A v. v t

A B. Modelowanie reakcji chemicznych: numeryczne rozwiązywanie równań na szybkość reakcji chemicznych B: 1. da dt. A v. v t B: 1 Modelowanie reakcji chemicznych: numeryczne rozwiązywanie równań na szybkość reakcji chemicznych 1. ZałóŜmy, Ŝe zmienna A oznacza stęŝenie substratu, a zmienna B stęŝenie produktu reakcji chemicznej

Bardziej szczegółowo

INSTRUMENTY ZARZĄDZANIA RYZYKIEM NOTOWANE NA WARSZAWSKIEJ GIEŁDZIE PAPIERÓW WARTOŚCIOWYCH. Streszczenie

INSTRUMENTY ZARZĄDZANIA RYZYKIEM NOTOWANE NA WARSZAWSKIEJ GIEŁDZIE PAPIERÓW WARTOŚCIOWYCH. Streszczenie Karol Klimczak Studenckie Koło Naukowe Stosunków Międzynarodowych TIAL przy Katedrze Stosunków Międzynarodowych Wydziału Ekonomiczno-Socjologicznego Uniwersytetu Łódzkiego INSTRUMENTY ZARZĄDZANIA RYZYKIEM

Bardziej szczegółowo

Ćwiczenie: Wprowadzenie do obsługi programu statystycznego SAS Enterprise Guide. Statystyka opisowa w SAS Enterprise Guide.

Ćwiczenie: Wprowadzenie do obsługi programu statystycznego SAS Enterprise Guide. Statystyka opisowa w SAS Enterprise Guide. Ćwiczenie: Wprowadzenie do obsługi programu statystycznego SAS Enterprise Guide. Statystyka opisowa w SAS Enterprise Guide. 1. Załóż we własnym folderze podfolder o nazwie cw2 i przekopiuj do niego plik

Bardziej szczegółowo

Analiza wpływu wybranych czynników na rozwój ubezpieczeń towarzyszących kredytowaniu hipotecznemu

Analiza wpływu wybranych czynników na rozwój ubezpieczeń towarzyszących kredytowaniu hipotecznemu Analiza wpływu wybranych czynników na rozwój ubezpieczeń Patrycja Kowalczyk-Rólczyńska Analiza wpływu wybranych czynników na rozwój ubezpieczeń towarzyszących kredytowaniu hipotecznemu Rozwój ubezpieczeń

Bardziej szczegółowo

Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. 2 godz. = 76 godz.)

Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. 2 godz. = 76 godz.) Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. godz. = 76 godz.) I. Funkcja i jej własności.4godz. II. Przekształcenia wykresów funkcji...9 godz. III. Funkcja

Bardziej szczegółowo

klasa III technikum I. FIGURY I PRZEKSZTAŁCENIA Wiadomości i umiejętności

klasa III technikum I. FIGURY I PRZEKSZTAŁCENIA Wiadomości i umiejętności I. FIGURY I PRZEKSZTAŁCENIA - zna i rozumie pojęcia, zna własności figur: ogólne równanie prostej, kierunkowe równanie prostej okrąg, równanie okręgu - oblicza odległość dwóch punktów na płaszczyźnie -

Bardziej szczegółowo

SEKCJA I: ZAMAWIAJĄCY SEKCJA II: PRZEDMIOT ZAMÓWIENIA. Zamieszczanie ogłoszenia: obowiązkowe. Ogłoszenie dotyczy: zamówienia publicznego.

SEKCJA I: ZAMAWIAJĄCY SEKCJA II: PRZEDMIOT ZAMÓWIENIA. Zamieszczanie ogłoszenia: obowiązkowe. Ogłoszenie dotyczy: zamówienia publicznego. Puławy: Dostawa oprogramowania do analizy statystycznej danych i ich graficznej prezentacji w ramach projektu Budowa centrum Badań Procesów Ekstrakcji Nadkrytycznej surowców roślinnych z zastoswoaniem

Bardziej szczegółowo

Przedmiot statystyki. Graficzne przedstawienie danych. Wykład-26.02.07. Przedmiot statystyki

Przedmiot statystyki. Graficzne przedstawienie danych. Wykład-26.02.07. Przedmiot statystyki Przedmiot statystyki. Graficzne przedstawienie danych. Wykład-26.02.07 Statystyka dzieli się na trzy części: Przedmiot statystyki -zbieranie danych; -opracowanie i kondensacja danych (analiza danych);

Bardziej szczegółowo

Edukacyjna wartość dodana: Czy nasza szkoła dobrze uczy?

Edukacyjna wartość dodana: Czy nasza szkoła dobrze uczy? Edukacyjna wartość dodana: Czy nasza szkoła dobrze uczy? rok szkolny 2014/2015 Metoda EWD to zestaw technik statystycznych pozwalających określić wkład szkoły w wyniki nauczania. Wyniki egzaminacyjne uczniów

Bardziej szczegółowo