Komputerowe Przetwarzanie Obrazów Szybka Transformata Fouriera. 1. Generowanie sygnałów 1D o różnych częstotliwościach oraz dodawanie szumu.

Wielkość: px
Rozpocząć pokaz od strony:

Download "Komputerowe Przetwarzanie Obrazów Szybka Transformata Fouriera. 1. Generowanie sygnałów 1D o różnych częstotliwościach oraz dodawanie szumu."

Transkrypt

1 Komputerowe Przetwarzanie Obrazów Szybka Transformata Fouriera 1. Generowanie sygnałów 1D o różnych częstotliwościach oraz dodawanie szumu. t = 0:0.001:2; x1 = sin( 3*pi*2*t ); plot(t,x1) title('czestotliwosc rowna 3 Hz') x2 = sin( 5*pi*2*t ); plot(t,x2) title('czestotliwosc rowna 5 Hz') x = x1+x2; plot(t,x) title('polaczone sygnaly o czestotliwosciach 3 oraz 5 Hz') x = x + 0.8*(1-2*rand(size(x))); plot(t,x) title('polaczone sygnaly z dodanym szumem') 2. Analiza częstotliwości występujących w sygnale t = 0:0.001:2; x1 = sin( 25*pi*2*t ); plot(t,x1) title('czestotliwosc rowna 25 Hz') x2 = sin( 40*pi*2*t ); plot(t,x2) title('czestotliwosc rowna 40 Hz')

2 x = x1+x2; plot(t,x) title('polaczone sygnaly o czestotliwosciach 25 oraz 40 Hz') Y = fft(x,512); Y2 = Y.* conj(y) / 512; %tylko pierwsza polowa wspolczynników jest znacząca f = 1000*(0:256)/512; plot(f,y2(1:257)) title('frequency content of x') xlabel('frequency (Hz)') 3. Jednowymiarowa transformata Fouriera i odwrotna transformata Fouriera len = 512 t = 0:len; x = sin(0.08*t)+sin(0.03*t); plot(t,x); title('oryginalny sygnal') xlabel('czas') y=fft(x) Y2 = y.* conj(y); plot(y2(1:len/2)) title('wspolczynniki rozwiniecia za pomoca FFT') xlabel('czestotliwosc w Hz') x2 = ifft(y); plot(t,x2) title('sygnal odzyskany po zastosowaniu odwrotnej transformaty Fouriera') xlabel('czas')

3 4. Usuwanie szumów z sygnału 1D za pomocą FFT (Fast Fourier Transform). Zwróć uwagę na zniekształcenia na lewym i prawym skraju odfiltrowanego sygnału. len = 512 t = 0:len; x = sin(0.08*t)+sin(0.03*t) + sin(0.2*t); plot(t,x); title('oryginalny sygnal') x = x + 2*(-1 + 2*rand(size(x))); plot(t,x); title('oryginalny sygnal z dodanym szumem') xlabel('czas') y=fft(x) Y2 = y.* conj(y); plot(y2(1:len/2)) title('wspolczynniki FFT') xlabel('czestotliwosc [Hz]') max(y2) min(y2) mask = Y2 > 0.2*max(Y2); Y2 = Y2.* mask; y = y.* mask; plot(y2(1:len/2)) title('wspolczynniki FFT po usunieciu zbyt slabych czestotliwosci') xlabel('czestotliwosc [Hz]') x2 = ifft(y); plot(t,x2) title('odzyskany sygnal') xlabel('czas') ; ;

4 5. Dwuwymiarowa FFT oraz IFFT (Inverse Fast Fourier Transform). Zwróć uwagę, że rysunek transformaty pokazuje większą energię dla dużych horyzontalnych częstotliwości niż dla dużych wertykalnych częstotliwości. Wynika to z faktu, iż na oryginalnym rysunku szybsze zmiany następują w przekroju poziomym (tzn. jest większa częstotliwość zmian), dlatego, że prostokąt jest węższy w poziomie. size = [32 32] %size = [ ] x = zeros(size); x(size(1)/4:3*size(1)/4, 3*size(2)/8 : 5*size(2)/8) = ones(size(1)/2+1, (5/8-3/8)*size(2)+1); imshow(x,'notruesize') title('obraz oryginalny') F2 = log(abs(f)); imshow(f2,[-1 5],'notruesize'); colormap(jet); colorbar title('fft') %size(f2) F = fft2(x,256,256); F2 = log(abs(f)); imshow(f2,[-1 5],'notruesize'); colormap(jet); colorbar title('fft z uzupelnieniem zerami do rozmiaru 256x256') %size(f2) %przesuniecie ukladu wspolrzednych tak, aby czestotliwosc 0 byla w srodku F2 = fftshift(f); F2 = log(abs(f2)); imshow(f2,[-1 5],'notruesize'); colormap(jet); colorbar title('fft i przesuniecie ukladu wspolrzednych tak, aby czestotliwosc 0 byla w srodku') x2 = ifft2(f); imshow(real(x2),'notruesize') title('odwrotna FFT')

5 6. Przykłady działania FFT na różnych obrazach x = imread('fig1.bmp'); x = rgb2gray(x); %x = imread('portret.jpg'); x = double(x)/255; imshow(x,'notruesize') title('obraz oryginalny') F2 = log(1 + abs(f)); minn = min(min(f2)) maxx = max(max(f2)) title('fft') F = fft2(x,512,512); F2 = log(1 + abs(f)); title('fft z uzupelnieniem zerami do rozmiaru 512x512') %przesuniecie ukladu wspolrzednych tak, aby czestotliwosc 0 byla w srodku F2 = fftshift(f); F2 = log(1+abs(f2)); title('fft i przesuniecie ukladu wspolrzednych tak, aby czestotliwosc 0 byla w srodku') x2 = ifft2(f); imshow(real(x2),'notruesize') title('odwrotna FFT') 7. Operacje w przestrzeni częstotliwości usuwanie częstotliwości zbyt małych, zbyt dużych, itd. x = imread('fig1.bmp'); x = rgb2gray(x);

6 %x = imread('portret.jpg'); x = double(x)/255; imshow(x,'notruesize') title('obraz oryginalny') F2 = log(1 + abs(f)); minn = min(min(f2)) maxx = max(max(f2)) title('fft') F = fft2(x,512,512); F2 = log(1 + abs(f)); title('fft z uzupelnieniem zerami do rozmiaru 512x512') %przesuniecie ukladu wspolrzednych tak, aby czestotliwosc 0 byla w srodku F2 = fftshift(f); F2 = log(1+abs(f2)); title('fft i przesuniecie ukladu wspolrzednych tak, aby czestotliwosc 0 byla w srodku') F2 = fftshift(f); F2 = log(1 + abs(f2)); minn = min(min(f2)) maxx = max(max(f2)) mask = F2 >= 0.07*maxx; %mask2 = F2 <= 0.9*maxx; %mask = mask & mask2; F = F.* mask; F2 = F2.* mask; title('usuniecie zbyt malych czestotliwosci') x2 = ifft2(f);

7 imshow(real(x2),'notruesize') title('odwrotna FFT') 8. Konwolucja za pomocą FFT. clear; x = imread('portret.jpg'); s = size(x) x = imread('portret.jpg'); x = double(x)/255; imshow(x,'notruesize') title('obraz oryginalny') mask = [-1,-2,-1; 0, 0, 0; 1, 2, 1]; mask = rot90(mask,2); mask(s(1),s(2)) = 0; % Zero-pad mask to be 8-by-8; %KONWOLUCJA x2 = ifft2(fft2(x).*fft2(mask)); x2 = real(x2); % Remove imaginary part caused by roundoff error imshow(x2,'notruesize'); title('po konwolucji'); mask = [-1,-2,-1; 0, 0, 0; 1, 2, 1]; x3 = filter2(mask, x); %x3 = mat2gray(x3); imshow(x3,'notruesize'); title('po filtrowaniu'); 9. TEMPLATE MATCHING: Korelacja za pomocą FFT - feature detection na przykładzie lokalizacji literki a. WERSJA 1: bw = imread('text.tif'); a=bw(59:71,81:91); %Extract one of the letters "a" from the image. %bw = rot90(bw);

8 imshow(bw);, imshow(a);, imshow(rot90(a,2)); s = size(bw) s2 = size(a) C = real(ifft2(fft2(bw).* fft2(rot90(a,2),256,256)));, imshow(c,[])%display, scaling data to appropriate range. maxx = max(c(:)) %Find max pixel value in C. %thresh = 45; %Use a threshold that's a little less than max. thresh = 0.9*maxx; %Use a threshold that's a little less than max., imshow(c > thresh)%display showing pixels over threshold. [r c] = find(c > thresh); Z = zeros(size(bw)); for i =1:size(r) disp(sprintf('%d %d',r(i),c(i))); Z(r(i):r(i)+s2(1)-1, c(i):c(i)+s2(2)-1) = a; end imshow(z,[]); WERSJA 2: bw = imread('text.tif'); a=bw(59:71,81:91); %Extract one of the letters "a" from the image. bw = rot90(bw); imshow(bw);, imshow(a);, imshow(rot90(a,3)); s = size(bw) s2 = size(a) C = real(ifft2(fft2(bw).* fft2(rot90(a,3),256,256)));, imshow(c,[])%display, scaling data to appropriate range. maxx = max(c(:)) %Find max pixel value in C. %thresh = 45; %Use a threshold that's a little less than max. thresh = 0.9*maxx; %Use a threshold that's a little less than max., imshow(c > thresh)%display showing pixels over threshold.

9 [r c] = find(c > thresh); Z = zeros(size(bw)); for i =1:size(r) disp(sprintf('%d %d',r(i),c(i))); Z(r(i):r(i)+s2(2)-1, c(i):c(i)+s2(1)-1) = rot90(a,1); end imshow(z,[]);

Transformata Fouriera i analiza spektralna

Transformata Fouriera i analiza spektralna Transformata Fouriera i analiza spektralna Z czego składają się sygnały? Sygnały jednowymiarowe, częstotliwość Liczby zespolone Transformata Fouriera Szybka Transformata Fouriera (FFT) FFT w 2D Przykłady

Bardziej szczegółowo

DYSKRETNA TRANSFORMACJA FOURIERA

DYSKRETNA TRANSFORMACJA FOURIERA Laboratorium Teorii Sygnałów - DFT 1 DYSKRETNA TRANSFORMACJA FOURIERA Cel ćwiczenia Celem ćwiczenia jest przeprowadzenie analizy widmowej sygnałów okresowych za pomocą szybkiego przekształcenie Fouriera

Bardziej szczegółowo

ĆWICZENIE III ANALIZA WIDMOWA SYGNAŁÓW DYSKRETNYCH. ver.3

ĆWICZENIE III ANALIZA WIDMOWA SYGNAŁÓW DYSKRETNYCH. ver.3 1 Zakład Elektrotechniki Teoretycznej ver.3 ĆWICZEIE III AALIZA WIDMOWA SYGAŁÓW DYSKRETYCH (00) Celem ćwiczenia jest przeprowadzenie analizy widmowej dyskretnych sygnałów okresowych przy zastosowaniu szybkiego

Bardziej szczegółowo

7. Szybka transformata Fouriera fft

7. Szybka transformata Fouriera fft 7. Szybka transformata Fouriera fft Dane pomiarowe sygnałów napięciowych i prądowych często obarczone są dużym błędem, wynikającym z istnienia tak zwanego szumu. Jedną z metod wspomagających analizę sygnałów

Bardziej szczegółowo

Diagnostyka obrazowa

Diagnostyka obrazowa Diagnostyka obrazowa Ćwiczenie szóste Transformacje obrazu w dziedzinie częstotliwości 1 Cel ćwiczenia Ćwiczenie ma na celu zapoznanie uczestników kursu Diagnostyka obrazowa z podstawowymi przekształceniami

Bardziej szczegółowo

9. Dyskretna transformata Fouriera algorytm FFT

9. Dyskretna transformata Fouriera algorytm FFT Transformata Fouriera ma szerokie zastosowanie w analizie i syntezie układów i systemów elektronicznych, gdyż pozwala na połączenie dwóch sposobów przedstawiania sygnałów reprezentacji w dziedzinie czasu

Bardziej szczegółowo

PRZETWARZANIE SYGNAŁÓW LABORATORIUM

PRZETWARZANIE SYGNAŁÓW LABORATORIUM 2018 AK 1 / 5 PRZETWARZANIE SYGNAŁÓW LABORATORIUM Ćw. 0 Wykonujący: Grupa dziekańska: MATLAB jako narzędzie w przetwarzaniu sygnałów Grupa laboratoryjna: (IMIĘ NAZWISKO, nr albumu) Punkty / Ocena Numer

Bardziej szczegółowo

Diagnostyka obrazowa

Diagnostyka obrazowa Diagnostyka obrazowa Ćwiczenie szóste Transformacje obrazu w dziedzinie częstotliwości 1. Cel ćwiczenia Ćwiczenie ma na celu zapoznanie uczestników kursu Diagnostyka obrazowa z podstawowymi przekształceniami

Bardziej szczegółowo

Cyfrowe Przetwarzanie Obrazów i Sygnałów

Cyfrowe Przetwarzanie Obrazów i Sygnałów Cyfrowe Przetwarzanie Obrazów i Sygnałów Laboratorium EX Lokalne transformacje obrazów Joanna Ratajczak, Wrocław, 28 Cel i zakres ćwiczenia Celem ćwiczenia jest zapoznanie się z własnościami lokalnych

Bardziej szczegółowo

Transformacje i funkcje statystyczne

Transformacje i funkcje statystyczne Generacja okien: win = window(@fwin,n); Generacja okien gui: wintool; Rodzaje niektórych okien: @bartlett - Bartletta. @blackman - Blackmana. @chebwin - Czebyszewa. @gausswin - gausowskie. @hamming - Hamminga.

Bardziej szczegółowo

Komputerowe przetwarzanie obrazu Laboratorium 5

Komputerowe przetwarzanie obrazu Laboratorium 5 Komputerowe przetwarzanie obrazu Laboratorium 5 Przykład 1 Histogram obrazu a dobór progu binaryzacji. Na podstawie charakterystyki histogramu wybrano dwa różne progi binaryzacji (120 oraz 180). Proszę

Bardziej szczegółowo

Przetwarzanie obrazów wykład 6. Adam Wojciechowski

Przetwarzanie obrazów wykład 6. Adam Wojciechowski Przetwarzanie obrazów wykład 6 Adam Wojciechowski Przykłady obrazów cyfrowych i ich F-obrazów Parzysta liczba powtarzalnych wzorców Transformata Fouriera może być przydatna przy wykrywaniu określonych

Bardziej szczegółowo

Katedra Elektrotechniki Teoretycznej i Informatyki

Katedra Elektrotechniki Teoretycznej i Informatyki Katedra Elektrotechniki Teoretycznej i Informatyki Przedmiot: Zintegrowane Pakiety Obliczeniowe W Zastosowaniach InŜynierskich Numer ćwiczenia: 7,8 Temat: Signal Processing Toolbox - filtry cyfrowe, transmitancja

Bardziej szczegółowo

Analiza obrazów - sprawozdanie nr 2

Analiza obrazów - sprawozdanie nr 2 Analiza obrazów - sprawozdanie nr 2 Filtracja obrazów Filtracja obrazu polega na obliczeniu wartości każdego z punktów obrazu na podstawie punktów z jego otoczenia. Każdy sąsiedni piksel ma wagę, która

Bardziej szczegółowo

Katedra Elektrotechniki Teoretycznej i Informatyki

Katedra Elektrotechniki Teoretycznej i Informatyki Katedra Elektrotechniki Teoretycznej i Inormatyki Przedmiot: Zintegrowane Pakiety Obliczeniowe W Zastosowaniach InŜynierskich umer ćwiczenia: 7 Temat: Wprowadzenie do Signal Processing Toolbox 1. PRÓBKOWAIE

Bardziej szczegółowo

Podstawy Przetwarzania Sygnałów

Podstawy Przetwarzania Sygnałów Adam Szulc 188250 grupa: pon TN 17:05 Podstawy Przetwarzania Sygnałów Sprawozdanie 6: Filtracja sygnałów. Filtry FIT o skończonej odpowiedzi impulsowej. 1. Cel ćwiczenia. 1) Przeprowadzenie filtracji trzech

Bardziej szczegółowo

Politechnika Świętokrzyska. Laboratorium. Cyfrowe przetwarzanie sygnałów. Ćwiczenie 6. Transformata cosinusowa. Krótkookresowa transformata Fouriera.

Politechnika Świętokrzyska. Laboratorium. Cyfrowe przetwarzanie sygnałów. Ćwiczenie 6. Transformata cosinusowa. Krótkookresowa transformata Fouriera. Politechnika Świętokrzyska Laboratorium Cyfrowe przetwarzanie sygnałów Ćwiczenie 6 Transformata cosinusowa. Krótkookresowa transformata Fouriera. Cel ćwiczenia Celem ćwiczenia jest zapoznanie studentów

Bardziej szczegółowo

Przetwarzanie i transmisja danych multimedialnych. Wykład 8 Transformaty i kodowanie cz. 2. Przemysław Sękalski.

Przetwarzanie i transmisja danych multimedialnych. Wykład 8 Transformaty i kodowanie cz. 2. Przemysław Sękalski. Przetwarzanie i transmisja danych multimedialnych Wykład 8 Transformaty i kodowanie cz. 2 Przemysław Sękalski sekalski@dmcs.pl Politechnika Łódzka Katedra Mikroelektroniki i Technik Informatycznych DMCS

Bardziej szczegółowo

Technika audio część 2

Technika audio część 2 Technika audio część 2 Wykład 12 Projektowanie cyfrowych układów elektronicznych Mgr inż. Łukasz Kirchner lukasz.kirchner@cs.put.poznan.pl http://www.cs.put.poznan.pl/lkirchner Wprowadzenie do filtracji

Bardziej szczegółowo

Szybka transformacja Fouriera

Szybka transformacja Fouriera Szybka transformacja Fouriera (Opis i wydruki programów) Instytut Astronomii UMK, Toruń 1976 2 K. Borkowski PROGRAM OBLICZANIA TRANSFORMAT FOURIERA Wstęp Prezentowany tutaj program przeznaczony jest do

Bardziej szczegółowo

Komunikacja Człowiek-Komputer

Komunikacja Człowiek-Komputer Komunikacja Człowiek-Komputer Przetwarzanie i rozpoznawanie obrazów przegląd Wojciech Jaśkowski Instytut Informatyki Politechnika Poznańska Wersja: 21 listopada 2014 Transformata Hough Detekcja odcinków

Bardziej szczegółowo

Kodowanie transformacyjne. Plan 1. Zasada 2. Rodzaje transformacji 3. Standard JPEG

Kodowanie transformacyjne. Plan 1. Zasada 2. Rodzaje transformacji 3. Standard JPEG Kodowanie transformacyjne Plan 1. Zasada 2. Rodzaje transformacji 3. Standard JPEG Zasada Zasada podstawowa: na danych wykonujemy transformacje która: Likwiduje korelacje Skupia energię w kilku komponentach

Bardziej szczegółowo

Przetwarzanie i transmisja danych multimedialnych. Wykład 7 Transformaty i kodowanie. Przemysław Sękalski.

Przetwarzanie i transmisja danych multimedialnych. Wykład 7 Transformaty i kodowanie. Przemysław Sękalski. Przetwarzanie i transmisja danych multimedialnych Wykład 7 Transformaty i kodowanie Przemysław Sękalski sekalski@dmcs.pl Politechnika Łódzka Katedra Mikroelektroniki i Technik Informatycznych DMCS Wykład

Bardziej szczegółowo

Analiza szeregów czasowych: 2. Splot. Widmo mocy.

Analiza szeregów czasowych: 2. Splot. Widmo mocy. Analiza szeregów czasowych: 2. Splot. Widmo mocy. P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2006/07 Splot Jedna z najważniejszych własności transformaty Fouriera jest to, że transformata

Bardziej szczegółowo

Przetwarzanie obrazów rastrowych macierzą konwolucji

Przetwarzanie obrazów rastrowych macierzą konwolucji Przetwarzanie obrazów rastrowych macierzą konwolucji 1 Wstęp Obrazy rastrowe są na ogół reprezentowane w dwuwymiarowych tablicach złożonych z pikseli, reprezentowanych przez liczby określające ich jasność

Bardziej szczegółowo

Przekształcenie Fouriera i splot

Przekształcenie Fouriera i splot Zastosowania Procesorów Sygnałowych dr inż. Grzegorz Szwoch greg@multimed.org p. 732 - Katedra Systemów Multimedialnych Przekształcenie Fouriera i splot Wstęp Na tym wykładzie: przekształcenie Fouriera

Bardziej szczegółowo

Cyfrowe Przetwarzanie Obrazów i Sygnałów

Cyfrowe Przetwarzanie Obrazów i Sygnałów Cyfrowe Przetwarzanie Obrazów i Sygnałów Laboratorium EX3 Globalne transformacje obrazów Joanna Ratajczak, Wrocław, 2018 1 Cel i zakres ćwiczenia Celem ćwiczenia jest zapoznanie się z własnościami globalnych

Bardziej szczegółowo

FFT i dyskretny splot. Aplikacje w DSP

FFT i dyskretny splot. Aplikacje w DSP i dyskretny splot. Aplikacje w DSP Marcin Jenczmyk m.jenczmyk@knm.katowice.pl Wydział Matematyki, Fizyki i Chemii 10 maja 2014 M. Jenczmyk Sesja wiosenna KNM 2014 i dyskretny splot 1 / 17 Transformata

Bardziej szczegółowo

WOJSKOWA AKADEMIA TECHNICZNA

WOJSKOWA AKADEMIA TECHNICZNA WOJSKOWA AKADEMIA TECHNICZNA LABORATORIUM CYFROWE PRZETWARZANIE SYGNAŁÓW Stopień, imię i nazwisko prowadzącego Imię oraz nazwisko słuchacza Grupa szkoleniowa Data wykonania ćwiczenia dr inż. Andrzej Wiśniewski

Bardziej szczegółowo

Detekcja punktów zainteresowania

Detekcja punktów zainteresowania Informatyka, S2 sem. Letni, 2013/2014, wykład#8 Detekcja punktów zainteresowania dr inż. Paweł Forczmański Katedra Systemów Multimedialnych, Wydział Informatyki ZUT 1 / 61 Proces przetwarzania obrazów

Bardziej szczegółowo

uzyskany w wyniku próbkowania okresowego przebiegu czasowego x(t) ze stałym czasem próbkowania t takim, że T = t N 1 t

uzyskany w wyniku próbkowania okresowego przebiegu czasowego x(t) ze stałym czasem próbkowania t takim, że T = t N 1 t 4. 1 3. " P r ze c ie k " w idm ow y 1 0 2 4.13. "PRZECIEK" WIDMOWY Rozważmy szereg czasowy {x r } dla r = 0, 1,..., N 1 uzyskany w wyniku próbkowania okresowego przebiegu czasowego x(t) ze stałym czasem

Bardziej szczegółowo

Informatyka I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) kierunkowy (podstawowy / kierunkowy / inny HES)

Informatyka I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) kierunkowy (podstawowy / kierunkowy / inny HES) Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013

Bardziej szczegółowo

Przekształcenie Fouriera obrazów FFT

Przekształcenie Fouriera obrazów FFT Przekształcenie ouriera obrazów T 6 P. Strumiłło, M. Strzelecki Przekształcenie ouriera ourier wymyślił sposób rozkładu szerokiej klasy funkcji (sygnałów) okresowych na składowe harmoniczne; taką reprezentację

Bardziej szczegółowo

Filtracja obrazów. w dziedzinie częstotliwości. w dziedzinie przestrzennej

Filtracja obrazów. w dziedzinie częstotliwości. w dziedzinie przestrzennej Filtracja obrazów w dziedzinie częstotliwości w dziedzinie przestrzennej filtry liniowe filtry nieliniowe Filtracja w dziedzinie częstotliwości Obraz oryginalny FFT2 IFFT2 Obraz po filtracji f(x,y) H(u,v)

Bardziej szczegółowo

Transformata Fouriera. Sylwia Kołoda Magdalena Pacek Krzysztof Kolago

Transformata Fouriera. Sylwia Kołoda Magdalena Pacek Krzysztof Kolago Transformata Fouriera Sylwia Kołoda Magdalena Pacek Krzysztof Kolago Transformacja Fouriera rozkłada funkcję okresową na szereg funkcji okresowych tak, że uzyskana transformata podaje w jaki sposób poszczególne

Bardziej szczegółowo

Analiza szeregów czasowych: 2. Splot. Widmo mocy.

Analiza szeregów czasowych: 2. Splot. Widmo mocy. Analiza szeregów czasowych: 2. Splot. Widmo mocy. P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2007/08 Splot Jedna z najważniejszych własności transformaty Fouriera jest to, że transformata

Bardziej szczegółowo

Laboratorium Przetwarzania Sygnałów Biomedycznych

Laboratorium Przetwarzania Sygnałów Biomedycznych Laboratorium Przetwarzania Sygnałów Biomedycznych Ćwiczenie 3 Analiza sygnału o nieznanej strukturze Opracowali: - prof. nzw. dr hab. inż. Krzysztof Kałużyński - mgr inż. Tomasz Kubik Politechnika Warszawska,

Bardziej szczegółowo

Przetwarzanie Sygnałów. Zastosowanie Transformaty Falkowej w nadzorowaniu

Przetwarzanie Sygnałów. Zastosowanie Transformaty Falkowej w nadzorowaniu Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Przetwarzanie Sygnałów Studia Podyplomowe, Automatyka i Robotyka Zastosowanie Transformaty Falkowej

Bardziej szczegółowo

Zygmunt Wróbel i Robert Koprowski. Praktyka przetwarzania obrazów w programie Matlab

Zygmunt Wróbel i Robert Koprowski. Praktyka przetwarzania obrazów w programie Matlab Zygmunt Wróbel i Robert Koprowski Praktyka przetwarzania obrazów w programie Matlab EXIT 2004 Wstęp 7 CZĘŚĆ I 9 OBRAZ ORAZ JEGO DYSKRETNA STRUKTURA 9 1. Obraz w programie Matlab 11 1.1. Reprezentacja obrazu

Bardziej szczegółowo

Zastowowanie transformacji Fouriera w cyfrowym przetwarzaniu sygnałów

Zastowowanie transformacji Fouriera w cyfrowym przetwarzaniu sygnałów 31.01.2008 Zastowowanie transformacji Fouriera w cyfrowym przetwarzaniu sygnałów Paweł Tkocz inf. sem. 5 gr 1 1. Dźwięk cyfrowy Fala akustyczna jest jednym ze zjawisk fizycznych mających charakter okresowy.

Bardziej szczegółowo

Segmentacja przez detekcje brzegów

Segmentacja przez detekcje brzegów Segmentacja przez detekcje brzegów Lokalne zmiany jasności obrazu niosą istotną informację o granicach obszarów (obiektów) występujących w obrazie. Metody detekcji dużych, lokalnych zmian jasności w obrazie

Bardziej szczegółowo

Przetwarzanie sygnałów biomedycznych

Przetwarzanie sygnałów biomedycznych Przetwarzanie sygnałów biomedycznych dr hab. inż. Krzysztof Kałużyński, prof. PW Człowiek- najlepsza inwestycja Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Bardziej szczegółowo

Transformaty. Kodowanie transformujace

Transformaty. Kodowanie transformujace Transformaty. Kodowanie transformujace Kodowanie i kompresja informacji - Wykład 10 10 maja 2009 Szeregi Fouriera Każda funkcję okresowa f (t) o okresie T można zapisać jako f (t) = a 0 + a n cos nω 0

Bardziej szczegółowo

Transformata Fouriera

Transformata Fouriera Transformata Fouriera Program wykładu 1. Wprowadzenie teoretyczne 2. Algorytm FFT 3. Zastosowanie analizy Fouriera 4. Przykłady programów Wprowadzenie teoretyczne Zespolona transformata Fouriera Jeżeli

Bardziej szczegółowo

Wprowadzenie do przetwarzania obrazów

Wprowadzenie do przetwarzania obrazów Wprowadzenie do przetwarzania obrazów Radosław Mantiuk Zakład Grafiki Komputerowej Wydział Informatyki Politechnika Szczecińska Maj 2008 All Images in this presentation are the courtesy of Richard Alan

Bardziej szczegółowo

Transformacja Fouriera i biblioteka CUFFT 3.0

Transformacja Fouriera i biblioteka CUFFT 3.0 Transformacja Fouriera i biblioteka CUFFT 3.0 Procesory Graficzne w Zastosowaniach Obliczeniowych Karol Opara Warszawa, 14 kwietnia 2010 Transformacja Fouriera Definicje i Intuicje Transformacja z dziedziny

Bardziej szczegółowo

EKSTRAKCJA CECH TWARZY ZA POMOCĄ TRANSFORMATY FALKOWEJ

EKSTRAKCJA CECH TWARZY ZA POMOCĄ TRANSFORMATY FALKOWEJ Janusz Bobulski Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska ul. Dąbrowskiego 73 42-200 Częstochowa januszb@icis.pcz.pl EKSTRAKCJA CECH TWARZY ZA POMOCĄ TRANSFORMATY FALKOWEJ

Bardziej szczegółowo

Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej

Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Politechnika Białostocka Wydział Elektryczny Katedra Telekomunikacji i paratury Elektronicznej Instrukcja do zajęć laboratoryjnych z przedmiotu: Przetwarzanie Sygnałów Kod: TS400027 Temat ćwiczenia: naliza

Bardziej szczegółowo

Politechnika Świętokrzyska. Laboratorium. Przetwarzanie obrazów medycznych. Ćwiczenie 12. Wykorzystanie transformacji Radona i Hougha.

Politechnika Świętokrzyska. Laboratorium. Przetwarzanie obrazów medycznych. Ćwiczenie 12. Wykorzystanie transformacji Radona i Hougha. Politechnika Świętokrzyska Laboratorium Przetwarzanie obrazów medycznych Ćwiczenie 12 Wykorzystanie transformacji Radona i Hougha. Cel ćwiczenia Celem ćwiczenia jest nabycie umiejętności wykorzystywania

Bardziej szczegółowo

Wykład 5 Wybrane zagadnienia programowania w C++ (c.d.)

Wykład 5 Wybrane zagadnienia programowania w C++ (c.d.) Wykład 5 Wybrane zagadnienia programowania w C++ (c.d.) Kontenery - - wektor vector - - lista list - - kolejka queue - - stos stack Kontener asocjacyjny map 2016-01-08 Bazy danych-1 W5 1 Kontenery W programowaniu

Bardziej szczegółowo

Spośród licznych filtrów nieliniowych najlepszymi właściwościami odznacza się filtr medianowy prosty i skuteczny.

Spośród licznych filtrów nieliniowych najlepszymi właściwościami odznacza się filtr medianowy prosty i skuteczny. Filtracja nieliniowa może być bardzo skuteczną metodą polepszania jakości obrazów Filtry nieliniowe Filtr medianowy Spośród licznych filtrów nieliniowych najlepszymi właściwościami odznacza się filtr medianowy

Bardziej szczegółowo

Zastosowanie Informatyki w Medycynie

Zastosowanie Informatyki w Medycynie Zastosowanie Informatyki w Medycynie Dokumentacja projektu wykrywanie bicia serca z sygnału EKG. (wykrywanie załamka R) Prowadzący: prof. dr hab. inż. Marek Kurzyoski Grupa: Jakub Snelewski 163802, Jacek

Bardziej szczegółowo

ANALIZA WIDMOWA SYGNAŁÓW (1) Podstawowe charakterystyki widmowe, aliasing

ANALIZA WIDMOWA SYGNAŁÓW (1) Podstawowe charakterystyki widmowe, aliasing POLITECHNIKA RZESZOWSKA KATEDRA METROLOGII I SYSTEMÓW DIAGNOSTYCZNYCH LABORATORIUM PRZETWARZANIA SYGNAŁÓW ANALIZA WIDMOWA SYGNAŁÓW (1) Podstawowe charakterystyki widmowe, aliasing I. Cel ćwiczenia Celem

Bardziej szczegółowo

Ż ż Ł ż ż ż Ż Ś ż ż ż Ł Ż Ż ć ż Ż Ż Ż Ń Ż Ź ż Ź Ź ż Ż ż ż Ż Ł Ż Ł Ż ż Ż ż Ż Ż Ń Ą Ż Ń Ż Ń ć ż Ż ź Ś ć Ł Ł Ź Ż Ż ż Ł ż Ż Ł Ż Ł ź ć ż Ż Ż ż ż Ó ż Ł Ż ć Ż Ż Ę Ż Ż Ż ż Ż ż ż Ś ż Ż ż ż ź Ż Ń ć Ż ż Ż Ż ż ż ż

Bardziej szczegółowo

Ś Ł Ą Ś Ś ź Ś ń ż ż Ó ż ż Ś Ł ż ń ń ń ż ń Ś ń ć ŚĘ Ó Ł Ę Ł Ś Ę Ę ń ń ń ń ń Ź ń ń ń ń ń ż ń ń ń ń ń Ę ż ż ć Ść ń ń ż Ń ż ż ń ń Ś Ą ń Ś ń ń ż Ó ż Ź ń ż ń Ś Ń Ó ż Ł ż Ą ź ź Ś Ł ć Ś ć ż ź ż ć ć Ę Ó Ś Ó ż ż

Bardziej szczegółowo

Ł Ł Ś ź ń ź ź ź Ś Ł Ę Ę Ś ż Ś ń Ą Ś Ą Ł ż ż ń ż ć ż ż ż ź ż ć ź Ę Ę ń ć ż Ł ń ż ż ż Ś ż Ś ż ż ż ż ż ż ż ń ń ż ż ż ć ż ń ż ń ź ż ć ż ż ć ń ż Ę Ę ć ń Ę ż ż ń ń ź Ę ź ż ń ż ń ź ż ż ż ń ż ż ż ż ż ż ż ż ń ń

Bardziej szczegółowo

Ł Ł Ś Ę ź ń ź ź Ś Ę Ę Ś Ą Ś Ę Ż Ł ń Ę Ś ć ć ń ć ń ń ń ź ń Ę ź ń ń ń ź ź Ś ź ź ć ń ń ń ń Ś ć Ś ń ń Ś ź ń Ę ń Ś ź ź ź ź ź Ę Ę Ę Ś ń Ś ć ń ń ń ń ń ń Ę ń ń ń ń ć ń ń ń ń ć ń Ś ć Ł ń ń ń ć ń ć ź ń ź ć ń ń ć

Bardziej szczegółowo

Szybka transformacja Fouriera (FFT Fast Fourier Transform)

Szybka transformacja Fouriera (FFT Fast Fourier Transform) Szybka transformacja Fouriera (FFT Fast Fourier Transform) Plan wykładu: 1. Transformacja Fouriera, iloczyn skalarny 2. DFT - dyskretna transformacja Fouriera 3. FFT szybka transformacja Fouriera a) algorytm

Bardziej szczegółowo

dr inż. Artur Zieliński Katedra Elektrochemii, Korozji i Inżynierii Materiałowej Wydział Chemiczny PG pokój 311

dr inż. Artur Zieliński Katedra Elektrochemii, Korozji i Inżynierii Materiałowej Wydział Chemiczny PG pokój 311 dr inż. Artur Zieliński Katedra Elektrochemii, Korozji i Inżynierii Materiałowej Wydział Chemiczny PG pokój 311 Politechnika Gdaoska, 2011 r. Publikacja współfinansowana ze środków Unii Europejskiej w

Bardziej szczegółowo

POLITECHNIKA OPOLSKA

POLITECHNIKA OPOLSKA POLITECHNIKA OPOLSKA KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN MECHATRONIKA Instrukcja do ćwiczeń laboratoryjnych Analiza sygnałów czasowych Opracował: dr inż. Roland Pawliczek Opole 2016 1 2 1. Cel

Bardziej szczegółowo

Adam Korzeniewski p Katedra Systemów Multimedialnych

Adam Korzeniewski p Katedra Systemów Multimedialnych Adam Korzeniewski adamkorz@sound.eti.pg.gda.pl p. 732 - Katedra Systemów Multimedialnych Operacja na dwóch funkcjach dająca w wyniku modyfikację oryginalnych funkcji (wynikiem jest iloczyn splotowy). Jest

Bardziej szczegółowo

EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2013/2014. Zadania z teleinformatyki na zawody II stopnia

EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2013/2014. Zadania z teleinformatyki na zawody II stopnia EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 013/014 Zadania z teleinformatyki na zawody II stopnia Lp. Zadanie 1. Na wejściu układu odbiornika SNR (stosunek sygnał

Bardziej szczegółowo

Cyfrowe przetwarzanie i kompresja danych

Cyfrowe przetwarzanie i kompresja danych Cyfrowe przetwarzanie i kompresja danych dr inż.. Wojciech Zając Wykład 5. Dyskretna transformata falkowa Schemat systemu transmisji danych wizyjnych Źródło danych Przetwarzanie Przesył Przetwarzanie Prezentacja

Bardziej szczegółowo

Algorytmy dynamiczne. Piotr Sankowski. - p. 1/14

Algorytmy dynamiczne. Piotr Sankowski. - p. 1/14 Algorytmy dynamiczne Piotr Sankowski - p. 1/14 Dynamiczne: drzewa wyszukiwanie wzorca w tekście spójność grafu problemy algebraiczne (FFT i inne) domknięcie przechodnie oraz dynamiczne macierze najkrótsze

Bardziej szczegółowo

Podstawy Programowania C++

Podstawy Programowania C++ Wykład 3 - podstawowe konstrukcje Instytut Automatyki i Robotyki Warszawa, 2014 Wstęp Plan wykładu Struktura programu, instrukcja przypisania, podstawowe typy danych, zapis i odczyt danych, wyrażenia:

Bardziej szczegółowo

CYFROWE PRZTWARZANIE SYGNAŁÓW (Zastosowanie transformacji Fouriera)

CYFROWE PRZTWARZANIE SYGNAŁÓW (Zastosowanie transformacji Fouriera) I. Wprowadzenie do ćwiczenia CYFROWE PRZTWARZANIE SYGNAŁÓW (Zastosowanie transformacji Fouriera) Ogólnie termin przetwarzanie sygnałów odnosi się do nauki analizowania zmiennych w czasie procesów fizycznych.

Bardziej szczegółowo

PL B1. Sposób i układ pomiaru całkowitego współczynnika odkształcenia THD sygnałów elektrycznych w systemach zasilających

PL B1. Sposób i układ pomiaru całkowitego współczynnika odkształcenia THD sygnałów elektrycznych w systemach zasilających RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 210969 (13) B1 (21) Numer zgłoszenia: 383047 (51) Int.Cl. G01R 23/16 (2006.01) G01R 23/20 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22)

Bardziej szczegółowo

Wykład 2: Szeregi Fouriera

Wykład 2: Szeregi Fouriera Rachunek prawdopodobieństwa MAP64 Wydział Elektroniki, rok akad. 8/9, sem. letni Wykładowca: dr hab. A. Jurlewicz Wykład : Szeregi Fouriera Definicja. Niech f(t) będzie funkcją określoną na R, okresową

Bardziej szczegółowo

Wstęp do metod numerycznych Dyskretna transformacja Fouriera. P. F. Góra

Wstęp do metod numerycznych Dyskretna transformacja Fouriera. P. F. Góra Wstęp do metod numerycznych Dyskretna transformacja Fouriera P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 01 Problem Majac dany szereg czasowy {x i } N i=1 = {x 1, x,..., x N } (zazwyczaj nieciekawy),

Bardziej szczegółowo

Matlab Składnia + podstawy programowania

Matlab Składnia + podstawy programowania Matlab Składnia + podstawy programowania Matlab Matrix Laboratory środowisko stworzone z myślą o osobach rozwiązujących problemy matematyczne, w których operuje się na danych stanowiących wielowymiarowe

Bardziej szczegółowo

BIBLIOTEKA PROGRAMU R - BIOPS. Narzędzia Informatyczne w Badaniach Naukowych Katarzyna Bernat

BIBLIOTEKA PROGRAMU R - BIOPS. Narzędzia Informatyczne w Badaniach Naukowych Katarzyna Bernat BIBLIOTEKA PROGRAMU R - BIOPS Narzędzia Informatyczne w Badaniach Naukowych Katarzyna Bernat Biblioteka biops zawiera funkcje do analizy i przetwarzania obrazów. Operacje geometryczne (obrót, przesunięcie,

Bardziej szczegółowo

Rentgenowska analiza strukturalna Synteza Fouriera. Synteza Pattersona. Rozwiązywanie modelowych struktur na podstawie analizy map Pattersona.

Rentgenowska analiza strukturalna Synteza Fouriera. Synteza Pattersona. Rozwiązywanie modelowych struktur na podstawie analizy map Pattersona. entgenowska analiza strukturalna Synteza Fouriera. Synteza Pattersona. ozwiązywanie modelowych struktur na podstawie analizy map Pattersona. Zakres materiału do opanowania Tranformacja Fouriera i odwrotna

Bardziej szczegółowo

Karta produktu. EH-Wibro. System monitoringu i diagnostyki drgań

Karta produktu. EH-Wibro. System monitoringu i diagnostyki drgań Karta produktu OPIS DZIAŁANIA Przetworniki drgań, wibracji i prędkości obrotowej są montowane i dobrane według wymogów producenta przekładni. Urządzenia typu EH-O/06/07.xx, które analizują dane z przetworników

Bardziej szczegółowo

Laboratorium Przetwarzania Sygnałów

Laboratorium Przetwarzania Sygnałów PTS - laboratorium Laboratorium Przetwarzania Sygnałów Ćwiczenie 7 Filtracja 2D Opracowali: dr inż. Krzysztof Mikołajczyk dr inż. Beata Leśniak-Plewińska Zakład Inżynierii Biomedycznej Instytut Metrologii

Bardziej szczegółowo

Laboratorium Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z przetwarzaniem sygnałów w MATLAB. 2. Program ćwiczenia. Przykład 1 Wprowadź

Laboratorium Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z przetwarzaniem sygnałów w MATLAB. 2. Program ćwiczenia. Przykład 1 Wprowadź Podstawy Informatyki 1 Laboratorium 9 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z przetwarzaniem sygnałów w MATLAB 2. Program ćwiczenia Przykład 1 Wprowadź fo = 4; %frequency of the sine wave

Bardziej szczegółowo

Filtracja obrazu operacje kontekstowe

Filtracja obrazu operacje kontekstowe Filtracja obrazu operacje kontekstowe Podział metod filtracji obrazu Metody przestrzenne i częstotliwościowe Metody liniowe i nieliniowe Główne zadania filtracji Usunięcie niepożądanego szumu z obrazu

Bardziej szczegółowo

Ćwiczenia 05. Sylwester Arabas (ćwiczenia do wykładu prof. Szymona Malinowskiego) 9. listopada 2010 r.

Ćwiczenia 05. Sylwester Arabas (ćwiczenia do wykładu prof. Szymona Malinowskiego) 9. listopada 2010 r. FFT w u: fft() Ćwiczenia 05 Sylwester Arabas (ćwiczenia do wykładu prof. Szymona Malinowskiego) Instytut Geofizyki, Wydział Fizyki Uniwersytetu Warszawskiego 9. listopada 2010 r. Zadanie 5.1 : wstęp (Landau/Lifszyc

Bardziej szczegółowo

Splot i korelacja są podstawowymi pojęciami przetwarzania sygnałów.

Splot i korelacja są podstawowymi pojęciami przetwarzania sygnałów. Splot i korelacja są podstawowymi pojęciami przetwarzania synałów. Splot jest bazową operacją dla filtracji cyfrowej, pozwołającej na zwiększenie stosunku mocy synału do mocy zakłóceń. Korelacja pozwala

Bardziej szczegółowo

2. Szybka transformata Fouriera

2. Szybka transformata Fouriera Szybka transforata Fouriera Wyznaczenie ciągu (Y 0, Y 1,, Y 1 ) przy użyciu DFT wyaga wykonania: nożenia zespolonego ( 1) razy, dodawania zespolonego ( 1) razy, przy założeniu, że wartości ω j są już dane

Bardziej szczegółowo

Politechnika Łódzka. Instytut Systemów Inżynierii Elektrycznej

Politechnika Łódzka. Instytut Systemów Inżynierii Elektrycznej Politechnika Łódzka Instytut Systemów Inżynierii Elektrycznej Laboratorium komputerowych systemów pomiarowych Ćwiczenie 3 Analiza częstotliwościowa sygnałów dyskretnych 1. Opis stanowiska Ćwiczenie jest

Bardziej szczegółowo

Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L

Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 3. Właściwości przekształcenia Fouriera 1. Podstawowe właściwości przekształcenia

Bardziej szczegółowo

Przetwarzanie analogowo-cyfrowe sygnałów

Przetwarzanie analogowo-cyfrowe sygnałów Przetwarzanie analogowo-cyfrowe sygnałów A/C 111111 1 Po co przekształcać sygnał do postaci cyfrowej? Można stosować komputerowe metody rejestracji, przetwarzania i analizy sygnałów parametry systemów

Bardziej szczegółowo

Algorytmy detekcji częstotliwości podstawowej

Algorytmy detekcji częstotliwości podstawowej Algorytmy detekcji częstotliwości podstawowej Plan Definicja częstotliwości podstawowej Wybór ramki sygnału do analizy Błędy oktawowe i dokładnej estymacji Metody detekcji częstotliwości podstawowej czasowe

Bardziej szczegółowo

Przetwarzanie sygnałów

Przetwarzanie sygnałów Spis treści Przetwarzanie sygnałów Ćwiczenie 3 Właściwości przekształcenia Fouriera 1 Podstawowe właściwości przekształcenia Fouriera 1 1.1 Kompresja i ekspansja sygnału................... 2 1.2 Właściwości

Bardziej szczegółowo

Przetwarzanie obrazu

Przetwarzanie obrazu Przetwarzanie obrazu Przekształcenia kontekstowe Liniowe Nieliniowe - filtry Przekształcenia kontekstowe dokonują transformacji poziomów jasności pikseli analizując za każdym razem nie tylko jasność danego

Bardziej szczegółowo

Przekształcenia widmowe Transformata Fouriera. Adam Wojciechowski

Przekształcenia widmowe Transformata Fouriera. Adam Wojciechowski Przekształcenia widmowe Transformata Fouriera Adam Wojciechowski Przekształcenia widmowe Odmiana przekształceń kontekstowych, w których kontekstem jest w zasadzie cały obraz. Za pomocą transformaty Fouriera

Bardziej szczegółowo

Cyfrowe przetwarzanie sygnałów. Wykład 10. Transformata cosinusowa. Falki. Transformata falkowa. dr inż. Robert Kazała

Cyfrowe przetwarzanie sygnałów. Wykład 10. Transformata cosinusowa. Falki. Transformata falkowa. dr inż. Robert Kazała Cyfrowe przetwarzanie sygnałów Wykład 10 Transformata cosinusowa. Falki. Transformata falkowa. dr inż. Robert Kazała 1 Transformata cosinusowa Dyskretna transformacja kosinusowa, (DCT ang. discrete cosine

Bardziej szczegółowo

Analiza obrazu. wykład 5. Marek Jan Kasprowicz Uniwersytet Rolniczy 2008

Analiza obrazu. wykład 5. Marek Jan Kasprowicz Uniwersytet Rolniczy 2008 Analiza obrazu komputerowego wykład 5 Marek Jan Kasprowicz Uniwersytet Rolniczy 2008 Slajdy przygotowane na podstawie książki Komputerowa analiza obrazu R.Tadeusiewicz, P. Korohoda, oraz materiałów ze

Bardziej szczegółowo

Filtracja obrazu operacje kontekstowe

Filtracja obrazu operacje kontekstowe Filtracja obrazu operacje kontekstowe Główne zadania filtracji Usunięcie niepożądanego szumu z obrazu Poprawa ostrości Usunięcie określonych wad obrazu Poprawa obrazu o złej jakości technicznej Rekonstrukcja

Bardziej szczegółowo

Joint Photographic Experts Group

Joint Photographic Experts Group Joint Photographic Experts Group Artur Drozd Uniwersytet Jagielloński 14 maja 2010 1 Co to jest JPEG? Dlaczego powstał? 2 Transformata Fouriera 3 Dyskretna transformata kosinusowa (DCT-II) 4 Kodowanie

Bardziej szczegółowo

Transformacje Fouriera * podstawowe własności

Transformacje Fouriera * podstawowe własności Transformacje Fouriera * podstawowe własności * podejście mało formalne Funkcja w domenie czasowej Transformacja Fouriera - wstęp Ta sama funkcja w domenie częstości Transformacja Fouriera polega na rozkładzie

Bardziej szczegółowo

Tablice, DataGridView

Tablice, DataGridView Tablice, DataGridView Gdy rośnie liczba danych do przechowywania w programie, a następnie ich obrobienia - pojawiają się nowe struktury danych (moŝna by powiedzieć pojemniki na dane) zwane tablicami. Tablica

Bardziej szczegółowo

SZCZEGÓLNE ROZWAśANIA NAD UŚREDNIONYMI POMIARAMI Special Considerations for Averaged Measurements

SZCZEGÓLNE ROZWAśANIA NAD UŚREDNIONYMI POMIARAMI Special Considerations for Averaged Measurements UŚREDNIANIE PARAMETRÓW KaŜda funkcja analiz częstotliwości (funkcja Vis w LabVIEW posiada moŝliwość uśredniania. Kontrola uśredniania parametrów w analizie częstotliwościowej VIs określa, jak uśrednione

Bardziej szczegółowo

NIEOPTYMALNA TECHNIKA DEKORELACJI W CYFROWYM PRZETWARZANIU OBRAZU

NIEOPTYMALNA TECHNIKA DEKORELACJI W CYFROWYM PRZETWARZANIU OBRAZU II Konferencja Naukowa KNWS'05 "Informatyka- sztuka czy rzemios o" 15-18 czerwca 2005, Z otniki Luba skie NIEOPTYMALNA TECHNIKA DEKORELACJI W CYFROWYM PRZETWARZANIU OBRAZU Wojciech Zając Instytut Informatyki

Bardziej szczegółowo

Wydział Elektryczny. Temat i plan wykładu. Politechnika Białostocka. Wzmacniacze

Wydział Elektryczny. Temat i plan wykładu. Politechnika Białostocka. Wzmacniacze Politechnika Białostocka Temat i plan wykładu Wydział Elektryczny Wzmacniacze 1. Wprowadzenie 2. Klasyfikacja i podstawowe parametry 3. Wzmacniacz w układzie OE 4. Wtórnik emiterowy 5. Wzmacniacz róŝnicowy

Bardziej szczegółowo

Dźwięk i psychika STEROWANIE UMYSŁEM GRACZA ZA POMOCĄ DRGAŃ POWIETRZA MARCIN KOSZÓW DLA TK GAMES 2

Dźwięk i psychika STEROWANIE UMYSŁEM GRACZA ZA POMOCĄ DRGAŃ POWIETRZA MARCIN KOSZÓW DLA TK GAMES 2 ??? Wiadomość?? Dźwięk i psychika STEROWANIE UMYSŁEM GRACZA ZA POMOCĄ DRGAŃ POWIETRZA MARCIN KOSZÓW DLA TK GAMES 2 Plan 1. Cel prezentacji 2. Życie dźwięku Źródło Nośnik Ucho Odruch Podświadomość Interpretacja

Bardziej szczegółowo

WOJSKOWA AKADEMIA TECHNICZNA

WOJSKOWA AKADEMIA TECHNICZNA WOJSKOWA AKADEMIA TECHNICZNA LABORATORIUM CYFROWE PRZETWARZANIE SYGNAŁÓW Stopień, imię i nazwisko prowadzącego Imię oraz nazwisko słuchacza Grupa szkoleniowa Data wykonania ćwiczenia dr inż. Andrzej Wiśniewski

Bardziej szczegółowo

Diagnostyka ukladów napedowych

Diagnostyka ukladów napedowych Czeslaw T. Kowalski Diagnostyka ukladów napedowych z silnikiem indukcyjnym z zastosowaniem metod sztucznej inteligencji Oficyna Wydawnicza Politechniki Wroclawskiej Wroclaw 2013! Spis tresci Przedmowa

Bardziej szczegółowo