Typy algorytmów losowych. ALP520 - Wykład z Algorytmów Probabilistycznych p.2

Wielkość: px
Rozpocząć pokaz od strony:

Download "Typy algorytmów losowych. ALP520 - Wykład z Algorytmów Probabilistycznych p.2"

Transkrypt

1 Typy algorytmów losowych ALP520 - Wykład z Algorytmów Probabilistycznych p.2

2 Typy algorytmów losowych Las Vegas - zawsze daje prawidłowa odpowiedź (różny czas działania). Przykład: RandQuicksort ALP520 - Wykład z Algorytmów Probabilistycznych p.2

3 Typy algorytmów losowych Las Vegas - zawsze daje prawidłowa odpowiedź (różny czas działania). Przykład: RandQuicksort Monte Carlo - może dać odpowiedź błędna z pewnym prawdopodobieństwem. Przykład: MIN-CUT. ALP520 - Wykład z Algorytmów Probabilistycznych p.2

4 Typy algorytmów losowych Las Vegas - zawsze daje prawidłowa odpowiedź (różny czas działania). Przykład: RandQuicksort Monte Carlo - może dać odpowiedź błędna z pewnym prawdopodobieństwem. Przykład: MIN-CUT. Można dowolnie zredukować prawdopodobieństwo błędu przez niezależne powtórzenie algorytmu. ALP520 - Wykład z Algorytmów Probabilistycznych p.2

5 Typy algorytmów losowych Las Vegas - zawsze daje prawidłowa odpowiedź (różny czas działania). Przykład: RandQuicksort Monte Carlo - może dać odpowiedź błędna z pewnym prawdopodobieństwem. Przykład: MIN-CUT. Można dowolnie zredukować prawdopodobieństwo błędu przez niezależne powtórzenie algorytmu. Dla problemów decyzyjnych (odp. TAK/NIE) wyróżnia się algorytmy Monte Carlo * z jednostronnym błędem (one-sided error) - jedna z odpowiedzi jest poprawna * z dwustronnym błędem (two-sided error)- każda odp ma niezerowe prawdopodobieństwo błędu. ALP520 - Wykład z Algorytmów Probabilistycznych p.2

6 Monte Carlo i Las Vegas ALP520 - Wykład z Algorytmów Probabilistycznych p.3

7 Monte Carlo i Las Vegas Zadanie. Rozważmy algorytm Monte Carlo A dla problemu P o oczekiwanym czasie działania co najwyżej T(n) dla dowolnych danych wejściowych rozmiaru n, który daje poprawna odpowiedź z prawdopodobieństwem γ(n). Załóżmy ponadto, że można zweryfikować poprawność danego rozwiazania problemu P w czasie t(n). Pokaż jak otrzymać algorytm Las Vegas, który zawsze da poprawne rozwiazanie problemu P w oczekiwanym czasie nie większym niż (T(n) + t(n))/γ(n). ALP520 - Wykład z Algorytmów Probabilistycznych p.3

8 Odrobina teorii złóżoności ALP520 - Wykład z Algorytmów Probabilistycznych p.4

9 Odrobina teorii złóżoności I. Modele obliczeń ALP520 - Wykład z Algorytmów Probabilistycznych p.4

10 Odrobina teorii złóżoności I. Modele obliczeń Maszyna Turinga M = (S, Σ,δ,s) ALP520 - Wykład z Algorytmów Probabilistycznych p.4

11 Odrobina teorii złóżoności I. Modele obliczeń Maszyna Turinga M = (S, Σ,δ,s) RAM (maszyna o swobodnym dostępie), operacje in/out, operacje na komórkach pamięci, +,,,/ ALP520 - Wykład z Algorytmów Probabilistycznych p.4

12 Odrobina teorii złóżoności I. Modele obliczeń Maszyna Turinga M = (S, Σ,δ,s) RAM (maszyna o swobodnym dostępie), operacje in/out, operacje na komórkach pamięci, +,,,/ RAM i Maszyna Turinga sa równoważne ALP520 - Wykład z Algorytmów Probabilistycznych p.4

13 Odrobina teorii złóżoności I. Modele obliczeń Maszyna Turinga M = (S, Σ,δ,s) RAM (maszyna o swobodnym dostępie), operacje in/out, operacje na komórkach pamięci, +,,,/ RAM i Maszyna Turinga sa równoważne II. Klasy złożoności ALP520 - Wykład z Algorytmów Probabilistycznych p.4

14 Odrobina teorii złóżoności I. Modele obliczeń Maszyna Turinga M = (S, Σ,δ,s) RAM (maszyna o swobodnym dostępie), operacje in/out, operacje na komórkach pamięci, +,,,/ RAM i Maszyna Turinga sa równoważne II. Klasy złożoności Rozpatrujemy problemy decyzyjne (TAK/NIE). Każdy problem decyzyjny można traktować jako problem rozpoznawania pewnego języka (łatwiej). Ustalmy alfabet Σ, zwykle Σ = {0, 1} i niech Σ zbiór wszystkich możliwych słów nad alfabetem. Język L Σ jest zbiorem słów nad alfabetem Σ. ALP520 - Wykład z Algorytmów Probabilistycznych p.4

15 Klasy złożoności ALP520 - Wykład z Algorytmów Probabilistycznych p.5

16 Klasy złożoności Problem rozpoznawania języka - sprawdzenie czy dane słowo x Σ należy do języka L. ALP520 - Wykład z Algorytmów Probabilistycznych p.5

17 Klasy złożoności Problem rozpoznawania języka - sprawdzenie czy dane słowo x Σ należy do języka L. Algorytm rozwiazuje ten problem dla danego języka L poprzez akceptację (odp. TAK) każdego słowa wejściowego, które należy do języka i odrzucenie (odp. NIE) każdego słowa, które nie należy do L. ALP520 - Wykład z Algorytmów Probabilistycznych p.5

18 Klasy złożoności Problem rozpoznawania języka - sprawdzenie czy dane słowo x Σ należy do języka L. Algorytm rozwiazuje ten problem dla danego języka L poprzez akceptację (odp. TAK) każdego słowa wejściowego, które należy do języka i odrzucenie (odp. NIE) każdego słowa, które nie należy do L. Klasa złożoności to rodzina języków, które można rozpoznać za pomoca algorytmu o z góry zadanych parametrach obliczeniowych (zwykle efektywny = o wielomianowym czasie działania n O(1), gdzie n-rozmiar wejścia). ALP520 - Wykład z Algorytmów Probabilistycznych p.5

19 Deterministyczne klasy zlożoności ALP520 - Wykład z Algorytmów Probabilistycznych p.6

20 Deterministyczne klasy zlożoności Definicja. P={L : alg. wielomianowy A : x Σ x L A(x) akceptuje x/ L A(x) odrzuca.} ALP520 - Wykład z Algorytmów Probabilistycznych p.6

21 Deterministyczne klasy zlożoności Definicja. P={L : alg. wielomianowy A : x Σ x L A(x) akceptuje x/ L A(x) odrzuca.} Definicja. NP={L : alg. wielomianowy A : x Σ x L y Σ, y < Pol( x ) A(x,y) akceptuje, x/ L y Σ A(x,y) odrzuca.} ALP520 - Wykład z Algorytmów Probabilistycznych p.6

22 Deterministyczne klasy zlożoności Definicja. P={L : alg. wielomianowy A : x Σ x L A(x) akceptuje x/ L A(x) odrzuca.} Definicja. NP={L : alg. wielomianowy A : x Σ x L y Σ, y < Pol( x ) A(x,y) akceptuje, x/ L y Σ A(x,y) odrzuca.} NP- tylko problemy, dla których można efektywnie zweryfikować rozwiazania. Przykład: cykl Hamiltona w grafie. ALP520 - Wykład z Algorytmów Probabilistycznych p.6

23 Losowy model obliczeń ALP520 - Wykład z Algorytmów Probabilistycznych p.7

24 Losowy model obliczeń Probabilistyczna maszyna Turinga- maszyna Turinga, która potrafi wygenerować losowy bit w jednym kroku. Jeśli r ciag losowych bitów, to r = Poly( x ), gdzie x dana wejściowa. ALP520 - Wykład z Algorytmów Probabilistycznych p.7

25 Losowy model obliczeń Probabilistyczna maszyna Turinga- maszyna Turinga, która potrafi wygenerować losowy bit w jednym kroku. Jeśli r ciag losowych bitów, to r = Poly( x ), gdzie x dana wejściowa. Losowe klasy złożoności ALP520 - Wykład z Algorytmów Probabilistycznych p.7

26 Losowy model obliczeń Probabilistyczna maszyna Turinga- maszyna Turinga, która potrafi wygenerować losowy bit w jednym kroku. Jeśli r ciag losowych bitów, to r = Poly( x ), gdzie x dana wejściowa. Losowe klasy złożoności Definicja. RP(Randomized Polynomial time)= {L : alg. losowy A o wielomianowym czasie w najgorszym przypadku : x Σ x L Pr[A(x) akceptuje] 1 2 x/ L Pr[A(x) akceptuje] = 0} ALP520 - Wykład z Algorytmów Probabilistycznych p.7

27 Losowy model obliczeń Probabilistyczna maszyna Turinga- maszyna Turinga, która potrafi wygenerować losowy bit w jednym kroku. Jeśli r ciag losowych bitów, to r = Poly( x ), gdzie x dana wejściowa. Losowe klasy złożoności Definicja. RP(Randomized Polynomial time)= {L : alg. losowy A o wielomianowym czasie w najgorszym przypadku : x Σ x L Pr[A(x) akceptuje] 1 2 x/ L Pr[A(x) akceptuje] = 0} one-sided error Monte Carlo, 1 2 można zastapić dowoln a funkcja będac a odwrotnościa wielomianu. co_rp : x L Pr[A(x) akceptuje] = 1 x/ L Pr[A(x) odrzuca] 1 2. ALP520 - Wykład z Algorytmów Probabilistycznych p.7

28 Losowe klasy złożoności Definicja. ZPP(Zero-error Probabilistic Polynomial time)= {L : L ma algorytm Las Vegas o wielomianowym oczekiwanym czasie działania.} ALP520 - Wykład z Algorytmów Probabilistycznych p.8

29 Losowe klasy złożoności Definicja. ZPP(Zero-error Probabilistic Polynomial time)= {L : L ma algorytm Las Vegas o wielomianowym oczekiwanym czasie działania.} Fakt. RP co_rp = ZPP (Dowód na ćwiczeniach.) ALP520 - Wykład z Algorytmów Probabilistycznych p.8

30 Losowe klasy złożoności Definicja. ZPP(Zero-error Probabilistic Polynomial time)= {L : L ma algorytm Las Vegas o wielomianowym oczekiwanym czasie działania.} Fakt. RP co_rp = ZPP (Dowód na ćwiczeniach.) Definicja. PP (Probabilistic Polynomial time)= {L : alg. losowy A o wielomianowym czasie w najgorszym przypadku: x Σ x L Pr[A(x) akceptuje] > 1 2 x/ L Pr[A(x) akceptuje] < 1 2 } ALP520 - Wykład z Algorytmów Probabilistycznych p.8

31 Losowe klasy złożoności Definicja. ZPP(Zero-error Probabilistic Polynomial time)= {L : L ma algorytm Las Vegas o wielomianowym oczekiwanym czasie działania.} Fakt. RP co_rp = ZPP (Dowód na ćwiczeniach.) Definicja. PP (Probabilistic Polynomial time)= {L : alg. losowy A o wielomianowym czasie w najgorszym przypadku: x Σ x L Pr[A(x) akceptuje] > 1 2 x/ L Pr[A(x) akceptuje] < 1 2 } two-sided error Monte Carlo Redukcja błędu - powtórzyć wielokrotnie i wybrać przeważajac a odpowiedź. Ograniczone możliwości - nie działa gdy prawd. bliskie 1 2. ALP520 - Wykład z Algorytmów Probabilistycznych p.8

32 Losowe klasy złożoności Definicja. BPP (Bounded-error Probabilistic Polynomial time)= {L : alg. losowy A o wielomianowym czasie w najgorszym przypadku: x Σ x L Pr[A(x) akceptuje] 3 4 x/ L Pr[A(x) akceptuje] 1 4 } ALP520 - Wykład z Algorytmów Probabilistycznych p.9

33 Losowe klasy złożoności Definicja. BPP (Bounded-error Probabilistic Polynomial time)= {L : alg. losowy A o wielomianowym czasie w najgorszym przypadku: x Σ x L Pr[A(x) akceptuje] 3 4 x/ L Pr[A(x) akceptuje] 1 4 } Redukcja błędu - zawsze można do 2 1 (dowód poźniej). n Wartośći: 3 4 i 1 4 można zast apić przez p(n) i p(n) opowiednio, gdzie p(n) jest dowolona funkcja ograniczona przez wielomian. ALP520 - Wykład z Algorytmów Probabilistycznych p.9

34 Zwiazki pomiędzy losowymi klasami złożoności PP a BPP ALP520 - Wykład z Algorytmów Probabilistycznych p.10

35 Zwiazki pomiędzy losowymi klasami złożoności PP a BPP P RP NP ALP520 - Wykład z Algorytmów Probabilistycznych p.10

36 Zwiazki pomiędzy losowymi klasami złożoności PP a BPP P RP NP RP BPP PP ALP520 - Wykład z Algorytmów Probabilistycznych p.10

37 Zwiazki pomiędzy losowymi klasami złożoności PP a BPP P RP NP RP BPP PP PP = co_pp, BPP = co_bpp ALP520 - Wykład z Algorytmów Probabilistycznych p.10

38 Zwiazki pomiędzy losowymi klasami złożoności PP a BPP P RP NP RP BPP PP PP = co_pp, BPP = co_bpp Otwarte problemy: RP = co_rp, BPP NP ALP520 - Wykład z Algorytmów Probabilistycznych p.10

39 Zwiazki pomiędzy losowymi klasami złożoności PP a BPP P RP NP RP BPP PP PP = co_pp, BPP = co_bpp Otwarte problemy: RP = co_rp, BPP NP Jeśli NP BPP, to NP = RP. (zadanie) ALP520 - Wykład z Algorytmów Probabilistycznych p.10

Efektywność Procedur Obliczeniowych. wykład 5

Efektywność Procedur Obliczeniowych. wykład 5 Efektywność Procedur Obliczeniowych wykład 5 Modele procesu obliczeń (8) Jedno-, wielotaśmowa MT oraz maszyna RAM są równoważne w przypadku, jeśli dany problem jest rozwiązywany przez jeden model w czasie

Bardziej szczegółowo

Struktury danych i złożoność obliczeniowa Wykład 5. Prof. dr hab. inż. Jan Magott

Struktury danych i złożoność obliczeniowa Wykład 5. Prof. dr hab. inż. Jan Magott Struktury danych i złożoność obliczeniowa Wykład 5 Prof. dr hab. inż. Jan Magott DMT rozwiązuje problem decyzyjny π przy kodowaniu e w co najwyżej wielomianowym czasie, jeśli dla wszystkich łańcuchów wejściowych

Bardziej szczegółowo

Porównanie czasów działania algorytmów sortowania przez wstawianie i scalanie

Porównanie czasów działania algorytmów sortowania przez wstawianie i scalanie Więcej o sprawności algorytmów Porównanie czasów działania algorytmów sortowania przez wstawianie i scalanie Załóżmy, że możemy wykonać dane zadanie przy użyciu dwóch algorytmów: jednego o złożoności czasowej

Bardziej szczegółowo

Teoria obliczeń i złożoność obliczeniowa

Teoria obliczeń i złożoność obliczeniowa Teoria obliczeń i złożoność obliczeniowa Kontakt: dr hab. inż. Adam Kasperski, prof. PWr. pokój 509 B4 adam.kasperski@pwr.wroc.pl materiały + informacje na stronie www. Zaliczenie: Egzamin Literatura Problemy

Bardziej szczegółowo

Obliczenia inspirowane Naturą

Obliczenia inspirowane Naturą Obliczenia inspirowane Naturą Wykład 01 Modele obliczeń Jarosław Miszczak IITiS PAN Gliwice 05/10/2016 1 / 33 1 2 3 4 5 6 2 / 33 Co to znaczy obliczać? Co to znaczy obliczać? Deterministyczna maszyna Turinga

Bardziej szczegółowo

Struktury danych i złożoność obliczeniowa Wykład 7. Prof. dr hab. inż. Jan Magott

Struktury danych i złożoność obliczeniowa Wykład 7. Prof. dr hab. inż. Jan Magott Struktury danych i złożoność obliczeniowa Wykład 7 Prof. dr hab. inż. Jan Magott Problemy NP-zupełne Transformacją wielomianową problemu π 2 do problemu π 1 (π 2 π 1 ) jest funkcja f: D π2 D π1 spełniająca

Bardziej szczegółowo

Imię, nazwisko, nr indeksu

Imię, nazwisko, nr indeksu Imię, nazwisko, nr indeksu (kod) (9 punktów) Wybierz 9 z poniższych pytań i wybierz odpowiedź tak/nie (bez uzasadnienia). Za prawidłowe odpowiedzi dajemy +1 punkt, za złe -1 punkt. Punkty policzymy za

Bardziej szczegółowo

Metody teorii gier. ALP520 - Wykład z Algorytmów Probabilistycznych p.2

Metody teorii gier. ALP520 - Wykład z Algorytmów Probabilistycznych p.2 Metody teorii gier ALP520 - Wykład z Algorytmów Probabilistycznych p.2 Metody teorii gier Cel: Wyprowadzenie oszacowania dolnego na oczekiwany czas działania dowolnego algorytmu losowego dla danego problemu.

Bardziej szczegółowo

ZŁOŻONOŚĆ OBLICZENIOWA ALGORYTMÓW

ZŁOŻONOŚĆ OBLICZENIOWA ALGORYTMÓW ZŁOŻONOŚĆ OBLICZENIOWA ALGORYTMÓW NIEDETERMINISTYCZNE MASZYNY TURINGA Bartosz Zieliński Katedra Fizyki Teoretycznej i Informatyki Zima 2011-2012 NIEDETERMINISTYCZNE MASZYNY TURINGA DEFINICJA: NIEDETERMINISTYCZNA

Bardziej szczegółowo

Języki, automaty i obliczenia

Języki, automaty i obliczenia Języki, automaty i obliczenia Wykład 10: Maszyny Turinga Sławomir Lasota Uniwersytet Warszawski 29 kwietnia 2015 Plan Maszyny Turinga (Niedeterministyczna) maszyna Turinga M = (A, Q, q 0, F, T, B, δ) A

Bardziej szczegółowo

Algorytmy asymetryczne

Algorytmy asymetryczne Algorytmy asymetryczne Klucze występują w parach jeden do szyfrowania, drugi do deszyfrowania (niekiedy klucze mogą pracować zamiennie ) Opublikowanie jednego z kluczy nie zdradza drugiego, nawet gdy można

Bardziej szczegółowo

Modele Obliczeń. Wykład 1 - Wprowadzenie. Marcin Szczuka. Instytut Matematyki, Uniwersytet Warszawski

Modele Obliczeń. Wykład 1 - Wprowadzenie. Marcin Szczuka. Instytut Matematyki, Uniwersytet Warszawski Modele Obliczeń Wykład 1 - Wprowadzenie Marcin Szczuka Instytut Matematyki, Uniwersytet Warszawski Wykład fakultatywny w semestrze zimowym 2014/2015 Marcin Szczuka (MIMUW) Modele Obliczeń 2014/2015 1 /

Bardziej szczegółowo

Struktury danych i złozoność obliczeniowa. Prof. dr hab. inż. Jan Magott

Struktury danych i złozoność obliczeniowa. Prof. dr hab. inż. Jan Magott Struktury danych i złozoność obliczeniowa Prof. dr hab. inż. Jan Magott Formy zajęć: Wykład 1 godz., Ćwiczenia 1 godz., Projekt 2 godz.. Adres strony z materiałami do wykładu: http://www.zio.iiar.pwr.wroc.pl/sdizo.html

Bardziej szczegółowo

Technologie Informacyjne

Technologie Informacyjne POLITECHNIKA KRAKOWSKA - WIEiK - KATEDRA AUTOMATYKI Technologie Informacyjne www.pk.edu.pl/~zk/ti_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl Wykład: Generacja liczb losowych Problem generacji

Bardziej szczegółowo

Algorytmy Równoległe i Rozproszone Część X - Algorytmy samostabilizujące.

Algorytmy Równoległe i Rozproszone Część X - Algorytmy samostabilizujące. Algorytmy Równoległe i Rozproszone Część X - Algorytmy samostabilizujące. Łukasz Kuszner pokój 209, WETI http://www.sphere.pl/ kuszner/ kuszner@sphere.pl Oficjalna strona wykładu http://www.sphere.pl/

Bardziej szczegółowo

Logika stosowana. Ćwiczenia Złożoność obliczeniowa problemu spełnialności. Marcin Szczuka. Instytut Informatyki, Uniwersytet Warszawski

Logika stosowana. Ćwiczenia Złożoność obliczeniowa problemu spełnialności. Marcin Szczuka. Instytut Informatyki, Uniwersytet Warszawski Logika stosowana Ćwiczenia Złożoność obliczeniowa problemu spełnialności Marcin Szczuka Instytut Informatyki, Uniwersytet Warszawski Wykład fakultatywny w semestrze zimowym 2015/2016 Marcin Szczuka (MIMUW)

Bardziej szczegółowo

Lista 6 Problemy NP-zupełne

Lista 6 Problemy NP-zupełne 1 Wprowadzenie Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych Teoretyczne Podstawy Informatyki Lista 6 Problemy NP-zupełne Problem abstrakcyjny Q jest to relacja dwuargumentowa

Bardziej szczegółowo

Wstęp do programowania

Wstęp do programowania Wstęp do programowania Złożoność obliczeniowa, poprawność programów Paweł Daniluk Wydział Fizyki Jesień 2013 P. Daniluk(Wydział Fizyki) WP w. XII Jesień 2013 1 / 20 Złożoność obliczeniowa Problem Ile czasu

Bardziej szczegółowo

10110 =

10110 = 1. (6 punktów) Niedeterministyczny automat skończony nazwiemy jednoznacznym, jeśli dla każdego akceptowanego słowa istnieje dokładnie jeden bieg akceptujący. Napisać algorytm sprawdzający, czy niedeterministyczny

Bardziej szczegółowo

ZŁOŻONOŚĆ OBLICZENIOWA ALGORYTMÓW

ZŁOŻONOŚĆ OBLICZENIOWA ALGORYTMÓW ZŁOŻONOŚĆ OBLICZENIOWA ALGORYTMÓW RELACJE MIEDZY KLASAMI ZŁOŻONOŚCI Bartosz Zieliński Katedra Fizyki Teoretycznej i Informatyki Zima 2011-2012 KLASY ZŁOŻONOŚCI KLASE ZŁOŻONOŚCI OPISUJE SIE PODAJAC: Model

Bardziej szczegółowo

Języki, automaty i obliczenia

Języki, automaty i obliczenia Języki, automaty i obliczenia Wykład 11: Obliczalność i nieobliczalność Sławomir Lasota Uniwersytet Warszawski 6 maja 2015 Plan 1 Problemy częściowo rozstrzygalne 2 Problemy rozstrzygalne 3 Funkcje (częściowo)

Bardziej szczegółowo

Maszyna Turinga języki

Maszyna Turinga języki Maszyna Turinga języki Teoria automatów i języków formalnych Dr inż. Janusz Majewski Katedra Informatyki Maszyna Turinga (1) b b b A B C B D A B C b b Q Zależnie od symbolu obserwowanego przez głowicę

Bardziej szczegółowo

Przykład: Σ = {0, 1} Σ - zbiór wszystkich skończonych ciagów binarnych. L 1 = {0, 00, 000,...,1, 11, 111,... } L 2 = {01, 1010, 001, 11}

Przykład: Σ = {0, 1} Σ - zbiór wszystkich skończonych ciagów binarnych. L 1 = {0, 00, 000,...,1, 11, 111,... } L 2 = {01, 1010, 001, 11} Języki Ustalmy pewien skończony zbiór symboli Σ zwany alfabetem. Zbiór Σ zawiera wszystkie skończone ciagi symboli z Σ. Podzbiór L Σ nazywamy językiem a x L nazywamy słowem. Specjalne słowo puste oznaczamy

Bardziej szczegółowo

Dopełnienie to można wyrazić w następujący sposób:

Dopełnienie to można wyrazić w następujący sposób: 1. (6 punktów) Czy dla każdego regularnego L, język f(l) = {w : każdy prefiks w długości nieparzystej należy do L} też jest regularny? Odpowiedź. Tak, jęsli L jest regularny to też f(l). Niech A będzie

Bardziej szczegółowo

Problem P = NP. albo czy informacja może. biec na skróty

Problem P = NP. albo czy informacja może. biec na skróty Problem P = NP albo czy informacja może biec na skróty Damian Niwiński Problem P=NP? znalazł si e wśród problemów milenijnych, bo mówi coś istotnego o świecie, jego rozwiazanie wydaje sie wymagać przełomu

Bardziej szczegółowo

Zadanie 1. (6 punktów) Słowo w nazwiemy anagramem słowa v jeśli w można otrzymać z v poprzez zamianę kolejności liter. Niech

Zadanie 1. (6 punktów) Słowo w nazwiemy anagramem słowa v jeśli w można otrzymać z v poprzez zamianę kolejności liter. Niech Zadanie 1. (6 punktów) Słowo w nazwiemy anagramem słowa v jeśli w można otrzymać z v poprzez zamianę kolejności liter. Niech anagram(l) = {w : w jest anagaramem v dla pewnego v L}. (a) Czy jeśli L jest

Bardziej szczegółowo

Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 14, Kryptografia: algorytmy asymetryczne (RSA)

Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 14, Kryptografia: algorytmy asymetryczne (RSA) Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 14, 7.06.2005 1 Kryptografia: algorytmy asymetryczne (RSA) Niech E K (x) oznacza szyfrowanie wiadomości x kluczem K (E od encrypt, D K (x)

Bardziej szczegółowo

Obliczenia inspirowane Naturą

Obliczenia inspirowane Naturą Obliczenia inspirowane Naturą Wykład 01 Od maszyn Turinga do automatów komórkowych Jarosław Miszczak IITiS PAN Gliwice 03/03/2016 1 / 16 1 2 3 Krótka historia Znaczenie 2 / 16 Czego dowiedzieliśmy się

Bardziej szczegółowo

Losowość w rozproszonym modelu

Losowość w rozproszonym modelu Losowość w rozproszonym modelu Model: ALP520 - Wykład z Algorytmów Probabilistycznych p.2 Losowość w rozproszonym modelu Model: zbiór procesorów, które moga pracować jednocześnie, połaczonych w sieć ALP520

Bardziej szczegółowo

Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 15, Kryptografia: algorytmy asymetryczne (RSA)

Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 15, Kryptografia: algorytmy asymetryczne (RSA) Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 15, 19.06.2005 1 Kryptografia: algorytmy asymetryczne (RSA) Niech E K (x) oznacza szyfrowanie wiadomości x kluczem K (E od encrypt, D K (x)

Bardziej szczegółowo

Języki, automaty i obliczenia

Języki, automaty i obliczenia Języki, automaty i obliczenia Wykład 12: Gramatyki i inne modele równoważne maszynom Turinga. Wstęp do złożoności obliczeniowej Sławomir Lasota Uniwersytet Warszawski 20 maja 2015 Plan 1 Gramatyki 2 Języki

Bardziej szczegółowo

Zasady analizy algorytmów

Zasady analizy algorytmów Zasady analizy algorytmów A więc dziś w programie: - Kilka ważnych definicji i opisów formalnych - Złożoność: czasowa i pamięciowa - Kategorie problemów - Jakieś przykłady Problem: Zadanie możliwe do rozwiązania

Bardziej szczegółowo

Problem decyzyjny naley do klasy NP. (Polynomial), jeeli moe by rozwizany w czasie conajwyej wielomianowym przez algorytm A dla DTM.

Problem decyzyjny naley do klasy NP. (Polynomial), jeeli moe by rozwizany w czasie conajwyej wielomianowym przez algorytm A dla DTM. WYKŁAD : Teoria NP-zupełnoci. Problem decyzyjny naley do klasy P (Polynomial), jeeli moe by rozwizany w czasie conajwyej wielomianowym przez algorytm A dla DTM. (przynaleno ta jest zachowana równie dla

Bardziej szczegółowo

Struktura danych. Sposób uporządkowania informacji w komputerze.

Struktura danych. Sposób uporządkowania informacji w komputerze. Struktura danych Sposób uporządkowania informacji w komputerze. Algorytm Skończony, uporządkowany ciąg jasno zdefiniowanych czynności, koniecznych do wykonania pewnego zadania. Al-Khwarizmi perski matematyk

Bardziej szczegółowo

Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa. P. F. Góra

Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa. P. F. Góra Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2012 Uwarunkowanie zadania numerycznego Niech ϕ : R n R m będzie pewna funkcja odpowiednio wiele

Bardziej szczegółowo

Algorytmy zrandomizowane

Algorytmy zrandomizowane Algorytmy zrandomizowane http://zajecia.jakubw.pl/nai ALGORYTMY ZRANDOMIZOWANE Algorytmy, których działanie uzależnione jest od czynników losowych. Algorytmy typu Monte Carlo: dają (po pewnym czasie) wynik

Bardziej szczegółowo

OSTASZEWSKI Paweł (55566) PAWLICKI Piotr (55567) Algorytmy i Struktury Danych PIŁA

OSTASZEWSKI Paweł (55566) PAWLICKI Piotr (55567) Algorytmy i Struktury Danych PIŁA OSTASZEWSKI Paweł (55566) PAWLICKI Piotr (55567) 16.01.2003 Algorytmy i Struktury Danych PIŁA ALGORYTMY ZACHŁANNE czas [ms] Porównanie Algorytmów Rozwiązyjących problem TSP 100 000 000 000,000 10 000 000

Bardziej szczegółowo

Statystyka matematyczna i ekonometria

Statystyka matematyczna i ekonometria Statystyka matematyczna i ekonometria Wykład 5 dr inż. Anna Skowrońska-Szmer zima 2017/2018 Hipotezy 2 Hipoteza zerowa (H 0 )- hipoteza o wartości jednego (lub wielu) parametru populacji. Traktujemy ją

Bardziej szczegółowo

Złożoność obliczeniowa. wykład 1

Złożoność obliczeniowa. wykład 1 Złożoność obliczeniowa wykład 1 Dwa wykłady: wtorek / środa różnice niewielkie Sprawy organizacyjne wtorek: trochę szybciej, parę dodatkowych rzeczy dedykowana grupa ćw. M. Pilipczuka - ale śmiało mogą

Bardziej szczegółowo

(j, k) jeśli k j w przeciwnym przypadku.

(j, k) jeśli k j w przeciwnym przypadku. Zadanie 1. (6 punktów) Rozważmy język słów nad alfabetem {1, 2, 3}, w których podciąg z pozycji parzystych i podciąg z pozycji nieparzystych są oba niemalejące. Na przykład 121333 należy do języka, a 2111

Bardziej szczegółowo

Algorytmika Problemów Trudnych

Algorytmika Problemów Trudnych Algorytmika Problemów Trudnych Wykład 9 Tomasz Krawczyk krawczyk@tcs.uj.edu.pl Kraków, semestr letni 2016/17 plan wykładu Algorytmy aproksymacyjne: Pojęcie algorytmu aproksymacyjnego i współczynnika aproksymowalności.

Bardziej szczegółowo

Matematyczne Podstawy Informatyki

Matematyczne Podstawy Informatyki Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Algorytm 1. Termin algorytm jest używany w informatyce

Bardziej szczegółowo

Języki formalne i automaty Ćwiczenia 9

Języki formalne i automaty Ćwiczenia 9 Języki formalne i automaty Ćwiczenia 9 Autor: Marcin Orchel Spis treści Spis treści... 1 Wstęp teoretyczny... 2 Maszyna Mealy'ego... 2 Maszyna Moore'a... 2 Automat ze stosem... 3 Konwersja gramatyki bezkontekstowej

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 11 Łańcuchy Markova

Wstęp do sieci neuronowych, wykład 11 Łańcuchy Markova Wstęp do sieci neuronowych, wykład 11 Łańcuchy Markova M. Czoków, J. Piersa 2010-12-21 1 Definicja Własności Losowanie z rozkładu dyskretnego 2 3 Łańcuch Markova Definicja Własności Losowanie z rozkładu

Bardziej szczegółowo

Algorytm Genetyczny. zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych

Algorytm Genetyczny. zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych Algorytm Genetyczny zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych Dlaczego Algorytmy Inspirowane Naturą? Rozwój nowych technologii: złożone problemy obliczeniowe w

Bardziej szczegółowo

Badanie pierwszości liczby, klasa NP i test Rabina

Badanie pierwszości liczby, klasa NP i test Rabina Badanie pierwszości liczby, klasa NP i test Rabina Mateusz Chynowski 11 stycznia 2009 Liczby pierwsze są bardzo istotne zarówno w matematyce, jak i informatyce. W tej drugiej nauce istnieje dość poważny

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład XIV: Metody Monte Carlo 19 stycznia 2016 Przybliżone obliczanie całki oznaczonej Rozważmy całkowalną funkcję f : [0, 1] R. Chcemy znaleźć przybliżoną wartość liczbową całki 1 f (x) dx. 0 Jeden ze

Bardziej szczegółowo

Aproksymacja funkcji a regresja symboliczna

Aproksymacja funkcji a regresja symboliczna Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(x), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(x), zwaną funkcją aproksymującą

Bardziej szczegółowo

Matematyczne podstawy informatyki Mathematical Foundations of Computational Sciences. Matematyka Poziom kwalifikacji: II stopnia

Matematyczne podstawy informatyki Mathematical Foundations of Computational Sciences. Matematyka Poziom kwalifikacji: II stopnia Nazwa przedmiotu: Kierunek: Rodzaj przedmiotu: obowiązkowy dla wszystkich specjalności Rodzaj zajęć: wykład, ćwiczenia Matematyczne podstawy informatyki Mathematical Foundations of Computational Sciences

Bardziej szczegółowo

Kodowanie i kompresja Streszczenie Studia dzienne Wykład 6

Kodowanie i kompresja Streszczenie Studia dzienne Wykład 6 Kodowanie i kompresja Streszczenie Studia dzienne Wykład 6 1 Kody cykliczne: dekodowanie Definicja 1 (Syndrom) Niech K będzie kodem cyklicznym z wielomianem generuja- cym g(x). Resztę z dzielenia słowa

Bardziej szczegółowo

Metody numeryczne. Sformułowanie zagadnienia interpolacji

Metody numeryczne. Sformułowanie zagadnienia interpolacji Ćwiczenia nr 4. Sformułowanie zagadnienia interpolacji Niech będą dane punkty x 0,..., x n i wartości y 0,..., y n, takie że i=0,...,n y i = f (x i )). Szukamy funkcji F (funkcji interpolującej), takiej

Bardziej szczegółowo

Wprowadzenie do złożoności obliczeniowej

Wprowadzenie do złożoności obliczeniowej problemów Katedra Informatyki Politechniki Świętokrzyskiej Kielce, 16 stycznia 2007 problemów Plan wykładu 1 2 algorytmów 3 4 5 6 problemów problemów Plan wykładu 1 2 algorytmów 3 4 5 6 problemów problemów

Bardziej szczegółowo

Statystyka matematyczna i ekonometria

Statystyka matematyczna i ekonometria Statystyka matematyczna i ekonometria Wykład 5 Anna Skowrońska-Szmer lato 2016/2017 Hipotezy 2 Hipoteza zerowa (H 0 )- hipoteza o wartości jednego (lub wielu) parametru populacji. Traktujemy ją jako prawdziwą

Bardziej szczegółowo

Wykład 9: Markov Chain Monte Carlo

Wykład 9: Markov Chain Monte Carlo RAP 412 17.12.2008 Wykład 9: Markov Chain Monte Carlo Wykładowca: Andrzej Ruciński Pisarz: Ewelina Rychlińska i Wojciech Wawrzyniak Wstęp W tej części wykładu zajmiemy się zastosowaniami łańcuchów Markowa

Bardziej szczegółowo

JAO - Wprowadzenie do Gramatyk bezkontekstowych

JAO - Wprowadzenie do Gramatyk bezkontekstowych JAO - Wprowadzenie do Gramatyk bezkontekstowych Definicja gramatyki bezkontekstowej Podstawowymi narzędziami abstrakcyjnymi do opisu języków formalnych są gramatyki i automaty. Gramatyka bezkontekstowa

Bardziej szczegółowo

LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI

LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI WERYFIKACJA HIPOTEZ Hipoteza statystyczna jakiekolwiek przypuszczenie dotyczące populacji generalnej- jej poszczególnych

Bardziej szczegółowo

Temat: Algorytmy wyszukiwania wzorca w tekście

Temat: Algorytmy wyszukiwania wzorca w tekście Temat: Algorytmy wyszukiwania wzorca w tekście 1. Sformułowanie problemu Dany jest tekst T oraz wzorzec P, będące ciągami znaków o długości równej odpowiednio n i m (n m 1), nad pewnym ustalonym i skończonym

Bardziej szczegółowo

Algorytm Grovera. Kwantowe przeszukiwanie zbiorów. Robert Nowotniak

Algorytm Grovera. Kwantowe przeszukiwanie zbiorów. Robert Nowotniak Wydział Fizyki Technicznej, Informatyki i Matematyki Stosowanej Politechnika Łódzka 13 listopada 2007 Plan wystapienia 1 Informatyka Kwantowa podstawy 2 Opis problemu (przeszukiwanie zbioru) 3 Intuicyjna

Bardziej szczegółowo

Teoretyczne podstawy informatyki

Teoretyczne podstawy informatyki Teoretyczne podstawy informatyki Wykład 12a: Prawdopodobieństwo i algorytmy probabilistyczne http://hibiscus.if.uj.edu.pl/~erichter/dydaktyka2010/tpi-2010 Prof. dr hab. Elżbieta Richter-Wąs 1 Teoria prawdopodobieństwa

Bardziej szczegółowo

komputery? Andrzej Skowron, Hung Son Nguyen Instytut Matematyki, Wydział MIM, UW

komputery? Andrzej Skowron, Hung Son Nguyen  Instytut Matematyki, Wydział MIM, UW Czego moga się nauczyć komputery? Andrzej Skowron, Hung Son Nguyen son@mimuw.edu.pl; skowron@mimuw.edu.pl Instytut Matematyki, Wydział MIM, UW colt.tex Czego mogą się nauczyć komputery? Andrzej Skowron,

Bardziej szczegółowo

Algorytmy decyzyjne będące alternatywą dla sieci neuronowych

Algorytmy decyzyjne będące alternatywą dla sieci neuronowych Algorytmy decyzyjne będące alternatywą dla sieci neuronowych Piotr Dalka Przykładowe algorytmy decyzyjne Sztuczne sieci neuronowe Algorytm k najbliższych sąsiadów Kaskada klasyfikatorów AdaBoost Naiwny

Bardziej szczegółowo

Jeśli czas działania algorytmu zależy nie tylko od rozmiaru danych wejściowych i przyjmuje różne wartości dla różnych danych o tym samym rozmiarze,

Jeśli czas działania algorytmu zależy nie tylko od rozmiaru danych wejściowych i przyjmuje różne wartości dla różnych danych o tym samym rozmiarze, Oznaczenia: Jeśli czas działania algorytmu zależy nie tylko od rozmiaru danych wejściowych i przyjmuje różne wartości dla różnych danych o tym samym rozmiarze, to interesuje nas złożoność obliczeniowa

Bardziej szczegółowo

Hierarchia Chomsky ego Maszyna Turinga

Hierarchia Chomsky ego Maszyna Turinga Hierarchia Chomsky ego Maszyna Turinga Języki formalne i automaty Dr inż. Janusz Majewski Katedra Informatyki Gramatyka Gramatyką G nazywamy czwórkę uporządkowaną gdzie: G = V skończony zbiór

Bardziej szczegółowo

0 + 0 = 0, = 1, = 1, = 0.

0 + 0 = 0, = 1, = 1, = 0. 5 Kody liniowe Jak już wiemy, w celu przesłania zakodowanego tekstu dzielimy go na bloki i do każdego z bloków dodajemy tak zwane bity sprawdzające. Bity te są w ścisłej zależności z bitami informacyjnymi,

Bardziej szczegółowo

JAO - Języki, Automaty i Obliczenia - Wykład 2. JAO - Języki, Automaty i Obliczenia - Wykład 2

JAO - Języki, Automaty i Obliczenia - Wykład 2. JAO - Języki, Automaty i Obliczenia - Wykład 2 Dowodzenie nieregularności języka [lemat o pompowaniu] Jeśli L regularny to istnieje stała c spełniająca : jeżeli z L, z c to istnieje dekompozycja w = u v x tak, że uv i x L dla każdego i 0 [lemat o skończonej

Bardziej szczegółowo

Algorytmy Równoległe i Rozproszone Część III - Układy kombinacyjne i P-zupełność

Algorytmy Równoległe i Rozproszone Część III - Układy kombinacyjne i P-zupełność Algorytmy Równoległe i Rozproszone Część III - Układy kombinacyjne i P-zupełność Łukasz Kuszner pokój 209, WETI http://www.kaims.pl/ kuszner/ kuszner@eti.pg.gda.pl Oficjalna strona wykładu http://www.kaims.pl/

Bardziej szczegółowo

Złożoność informacyjna Kołmogorowa. Paweł Parys

Złożoność informacyjna Kołmogorowa. Paweł Parys Złożoność informacyjna Kołmogorowa Paweł Parys Serock 2012 niektóre liczby łatwiej zapamiętać niż inne... (to zależy nie tylko od wielkości liczby) 100...0 100 100... 100 100 100 25839496603316858921 31415926535897932384

Bardziej szczegółowo

Metody numeryczne. materiały do wykładu dla studentów. 1. Teoria błędów, notacja O

Metody numeryczne. materiały do wykładu dla studentów. 1. Teoria błędów, notacja O Metody numeryczne materiały do wykładu dla studentów 1. Teoria błędów, notacja O 1.1. Błąd bezwzględny, błąd względny 1.2. Ogólna postać błędu 1.3. Problem odwrotny teorii błędów - zasada równego wpływu

Bardziej szczegółowo

w analizie wyników badań eksperymentalnych, w problemach modelowania zjawisk fizycznych, w analizie obserwacji statystycznych.

w analizie wyników badań eksperymentalnych, w problemach modelowania zjawisk fizycznych, w analizie obserwacji statystycznych. Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(), zwaną funkcją aproksymującą

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 12 Łańcuchy Markowa

Wstęp do sieci neuronowych, wykład 12 Łańcuchy Markowa Wstęp do sieci neuronowych, wykład 12 Łańcuchy Markowa M. Czoków, J. Piersa 2012-01-10 1 Łańcucha Markowa 2 Istnienie Szukanie stanu stacjonarnego 3 1 Łańcucha Markowa 2 Istnienie Szukanie stanu stacjonarnego

Bardziej szczegółowo

Podstawy metod probabilistycznych. dr Adam Kiersztyn

Podstawy metod probabilistycznych. dr Adam Kiersztyn Podstawy metod probabilistycznych dr Adam Kiersztyn Przestrzeń zdarzeń elementarnych i zdarzenia losowe. Zjawiskiem lub doświadczeniem losowym nazywamy taki proces, którego przebiegu i ostatecznego wyniku

Bardziej szczegółowo

Uczenie sieci neuronowych i bayesowskich

Uczenie sieci neuronowych i bayesowskich Wstęp do metod sztucznej inteligencji www.mat.uni.torun.pl/~piersaj 2009-01-22 Co to jest neuron? Komputer, a mózg komputer mózg Jednostki obliczeniowe 1-4 CPU 10 11 neuronów Pojemność 10 9 b RAM, 10 10

Bardziej szczegółowo

Wstęp do informatyki- wykład 1

Wstęp do informatyki- wykład 1 MATEMATYKA 1 Wstęp do informatyki- wykład 1 Systemy liczbowe Treści prezentowane w wykładzie zostały oparte o: S. Prata, Język C++. Szkoła programowania. Wydanie VI, Helion, 2012 www.cplusplus.com Jerzy

Bardziej szczegółowo

Algorytm poprawny jednoznaczny szczegółowy uniwersalny skończoność efektywność (sprawność) zmiennych liniowy warunkowy iteracyjny

Algorytm poprawny jednoznaczny szczegółowy uniwersalny skończoność efektywność (sprawność) zmiennych liniowy warunkowy iteracyjny Algorytm to przepis; zestawienie kolejnych kroków prowadzących do wykonania określonego zadania; to uporządkowany sposób postępowania przy rozwiązywaniu zadania, problemu, z uwzględnieniem opisu danych

Bardziej szczegółowo

Algorytm. Algorytmy Marek Pudełko

Algorytm. Algorytmy Marek Pudełko Algorytm Algorytmy Marek Pudełko Definicja Algorytm to skończony, uporządkowany ciąg jasno zdefiniowanych czynności, koniecznych do wykonania pewnego zadania. Algorytm ma przeprowadzić system z pewnego

Bardziej szczegółowo

Generowanie i optymalizacja harmonogramu za pomoca

Generowanie i optymalizacja harmonogramu za pomoca Generowanie i optymalizacja harmonogramu za pomoca na przykładzie generatora planu zajęć Matematyka Stosowana i Informatyka Stosowana Wydział Fizyki Technicznej i Matematyki Stosowanej Politechnika Gdańska

Bardziej szczegółowo

Struktury danych i złożoność obliczeniowa. Prof. dr hab. inż. Jan Magott

Struktury danych i złożoność obliczeniowa. Prof. dr hab. inż. Jan Magott Struktury danych i złożoność obliczeniowa Prof. dr hab. inż. Jan Magott Formy zajęć: Wykład 1 godz., Ćwiczenia 2 godz., Projekt 1 godz.. Strona kursu: http://www.zio.iiar.pwr.wroc.pl/sdizo.html Struktury

Bardziej szczegółowo

VI WYKŁAD STATYSTYKA. 9/04/2014 B8 sala 0.10B Godz. 15:15

VI WYKŁAD STATYSTYKA. 9/04/2014 B8 sala 0.10B Godz. 15:15 VI WYKŁAD STATYSTYKA 9/04/2014 B8 sala 0.10B Godz. 15:15 WYKŁAD 6 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI Weryfikacja hipotez ( błędy I i II rodzaju, poziom istotności, zasady

Bardziej szczegółowo

teoria informacji Kanały komunikacyjne, kody korygujące Mariusz Różycki 25 sierpnia 2015

teoria informacji Kanały komunikacyjne, kody korygujące Mariusz Różycki 25 sierpnia 2015 teoria informacji Kanały komunikacyjne, kody korygujące Mariusz Różycki 25 sierpnia 2015 1 wczoraj Wprowadzenie matematyczne. Entropia i informacja. Kodowanie. Kod ASCII. Stopa kodu. Kody bezprefiksowe.

Bardziej szczegółowo

Teoria Złożoności Zadania

Teoria Złożoności Zadania Teoria Złożoności Zadania Łukasz Czajka 14 czerwca 2008 1 Spis treści 1 Zadanie 1 3 2 Zadanie 5 8 2 1 Zadanie 1 Niech A NP 1. Istnieje zatem jedno-taśmowa niedeterministyczna maszyna Turinga M o alfabecie

Bardziej szczegółowo

Złożoność obliczeniowa zadania, zestaw 2

Złożoność obliczeniowa zadania, zestaw 2 Złożoność obliczeniowa zadania, zestaw 2 Określanie złożoności obliczeniowej algorytmów, obliczanie pesymistycznej i oczekiwanej złożoności obliczeniowej 1. Dana jest tablica jednowymiarowa A o rozmiarze

Bardziej szczegółowo

Dr inż. Robert Wójcik, p. 313, C-3, tel Katedra Informatyki Technicznej (K-9) Wydział Elektroniki (W-4) Politechnika Wrocławska

Dr inż. Robert Wójcik, p. 313, C-3, tel Katedra Informatyki Technicznej (K-9) Wydział Elektroniki (W-4) Politechnika Wrocławska Dr inż. Robert Wójcik, p. 313, C-3, tel. 320-27-40 Katedra Informatyki Technicznej (K-9) Wydział Elektroniki (W-4) Politechnika Wrocławska E-mail: Strona internetowa: robert.wojcik@pwr.edu.pl google: Wójcik

Bardziej szczegółowo

Wykład 2 Hipoteza statystyczna, test statystyczny, poziom istotn. istotności, p-wartość i moc testu

Wykład 2 Hipoteza statystyczna, test statystyczny, poziom istotn. istotności, p-wartość i moc testu Wykład 2 Hipoteza statystyczna, test statystyczny, poziom istotności, p-wartość i moc testu Wrocław, 01.03.2017r Przykład 2.1 Właściciel firmy produkującej telefony komórkowe twierdzi, że wśród jego produktów

Bardziej szczegółowo

Ataki na RSA. Andrzej Chmielowiec. Centrum Modelowania Matematycznego Sigma. Ataki na RSA p. 1

Ataki na RSA. Andrzej Chmielowiec. Centrum Modelowania Matematycznego Sigma. Ataki na RSA p. 1 Ataki na RSA Andrzej Chmielowiec andrzej.chmielowiec@cmmsigma.eu Centrum Modelowania Matematycznego Sigma Ataki na RSA p. 1 Plan prezentacji Wprowadzenie Ataki algebraiczne Ataki z kanałem pobocznym Podsumowanie

Bardziej szczegółowo

Wykład 1_2 Algorytmy sortowania tablic Sortowanie bąbelkowe

Wykład 1_2 Algorytmy sortowania tablic Sortowanie bąbelkowe I. Struktury sterujące.bezpośrednie następstwo (A,B-czynności) Wykład _2 Algorytmy sortowania tablic Sortowanie bąbelkowe Elementy języka stosowanego do opisu algorytmu Elementy Poziom koncepcji Poziom

Bardziej szczegółowo

Algorytmy i Struktury Danych.

Algorytmy i Struktury Danych. Algorytmy i Struktury Danych. Organizacja wykładu. Problem Sortowania. Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 1 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury

Bardziej szczegółowo

Algorytmy MCMC (Markowowskie Monte Carlo) dla skokowych procesów Markowa

Algorytmy MCMC (Markowowskie Monte Carlo) dla skokowych procesów Markowa Algorytmy MCMC (Markowowskie Monte Carlo) dla skokowych procesów Markowa Wojciech Niemiro 1 Uniwersytet Warszawski i UMK Toruń XXX lat IMSM, Warszawa, kwiecień 2017 1 Wspólne prace z Błażejem Miasojedowem,

Bardziej szczegółowo

Efektywność algorytmów

Efektywność algorytmów Efektywność algorytmów Algorytmika Algorytmika to dział informatyki zajmujący się poszukiwaniem, konstruowaniem i badaniem własności algorytmów, w kontekście ich przydatności do rozwiązywania problemów

Bardziej szczegółowo

ZLOŻONOŚĆ OBLICZENIOWA - WYK. 2

ZLOŻONOŚĆ OBLICZENIOWA - WYK. 2 ZLOŻONOŚĆ OBLICZENIOWA - WYK. 2 1. Twierdzenie Sipsera: Dla dowolnej maszyny M działającej w pamięci S(n) istnieje maszyna M taka, że: L(M) = L(M ), M działa w pamięci S(n), M ma własność stopu. Dowód:

Bardziej szczegółowo

Zastosowanie sztucznej inteligencji w testowaniu oprogramowania

Zastosowanie sztucznej inteligencji w testowaniu oprogramowania Zastosowanie sztucznej inteligencji w testowaniu oprogramowania Problem NP Problem NP (niedeterministycznie wielomianowy, ang. nondeterministic polynomial) to problem decyzyjny, dla którego rozwiązanie

Bardziej szczegółowo

Hierarchia Chomsky ego

Hierarchia Chomsky ego Hierarchia Chomsky ego Gramatyki nieograniczone Def. Gramatyką nieograniczoną (albo typu 0) nazywamy uporządkowaną czwórkę G= gdzie: % Σ - skończony alfabet symboli końcowych (alfabet, nad którym

Bardziej szczegółowo

Testowanie hipotez statystycznych

Testowanie hipotez statystycznych 9 października 2008 ...czyli definicje na rozgrzewkę n-elementowa próba losowa - wektor n zmiennych losowych (X 1,..., X n ); intuicyjnie: wynik n eksperymentów realizacja próby (X 1,..., X n ) w ω Ω :

Bardziej szczegółowo

Złożoność Obliczeniowa Algorytmów

Złożoność Obliczeniowa Algorytmów Algorytmów Pożądane cechy dobrego algorytmu Dobry algorytm mający rozwiązywać jakiś problem powinien mieć 2 naturalne cechy: 1 (poprawność) zwracać prawidłowy wynik (dokładniej: zgodność z warunkiem końcowym

Bardziej szczegółowo

Program MC. Obliczyć radialną funkcję korelacji. Zrobić jej wykres. Odczytać z wykresu wartość radialnej funkcji korelacji w punkcie r=

Program MC. Obliczyć radialną funkcję korelacji. Zrobić jej wykres. Odczytać z wykresu wartość radialnej funkcji korelacji w punkcie r= Program MC Napisać program symulujący twarde kule w zespole kanonicznym. Dla N > 100 twardych kul. Gęstość liczbowa 0.1 < N/V < 0.4. Zrobić obliczenia dla 2,3 różnych wartości gęstości. Obliczyć radialną

Bardziej szczegółowo

Wstęp do metod numerycznych Eliminacja Gaussa Równania macierzowe. P. F. Góra

Wstęp do metod numerycznych Eliminacja Gaussa Równania macierzowe. P. F. Góra Wstęp do metod numerycznych Eliminacja Gaussa Równania macierzowe P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2015 Co można zrobić z układem równań... tak, aby jego rozwiazania się nie zmieniły? Rozważam

Bardziej szczegółowo

Algorytmy genetyczne w interpolacji wielomianowej

Algorytmy genetyczne w interpolacji wielomianowej Algorytmy genetyczne w interpolacji wielomianowej (seminarium robocze) Seminarium Metod Inteligencji Obliczeniowej Warszawa 22 II 2006 mgr inż. Marcin Borkowski Plan: Przypomnienie algorytmu niszowego

Bardziej szczegółowo

Tomasz M. Gwizdałła 2012/13

Tomasz M. Gwizdałła 2012/13 METODY METODY OPTYMALIZACJI OPTYMALIZACJI Tomasz M. Gwizdałła 2012/13 Informacje wstępne Tomasz Gwizdałła Katedra Fizyki Ciała Stałego UŁ Pomorska 149/153, p.523b tel. 6355709 tomgwizd@uni.lodz.pl http://www.wfis.uni.lodz.pl/staff/tgwizdalla

Bardziej szczegółowo

teoria informacji Entropia, informacja, kodowanie Mariusz Różycki 24 sierpnia 2015

teoria informacji Entropia, informacja, kodowanie Mariusz Różycki 24 sierpnia 2015 teoria informacji Entropia, informacja, kodowanie Mariusz Różycki 24 sierpnia 2015 1 zakres materiału zakres materiału 1. Czym jest teoria informacji? 2. Wprowadzenie matematyczne. 3. Entropia i informacja.

Bardziej szczegółowo

Zaawansowane metody numeryczne

Zaawansowane metody numeryczne Wykład 11 Ogólna postać metody iteracyjnej Definicja 11.1. (metoda iteracyjna rozwiązywania układów równań) Metodą iteracyjną rozwiązywania { układów równań liniowych nazywamy ciąg wektorów zdefiniowany

Bardziej szczegółowo

Metody numeryczne w przykładach

Metody numeryczne w przykładach Metody numeryczne w przykładach Bartosz Ziemkiewicz Wydział Matematyki i Informatyki UMK, Toruń Regionalne Koło Matematyczne 8 kwietnia 2010 r. Bartosz Ziemkiewicz (WMiI UMK) Metody numeryczne w przykładach

Bardziej szczegółowo