Plan wykładu. Narodziny mechaniki kwantowej. 2 Pierwsze hipotezy. 3 Postulaty mechaniki kwantowej. 4 Model Bohra atomu wodoru

Wielkość: px
Rozpocząć pokaz od strony:

Download "Plan wykładu. Narodziny mechaniki kwantowej. 2 Pierwsze hipotezy. 3 Postulaty mechaniki kwantowej. 4 Model Bohra atomu wodoru"

Transkrypt

1 Plan wykładu Elementy fizyki kwantowej dr inż. Ireneusz Owczarek CMF PŁ /14 1 dr inż. Ireneusz Owczarek Elementy fizyki kwantowej 1 Narodziny mechaniki kwantowej Rozkład widmowy promieniowania Zdolność emisyjna prawa 2 Oscylator harmoniczny Doświadczenie Comptona Fale i czastki 3 Ewolucja w czasie stanu układu Interpretacja wyników pomiarów w mikroświecie Spin Symetria funkcji falowej 4 Model Bohra atomu wodoru Porzadek wśród atomów Energia elektronu 5 Atom wodoru w mechanice kwantowej Równanie Schrödingera Liczby kwantowe 2 dr inż. Ireneusz Owczarek Elementy fizyki kwantowej Ciało doskonale czarne Narodziny mechaniki kwantowej Rozkład widmowy promieniowania Zdolność emisyjna Narodziny mechaniki kwantowej Zdolność emisyjna prawa Klasyczny obraz świata, w którym materia składa się z punktowych czastek, a promieniowanie składa się z fal, okazuje się niewystarczajacy do opisu ruchu elektronów i ich oddziaływania. Szczególnie uwidacznia to się w wymianie energii pomiędzy promieniowaniem a materia. Należało znaleźć inny sposób opisu zjawisk. Każde ciało stałe, ciecz lub gaz, emituje promieniowanie termiczne w postaci fal elektromagnetycznych, a także absorbuje je z otoczenia. Wg fizyki klasycznej widmo emitowane przez ciała stałe ma charakter ciagły, charakter tego widma prawie nie zależy od rodzaju substancji, widmo silnie zależy od temperatury. Ciało doskonale czarne to ciało całkowicie pochłaniajace promieniowanie elektromagnetyczne padajace na jego powierzchnię. Częstotliwość odpowiadajaca maksimum zdolności emisyjnej wzrasta liniowo ze wzrostem temperatury. Całkowita moc wyemitowana przez powierzchnię jednostkowa (pole pod krzywa) rośnie z temperatura. Prawo Stefana Całkowita zdolność emisyjna ciała doskonale czarnego gdzie stała Stefana-Boltzmana R(T)=σ T 4 σ=5, W m 2 K 4. 3 dr inż. Ireneusz Owczarek Elementy fizyki kwantowej 4 dr inż. Ireneusz Owczarek Elementy fizyki kwantowej

2 Teoria Wiena Narodziny mechaniki kwantowej Zdolność emisyjna prawa Narodziny kwantów Oscylator harmoniczny Krzywe te zależa tylko od temperatury i sa całkiem niezależne od materiału oraz kształtu i wielkości ciała. Prawo Wiena Iloczyn temperatury i długości fali odpowiadajacej maksimum widmowej zdolności emisyjnej w tej temperaturze jest stały lub Prawo Wiena λ max T=2898µmK. Ze wzrostem temperaturyt częstotliwośćν max ulega przesunięciu w kierunku wyższych częstotliwości. Atomy ścian ciała doskonale czarnego zachowuja się jak oscylatory harmoniczne, które emituja (i absorbuja) energię, z których każdy ma charakterystyczna częstotliwość drgań. Założenia Maxa Plancka energia oscylatora jest skwantowana i może przyjmować tylko ściśle określone wartości E=nhν gdzie n=1,2,... promieniowanie elektromagnetyczne jest emitowane lub absorbowane w postaci osobnych porcji energii (kwantów ) o wartości E=hν. Oscylatory nie wypromieniowuja (nie pobieraja) energii w sposób ciagły, lecz porcjami, czyli kwantami, podczas przejścia z jednego stanu w drugi. 5 dr inż. Ireneusz Owczarek Elementy fizyki kwantowej 6 dr inż. Ireneusz Owczarek Elementy fizyki kwantowej Narodziny kwantów... Oscylator harmoniczny Narodziny kwantów... Oscylator harmoniczny Na podstawie swoich hipotez Planck otrzymał następujac a funkcję rozkładu Doświadczalna wartość stałej Plancka R(ν,T)= 8πν2 hν c 3 kt 1. e hν h=6, J s Skwantowany oscylator harmoniczny Kwantowanie dotyczy wszelkich obiektów fizycznych o jednym stopniu swobody, które wykonuja proste drgania harmoniczne. Energia całkowita oscylatora jest wielokrotnościahν. Raz wyemitowana energia rozprzestrzenia się w postaci fali elektromagnetycznej Konsekwencje założeń Plancka jeżeli oscylator nie emituje i nie absorbuje energii, to znajduje się w stanie stacjonarnym, poziomy energetyczne (stany stacjonarne) molekuł musza być dyskretne, zmiana energii musi być wielokrotnościahν, fala elektromagnetyczna jest skwantowana. 7 dr inż. Ireneusz Owczarek Elementy fizyki kwantowej 8 dr inż. Ireneusz Owczarek Elementy fizyki kwantowej

3 Narodziny kwantów - przykład Oscylator harmoniczny Fotoefekt Czy ta hipotezę można wykorzystać do znanych oscylatorów? Np. sprężyna o masiem=1kg i stałej sprężystościk=20 N wykonujaca m drgania o amplitudzie1cm. Częstotliwość drgań własnych: ν= 1 2π k m =0,71Hz. Polega na emisji elektronów z powierzchni ciała stałego pod wpływem padajacego światła. Wartość energii całkowitej: E= 1 2 ka2 = J. Jeżeli energia jest skwantowana to jej zmiany dokonuja się skokowo przy czym E =hν. Względna zmiana energii wynosi więc: E E =4, Żaden przyrzad pomiarowy nie jest wstanie zauważyć tak minimalnych zmian energii. 9 dr inż. Ireneusz Owczarek Elementy fizyki kwantowej Cechy, których nie można wyjaśnić na gruncie klasycznej falowej teorii światła: 1 Energia kinetyczna fotoelektronów powinna wzrosnać, ze wzrostem natężenia wiazki światła. Jednakże nie zależy od natężenia światła. 2 powinno występować dla każdej częstotliwości światła, gdy natężenie światła jest wystarczajaco duże, aby dostarczona została energia konieczna do uwolnienia elektronów. 3 Gdy wiazka światła jest dostatecznie słaba, powinno występować mierzalne opóźnienie czasowe pomiędzy chwila, kiedy światło zaczyna padać na powierzchnię płytki, a momentem uwolnienia z niej elektronu. 10 dr inż. Ireneusz Owczarek Elementy fizyki kwantowej Długofalowa granica fotoefektu Napięcie hamowania prad płynie nawet wówczas, gdy napięcie między elektrodami jest równe zeru, Wyniki eksperymentu prad nie popłynie dopóki częstość padajacego światła nie osiagnie pewnej, zależnej od materiału katody wielkości zwanej długofalowa granica fotoefektu, maksymalna wartość energii kinetycznej emitowanych elektronów jest tym większa im większa jest częstotliwość fali, nie zależy jednak od natężenia oświetlenia, natężenie pradu rośnie wraz ze wzrostem napięcia do wartości, tzw. prad nasycenia, natężenie pradu nasycenia rośnie ze wzrostem strumienia padajacej fali, przy dostatecznie dużym napięciu (U 0) zwanym napięciem hamowania prad zanika E kin =eu 0, dla światła monochromatycznego napięcie hamujace zależy od częstotliwości padajacego światła. 11 dr inż. Ireneusz Owczarek Elementy fizyki kwantowej 12 dr inż. Ireneusz Owczarek Elementy fizyki kwantowej

4 Równanie Einsteina Równanie Einsteina... Założenia Einsteina fala elektromagnetyczna o częstotliwościν jest strumieniem fotonów o energiie=hν każdy, fotony moga być pochłaniane tylko w całości, a maksymalna energia kinetyczna elektronu po opuszczeniu metalu E kin =hν W. Wnioski jeżeli pochłonięta energia jest większa badź równa pracy wyjściaw elektronu z metalu, elektron może opuścić powierzchnię katody, maksymalna energia kinetyczna fotoelektronów zwiazana jest tylko z energia poszczególnych fotonów, a nie z ich ilościa (natężeniem oświetlenia), ze wzrostem oświetlenia powierzchni katody (tzn. wzrostem ilości fotonów padajacych) rośnie liczba elektronów emitowanych z powierzchni, różnicę energii pomiędzy energia fotonu a praca wyjścia elektron unosi w postaci jego energii kinetycznej, energia dostarczana jest w postaci skupionej (kwant, porcja), a nie rozłożonej (fala), dlatego nie występuje gromadzenie energii przez elektrony, które praktycznie natychmiast pochłaniaja energię fotonu i ewentualnie opuszczaja fotokatodę. 13 dr inż. Ireneusz Owczarek Elementy fizyki kwantowej 14 dr inż. Ireneusz Owczarek Elementy fizyki kwantowej Efekt Comptona Doświadczenie Comptona Efekt Comptona... Doświadczenie Comptona Doświadczalne potwierdzenie istnienia fotonu jako skończonej porcji energii zostało dostarczone przez Comptona. Wiazka promieni X o dokładnie określonej długości fali pada na blok grafitowy. Mierzono natężenie wiazki rozproszonej pod różnymi katami jako funkcjęλ. W klasycznym podejściu długość fali wiazki rozproszonej powinna być taka sama jak padajacej. Rozproszone promienie X maja maksimum dla dwóch długości fali. Jedna z nich jest identyczna jakλfali padajacej, drugaλ jest większa o λ. To tzw. przesunięcie Comptona zmienia się z katem obserwacji rozproszonego promieniowania X. Jeżeli padajace promieniowanie potraktujemy jako falę to pojawienie się fali rozproszonej o długościλ nie da się wyjaśnić. Fotony (jak czastki) ulegaja zderzeniu z elektronami swobodnymi w bloku grafitu. Podobnie jak w typowych zderzeniach sprężystych zmienia się kierunek poruszania się fotonu oraz jego energia (część energii przekazana elektronowi), to oznacza zmianę częstotliwości i zarazem długości fali. Stosujac zasadę zachowania pędu oraz zasadę zachowania energii λ=λ λ = h m 0c (1 cosθ)=λc(1 cosθ) gdzieλ c=2, m jest comptonowska długościa fali. 15 dr inż. Ireneusz Owczarek Elementy fizyki kwantowej 16 dr inż. Ireneusz Owczarek Elementy fizyki kwantowej

5 Natura światła Fale i czastki Hipoteza de Broglie a Fale i czastki Czasteczki w modelu korpuskularnym (czasteczkowym) Fale sa traktowane jako obiekty punktowe, znajduja się w ciagłym chaotycznym ruchu, maja w danej chwili ściśle określone położenie, prędkość i pęd, poruszaja się po ściśle określonym torze, całkowita energia jest suma energii poszczególnych czasteczek. rozpoznawane sa poprzez zmiany w czasie i przestrzeni określonych wielkości fizycznych, do ich opisu stosuje się prędkość i długość (częstotliwość) fali w danym ośrodku, przenosza energię, ale nie przenosza materii. Przenoszona energia jest proporcjonalna do kwadratu amplitudy. Fale mechaniczne nie rozchodza się w próżni (musza mieć ośrodek sprężysty). Fale elektromagnetyczne w tym światło, rozchodza się w próżni. 17 dr inż. Ireneusz Owczarek Elementy fizyki kwantowej Dualizm korpuskularno-falowy jest własnościa charakterystyczna nie tylko dla fali elektromagnetycznej, ale również dla czastek o masie spoczynkowej różnej od zera. Oznacza to, że czasteczki takie jak np. elektrony powinny również wykazywać własności falowe. Fale te nazwa się falami materii. Długość fal materii Foton p= h λ = k E=pc=hν λ= h p k= 2π - liczba falowa λ Foton (kwant światła) ma pęd równy p f = hν c. 18 dr inż. Ireneusz Owczarek Elementy fizyki kwantowej Elektron p=mv= k E= p2 2m =hν Fale materii Fale i czastki Obraz interferencyjny Elektron masam=9, kg, napięciev=1000v, energia kinetyczna E k =1000eV=1, J masam=1kg, prędkośćv=1 m s Piłka De Broglie założył, że wiazka czastek będzie tworzyć obraz interferencyjny na odpowiedniej podwójnej szczelinie charakterystyczny dla doświadczenia Younga. = λ= h p = h 2mEk 6, Js 2 9, kg 1, = λ= h mv =6, kg 1 m s =6, m. = = m. Długośćλjest porównywalna z odległościa między atomami w ciele stałym. 19 dr inż. Ireneusz Owczarek Elementy fizyki kwantowej Wielkość niemożliwa do zmierzenia. Brak własności falowych ciał makroskopowych. Rysunek: Rozkład charakterystyczny dla A+B nie ma miejsca! Rysunek: Rozkład intensywności elektronów zgodnie z teoria kwantowa. Jedyny sposób wyjaśnienia to stworzenie nowego formalizmu matematycznego pozwalajacego opisać falowe właściwości czastek materialnych na poziomie mikroświata. 20 dr inż. Ireneusz Owczarek Elementy fizyki kwantowej

6 Funkcja falowaψ Funkcja falowaψ... O stanie układu kwantowego Stan czastki określa funkcja falowaψ(x,y,z,t) zależna od położenia czastki i od czasut. W przypadku jednowymiarowym, dla czastek poruszajacych się w kierunku osix Ψ=Ae ikx =A(coskx+isinkx). Zgodnie z hipoteza de Broglie a, czastki takie jak elektron czy proton, maja własności falowe. Opisuje je tzw. funkcja falowa, która: musi być funkcja ciagł a, a także musi mieć ciagł a pochodna, w ogólnym przypadku jest funkcja zespolona współrzędnych przestrzennych oraz czasu: Ψ(x,y,z,t)=ψ(x,y,z) e iωt, gdzie ψ(x, y, z) jest funkcja falowa niezależna od czasu ( amplituda funkcji falowejψ), ai 2 = 1. Klasycznie Stan układu fizycznego w każdej chwili czasu opisuje punkt w przestrzeni fazowej, a więc zarówno położenia jak i pęd każdej czastkix i(t),p i(t). Zgodnie z zasada superpozycji funkcja falowa wielu zdarzeń: Ψ=Ψ 1+Ψ dr inż. Ireneusz Owczarek Elementy fizyki kwantowej 22 dr inż. Ireneusz Owczarek Elementy fizyki kwantowej Funkcja falowaψ... Funkcja falowaψ... Prawdopodobieństwo znalezienia czastki w chwilitwelemencie objętościdxdydz p(x,y,z,t)=ψ (x,y,z,t) Ψ(x,y,z,t)dxdydz, gdzieψ to funkcja sprzężona doψ(różni się znakiem części urojonej). Suma prawdopodobieństw znalezienia czastki w poszczególnych elementach objętości rozciagnięta na cała przestrzeń musi spełniać tzw. Warunek normalizacji Ψ (x,y,z,t) Ψ(x,y,z,t)dV=1. Ψ Ψ=Ae i(kx ωt) Ae i(kx ωt) =A 2. Funkcja falowa musi spełniać następujace warunki: 1 Ψ musi mieć tylko jedna wartość w każdym punkcie. Warunek zapobiega istnieniu więcej niż jednego prawdopodobieństwa znalezienia czastki w danym miejscu, 2 Ψ oraz pochodne dψ musz a być ciagłe. Warunek ten nie dotyczy miejsc, dx gdy energia potencjalna daży do nieskończoności (w pobliżu jadra atomowego), 3 całkaψ Ψ po całej przestrzeni musi być równa1. Wartość funkcji musi być skończona dla dużychx. V Gęstościa prawdopodobieństwa zdarzenia nazywa się Ψ (x,y,z,t) Ψ(x,y,z,t)= Ψ(x,y,z,t) 2. Formalnie funkcja falowa Ψ = Ψ(x, y, z, t) charakteryzuje się właściwościami klasycznych fal, lecz nie reprezentuje takich wielkości jak np. wychylenie czastki z położenia równowagi. 23 dr inż. Ireneusz Owczarek Elementy fizyki kwantowej 24 dr inż. Ireneusz Owczarek Elementy fizyki kwantowej

7 Hamiltonian Ewolucja w czasie stanu układu Zasada nieoznaczoności Heisenberga Interpretacja wyników pomiarów w mikroświecie O ewolucji w czasie stanu układu Równanie czasowej ewolucji funkcji falowejψ gdzieĥ jest hamiltonianem cz astki i Ψ t =ĤΨ, Ĥ= 2 2m +U( x). Jest to równanie Schrödingera zależne od czasu. Operator Laplace a (laplasjan) to operator różniczkowy drugiego rzędu = 2 x y z 2. Postać równania Schrödingera dla stanu stacjonarnego ĤΨ=EΨ. Gdy układ jest odosobniony (izolowany, zachowawczy) to operatorĥ jest operatorem energii układu. 25 dr inż. Ireneusz Owczarek Elementy fizyki kwantowej O interpretacji wyników pomiarów w mikroświecie Pomiar dowolnej wielkości fizycznej zmienia na ogół stan układu kwantowego. Postulat ten dotyczy pomiaru idealnego, a więc nie obarczonego błędem wynikajacym z niedoskonałości przyrzadu pomiarowego. Obowiazuje zasada nieoznaczoności: pewnych wielkości fizycznych nie można zmierzyć równocześnie z dowolna dokładnościa. Mechanika klasyczna Proces pomiaru zaburza stan układu dokładność pomiaru jest zdeterminowana jedynie jakościa aparatury pomiarowej, nie ma teoretycznych ograniczeń na dokładność z jaka moga być wykonane pomiary. 26 dr inż. Ireneusz Owczarek Elementy fizyki kwantowej Zasada nieoznaczoności Heisenberga... Interpretacja wyników pomiarów w mikroświecie Zasada nieoznaczoności Heisenberga... Interpretacja wyników pomiarów w mikroświecie Zasada nieoznaczoności Iloczyn niepewności jednoczesnego poznania pewnych wielkości (np. chwilowych wartości pędu p i położenia x, energii E i czasu jej pomiaru t) nie może być mniejszy od stałej Planckahpodzielonej przez2π x p x E t. Przykład Zasada nieoznaczoności dla równoczesnego pomiaru energii i czasu E t Przykład Czas przebywania atomu sodu w stanie wzbudzonym zmierzono z dokładnościa t=1, s. Z jaka maksymalna dokładnościa można było wyznaczyć wartość energii tego stanu? E t = 6, Js 2 π 1, s = Rysunek: Funkcja rozkładu B(p) względem pędu i odpowiadajaca jej paczka falowa (poniżej). Szerokość paczki falowej na rys. (a) jest większa niż szerokość na rys. (b). 27 dr inż. Ireneusz Owczarek Elementy fizyki kwantowej 28 dr inż. Ireneusz Owczarek Elementy fizyki kwantowej =0, J 6, ev/j= =4, ev.

8 Moment pędu Spin Fermiony i bozony Symetria funkcji falowej O spinie czastki elementarnej Czastka elementarna ma własny wewnętrzny moment pędu czastki w układzie, w którym nie wykonuje ruchu postępowego, zwany spinowym momentem pędu lub spinem S 2 =Sx+S 2 y+s 2 z=s(s+1) 2 2 przy czym spinowa liczba kwantowas= 1 2. Wartość własnego moment pędu elektronu: S= s(s+1). Rzut własnego momentu pędu na wybrana oś S z=m s. Klasycznie Obiekty identyczne sa rozróżnialne. Można śledzić ruch każdej czastki nawet jeżeli jest ona identyczna z innymi. Brak specjalnych konsekwencji identyczności czastek. O symetrii funkcji falowej Czastki identyczne sa nierozróżnialne. Nierozróżnialność ma poważne konsekwencje. Wynika z niej własność stanów kwantowych: Funkcja falowaψopisujaca układ jednakowego rodzaju bozonów jest symetryczna względem zamiany współrzędnych, tzn. jeśli: x 1 x 2,y 1 y 2,z 1 z 2, to Ψ(1,2,3,...,N)=Ψ(2,1,3,...,N). Jeśli czastki 1 i 2 oznaczaja fermiony jednakowego rodzaju, to funkcja falowa musi być antysymetryczna, tzn. Ψ(1,2,3,...,N)= Ψ(2,1,3,...,N). 29 dr inż. Ireneusz Owczarek Elementy fizyki kwantowej 30 dr inż. Ireneusz Owczarek Elementy fizyki kwantowej Fermiony i bozony... Symetria funkcji falowej Fermiony i bozony... Symetria funkcji falowej Stany całkowicie symetryczne opisuja czastki o spinie całkowitym (bozony), stany antysymetryczne opisuja czastki o spinie połówkowym (fermiony). Zakaz Pauliego Gęstość prawdopodobieństwa zastania dwóch jednakowych fermionów w jednym miejscu i z jednakowa współrzędna spinowa jest równa 0. Konsekwencje zakazu Pauliego: Tworzenie się struktury orbitalowej poziomów elektronów wszystkich atomów, z której z kolei wynikaja wszystkie właściwości chemiczne pierwiastków chemicznych. Nieprzenikalność materii przez sama siebie. W wielu przypadkach zasada uniemożliwia występowanie pewnych konfiguracji przestrzennych orbitali blisko położonych atomów czy czasteczek. Względna trwałość obiektów materialnych. Zakaz nie dotyczy bozonów o dowolnych współrzędnych spinowych. W danym stanie kwantowym może znajdować się jeden fermion lub żadne dwa fermiony nie moga w jednej chwili występować w dokładnie tym samym stanie kwantowym. 31 dr inż. Ireneusz Owczarek Elementy fizyki kwantowej 32 dr inż. Ireneusz Owczarek Elementy fizyki kwantowej

9 Model Bohra atomu wodoru Doświadczenie Rutherforda (1911) Porzadek wśród atomów Model Bohra atomu wodoru Model Bohra atomu wodoru Porzadek wśród atomów Zakładajac, że elektron porusza się po orbitach kołowych o promieniur ze środkiem w jadrze, a środek masy pokrywa się ze środkiem jadra (protonu). Z równowagi sił F c=ma, Analiza katów rozproszenia czastek alfa pozwoliła określić rozmiary ładunku dodatniego wchodzacego w skład atomu złota. Prawie cała masa atomu skupiona jest w bardzo małym obszarze jadrze atomowym. Rozmiar jadra zależy od pierwiastka, ale może być oszacowany jako ok m, rozmiary atomu rzędu10 10 m. Model atomu wprowadzał bliskie współczesnemu modelowi założenia: ładunek dodatni zgromadzony jest w niewielkim, a przez to bardzo gęstym jadrze gromadzacym większość masy atomu, ładunek jadra jest równy iloczynowi liczby atomowej i ładunku elektronu, ujemnie naładowane elektrony okrażaj a jadro. 33 dr inż. Ireneusz Owczarek Elementy fizyki kwantowej Energia całkowita 1 e 2 4πǫ 0 r 2=mv2 r, można obliczyć energię kinetyczna E k = mv2 2 E c=e k +E p= e2 8πǫ e2 e2 = 0r 4πǫ 0r 8πǫ. 0r 34 dr inż. Ireneusz Owczarek Elementy fizyki kwantowej = e2 8πǫ 0r. Model Bohra atomu wodoru Model Bohra atomu wodoru... Porzadek wśród atomów Model Bohra atomu wodoru Model Bohra atomu wodoru... Energia elektronu Postulaty Bohra 1 Elektron w atomie porusza się po orbicie kołowej pod wpływem przyciagania kulombowskiego pomiędzy elektronem a jadrem. 2 Elektron może poruszać się tylko po takich orbitach, dla których moment pęduljest równy całkowitej wielokrotności stałej Plancka podzielonej przez2π L=n h =n n=1, 2, 3,.. 2π gdzienoznacza liczbę kwantowa. 3 Elektron poruszajac się po orbicie nie wypromieniowuje energii. Jego całkowita energia pozostaje stała. 4 Przejściu elektronu z orbity o energiie n na orbitę o energiie m towarzyszy emisja lub absorpcja fotonu o energii E n E m=hν. Z postulatu Bohra energia kinetyczna Promień Bohra gdzier 0=5, m. Energia elektronu v= n mr, e 2 ( ) n 2, 8πǫ =1 0r 2 m mr r n= 4πǫ0 2 me 2 n2 =r 0n 2, E n= me4 32π 2 ǫ n 2= E0 n 2, gdziee 0=13,59eV jest energia jonizacji atomu (przejście ze stanun=1do nieskończoności). 35 dr inż. Ireneusz Owczarek Elementy fizyki kwantowej 36 dr inż. Ireneusz Owczarek Elementy fizyki kwantowej

10 Model Bohra atomu wodoru Model Bohra atomu wodoru... Energia elektronu Model Bohra atomu wodoru Model Bohra atomu wodoru... Energia elektronu Po czasie10 8 s następuje samorzutne przejście elektronu z poziomunna poziomk (n>k). Atom emituje kwant promieniowania o częstotliwości Ponieważ ν= En E k h = me4 64π 3 ǫ ( 1 k 2 1 n 2 ). ν= c λ, Długość fali emitowanego fotonu 1 λ = me 4 ( 1 1 ) ( 1 64π 3 cǫ k 2 =R 1 n 2 0 ), k 2 n 2 gdzier 0=1, m 1 jest stała Rydberga. Grupę linii z jednakowymi wartościaminnazwano seria widmowa. Dla jonów wodoropodobnych (Z jest liczba porzadkow a w układzie okresowym pierwiastków) ( 1 1 λ =Z2 R 1 ) 0 k 2. n 2 37 dr inż. Ireneusz Owczarek Elementy fizyki kwantowej 38 dr inż. Ireneusz Owczarek Elementy fizyki kwantowej Atom wodoru w mechanice kwantowej Sprzeczności z prawami fizyki klasycznej Równanie Schrödingera Kwantowanie energii Atom wodoru w mechanice kwantowej Równanie Schrödingera Niestety model atomu Bohra jest niewystarczajacy: zbyt prosty, nie pasuje do atomów wieloelektronowych, dlaczego moment pędu elektronu jest skwantowany? dlaczego elektron nie emituje promieniowania i nie spada na jadro? Mimo tego wskazuje on, że elektrony w atomie przyjmuja pewne stacjonarne (trwałe) stany energetyczne. Atom wodoru jest swego rodzaju studnia potencjału (naturalna pułapka) dla elektronu. Energia potencjalna oddziaływania elektron jadro jest postaci U(r)= e2 4πǫ 0r. Równanie Schrödingera dla przypadku trójwymiarowego w układzie kartezjańskim 2 Ψ Ψ Ψ x 2+ 2 y 2+ 2 z = 2m 2 2(E U)Ψ. 39 dr inż. Ireneusz Owczarek Elementy fizyki kwantowej Rozwiazanie równania Schrödingera istnieje jeśli energia elektronu przyjmuje ściśle określone wielkości dla wartościr=r 0 E n= me4 2 Z2 Z2 32π 2 ǫ 2 0 n2= 13,59eV n 2, r 0= 4πǫ0 2 me 2 =5, m. wyrażenia dlar 0 ie n sa identyczne jak w modelu Bohra, kwantyzacja jest wynikiem rozwiazania równania Schrödingera, a nie postulatem, r 0 nie jest promieniem orbity, lecz odległościa od jadra, przy której prawdopodobieństwo znalezienia się elektronu osiagnie wartość maksymalna, przyjęcie klasycznej orbity traci sens, moment pędu jest skwantowanyl= l(l+1) a liczba l=0,1,2,...,n 1, jest tzw. orbitalna (azymutalna) liczba kwantowa. 40 dr inż. Ireneusz Owczarek Elementy fizyki kwantowej

11 Atom wodoru w mechanice kwantowej Równanie Schrödingera Kwantowanie przestrzenne momentu pędu Atom wodoru w mechanice kwantowej Liczby kwantowe w modelu Bohra Liczby kwantowe Liczbam l jest tzw. magnetyczna liczba kwantowa m l =0,±1,±2,...,±l. Wartość rzutu momentu pędu elektronu na oś określajac a wyróżniony kierunek w atomie, np. zewnętrznego pola elektrycznego lub magnetycznego L z=m l. Jeżeli długość orbity elektronu jest równa całkowitej wielokrotnościλ, fale de Broglie a nie wygaszaja się orbita jest dozwolona 2πr=m l λ. Stan elektronu określony jest przez główna liczbę kwantowanioznacza numer orbity (odpowiada odległości od jadra). Przyjmuje wartości całkowitych liczb dodatnich,n=1,2,3,..., orbitalna liczbę kwantowalioznacza wartość bezwzględna orbitalnego momentu pędu. Przyjmuje wartości liczb naturalnych z zakresu<0,n 1>, magnetyczna liczbę kwantowam l i oznacza rzut orbitalnego momentu pędu na wybrana oś. Przyjmuje wartości liczb całkowitych z zakresu< l,0,+l>, magnetyczna spinowa liczbę kwantowam s określajac a spinowy moment elektronu. Dla elektronu przyjmuje wartości+ 1 2 (prawoskrętny) lub 1 (lewoskrętny). 2 W swobodnym atomie wodoru i jonie wodoropodobnym wszystkie stany o danej wartości liczby kwantowejniróżnych wartościach liczb kwantowychl immaja tę sama energię. 41 dr inż. Ireneusz Owczarek Elementy fizyki kwantowej 42 dr inż. Ireneusz Owczarek Elementy fizyki kwantowej Atom wodoru w mechanice kwantowej Liczby kwantowe Kolejność obsadzania poziomów elektronowych Literatura podstawowa Atom wodoru w mechanice kwantowej Liczby kwantowe Reguła Hunga Poziomy o jednakowej energii sa najpierw obsadzane przez pojedyncze elektrony o takim samym spinie. Zakaz Pauliego W atomie dwa elektrony nie moga mieć identycznych czterech liczb kwantowych Z zasady tej wynika,że: na każdej powłoce znajduje się maksymalniez=2n 2 stanów do obsadzenia, Na każdej podpowłoce znajduje się2(2l+1) stanów do obsadzenia. n l m l m s Z , ± ± ± ± dr inż. Ireneusz Owczarek Elementy fizyki kwantowej Kania S. Wykłady z fizyki cz. 1 i 2. Wydawnictwo PŁ, Łódź Halliday D., Resnick R, Walker J. Podstawy Fizyki t PWN, Warszawa Orear J. Fizyka t. I i II. WNT, Warszawa Sawieliew I. W. Wykłady z fizyki t. I-III. PWN, Warszawa Strona internetowa prowadzona przez CMF PŁ e-fizyka. Podstawy fizyki. Kakol Z. Żukrowski J. kakol/wyklady_pl.htm Wykłady z fizyki. 44 dr inż. Ireneusz Owczarek Elementy fizyki kwantowej

Elementy optyki kwantowej. Ciało doskonale czarne. Teoria Wiena. Notatki. Notatki. Notatki. Notatki. dr inż. Ireneusz Owczarek

Elementy optyki kwantowej. Ciało doskonale czarne. Teoria Wiena. Notatki. Notatki. Notatki. Notatki. dr inż. Ireneusz Owczarek Elementy optyki kwantowej dr inż. Ireneusz Owczarek CNMiF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 1 dr inż. Ireneusz Owczarek Elementy optyki kwantowej Ciało doskonale czarne Rozkład

Bardziej szczegółowo

Atom wodoru i jony wodoropodobne

Atom wodoru i jony wodoropodobne Atom wodoru i jony wodoropodobne dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2012/13 Spis treści Spis treści 1. Model Bohra atomu wodoru 2 1.1. Porządek

Bardziej szczegółowo

Elementy fizyki kwantowej. Obraz interferencyjny. Motto. Funkcja falowa Ψ. Notatki. Notatki. Notatki. Notatki. dr inż.

Elementy fizyki kwantowej. Obraz interferencyjny. Motto. Funkcja falowa Ψ. Notatki. Notatki. Notatki. Notatki. dr inż. Elementy fizyki kwantowej dr inż. Ireneusz Owczarek CNMiF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 1 dr inż. Ireneusz Owczarek Elementy fizyki kwantowej Obraz interferencyjny De Broglie

Bardziej szczegółowo

Elementy fizyki kwantowej. Obraz interferencyjny. Funkcja falowa Ψ. Funkcja falowa Ψ... Notatki. Notatki. Notatki. Notatki. dr inż.

Elementy fizyki kwantowej. Obraz interferencyjny. Funkcja falowa Ψ. Funkcja falowa Ψ... Notatki. Notatki. Notatki. Notatki. dr inż. Elementy fizyki kwantowej dr inż. Ireneusz Owczarek CNMiF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 013/14 1 dr inż. Ireneusz Owczarek Elementy fizyki kwantowej Obraz interferencyjny

Bardziej szczegółowo

Elementy fizyki kwantowej. Ciało doskonale czarne. Teoria Wiena. Notatki. Notatki. Notatki. Notatki. dr inż. Ireneusz Owczarek

Elementy fizyki kwantowej. Ciało doskonale czarne. Teoria Wiena. Notatki. Notatki. Notatki. Notatki. dr inż. Ireneusz Owczarek Elementy fizyki kwantowej dr inż. Ireneusz Owczarek CNMiF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 1 dr inż. Ireneusz Owczarek Elementy fizyki kwantowej Ciało doskonale czarne Rozkład

Bardziej szczegółowo

Fizyka 3.3 WYKŁAD II

Fizyka 3.3 WYKŁAD II Fizyka 3.3 WYKŁAD II Promieniowanie elektromagnetyczne Dualizm korpuskularno-falowy światła Fala elektromagnetyczna Strumień fotonów o energii E F : E F = hc λ c = 3 10 8 m/s h = 6. 63 10 34 J s Światło

Bardziej szczegółowo

Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach

Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach Efekt Comptona. p f Θ foton elektron p f p e 0 p e Zderzenia fotonów

Bardziej szczegółowo

Fizyka kwantowa. promieniowanie termiczne zjawisko fotoelektryczne. efekt Comptona dualizm korpuskularno-falowy. kwantyzacja światła

Fizyka kwantowa. promieniowanie termiczne zjawisko fotoelektryczne. efekt Comptona dualizm korpuskularno-falowy. kwantyzacja światła W- (Jaroszewicz) 19 slajdów Na podstawie prezentacji prof. J. Rutkowskiego Fizyka kwantowa promieniowanie termiczne zjawisko fotoelektryczne kwantyzacja światła efekt Comptona dualizm korpuskularno-falowy

Bardziej szczegółowo

Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne.

Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne. Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne. DUALIZM ŚWIATŁA fala interferencja, dyfrakcja, polaryzacja,... kwant, foton promieniowanie ciała doskonale

Bardziej szczegółowo

Stara i nowa teoria kwantowa

Stara i nowa teoria kwantowa Stara i nowa teoria kwantowa Braki teorii Bohra: - podane jedynie położenia linii, brak natężeń -nie tłumaczy ilości elektronów na poszczególnych orbitach - model działa gorzej dla atomów z więcej niż

Bardziej szczegółowo

Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury.

Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury. 1 Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury. natężenie natężenie teoria klasyczna wynik eksperymentu

Bardziej szczegółowo

Mechanika kwantowa. Erwin Schrödinger ( ) Werner Heisenberg

Mechanika kwantowa. Erwin Schrödinger ( ) Werner Heisenberg Mechanika kwantowa Erwin Schrödinger (1887-1961) Werner Heisenberg 1901-1976 Falowe równanie ruchu (uproszczenie: przypadek jednowymiarowy) Dla fotonów Dla cząstek Równanie Schrödingera y x = 1 c y t y(

Bardziej szczegółowo

Optyka kwantowa fotony i fale materii

Optyka kwantowa fotony i fale materii Optyka kwantowa fotony i fale materii dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2012/13 Plan wykładu Spis treści 1. Narodziny mechaniki kwantowej 2 1.1.

Bardziej szczegółowo

Fizyka 3. Konsultacje: p. 329, Mechatronika

Fizyka 3. Konsultacje: p. 329, Mechatronika Fizyka 3 Konsultacje: p. 39, Mechatronika marzan@mech.pw.edu.pl Zaliczenie: 1 sprawdzian 30 pkt 15.1 18 3.0 18.1 1 3.5 1.1 4 4.0 4.1 7 4.5 7.1 30 5.0 http:\\adam.mech.pw.edu.pl\~marzan Program: - elementy

Bardziej szczegółowo

Światło fala, czy strumień cząstek?

Światło fala, czy strumień cząstek? 1 Światło fala, czy strumień cząstek? Teoria falowa wyjaśnia: Odbicie Załamanie Interferencję Dyfrakcję Polaryzację Efekt fotoelektryczny Efekt Comptona Teoria korpuskularna wyjaśnia: Odbicie Załamanie

Bardziej szczegółowo

Kwantowa natura promieniowania

Kwantowa natura promieniowania Kwantowa natura promieniowania Promieniowanie ciała doskonale czarnego Ciało doskonale czarne ciało, które absorbuje całe padające na nie promieniowanie bez względu na częstotliwość. Promieniowanie ciała

Bardziej szczegółowo

Promieniowanie cieplne ciał.

Promieniowanie cieplne ciał. Wypromieniowanie fal elektromagnetycznych przez ciała Promieniowanie cieplne (termiczne) Luminescencja Chemiluminescencja Elektroluminescencja Katodoluminescencja Fotoluminescencja Emitowanie fal elektromagnetycznych

Bardziej szczegółowo

Fizyka 2. Janusz Andrzejewski

Fizyka 2. Janusz Andrzejewski Fizyka 2 wykład 14 Janusz Andrzejewski Atom wodoru Wczesne modele atomu -W czasach Newtona atom uważany była za małą twardą kulkę co dość dobrze sprawdzało się w rozważaniach dotyczących kinetycznej teorii

Bardziej szczegółowo

Początek XX wieku. Dualizm korpuskularno - falowy

Początek XX wieku. Dualizm korpuskularno - falowy Początek XX wieku Światło: fala czy cząstka? Kwantowanie energii promieniowania termicznego postulat Plancka efekt fotoelektryczny efekt Comptona Fale materii de Broglie a Dualizm korpuskularno - falowy

Bardziej szczegółowo

Chemia ogólna - część I: Atomy i cząsteczki

Chemia ogólna - część I: Atomy i cząsteczki dr ab. Wacław Makowski Cemia ogólna - część I: Atomy i cząsteczki 1. Kwantowanie. Atom wodoru 3. Atomy wieloelektronowe 4. Termy atomowe 5. Cząsteczki dwuatomowe 6. Hybrydyzacja 7. Orbitale zdelokalizowane

Bardziej szczegółowo

Teorie wiązania chemicznego i podstawowe zasady mechaniki kwantowej Zjawiska, które zapowiadały nadejście nowej ery w fizyce i przybliżały

Teorie wiązania chemicznego i podstawowe zasady mechaniki kwantowej Zjawiska, które zapowiadały nadejście nowej ery w fizyce i przybliżały WYKŁAD 1 Teorie wiązania chemicznego i podstawowe zasady mechaniki kwantowej Zjawiska, które zapowiadały nadejście nowej ery w fizyce i przybliżały sformułowanie praw fizyki kwantowej: promieniowanie katodowe

Bardziej szczegółowo

Modele atomu wodoru. Modele atomu wodoru Thomson'a Rutherford'a Bohr'a

Modele atomu wodoru. Modele atomu wodoru Thomson'a Rutherford'a Bohr'a Modele atomu wodoru Modele atomu wodoru Thomson'a Rutherford'a Bohr'a Demokryt: V w. p.n.e najmniejszy, niepodzielny metodami chemicznymi składnik materii. atomos - niepodzielny Co to jest atom? trochę

Bardziej szczegółowo

Promieniowanie X. Jak powstaje promieniowanie rentgenowskie Budowa lampy rentgenowskiej Widmo ciągłe i charakterystyczne promieniowania X

Promieniowanie X. Jak powstaje promieniowanie rentgenowskie Budowa lampy rentgenowskiej Widmo ciągłe i charakterystyczne promieniowania X Promieniowanie X Jak powstaje promieniowanie rentgenowskie Budowa lampy rentgenowskiej Widmo ciągłe i charakterystyczne promieniowania X Lampa rentgenowska Lampa rentgenowska Promieniowanie rentgenowskie

Bardziej szczegółowo

Podstawy fizyki kwantowej

Podstawy fizyki kwantowej Podstawy fizyki kwantowej Fizyka kwantowa - co to jest? Światło to fala czy cząstka? promieniowanie termiczne efekt fotoelektryczny efekt Comptona fale materii de Broglie a równanie Schrodingera podstawa

Bardziej szczegółowo

Budowa atomów. Atomy wieloelektronowe Układ okresowy pierwiastków

Budowa atomów. Atomy wieloelektronowe Układ okresowy pierwiastków Budowa atomów Atomy wieloelektronowe Układ okresowy pierwiastków Model atomu Bohra atom zjonizowany (ciągłe wartości energii) stany wzbudzone jądro Energia (ev) elektron orbita stan podstawowy Poziomy

Bardziej szczegółowo

ZESTAW PYTAŃ I ZAGADNIEŃ NA EGZAMIN Z FIZYKI sem /13

ZESTAW PYTAŃ I ZAGADNIEŃ NA EGZAMIN Z FIZYKI sem /13 1 ZESTAW PYTAŃ I ZAGADNIEŃ NA EGZAMIN Z FIZYKI sem. 2 2012/13 Ruch falowy 1. Co to jest fala mechaniczna? Podaj warunki niezbędne do zaobserwowania rozchodzenia się fali mechanicznej. 2. Jaka wielkość

Bardziej szczegółowo

Stany skupienia materii

Stany skupienia materii Stany skupienia materii Ciała stałe - ustalony kształt i objętość - uporządkowanie dalekiego zasięgu - oddziaływania harmoniczne Ciecze -słabo ściśliwe - uporządkowanie bliskiego zasięgu -tworzą powierzchnię

Bardziej szczegółowo

h 2 h p Mechanika falowa podstawy pˆ 2

h 2 h p Mechanika falowa podstawy pˆ 2 Mechanika falowa podstawy Hipoteza de Broglie a Zarówno promieniowanie jak i cząstki materialne posiadają naturę dwoistą korpuskularno-falową. Z każdą mikrocząstką można związać pewien proces falowy pierwotnie

Bardziej szczegółowo

Falowa natura materii

Falowa natura materii r. akad. 2012/2013 wykład I - II Podstawy Procesów i Konstrukcji Inżynierskich Falowa natura materii 1 r. akad. 2012/2013 Podstawy Procesów i Konstrukcji Inżynierskich Warunki zaliczenia: Aby uzyskać dopuszczenie

Bardziej szczegółowo

FIZYKA-egzamin opracowanie pozostałych pytań

FIZYKA-egzamin opracowanie pozostałych pytań FIZYKA-egzamin opracowanie pozostałych pytań Andrzej Przybyszewski Michał Witczak Marcin Talarek. Definicja pracy na odcinku A-B 2. Zdefiniować różnicę energii potencjalnych gdy ciało przenosimy z do B

Bardziej szczegółowo

I. PROMIENIOWANIE CIEPLNE

I. PROMIENIOWANIE CIEPLNE I. PROMIENIOWANIE CIEPLNE - lata '90 XIX wieku WSTĘP Widmo promieniowania elektromagnetycznego zakres "pokrycia" różnymi rodzajami fal elektromagnetycznych promieniowania zawartego w danej wiązce. rys.i.1.

Bardziej szczegółowo

Modele atomu wodoru. Modele atomu wodoru Thomson'a Rutherford'a Bohr'a

Modele atomu wodoru. Modele atomu wodoru Thomson'a Rutherford'a Bohr'a Modele atomu wodoru Modele atomu wodoru Thomson'a Rutherford'a Bohr'a Demokryt: V w. p.n.e najmniejszy, niepodzielny metodami chemicznymi składnik materii. atomos - niepodzielny Co to jest atom? trochę

Bardziej szczegółowo

Wykład FIZYKA II. 11. Optyka kwantowa. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA II. 11. Optyka kwantowa.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA II 11. Optyka kwantowa Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ FIZYKA KLASYCZNA A FIZYKA WSPÓŁCZESNA Fizyka klasyczna

Bardziej szczegółowo

ZJAWISKA KWANTOWO-OPTYCZNE

ZJAWISKA KWANTOWO-OPTYCZNE ZJAWISKA KWANTOWO-OPTYCZNE Źródła światła Prawo promieniowania Kirchhoffa Ciało doskonale czarne Promieniowanie ciała doskonale czarnego Prawo promieniowania Plancka Prawo Stefana-Boltzmanna Prawo przesunięć

Bardziej szczegółowo

Atom wodoru w mechanice kwantowej. Równanie Schrödingera

Atom wodoru w mechanice kwantowej. Równanie Schrödingera Fizyka atomowa Atom wodoru w mechanice kwantowej Moment pędu Funkcje falowe atomu wodoru Spin Liczby kwantowe Poprawki do równania Schrödingera: struktura subtelna i nadsubtelna; przesunięcie Lamba Zakaz

Bardziej szczegółowo

Wczesne modele atomu

Wczesne modele atomu Wczesne modele atomu Wczesne modele atomu Demokryt (400 p.n.e.) Grecki filozof Demokryt rozpoczął poszukiwania opisu materii około 2400 lat temu. Postawił pytanie: Czy materia może być podzielona na mniejsze

Bardziej szczegółowo

FALE MATERII. De Broglie, na podstawie analogii optycznych, w roku 1924 wysunął hipotezę, że

FALE MATERII. De Broglie, na podstawie analogii optycznych, w roku 1924 wysunął hipotezę, że FAL MATRII De Broglie, na podstawie analogii optycznych, w roku 194 wysunął hipotezę, że cząstki materialne także charakteryzują się dualizmem korpuskularno-falowym. Hipoteza de Broglie a Cząstce materialnej

Bardziej szczegółowo

Podstawy fizyki kwantowej

Podstawy fizyki kwantowej Podstawy fizyki kwantowej Fizyka kwantowa - co to jest? Światło to fala czy cząstka? promieniowanie termiczne efekt fotoelektryczny efekt Comptona fale materii de Broglie a równanie Schrodingera podstawa

Bardziej szczegółowo

PODSTAWY MECHANIKI KWANTOWEJ

PODSTAWY MECHANIKI KWANTOWEJ PODSTAWY MECHANIKI KWANTOWEJ De Broglie, na podstawie analogii optycznych, w roku 194 wysunął hipotezę, że cząstki materialne także charakteryzują się dualizmem korpuskularno-falowym. Hipoteza de Broglie

Bardziej szczegółowo

Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków).

Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków). Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków). 1925r. postulat Pauliego: Na jednej orbicie może znajdować się nie więcej

Bardziej szczegółowo

Podstawy fizyki kwantowej. Nikt nie rozumie fizyki kwantowej R. Feynman, laureat Nobla z fizyki

Podstawy fizyki kwantowej. Nikt nie rozumie fizyki kwantowej R. Feynman, laureat Nobla z fizyki Podstawy fizyki kwantowej Nikt nie rozumie fizyki kwantowej R. Feynman, laureat Nobla z fizyki Podstawy fizyki kwantowej Fizyka kwantowa - co to jest? Światło to fala czy cząstka? promieniowanie termiczne

Bardziej szczegółowo

Podstawy fizyki wykład 3

Podstawy fizyki wykład 3 D. Halliday, R. Resnick, J.Walker: Podstawy Fizyki, tom 5, PWN, Warszawa 2003. H. D. Young, R. A. Freedman, Sear s & Zemansky s University Physics with Modern Physics, Addison-Wesley Publishing Company,

Bardziej szczegółowo

Wykład Budowa atomu 3

Wykład Budowa atomu 3 Wykład 14. 12.2016 Budowa atomu 3 Model atomu według mechaniki kwantowej Równanie Schrödingera dla atomu wodoru i jego rozwiązania Liczby kwantowe n, l, m l : - Kwantowanie energii i liczba kwantowa n

Bardziej szczegółowo

Rysunek 3-23 Hipotetyczne widmo ciągłe atomu Ernesta Rutherforda oraz rzeczywiste widmo emisyjne wodoru w zakresie światła widzialnego

Rysunek 3-23 Hipotetyczne widmo ciągłe atomu Ernesta Rutherforda oraz rzeczywiste widmo emisyjne wodoru w zakresie światła widzialnego 3.5. Model Bohra-Sommerfelda Przeciw modelowi atomu zaproponowanego przez Ernesta Rutherforda przemawiały także wyniki badań spektroskopowych pierwiastków. Jeśli elektrony, jak wynika z teorii Maxwella,

Bardziej szczegółowo

Wykład 14. Termodynamika gazu fotnonowego

Wykład 14. Termodynamika gazu fotnonowego Wykład 14 Termodynamika gazu fotnonowego dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 16 stycznia 217 dr hab. A. Fronczak (Wydział Fizyki PW) Wykład: Elementy fizyki statystycznej

Bardziej szczegółowo

Wykład 9 Podstawy teorii kwantów fale materii, dualizm falowo-korpuskularny, funkcja falowa, równanie Schrödingera, stacjonarne równanie

Wykład 9 Podstawy teorii kwantów fale materii, dualizm falowo-korpuskularny, funkcja falowa, równanie Schrödingera, stacjonarne równanie Wykład 9 Podstawy teorii kwantów fale materii, dualizm falowo-korpuskularny, funkcja falowa, równanie Schrödingera, stacjonarne równanie Schrödingera, zasada nieoznaczoności Heisenberga, ruch cząstki swobodnej,

Bardziej szczegółowo

Liczby kwantowe elektronu w atomie wodoru

Liczby kwantowe elektronu w atomie wodoru Liczby kwantowe elektronu w atomie wodoru Efekt Zeemana Atom wodoru wg mechaniki kwantowej ms = magnetyczna liczba spinowa ms = -1/2, do pełnego opisu stanu elektronu potrzebna jest ta liczba własność

Bardziej szczegółowo

Podstawy fizyki kwantowej

Podstawy fizyki kwantowej Podstawy fizyki kwantowej Fizyka kwantowa - co to jest? Światło to fala czy cząstka? promieniowanie termiczne efekt fotoelektryczny efekt Comptona fale materii de Broglie a równanie Schrodingera podstawa

Bardziej szczegółowo

p.n.e. Demokryt z Abdery. Wszystko jest zbudowane z niewidzialnych cząstek - atomów (atomos ->niepodzielny)

p.n.e. Demokryt z Abdery. Wszystko jest zbudowane z niewidzialnych cząstek - atomów (atomos ->niepodzielny) O atomie 460-370 p.n.e. Demokryt z Abdery Wszystko jest zbudowane z niewidzialnych cząstek - atomów (atomos ->niepodzielny) 1808 John Dalton teoria atomistyczna 1. Pierwiastki składają się z małych, niepodzielnych

Bardziej szczegółowo

Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki?

Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Elektron fala stojąca wokół jądra Mechanika kwantowa Równanie Schrödingera Ĥ E ψ H ˆψ = Eψ operator różniczkowy

Bardziej szczegółowo

PODSTAWY MECHANIKI KWANTOWEJ

PODSTAWY MECHANIKI KWANTOWEJ PODSTAWY MECHANIKI KWANTOWEJ Za dzień narodzenia mechaniki kwantowej jest uważany 14 grudnia roku 1900. Tego dnia, na posiedzeniu Niemieckiego Towarzystwa Fizycznego w Instytucie Fizyki Uniwersytetu Berlińskiego

Bardziej szczegółowo

Zasady obsadzania poziomów

Zasady obsadzania poziomów Zasady obsadzania poziomów Model atomu Bohra Model kwantowy atomu Fala stojąca Liczby kwantowe -główna liczba kwantowa (n = 1,2,3...) kwantuje energię elektronu (numer orbity) -poboczna liczba kwantowa

Bardziej szczegółowo

Kryształy, półprzewodniki, nanotechnologie. Dr inż. KAROL STRZAŁKOWSKI Instytut Fizyki UMK w Toruniu

Kryształy, półprzewodniki, nanotechnologie. Dr inż. KAROL STRZAŁKOWSKI Instytut Fizyki UMK w Toruniu Kryształy, półprzewodniki, nanotechnologie. Dr inż. KAROL STRZAŁKOWSKI Instytut Fizyki UMK w Toruniu skaroll@fizyka.umk.pl Plan ogólny Kryształy, półprzewodniki, nanotechnologie, czyli czym będziemy się

Bardziej szczegółowo

Wykład Budowa atomu 1

Wykład Budowa atomu 1 Wykład 30. 11. 2016 Budowa atomu 1 O atomach Trochę historii i wprowadzenie w temat Promieniowanie i widma Doświadczenie Rutherforda i odkrycie jądra atomowego Model atomu wodoru Bohra sukcesy i ograniczenia

Bardziej szczegółowo

Elementy mechaniki kwantowej. Mechanika kwantowa co to jest? Funkcja falowa Równanie Schrödingera

Elementy mechaniki kwantowej. Mechanika kwantowa co to jest? Funkcja falowa Równanie Schrödingera lementy mechaniki kwantowej Mechanika kwantowa co to jest? Funkcja falowa Równanie Schrödingera Funkcja falowa Jak matematycznie opisać własności falowe materii? Czym są fale materii? Własności falowe

Bardziej szczegółowo

Stałe : h=6, Js h= 4, eVs 1eV= J nie zależy

Stałe : h=6, Js h= 4, eVs 1eV= J nie zależy T_atom-All 1 Nazwisko i imię klasa Stałe : h=6,626 10 34 Js h= 4,14 10 15 evs 1eV=1.60217657 10-19 J Zaznacz zjawiska świadczące o falowej naturze światła a) zjawisko fotoelektryczne b) interferencja c)

Bardziej szczegółowo

gęstością prawdopodobieństwa

gęstością prawdopodobieństwa Funkcja falowa Zgodnie z hipotezą de Broglie'a, cząstki takie jak elektron czy proton, mają własności falowe. Własności falowe cząstki (lub innego obiektu) w mechanice kwantowej opisuje tzw. funkcja falowa(,t)

Bardziej szczegółowo

Wykład Budowa atomu 2

Wykład Budowa atomu 2 Wykład 7.12.2016 Budowa atomu 2 O atomach cd Model Bohra podsumowanie Serie widmowe O czym nie mówi model Bohra Wzbudzenie, emisja, absorpcja O liniach widmowych Kwantowomechaniczny model atomu sformułowanie

Bardziej szczegółowo

Spis treści. Przedmowa redaktora do wydania czwartego 11

Spis treści. Przedmowa redaktora do wydania czwartego 11 Mechanika kwantowa : teoria nierelatywistyczna / Lew D. Landau, Jewgienij M. Lifszyc ; z jęz. ros. tł. Ludwik Dobrzyński, Andrzej Pindor. - Wyd. 3. Warszawa, 2012 Spis treści Przedmowa redaktora do wydania

Bardziej szczegółowo

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 2006 Instytut Fizyki Uniwersytetu Szczecińskiego Rezonansowe oddziaływanie układu atomowego z promieniowaniem "! "!! # $%&'()*+,-./-(01+'2'34'*5%.25%&+)*-(6

Bardziej szczegółowo

Model Bohra budowy atomu wodoru - opis matematyczny

Model Bohra budowy atomu wodoru - opis matematyczny Model Bohra budowy atomu wodoru - opis matematyczny Uwzględniając postulaty kwantowe Bohra, można obliczyć promienie orbit dozwolonych, energie elektronu na tych orbitach, wartość prędkości elektronu na

Bardziej szczegółowo

Atom wodoru. Model klasyczny: nieruchome jądro +p i poruszający się wokół niego elektron e w odległości r; energia potencjalna elektronu:

Atom wodoru. Model klasyczny: nieruchome jądro +p i poruszający się wokół niego elektron e w odległości r; energia potencjalna elektronu: ATOM WODORU Atom wodoru Model klasyczny: nieruchome jądro +p i poruszający się wokół niego elektron e w odległości r; energia potencjalna elektronu: U = 4πε Opis kwantowy: wykorzystując zasadę odpowiedniości

Bardziej szczegółowo

Wykład 18: Elementy fizyki współczesnej -2

Wykład 18: Elementy fizyki współczesnej -2 Wykład 18: Elementy fizyki współczesnej - Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Efekt fotoelektryczny 1887 Hertz;

Bardziej szczegółowo

Elektronowa struktura atomu

Elektronowa struktura atomu Elektronowa struktura atomu Model atomu Bohra oparty na teorii klasycznych oddziaływań elektrostatycznych Elektrony mogą przebywać tylko w określonych stanach, zwanych stacjonarnymi, o określonej energii

Bardziej szczegółowo

Rozładowanie promieniowaniem nadfioletowym elektroskopu naładowanego ujemnie, do którego przymocowana jest płytka cynkowa

Rozładowanie promieniowaniem nadfioletowym elektroskopu naładowanego ujemnie, do którego przymocowana jest płytka cynkowa Pokazy Rozładowanie promieniowaniem nadfioletowym elektroskopu naładowanego ujemnie, do którego przymocowana jest płytka cynkowa Zjawisko fotoelektryczne Zjawisko fotoelektryczne polega na tym, że w wyniku

Bardziej szczegółowo

VII. CZĄSTKI I FALE VII.1. POSTULAT DE BROGLIE'A (1924) De Broglie wysunął postulat fal materii tzn. małym cząstkom przypisał fale.

VII. CZĄSTKI I FALE VII.1. POSTULAT DE BROGLIE'A (1924) De Broglie wysunął postulat fal materii tzn. małym cząstkom przypisał fale. VII. CZĄSTKI I FALE VII.1. POSTULAT DE BROGLIE'A (1924) De Broglie wysunął postulat fal materii tzn. małym cząstkom przypisał fale. Światło wykazuje zjawisko dyfrakcyjne. Rys.VII.1.Światło padające na

Bardziej szczegółowo

OPTYKA. Leszek Błaszkieiwcz

OPTYKA. Leszek Błaszkieiwcz OPTYKA Leszek Błaszkieiwcz Ojcem optyki jest Witelon (1230-1314) Zjawisko odbicia fal promień odbity normalna promień padający Leszek Błaszkieiwcz Rys. Zjawisko załamania fal normalna promień padający

Bardziej szczegółowo

Rok akademicki: 2012/2013 Kod: JFM s Punkty ECTS: 6. Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne

Rok akademicki: 2012/2013 Kod: JFM s Punkty ECTS: 6. Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne Nazwa modułu: Wstęp do fizyki atomowej i kwantowej Rok akademicki: 2012/2013 Kod: JFM-1-302-s Punkty ECTS: 6 Wydział: Fizyki i Informatyki Stosowanej Kierunek: Fizyka Medyczna Specjalność: Poziom studiów:

Bardziej szczegółowo

Jak matematycznie opisać własności falowe materii? Czym są fale materii?

Jak matematycznie opisać własności falowe materii? Czym są fale materii? Funkcja falowa Jak matematycznie opisać własności falowe materii? Czym są fale materii? Własności falowe materii (cząstek, układów cząstek) opisuje matematycznie pewna funkcja falowa ( x, Funkcja falowa

Bardziej szczegółowo

V. RÓWNANIA MECHANIKI KWANTOWEJ

V. RÓWNANIA MECHANIKI KWANTOWEJ V. RÓWNANIA MECHANIKI KWANTOWEJ 1 1 Postulaty mechaniki kwantowej Istota teorii kwantowej może być sformułowana za pomocą postulatów, których spełnienie postulujemy i których nie można wyprowadzić z żadnych

Bardziej szczegółowo

Wykład 7 Kwantowe własności promieniowania

Wykład 7 Kwantowe własności promieniowania Wykład 7 Kwantowe własności promieniowania zdolność absorpcyjna, zdolność emisyjna, prawo Kirchhoffa, prawo Stefana-Boltzmana, prawo Wiena, postulaty Plancka, zjawisko fotoelektryczne, efekt Comptona W7.

Bardziej szczegółowo

Tak określił mechanikę kwantową laureat nagrody Nobla Ryszard Feynman ( ) mechanika kwantowa opisuje naturę w sposób prawdziwy, jako absurd.

Tak określił mechanikę kwantową laureat nagrody Nobla Ryszard Feynman ( ) mechanika kwantowa opisuje naturę w sposób prawdziwy, jako absurd. Tak określił mechanikę kwantową laureat nagrody Nobla Ryszard Feynman (1918-1988) mechanika kwantowa opisuje naturę w sposób prawdziwy, jako absurd. Równocześnie Feynman podkreślił, że obliczenia mechaniki

Bardziej szczegółowo

Optyka. Wykład V Krzysztof Golec-Biernat. Fale elektromagnetyczne. Uniwersytet Rzeszowski, 8 listopada 2017

Optyka. Wykład V Krzysztof Golec-Biernat. Fale elektromagnetyczne. Uniwersytet Rzeszowski, 8 listopada 2017 Optyka Wykład V Krzysztof Golec-Biernat Fale elektromagnetyczne Uniwersytet Rzeszowski, 8 listopada 2017 Wykład V Krzysztof Golec-Biernat Optyka 1 / 17 Plan Swobodne równania Maxwella Fale elektromagnetyczne

Bardziej szczegółowo

Problemy fizyki początku XX wieku

Problemy fizyki początku XX wieku Mechanika kwantowa Problemy fizyki początku XX wieku Promieniowanie ciała doskonale czarnego Ciałem doskonale czarnym nazywamy ciało całkowicie pochłaniające na nie promieniowanie elektromagnetyczne, niezależnie

Bardziej szczegółowo

Elementy mechaniki kwantowej. Mechanika kwantowa co to jest? Fale materii hipoteza de Broglie'a Funkcja falowa Równanie Schrödingera

Elementy mechaniki kwantowej. Mechanika kwantowa co to jest? Fale materii hipoteza de Broglie'a Funkcja falowa Równanie Schrödingera lementy mechaniki kwantowej Mechanika kwantowa co to jest? Fale materii hipoteza de Broglie'a Funkcja falowa Równanie Schrödingera Fale materii de Broglie a (rok 193) De Broglie zaproponował, że każdy

Bardziej szczegółowo

Wykład Atom o wielu elektronach Laser Rezonans magnetyczny

Wykład Atom o wielu elektronach Laser Rezonans magnetyczny Wykład 21. 12.2016 Atom o wielu elektronach Laser Rezonans magnetyczny Jeszcze o atomach Przypomnienie: liczby kwantowe elektronu w atomie wodoru, zakaz Pauliego, powłoki, podpowłoki, orbitale, Atomy wieloelektronowe

Bardziej szczegółowo

Elementy mechaniki kwantowej. Mechanika kwantowa co to jest? Fale materii hipoteza de Broglie'a Funkcja falowa Równanie Schrödingera

Elementy mechaniki kwantowej. Mechanika kwantowa co to jest? Fale materii hipoteza de Broglie'a Funkcja falowa Równanie Schrödingera Elementy mechaniki kwantowej Mechanika kwantowa co to jest? Fale materii hipoteza de Broglie'a Funkcja falowa Równanie Schrödingera Fale materii de Broglie a (rok 1923) De Broglie zaproponował, że każdy

Bardziej szczegółowo

Fale materii. gdzie h= 6.6 10-34 J s jest stałą Plancka.

Fale materii. gdzie h= 6.6 10-34 J s jest stałą Plancka. Fale materii 194- Louis de Broglie teoria fal materii, 199- nagroda Nobla Hipoteza de Broglie głosi, że dwoiste korpuskularno falowe zachowanie jest cechą nie tylko promieniowania, lecz również materii.

Bardziej szczegółowo

Fizyka. Program Wykładu. Program Wykładu c.d. Kontakt z prowadzącym zajęcia. Rok akademicki 2013/2014. Wydział Zarządzania i Ekonomii

Fizyka. Program Wykładu. Program Wykładu c.d. Kontakt z prowadzącym zajęcia. Rok akademicki 2013/2014. Wydział Zarządzania i Ekonomii Fizyka Wydział Zarządzania i Ekonomii Kontakt z prowadzącym zajęcia dr Paweł Możejko 1e GG Konsultacje poniedziałek 9:00-10:00 paw@mif.pg.gda.pl Rok akademicki 2013/2014 Program Wykładu Mechanika Kinematyka

Bardziej szczegółowo

Wykład 13 Mechanika Kwantowa

Wykład 13 Mechanika Kwantowa Wykład 13 Mechanika Kwantowa Maciej J. Mrowiński mrow@if.pw.edu.pl Wydział Fizyki Politechnika Warszawska 25 maja 2016 Maciej J. Mrowiński (IF PW) Wykład 13 25 maja 2016 1 / 21 Wprowadzenie Sprawy organizacyjne

Bardziej szczegółowo

Fizyka 3. Konsultacje: p. 329, Mechatronika

Fizyka 3. Konsultacje: p. 329, Mechatronika Fizyka 3 Konsultacje: p. 329, Mechatronika marzan@mech.pw.edu.pl Zaliczenie: 2 sprawdziany (10 pkt każdy) lub egzamin (2 części po 10 punktów) 10.1 12 3.0 12.1 14 3.5 14.1 16 4.0 16.1 18 4.5 18.1 20 5.0

Bardziej szczegółowo

IX. MECHANIKA (FIZYKA) KWANTOWA

IX. MECHANIKA (FIZYKA) KWANTOWA IX. MECHANIKA (FIZYKA) KWANTOWA IX.1. OPERACJE OBSERWACJI. a) klasycznie nie ważna kolejność, w jakiej wykonujemy pomiary. AB = BA A pomiar wielkości A B pomiar wielkości B b) kwantowo wartość obserwacji

Bardziej szczegółowo

Wykład 17: Dr inż. Zbigniew Szklarski. Katedra Elektroniki, paw. C-1, pok

Wykład 17: Dr inż. Zbigniew Szklarski. Katedra Elektroniki, paw. C-1, pok Wykład 17: Atom Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Wczesne modele atomu Grecki filozof Demokryt rozpoczął poszukiwania

Bardziej szczegółowo

Energetyka Jądrowa. Wykład 28 lutego Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów

Energetyka Jądrowa. Wykład 28 lutego Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów Energetyka Jądrowa Wykład 8 lutego 07 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Model atomu. Promieniowanie atomów 8.II.07 EJ - Wykład / r

Bardziej szczegółowo

Wykłady z Fizyki. Kwanty

Wykłady z Fizyki. Kwanty Wykłady z Fizyki 10 Kwanty Zbigniew Osiak OZ ACZE IA B notka biograficzna C ciekawostka D propozycja wykonania doświadczenia H informacja dotycząca historii fizyki I adres strony internetowej K komentarz

Bardziej szczegółowo

Jak matematycznie opisać własności falowe materii? Czym są fale materii?

Jak matematycznie opisać własności falowe materii? Czym są fale materii? Funkcja falowa Jak matematycznie opisać własności falowe materii? Czym są fale materii? Własności falowe materii (cząstek, układów cząstek) opisuje matematycznie pewna funkcja falowa ( x, t ) Tutaj upraszczamy

Bardziej szczegółowo

Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki?

Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Równanie Schrödingera Ĥ E ψ H ˆψ = Eψ operator różniczkow Hamiltona energia funkcja falowa h d d d + + m d d dz

Bardziej szczegółowo

Informacje ogólne. 45 min. test na podstawie wykładu Zaliczenie ćwiczeń na podstawie prezentacji Punkty: test: 60 %, prezentacja: 40 %.

Informacje ogólne. 45 min. test na podstawie wykładu Zaliczenie ćwiczeń na podstawie prezentacji Punkty: test: 60 %, prezentacja: 40 %. Informacje ogólne Wykład 28 h Ćwiczenia 14 Charakter seminaryjny zespołu dwuosobowe ~20 min. prezentacje Lista tematów na stronie Materiały do wykładu na stronie: http://urbaniak.fizyka.pw.edu.pl Zaliczenie:

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 3 wykład: Piotr Fita pokazy: Jacek Szczytko ćwiczenia: Aneta Drabińska, Paweł Kowalczyk, Barbara Piętka Wydział Fizyki Uniwersytet

Bardziej szczegółowo

Wykład 18: Elementy fizyki współczesnej -1

Wykład 18: Elementy fizyki współczesnej -1 Wykład 18: Elementy fizyki współczesnej -1 Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Promieniowanie ciała doskonale czarnego

Bardziej szczegółowo

Struktura pasmowa ciał stałych

Struktura pasmowa ciał stałych Struktura pasmowa ciał stałych dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2012/13 Spis treści 1. Pasmowa teoria ciała stałego 2 1.1. Wstęp do teorii..............................................

Bardziej szczegółowo

INŻYNIERIA BIOMEDYCZNA. Wykład IX

INŻYNIERIA BIOMEDYCZNA. Wykład IX INŻYNIERIA BIOMEDYCZNA Wykład IX 01.12.2018 1 PLAN Fizyka około 1900 roku Promieniowanie elektromagnetyczne Natura materii Równanie Schrödingera Struktura elektronowa atomu Oryginalne dokumenty nie pozostawiają

Bardziej szczegółowo

Spektroskop, rurki Plückera, cewka Ruhmkorffa, aparat fotogtaficzny, źródło prądu

Spektroskop, rurki Plückera, cewka Ruhmkorffa, aparat fotogtaficzny, źródło prądu Imię i nazwisko ucznia Nazwa i adres szkoły Imię i nazwisko nauczyciela Tytuł eksperymentu Dział fizyki Potrzebne materiały do doświadczeń Kamil Jańczyk i Mateusz Kowalkowski I Liceum Ogólnokształcące

Bardziej szczegółowo

INŻYNIERIA BIOMEDYCZNA. Wykład IX

INŻYNIERIA BIOMEDYCZNA. Wykład IX INŻYNIERIA BIOMEDYCZNA Wykład IX 1 PLAN Fizyka około 1900 roku Promieniowanie elektromagnetyczne Natura materii Równanie Schrödingera Struktura elektronowa atomu Oryginalne dokumenty nie pozostawiają wątpliwości,

Bardziej szczegółowo

Foton, kwant światła. w klasycznym opisie świata, światło jest falą sinusoidalną o częstości n równej: c gdzie: c prędkość światła, długość fali św.

Foton, kwant światła. w klasycznym opisie świata, światło jest falą sinusoidalną o częstości n równej: c gdzie: c prędkość światła, długość fali św. Foton, kwant światła Wielkość fizyczna jest skwantowana jeśli istnieje w pewnych minimalnych (elementarnych) porcjach lub ich całkowitych wielokrotnościach w klasycznym opisie świata, światło jest falą

Bardziej szczegółowo

RÓWNANIE SCHRÖDINGERA NIEZALEŻNE OD CZASU

RÓWNANIE SCHRÖDINGERA NIEZALEŻNE OD CZASU X. RÓWNANIE SCHRÖDINGERA NIEZALEŻNE OD CZASU Równanie Schrődingera niezależne od czasu to równanie postaci: ħ 2 2m d 2 x dx 2 V xx = E x (X.1) Warunki regularności na x i a) skończone b) ciągłe c) jednoznaczne

Bardziej szczegółowo

III. EFEKT COMPTONA (1923)

III. EFEKT COMPTONA (1923) III. EFEKT COMPTONA (1923) Zjawisko zmiany długości fali promieniowania roentgenowskiego rozpraszanego na swobodnych elektronach. Zjawisko to stoi u podstaw mechaniki kwantowej. III.1. EFEKT COMPTONA Rys.III.1.

Bardziej szczegółowo

Uniwersytet Śląski w Katowicach str. 1 Wydział Matematyki, Fizyki i Chemii

Uniwersytet Śląski w Katowicach str. 1 Wydział Matematyki, Fizyki i Chemii Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Chemia, pierwszy poziom Sylabus modułu: Chemia kwantowa 021 Nazwa wariantu modułu (opcjonalnie): 1. Informacje ogólne koordynator modułu

Bardziej szczegółowo

Atom wodoropodobny. Biegunowy układ współrzędnych. współrzędne w układzie. kartezjańskim. współrzędne w układzie. (x,y,z) biegunowym.

Atom wodoropodobny. Biegunowy układ współrzędnych. współrzędne w układzie. kartezjańskim. współrzędne w układzie. (x,y,z) biegunowym. Atom wodoropodobny z współrzędne w układzie kartezjańskim r sinθ cosφ x r cosθ φ θ r r sinθ (x,y,z) r sinθ sinφ Biegunowy układ współrzędnych y funkcja faowa współrzędne w układzie biegunowym ( ) r,θ,φ

Bardziej szczegółowo