I.Pojęcie ruchu w historii filozofii i w naukach przyrodniczych.

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "I.Pojęcie ruchu w historii filozofii i w naukach przyrodniczych."

Transkrypt

1 I.Pojęcie ruchu w historii filozofii i w naukach przyrodniczych. Ruch jest to zjawisko występujące w przyrodzie, polegające na zmianie położenia przez ciało względem danego punktu. 1. Rozwój poglądów na ruch i jego przyczyny. Od najdawniejszych czasów ludzie obserwowali przyrodę i starali się wyjaśnić zachodzące w niej zjawiska. Na przełomie wieku VII i VI p.n.e. zaczęto ją obserwować w sposób prawie naukowy. Tales przewidział zaćmienie słońca oraz potrafił obliczyć wysokość piramidy lecz jego działania nie były doskonałe. Nie były uporządkowane oraz związane z innymi obserwacjami. Jego następcy twierdzili, że zdolność do poruszania sie jest zasadniczą własnością materii oraz traktowali ją jako przejaw życia i istnienia duszy. Jednak nie potrafili odróżnić materii od sił działających na nią i wprawiających ją w ruch. Parmenides żyjący na przełomie VI i V wieku p.n.e. odrzucił doświadczenie jako źródło poznania. Stosował rozumowanie dedukcyjne które polegało na założeniu "a priori" przesłanek ogólnych które rozwijał dzięki rozumowi i dedukcji. Odrzucił także poznanie zmysłowe. Jego uczniem był Zenon z Elei, który traktował poznanie zmysłowe tak samo jak jego mistrz. Na przykład ziarno rzucone na ziemię nie wydaje dźwięku. Tak samo dzieje sie w przypadku rzucenia pustego worka. Jednak oboje razem już tworzą pewien odgłos. Jak to możliwe? Zenon z Elei dostrzegł ruch zachodzący w przyrodzie oraz zdawała sobie sprawę z niedokładności dotychczas stosowanego sposobu opisu tego ruchu. Wysuwał argumenty, tak zwane paradoksy Zenona, w myśl których ruch jest niemożliwy. Przykład: ruch strzały jest niemożliwy w chwili gdy nie zmienia ona swojego położenia, lecz spoczywa w powietrzu. Podobnie jest w każdym innym czasie, który składa się z momentów gdy strzała nie zmienia swojego położenia. Zenon niewłaściwie rozumiał stosunek wielkości skończonych i nieskończonych co może usprawiedliwiać to, że potrafił zdefiniować szybkości jako stosunku drogi do czasu. W dzisiejszych czasach wszystkie paradoksy Zenona zostały wyjaśnione przez Newtona, który do opisu ruchu zastosował odpowiedni aparat matematyczny. Demokryt i związani z nim atomiści na przełomie V i IV wieku p.n.e. postawili hipotezę, która mówiła, ze teoria musi być niesprzecznie zgodna z doświadczeniem. Był to początek zajmowania się fizyką jako nauką. Atomiści twierdzili, ze cała przyroda zbudowana jest z atomów, których powszechna własnością jest ruch. Jest on wieczny. Oznacza to, ze nie potrzebuje siły sprawczej. Pitagoras i jego uczniowie także interesowali sie przyroda, a konkretnie kosmosem. Twierdzili, że wszechświat jest wielką próżnią a powietrze otacza tylko glob ziemski. Uważali także, ze planety poruszają sie po stałych, wyznaczonych drogach oraz, że gwiazdy poruszają sie w próżni pod wpływem sił wewnętrznych. Byli wierni teorii heliocentrycznej, która została wyparta przez Arystotelesa i Ptolemeusza, którzy uważali za właściwą teorię geocentryczną. Pitagorejczycy odkryli, ze przyczyną dźwięku jest ruch. Uznawali liczby za czynnik kształtujący i organizujący wszechświat. Postulowali, że świat jest kulą, którą otacza 10 sfer koncentrycznych. Do pełnego opisu świata zabrakło im jednej sfery( Słońce, Ziemia, Księżyc, pięć planet, sfera gwiazd stałych - to razem dziewięć). Myśleli, ze brakuje jednej planety. Ciekawostką jest to, ze niektórzy astronomowie do dziś szukają dziesiatej planety. Żyjący w IV wieku p.n.e. Arystoteles był jednym z najwybitniejszych filozofów tego okresu. Uważał, że aby rozum mógł coś opisać najpierw musi pozyskać odpowiednie informacje na temat opisywanej rzeczy. Wiedza, którą daje nam rozum jest początkiem

2 poznania, lecz musi to być wiedza nadana przez zmysły. Nic nie może równać się z doświadczeniem. Twierdził, że każde ciało dąży do uzyskania odpowiedniego miejsca w naturze. Oznacza to, że ciała lekkie (np. dym) unoszą sie do góry, zaś ciała ciężkie opadają. Uważał, że ciało którego naturalnym stanem jest spoczynek potrzebuje siły oddziałującej na niego aby móc się poruszać. Są to fałszywe prawa ruchu, które funkcjonowały bardzo długo. W dzisiejszych czasach niektórzy ludzie uważają nadal, że Arystoteles miał racje. Według niego, kosmos miał dwojaką naturę. Ruch gwiazd jest stały i pochodzi od Boga. Ruch swej niebieskich jest okrężny, czyli doskonały. Uważał Ziemię za centrum świata, co spowodowało skierowanie nauki astronomii na złe tory. Poglądy te przetrwały niezmiennie do XVI wieku. Wyzwolenie się z nich bylo bardzo trudne. Mikołaj Kopernik doszedł do wniosku, że to jednak Ziemia krąży wokół Słońca. Były to jednak sprzeczne poglądy do tych, które zostały uznane za właściwe. Wstrzymał zatem swoje publikacje ponieważ nie potrafił wytłumaczyć oraz w pełni udowodnić prawdziwości swoich teorii. Zamęt w teoriach Arystotelesa uczyniły także odkrycia Johanesa Keplera, lecz ostateczny cios zadał mu Galileusz. Twierdził, ze naukę trzeba opierać na doświadczeniu ale to nie wystarczy. Należy jeszcze za pomocą rozumowania wyjaśnić obserwacje. Dzięki niemu fizyka stała sie nauką ścisłą, opartą na licznych pomiarach opracowywanych na odpowiednich modelach matematycznych. 2. Opis ruchu na przykładzie ruchu jednostajnego prostoliniowego. Ruch jednostajny prostoliniowy - to ruch którego torem jest linia prosta i szybkość ruchu nie zmienia się. Szybkość - to stosunek drogi s przebytej przez ciało w czasie t do tego czasu: Droga w ruchu jednostajnym po linii prostej spełnia równanie: W ruchu jednostajnym prostoliniowym wektor prędkości jest stały, co oznacza, że jego kierunek i zwrot nie zależą od czasu. W związku z tym szybkość, czyli wartość bezwzględna prędkości, również jest stała. Oznacza to, że przyspieszenie jest równe zeru, a prędkość średnia równa jest prędkości chwilowej. Ponadto wartość bezwzględna przemieszczania (zmiany położenia) jest równa drodze pokonanej przez ciało. Wykresy kolejno: drogi, prędkości i przyspieszenia w funkcji czasu w ruchu jednostajnym prostoliniowym przy założeniu, że położenie w chwili początkowej opisuje liczba 0.

3

4 II. Ruch w różnych układach odniesienia. 1.Ruch jednostajny względem różnych układów odniesienia. Dokładny opis prędkości ruchu pojazdu powinien zawierać : - wartość (km/h) - punkt przyłożenia - kierunek - zwrot Wektor posiada wszystkie te cechy. Ruch danego pojazdu można opisać za pomocą wektora prędkości : Przedstawiony samochód poruszył się o wartość wektora przemieszczenia. Odbyło się to w czasie t. W ruchu jednostajnym prostoliniowym długość wektora przemieszczenia jest liczbowo taka sam jak przebyta droga s. Prędkość jest wektorem równym stosunkowi przemieszczenia, które nastąpiło w pewnym czasie, do tego czasu : Prędkość podajemy w jednostkach: [V] = m/s, km/h W języku polskim wyrazy : szybkość i prędkość mają takie samo znaczenie. W fizyce istnieje różnica. Kiedy mówimy o ruchu z ściśle określonym kierunkiem oraz zwrotem używamy określenia "prędkość". Jeżeli kierunek oraz zwrot nie są istotne, ruch ten określamy jako "szybkość".

5 Przykład : Na obrazku pierwszym przestawieni zostali dwaj kajakarze płynący z prądem rzeki. Płyną oni jednakowymi prędkościami. Opisując ruch z punktu widzenia jednego z kajakarzy możemy wymienić kilka zależności. Siedząca w jednym z kajaków osoba jest: - w ruchu względem brzegu - w ruchu względem kłody, która płynie z prądem rzeki - w spoczynku względem kajaku, w którym się znajduje Opisując ruch względem osoby znajdującej się na brzegu możemy powiedzieć, że jest ona: - w ruchu względem kajaków - w ruchu względem kłody płynącej z prądem rzeki - w spoczynku względem brzegu Każdy z kajaków względem osoby znajdującej sie na brzegu ma prędkość: gdzie: - prędkość prądu rzeki - prędkość kajaków względem wody 2. Ruch jednostajny i jego przyczyny w fizyce klasycznej. Wspominając dokonania Galileusza możemy stwierdzić, ze ruch jednostajny prostoliniowy może się odbyć bez udziału sił. Oznacza to, że jeżeli np.: na kulę nie działają siły tarcia to nie potrzebuje ona żadnej siły aby utrzymać stałą prędkość. Newton, korzystając z prac Galileusza, zebrał wszystkie prawa opisujące ruch. Jego pierwsza zasada dynamiki brzmi: Jeżeli na ciało nie działa żadna siła lub działające siły równoważą się, to ciało pozostaje w spoczynku lub porusza się ruchem jednostajnym prostoliniowym.

6 Zadajemy sobie pytanie: dlaczego ciało się porusza? Pierwsza zasada dynamiki wykazuje, że ruch będzie trwał tak długo, jak długo na ciało nie będą działać jakiekolwiek zewnętrzne siły. Tą kwestię można rozważyć inaczej. Żadne ciało samowolnie nie może zwolnić ani przyspieszyć, dopóki nie zadziałają na niego inne siły które mogą zmienić stan ruchu. Bezwładność - jest to cech ciała polegająca na tym, że ciało dąży do zachowania stanu spoczynku lub stanu ruchu jednostajnego prostoliniowego. Miarą bezwładności ciała jest masa. IM WIĘKSZA JEST MASA CIAŁA ROZPĘDZONEGO DO PEWNEJ SZYBKOSCI, TYM TRUDNIEJ CIALO ZATRZYMAĆ, CZYLI ZMIENIĆ STAN JEGO RUCHU. Obrazek przedstawia toczącą się kulę, uderzającą w klocek. W momencie uderzenia kula zatrzymuję się, a klocek się przesuwa. Wnioskujemy: kula nie zatrzymałaby się, a klocek nie poruszyłby się gdyby nie działały na nich żadne siły. Tak wiec w momencie uderzenia powstały dwie nowe siły. Trzecia zasada dynamiki Newtona: Nie istnieją w przyrodzie pojedyncze siły. Każdej sile akcji, z jaką ciało A działa na ciało B, towarzyszy siła reakcji, z jaką ciało B działa na ciało A. Siły te mają jednakowe wartości i przeciwne zwroty, ale różne punkty położenia. Pęd ciała - jest to wektor równy iloczynowi masy ciała i wektora prędkości tego ciała: Wartość pędu obliczamy ze wzoru: p=m*v Jednostką pędu w układzie SI jest: [p]=(km*m)/s lub N*s Rysunek ilustrujący definicję pędu:

7 Zasada zachowania pędu: Jeżeli na układ ciał nie działają żadne siły zewnętrzne lub działające siły równoważą się, to całkowity pęd tego układu ciał się nie zmienia. Obrazki przedstawiają armatę oraz pocisk w lufie przed i po wystrzale: Wyżej przedstawiono dodawanie wektorowe pędów. Wynika z tego, ze wartości pędów armaty, są jednakowe, zatem pęd armaty jest równy pędowi pocisku. Skoro: Wynika z tego, że jeżeli pocisk ma mniejszą masę niż armata, to wartość jego prędkości będzie od wartości prędkości armaty. 3. Inercjalne układy odniesienia. Rozważamy tylko siły działające w kierunku poziomym. Siły działające pionowo nie będę miały wpływu na omawiane poniżej przypadki.

8 Rysunek przedstawia autobus stojący na przystanku początkowym. Jeżeli chcemy aby piłka się poruszała musimy zadziałaś na nią pewna siłą. W przeciwnym wypadku pozostanie ona w tym samym miejscu. W ten sposób spełniamy pierwszą zasadę dynamiki Newtona. Ten rysunek przedstawia autobus, który rusza. Piłka zaczyna się poruszać z przeciwna stronę jazdy autobusu. Żeby pozostała w miejscu musimy na nią zadziałaś siłą zewnętrzną. W układnie odniesienia związanym z rozpędzaniem autobusu nie jest spełniona 1 zasada dynamiki Newtona. Kolejna sytuacja przestawia autobus jadący ruchem jednostajnym prostoliniowym. Piłka pozostaje w tym samym miejscu bez działania sił zewnętrznych. Pierwsza zasada dynamiki zostaje spełniona. Ostatnia sytuacja przedstawia autobus jadący ruchem jednostajnym po łuku. Piłka zaczyna toczyć się po podłodze, zachowując poprzedni kierunek swojego ruchu. Aby pozostała w miejscu trzeba zadziałaś siłą zewnętrzną. Pierwsza zasada dynamiki pozostaje nie zostaje spełniona.

9 Nowa, poprawna pierwsza zasada dynamiki Newtona: Istnieje układ odniesienia, w którym ciało, na które nie działa żadna siła zewnętrzna, pozostaje w spoczynku lub porusza sie ruchem jednostajnym po linii prostej. UKŁAD ODNIESIENIA MAJĄCY TAKĄ WŁASNOŚĆ NAYWAMY INERCJALNYM. 4. Ruch prostoliniowy jednostajnie zmienny. Ruch prostoliniowy jednostajny zmienny to ruch, którego torem jest linia prosta, a wartość przyspieszenia jest stała. Przyspieszenie jest to wektor równy stosunkowi wektora przyrostu prędkości, który nastąpił w czasie t, do tego czasu: Jednostką przyspieszenia jest [a]=m/s ² Równanie drogi w ruchu prostoliniowym jednostajnie przyspieszonym: Równanie prędkości w ruchu jednostajnie przyspieszonym: gdzie: - prędkość początkowa - prędkość końcowa

10 - przyspieszenie - czas ruchu Wykres zależności wartości prędkości średnich od czasu: Cechy ruchu jednostajnie przyspieszonego: - wartość przyspieszenia się nie zmienia (jest stała) - wartość prędkości rośnie proporcjonalnie do czasu - przebytadroga rośnie proporcjolanie do kwadratu czasu Wykresy charakteruzujące ruch jednostajnie przyspieszony do czasu:

11 Ruch prostoliniowy jednostajnie opóźniony ma zwrot przyspieszenia skierowany w drugą stronę. W ruchu tym: Wykresy przedstawiające zależności wielkości charakterystycznych ruchu prostoliniowego jednostajnie opóźnionego do czasu:

12 5. Ruchy zmienne w fizyce klasycznej. Gdy siła wypadkowa wszystkich sił działających na ciało jest równa zeru to ciało porusza się ruchem jednostajnym prostoliniowym lub pozostaje w tym samym miejscu. Jednak o wiele częściej zauważamy inne ruchy w otaczającym nas świecie. Samochody zatrzymują sie na skrzyżowaniach. Następne ruszają do przodu. Jeszcze inne zmieniają tor ruchu. Dlaczego tak się dzieje? co jest przyczyną tych zjawisk? Oczywiście siła. Jest ona nierozerwalnie związana ze zmianą ruchu. Druga zasada dynamiki Newtona brzmi: Gdy na ciała działa wypadkowa siła (wektorowa suma sił działających), to ciało porusza sie ruchem jednostajnie zmiennym. Kierunek i zwrot przyspieszenia ciała są zgodne z kierunkiem i zwrotem siły wypadkowej. Przyspieszenie ciała jest wprost proporcjonalne do siły, a odwrotnie proporcjonalne do masy ciała: Wynika z tego, ze masa ciała jest miarą bezwładności. Oznacza to, ze zmiana ruchu ciała o większej masie wymaga o wiele więcej siły niż ciała z mniejszą masą. Na przykład zatrzymanie jadącego samochodu z prędkością 15km/h wymaga więcej siły niż zatrzymanie jadącego roweru taką samą prędkością. Masa jest również miarą zdolności do oddziaływań grawitacyjnych. Wynika z tego, że im większą masę ma dane ciało, tym większe działają na niego siły grawitacji. Liczne eksperymenty udowodniły, że masa bezwładna i grawitacyjna są sobie równe. Założenie równoważności tych mas przyczyniło sie do powstania teorii względności. Spadanie ciała w próżni: Na cegłę działa siła: Jej przyspieszenie wynosi: Wiedząc, ze masy są równe otrzymujemy: Na dwie cegły działa siła: Dwie cegły mają przyspieszenie: Masy są równe:

13 Wniosek : Masa nie ma wpływu na przyspieszenie spadania ciała w próżni. Spadanie ciała w powietrzu: Działające siły: Siła wypadkowa: Przyspieszenie lotu kulki wyznaczamy z zależności: gdzie: M - masa kulki Fop- siła oporu powietrza 6. Nieinercjalne układy odniesienia. Nieinercjalny układ odniesienia to układ poruszający się z pewnym przyspieszeniem względem układu inercjalnego. W układzie tym ciała, na które nie działają siły zewnętrzne, poruszają się ruchem przyspieszonym. Przykład odpisu ruchu w nieinercjalnym układzie odniesienia: Autobus ruszył ruchem przyspieszonym. Znajduje sie w nim piłka obserwowana przez Kazia. Zauważa on, że piłka zbliża się do niego z przyspieszeniem: -a. Kazio znający druga zasadę dynami Newtona myśli, że na piłkę musi działać siła. Pojawienie się siły jest spowodowane ruchem układu odniesienia. W układzie nieruchomym taka siła nie istnieje wiec obserwowana siła jest pozorna. Nazywamy ją siłą bezwładności.

14 Wartość siły bezwładności : gdzie: m - masa ciała a - przyspieszenie układy nieinercjalnego Zdzisio znajduje sie obok tego samego autobusu, który właśnie odjeżdża. Z jego punktu widzenia piłka nie porusza się względem przystanku ponieważ nie działa w jej kierunku żadna pozioma siła. Widzi jak autobus wyjeżdża spod piłki. Znajduje się on w inercjalnym układzie odniesienia. W takim układzie na piłkę nie działają siły bezwładności. 7. Ruch jednostajny po okręgu. Ruch jednostajny po okręgu to ruch, którego torem jest okrąg, a wartość prędkości nie zmienia się. Kierunek wektora prędkości stale się zmienia (jest w każdym punkcie styczny do okręgu). Pierwsza cecha ruchu po okręgu: W ruchu po okręgu zmienia się kierunek prędkości, którą nazywamy prędkością liniową. Jej kierunek pozostaje stale styczny do okręgu (prostopadły do promienia okręgu). Szybkość średnia: Droga: Okres obiegu ( T ) - jest to czas pełnego obiegu w ruchu po okręgu. Wartość prędkości liniowej w ruchu po okręgu:

15 Ruch jednostajny po okręgu jest ruchem, w którym zmienia się kierunek wektora ruchu. Występują w nim siły tak jak mówi druga zasada dynami Newtona. Kierunek prędkości zmienia się także pod wpływem siły. Jest to siła nazywana dośrodkową. Jej kierunek jest prostopadły do kierunku prędkości liniowej. Jej zwrot skierowany jest do środka okręgu. Wartość siły dośrodkowej: gdzie: m - masa ciała v - wartość prędkości liniowej r - promień okręgu Siła dośrodkowa spełnia drugą zasadę dynamiki Newtona, wiec: gdzie: - wartość przyspieszenia dośrodkowego. Druga cecha ruchu po okręgu: Wektor przyspieszenia ciała poruszającego sie ruchem jednostajny po okręgu skierowany jest do środka okręgu. Przyspieszenie to jest prostopadłe do kierunku prędkości liniowej. 8. Opory ruchu. Siły oporo ruchu to siły, które zawsze przeszkadzają ruchowi. Ich zwrot zawsze jest przeciwny do zwrotu prędkości działającego na dane ciało. Gdy występują one na styku dwóch ciał nazywamy je siłami tarcia. Poruszające się ciało ma przeciwny zwrot prędkości do zwrotu siły tarcia (tarcie kinetyczne). Podczas gdy ciało spoczywa, zwrot siły tarcia jest przeciwny do zwrotu siły dążącej do wprawienia ciała w ruch (tarcie statyczne). Maksymalna wartość siły tarcia statycznego jest większa od wartości siły tarcza kinetycznego. Wartość siły tarcia statycznego rośnie wraz ze wzrostem wartości siły wprawiającej ciało w ruch. Wartość siły tarcia kinetycznego nie zależy od wartości siły poruszającego ciała.

16 Cechy: -wartość siły tarcia nie zależy od powierzchni stykających się cial, - maksymalna wartość siły tarcia statycznego jest proporcjonalna do wartości siły nacisku, - maksymalna wartość siły tarcia statycznego zależy od rodzaju materiału powierzchni stykających się ciał Maksymalna wartość siły tarcia statycznego jest równa iloczynowi wartości siły nacisku ciała na podłoże oraz współczynnika tarcia statycznego: Wartość siły tarcia kinetycznego jest równa iloczynowi wartości siły nacisku ciała na podłoże współczynnika tarcia kinetycznego:

Podstawy Procesów i Konstrukcji Inżynierskich. Dynamika

Podstawy Procesów i Konstrukcji Inżynierskich. Dynamika Podstawy Procesów i Konstrukcji Inżynierskich Dynamika Prowadzący: Kierunek Wyróżniony przez PKA Mechanika klasyczna Mechanika klasyczna to dział mechaniki w fizyce opisujący : - ruch ciał - kinematyka,

Bardziej szczegółowo

Treści dopełniające Uczeń potrafi:

Treści dopełniające Uczeń potrafi: P Lp. Temat lekcji Treści podstawowe 1 Elementy działań na wektorach podać przykłady wielkości fizycznych skalarnych i wektorowych, wymienić cechy wektora, dodać wektory, odjąć wektor od wektora, pomnożyć

Bardziej szczegółowo

DYNAMIKA dr Mikolaj Szopa

DYNAMIKA dr Mikolaj Szopa dr Mikolaj Szopa 17.10.2015 Do 1600 r. uważano, że naturalną cechą materii jest pozostawanie w stanie spoczynku. Dopiero Galileusz zauważył, że to stan ruchu nie zmienia się, dopóki nie ingerujemy I prawo

Bardziej szczegółowo

Zasady dynamiki przypomnienie wiadomości z klasy I

Zasady dynamiki przypomnienie wiadomości z klasy I Zasady dynamiki przypomnienie wiadomości z klasy I I zasada dynamiki Newtona Jeżeli na ciało nie działa żadna siła lub działające siły się równoważą, to ciało pozostaje w spoczynku lub porusza się ruchem

Bardziej szczegółowo

Oddziaływania. Wszystkie oddziaływania są wzajemne jeżeli jedno ciało działa na drugie, to drugie ciało oddziałuje na pierwsze.

Oddziaływania. Wszystkie oddziaływania są wzajemne jeżeli jedno ciało działa na drugie, to drugie ciało oddziałuje na pierwsze. Siły w przyrodzie Oddziaływania Wszystkie oddziaływania są wzajemne jeżeli jedno ciało działa na drugie, to drugie ciało oddziałuje na pierwsze. Występujące w przyrodzie rodzaje oddziaływań dzielimy na:

Bardziej szczegółowo

Oddziaływania te mogą być różne i dlatego można podzieli je np. na:

Oddziaływania te mogą być różne i dlatego można podzieli je np. na: DYNAMIKA Oddziaływanie między ciałami można ilościowo opisywać posługując się pojęciem siły. Działanie siły na jakieś ciało przejawia się albo w zmianie stanu ruchu tego ciała (zmianie prędkości), albo

Bardziej szczegółowo

SIŁA JAKO PRZYCZYNA ZMIAN RUCHU MODUŁ I: WSTĘP TEORETYCZNY

SIŁA JAKO PRZYCZYNA ZMIAN RUCHU MODUŁ I: WSTĘP TEORETYCZNY SIŁA JAKO PRZYCZYNA ZMIAN RUCHU MODUŁ I: WSTĘP TEORETYCZNY Opracowanie: Agnieszka Janusz-Szczytyńska www.fraktaledu.mamfirme.pl TREŚCI MODUŁU: 1. Dodawanie sił o tych samych kierunkach 2. Dodawanie sił

Bardziej szczegółowo

Ruch. Kinematyka zajmuje się opisem ruchu różnych ciał bez wnikania w przyczyny, które ruch ciał spowodował.

Ruch. Kinematyka zajmuje się opisem ruchu różnych ciał bez wnikania w przyczyny, które ruch ciał spowodował. Kinematyka Ruch Kinematyka zajmuje się opisem ruchu różnych ciał bez wnikania w przyczyny, które ruch ciał spowodował. Ruch rozumiany jest jako zmiana położenia jednych ciał względem innych, które nazywamy

Bardziej szczegółowo

Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej

Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej 1. Wielkości dynamiczne w ruchu postępowym. a. Masa ciała jest: - wielkością skalarną, której wielkość jest niezmienna

Bardziej szczegółowo

SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE Z FIZYKI KLASA II

SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE Z FIZYKI KLASA II SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE Z FIZYKI KLASA II Energia mechaniczna Wymagania na stopień dopuszczający obejmują treści niezbędne dla dalszego kształcenia oraz użyteczne w pozaszkolnej działalności ucznia.

Bardziej szczegółowo

PLAN REALIZACJI MATERIAŁU NAUCZANIA FIZYKI W GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

PLAN REALIZACJI MATERIAŁU NAUCZANIA FIZYKI W GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH PLAN REALIZACJI MATERIAŁU NAUCZANIA FIZYKI W GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH Krzysztof Horodecki, Artur Ludwikowski, Fizyka 1. Podręcznik dla gimnazjum, Gdańskie Wydawnictwo Oświatowe

Bardziej szczegółowo

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku w poprzednim odcinku 1 Opis ruchu Opis ruchu Tor, równanie toru Zależność od czasu wielkości wektorowych: położenie przemieszczenie prędkość przyśpieszenie UWAGA! Ważne żeby zaznaczać w jakim układzie

Bardziej szczegółowo

SZCZEGÓŁOWE CELE EDUKACYJNE

SZCZEGÓŁOWE CELE EDUKACYJNE Program nauczania: Fizyka z plusem, numer dopuszczenia: DKW 4014-58/01 Plan realizacji materiału nauczania fizyki w klasie I wraz z określeniem wymagań edukacyjnych DZIAŁ PRO- GRA- MOWY Pomiary i Siły

Bardziej szczegółowo

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku w poprzednim odcinku 1 Wzorce sekunda Aktualnie niepewność pomiaru czasu to 1s na 70mln lat!!! 2 Modele w fizyce Uproszczenie problemów Tworzenie prostych modeli, pojęć i operowanie nimi 3 Opis ruchu Opis

Bardziej szczegółowo

Plan wynikowy. z fizyki dla klasy pierwszej liceum profilowanego

Plan wynikowy. z fizyki dla klasy pierwszej liceum profilowanego Plan wynikowy z fizyki dla klasy pierwszej liceum profilowanego Kurs podstawowy z elementami kursu rozszerzonego koniecznymi do podjęcia studiów technicznych i przyrodniczych do programu DKOS-5002-38/04

Bardziej szczegółowo

Sprawdzian Na rysunku przedstawiono siłę, którą kula o masie m przyciąga kulę o masie 2m.

Sprawdzian Na rysunku przedstawiono siłę, którą kula o masie m przyciąga kulę o masie 2m. Imię i nazwisko Data Klasa Wersja A Sprawdzian 1. 1. Orbita każdej planety jest elipsą, a Słońce znajduje się w jednym z jej ognisk. Treść tego prawa podał a) Kopernik. b) Newton. c) Galileusz. d) Kepler..

Bardziej szczegółowo

NIE FAŁSZOWAĆ FIZYKI!

NIE FAŁSZOWAĆ FIZYKI! * Jacek Własak NIE FAŁSZOWAĆ FIZYKI! Zdania: 1. Ziemia krąży wokół Słońca 2. Słońce krąży wokół Ziemi Są jednakowo prawdziwe!!! RUCH JEST WZGLĘDNY. Podział Fizyki 1. Budowa materii i oddziaływania 2. Mechanika

Bardziej szczegółowo

Powtórzenie wiadomości z klasy I. Temat: Ruchy prostoliniowe. Obliczenia

Powtórzenie wiadomości z klasy I. Temat: Ruchy prostoliniowe. Obliczenia Powtórzenie wiadomości z klasy I Temat: Ruchy prostoliniowe. Obliczenia Ruch jest względny 1.Ruch i spoczynek są pojęciami względnymi. Można jednocześnie być w ruchu względem jednego ciała i w spoczynku

Bardziej szczegółowo

Plan wynikowy fizyka rozszerzona klasa 2

Plan wynikowy fizyka rozszerzona klasa 2 Plan wynikowy fizyka rozszerzona klasa 2 1. Opis ruchu postępowego Temat lekcji Elementy działań na wektorach dostateczną uczeń podać przykłady wielkości fizycznych skalarnych i wektorowych, wymienić cechy

Bardziej szczegółowo

Przykładowe zdania testowe I semestr,

Przykładowe zdania testowe I semestr, Przykładowe zdania testowe I semestr, 2015-2016 Rozstrzygnij, które z podanych poniżej zdań są prawdziwe, a które nie. Podstawy matematyczno-fizyczne. Działania na wektorach. Zagadnienia kluczowe: Układ

Bardziej szczegółowo

VI. CELE OPERACYJNE, CZYLI PLAN WYNIKOWY (CZ. 1)

VI. CELE OPERACYJNE, CZYLI PLAN WYNIKOWY (CZ. 1) 1 VI. CELE OPERACYJNE, CZYLI PLAN WYNIKOWY (CZ. 1) 1. Opis ruchu postępowego 1 Elementy działań na wektorach podać przykłady wielkości fizycznych skalarnych i wektorowych, wymienić cechy wektora, dodać

Bardziej szczegółowo

Fizyka Podręcznik: Świat fizyki, cz.1 pod red. Barbary Sagnowskiej. 4. Jak opisujemy ruch? Lp Temat lekcji Wymagania konieczne i podstawowe Uczeń:

Fizyka Podręcznik: Świat fizyki, cz.1 pod red. Barbary Sagnowskiej. 4. Jak opisujemy ruch? Lp Temat lekcji Wymagania konieczne i podstawowe Uczeń: Fizyka Podręcznik: Świat fizyki, cz.1 pod red. Barbary Sagnowskiej 4. Jak opisujemy ruch? Lp Temat lekcji Wymagania konieczne i podstawowe Wymagania rozszerzone i dopełniające 1 Układ odniesienia opisuje

Bardziej szczegółowo

Zakład Dydaktyki Fizyki UMK

Zakład Dydaktyki Fizyki UMK Toruński poręcznik do fizyki I. Mechanika Materiały dydaktyczne Krysztof Rochowicz Zadania przykładowe Dr Krzysztof Rochowicz Zakład Dydaktyki Fizyki UMK Toruń, czerwiec 2012 1. Samochód jadący z prędkością

Bardziej szczegółowo

Wykład FIZYKA I. 3. Dynamika punktu materialnego. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 3. Dynamika punktu materialnego.  Dr hab. inż. Władysław Artur Woźniak Wykład IZYKA I 3. Dynamika punktu materialnego Dr hab. inż. Władysław Artur Woźniak Instytut izyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html Dynamika to dział mechaniki,

Bardziej szczegółowo

PLAN REALIZACJI MATERIAŁU NAUCZANIA FIZYKI W KLASIE PIERWSZEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

PLAN REALIZACJI MATERIAŁU NAUCZANIA FIZYKI W KLASIE PIERWSZEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH PLAN REALIZACJI MATERIAŁU NAUCZANIA FIZYKI W KLASIE PIERWSZEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH Krzysztof Horodecki, Artur Ludwikowski, Fizyka 1. Podręcznik dla gimnazjum, Gdańskie Wydawnictwo

Bardziej szczegółowo

Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi)

Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi) Kinematyka Mechanika ogólna Wykład nr 7 Elementy kinematyki Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez wnikania w związek

Bardziej szczegółowo

Podstawy fizyki sezon 1 II. DYNAMIKA

Podstawy fizyki sezon 1 II. DYNAMIKA Podstawy fizyki sezon 1 II. DYNAMIKA Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Kinematyka a dynamika Kinematyka

Bardziej szczegółowo

Z przedstawionych poniżej stwierdzeń dotyczących wartości pędów wybierz poprawne. Otocz kółkiem jedną z odpowiedzi (A, B, C, D lub E).

Z przedstawionych poniżej stwierdzeń dotyczących wartości pędów wybierz poprawne. Otocz kółkiem jedną z odpowiedzi (A, B, C, D lub E). Zadanie 1. (0 3) Podczas gry w badmintona zawodniczka uderzyła lotkę na wysokości 2 m, nadając jej poziomą prędkość o wartości 5. Lotka upadła w pewnej odległości od zawodniczki. Jest to odległość o jedną

Bardziej szczegółowo

ZASADY DYNAMIKI NEWTONA

ZASADY DYNAMIKI NEWTONA ZASADY DYNAMIKI NEWTONA I. Jeżeli na ciało nie działa żadna siła lub działające siły się równoważą to ciało pozostaje w spoczynku lub porusza sie ruchem jednostajnym po linii prostej. Ta zasada często

Bardziej szczegółowo

KRYTERIA OCEN Z FIZYKI DLA KLASY I GIMNAZJUM

KRYTERIA OCEN Z FIZYKI DLA KLASY I GIMNAZJUM KRYTERIA OCEN Z FIZYKI DLA KLASY I GIMNAZJUM WŁASNOŚCI MATERII - Uczeń nie opanował wiedzy i umiejętności niezbędnych w dalszej nauce. - Wie, że substancja występuje w trzech stanach skupienia. - Wie,

Bardziej szczegółowo

ZASADY DYNAMIKI. Przedmiotem dynamiki jest badanie przyczyn i sposobów zmiany ruchu ciał.

ZASADY DYNAMIKI. Przedmiotem dynamiki jest badanie przyczyn i sposobów zmiany ruchu ciał. ZASADY DYNAMIKI Przedmiotem dynamiki jest badanie przyczyn i sposobów zmiany ruchu ciał Dynamika klasyczna zbudowana jest na trzech zasadach podanych przez Newtona w 1687 roku I zasada dynamiki Istnieją

Bardziej szczegółowo

DZIAŁ TEMAT NaCoBeZu kryteria sukcesu w języku ucznia

DZIAŁ TEMAT NaCoBeZu kryteria sukcesu w języku ucznia ODDZIAŁYWANIA DZIAŁ TEMAT NaCoBeZu kryteria sukcesu w języku ucznia 1. Organizacja pracy na lekcjach fizyki w klasie I- ej. Zapoznanie z wymaganiami na poszczególne oceny. Fizyka jako nauka przyrodnicza.

Bardziej szczegółowo

KLASA I PROGRAM NAUCZANIA DLA GIMNAZJUM TO JEST FIZYKA M.BRAUN, W. ŚLIWA (M. Małkowska)

KLASA I PROGRAM NAUCZANIA DLA GIMNAZJUM TO JEST FIZYKA M.BRAUN, W. ŚLIWA (M. Małkowska) KLASA I PROGRAM NAUZANIA LA GIMNAZJUM TO JEST FIZYKA M.RAUN, W. ŚLIWA (M. Małkowska) Kursywą oznaczono treści dodatkowe Temat lekcji ele operacyjne - uczeń: Kategoria celów podstawowe Wymagania ponadpodstawowe

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z FIZYKI

WYMAGANIA EDUKACYJNE Z FIZYKI WYMAGANIA EDUKACYJNE Z FIZYKI KLASA I Budowa materii Wymagania na stopień dopuszczający obejmują treści niezbędne dla dalszego kształcenia oraz użyteczne w pozaszkolnej działalności ucznia. Uczeń: rozróżnia

Bardziej szczegółowo

Zasady dynamiki Isaak Newton (1686 r.)

Zasady dynamiki Isaak Newton (1686 r.) Zasady dynamiki Isaak Newton (1686 r.) I (zasada bezwładności) Istnieje taki układ odniesienia, w którym ciało pozostaje w spoczynku lub porusza się ruchem jednostajnym prostoliniowym, jeśli nie działają

Bardziej szczegółowo

3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas

3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas 3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas oddziaływanie między ciałami, ani też rola, jaką to

Bardziej szczegółowo

Fizyka 1- Mechanika. Wykład 4 27.X Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów

Fizyka 1- Mechanika. Wykład 4 27.X Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów Fizyka 1- Mechanika Wykład 4 27.X.2016 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ III zasada dynamiki Zasada akcji i reakcji Każdemu działaniu

Bardziej szczegółowo

Zasady dynamiki Newtona

Zasady dynamiki Newtona Zasady dynamiki Newtona 1. Znajdź masę ciała (poruszającego się po prostej), które pod działaniem siły o wartości F = 30 N w czasie t= 5s zmienia swą szybkość z v 1 = 15 m/s na v 2 = 30 m/s. 2. Znajdź

Bardziej szczegółowo

Fizyka 1. zbiór zadań do gimnazjum. Zadania dla wszystkich FIZYKA 1. do gimnazjum

Fizyka 1. zbiór zadań do gimnazjum. Zadania dla wszystkich FIZYKA 1. do gimnazjum Fizyka 1 Zadania dla wszystkich zbiór zadań do gimnazjum Zbiór zawiera zadania z działów: siły, ruch, siły i ruch oraz energia, omówionych w podręcznikach Fizyki z plusem. Jest praktyczną pomocą również

Bardziej szczegółowo

Astronomia. Znając przyspieszenie grawitacyjne planety (ciała), obliczyć możemy ciężar ciała drugiego.

Astronomia. Znając przyspieszenie grawitacyjne planety (ciała), obliczyć możemy ciężar ciała drugiego. Astronomia M = masa ciała G = stała grawitacji (6,67 10-11 [N m 2 /kg 2 ]) R, r = odległość dwóch ciał/promień Fg = ciężar ciała g = przyspieszenie grawitacyjne ( 9,8 m/s²) V I = pierwsza prędkość kosmiczna

Bardziej szczegółowo

Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej

Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej Dynamika ruchu postępowego 1. Balon opada ze stałą prędkością. Jaką masę balastu należy wyrzucić, aby balon

Bardziej szczegółowo

Imię i nazwisko ucznia Data... Klasa... Ruch i siły wer. 1

Imię i nazwisko ucznia Data... Klasa... Ruch i siły wer. 1 Przygotowano za pomocą programu Ciekawa fizyka. Bank zadań Copyright by Wydawnictwa Szkolne i Pedagogiczne sp. z o.o., Warszawa 2011 strona 1 Imię i nazwisko ucznia Data...... Klasa... Zadanie 1. Znajdź

Bardziej szczegółowo

To jest fizyka 1. Rozkład materiału nauczania (propozycja)

To jest fizyka 1. Rozkład materiału nauczania (propozycja) To jest fizyka 1. Rozkład materiału nauczania (propozycja) Kursywą oznaczono treści dodatkowe Temat lekcji Treści nauczania Metody pracy Środki nauczania Uwagi 1 2 3 4 5 Temat 1. Organizacja zajęć na lekcjach

Bardziej szczegółowo

Zasady dynamiki Newtona. Pęd i popęd. Siły bezwładności

Zasady dynamiki Newtona. Pęd i popęd. Siły bezwładności Zasady dynamiki Newtona Pęd i popęd Siły bezwładności Copyright by pleciuga@o2.pl Inercjalne układy odniesienia Układy inercjalne to takie układy odniesienia, względem których wszystkie ciała nie oddziałujące

Bardziej szczegółowo

ZESTAW POWTÓRKOWY (1) KINEMATYKA POWTÓRKI PRZED EGZAMINEM ZADANIA WYKONUJ SAMODZIELNIE!

ZESTAW POWTÓRKOWY (1) KINEMATYKA POWTÓRKI PRZED EGZAMINEM ZADANIA WYKONUJ SAMODZIELNIE! Imię i nazwisko: Kl. Termin oddania: Liczba uzyskanych punktów: /50 Ocena: ZESTAW POWTÓRKOWY (1) KINEMATYKA POWTÓRKI PRZED EGZAMINEM ZADANIA WYKONUJ SAMODZIELNIE! 1. /(0-2) Przelicz jednostki szybkości:

Bardziej szczegółowo

Wektory, układ współrzędnych

Wektory, układ współrzędnych Wektory, układ współrzędnych Wielkości występujące w przyrodzie możemy podzielić na: Skalarne, to jest takie wielkości, które potrafimy opisać przy pomocy jednej liczby (skalara), np. masa, czy temperatura.

Bardziej szczegółowo

Kinematyka, Dynamika, Elementy Szczególnej Teorii Względności

Kinematyka, Dynamika, Elementy Szczególnej Teorii Względności Kinematyka, Dynamika, Elementy Szczególnej Teorii Względności Fizyka wykład 2 dla studentów kierunku Informatyka Wydział Automatyki, Elektroniki i Informatyki Politechnika Śląska 15 października 2007r.

Bardziej szczegółowo

ROZKŁAD MATERIAŁU Z FIZYKI I ASTRONOMII KLASIE PIERWSZEJ W LICEUM PROFILOWANYM

ROZKŁAD MATERIAŁU Z FIZYKI I ASTRONOMII KLASIE PIERWSZEJ W LICEUM PROFILOWANYM ROZKŁAD MATERIAŁU Z FIZYKI I ASTRONOMII KLASIE PIERWSZEJ W LICEUM PROFILOWANYM W trzyletnim cyklu nauczania fizyki 4godziny rozdzielono po ( 1, 2, 1) w klasie pierwszej, drugiej i trzeciej. Obowiązujący

Bardziej szczegółowo

Od redakcji. Symbolem oznaczono zadania wykraczające poza zakres materiału omówionego w podręczniku Fizyka z plusem cz. 1.

Od redakcji. Symbolem oznaczono zadania wykraczające poza zakres materiału omówionego w podręczniku Fizyka z plusem cz. 1. Od redakcji Niniejszy zbiór zadań powstał z myślą o tych wszystkich, dla których rozwiązanie zadania z fizyki nie polega wyłącznie na mechanicznym przekształceniu wzorów i podstawieniu do nich danych.

Bardziej szczegółowo

I ZASADA DYNAMIKI. m a

I ZASADA DYNAMIKI. m a DYNAMIKA (cz.1) Zasady dynamiki Newtona Siły w mechanice - przykłady Zasady zachowania w mechanice Praca, energia i moc Pęd i zasada zachowania pędu Popęd siły Zderzenia ciał DYNAMIKA Oddziaływanie między

Bardziej szczegółowo

Wykład FIZYKA I. 5. Energia, praca, moc. http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 5. Energia, praca, moc. http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html. Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I 5. Energia, praca, moc Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html ENERGIA, PRACA, MOC Siła to wielkość

Bardziej szczegółowo

1. Kinematyka 8 godzin

1. Kinematyka 8 godzin Plan wynikowy (propozycja) część 1 1. Kinematyka 8 godzin Wymagania Treści nauczania (tematy lekcji) Cele operacyjne podstawowe ponadpodstawowe Uczeń: konieczne podstawowe rozszerzające dopełniające Jak

Bardziej szczegółowo

Zasady dynamiki Newtona. Ilość ruchu, stan ruchu danego ciała opisuje pęd

Zasady dynamiki Newtona. Ilość ruchu, stan ruchu danego ciała opisuje pęd Zasady dynamiki Newtona Ilość ruchu, stan ruchu danego ciała opisuje pęd Siły - wektory Ilość ruchu, stan ruchu danego ciała opisuje pęd Zasady dynamiki Newtona I Każde ciało trwa w stanie spoczynku lub

Bardziej szczegółowo

FIZYKA I ASTRONOMIA RUCH JEDNOSTAJNIE PROSTOLINIOWY RUCH PROSTOLINIOWY JEDNOSTAJNIE PRZYSPIESZONY RUCH PROSTOLINIOWY JEDNOSTAJNIE OPÓŹNIONY

FIZYKA I ASTRONOMIA RUCH JEDNOSTAJNIE PROSTOLINIOWY RUCH PROSTOLINIOWY JEDNOSTAJNIE PRZYSPIESZONY RUCH PROSTOLINIOWY JEDNOSTAJNIE OPÓŹNIONY FIZYKA I ASTRONOMIA RUCH JEDNOSTAJNIE PROSTOLINIOWY Każdy ruch jest zmienną położenia w czasie danego ciała lub układu ciał względem pewnego wybranego układu odniesienia. v= s/t RUCH

Bardziej szczegółowo

PRACA Pracą mechaniczną nazywamy iloczyn wartości siły i wartości przemieszczenia, które nastąpiło zgodnie ze zwrotem działającej siły.

PRACA Pracą mechaniczną nazywamy iloczyn wartości siły i wartości przemieszczenia, które nastąpiło zgodnie ze zwrotem działającej siły. PRACA Pracą mechaniczną nazywamy iloczyn wartości siły i wartości przemieszczenia, które nastąpiło zgodnie ze zwrotem działającej siły. Pracę oznaczamy literą W Pracę obliczamy ze wzoru: W = F s W praca;

Bardziej szczegółowo

Test powtórzeniowy nr 1

Test powtórzeniowy nr 1 Test powtórzeniowy nr 1 Grupa C... imię i nazwisko ucznia...... data klasa W zadaniach 1. 19. wstaw krzyżyk w kwadracik obok wybranej odpowiedzi. Informacja do zadań 1. 5. Wykres przedstawia zależność

Bardziej szczegółowo

Anna Nagórna Wrocław, r. nauczycielka chemii i fizyki

Anna Nagórna Wrocław, r. nauczycielka chemii i fizyki Anna Nagórna Wrocław, 1.09.2015 r. nauczycielka chemii i fizyki Plan pracy dydaktycznej na fizyce wraz z wymaganiami edukacyjnymi na poszczególne oceny w klasach pierwszych w roku szkolnym 2015/2016 na

Bardziej szczegółowo

Program nauczania Fizyka GPI OSSP

Program nauczania Fizyka GPI OSSP Tomasz Katkowski nauczyciel Program nauczania Fizyka GPI OSSP Program powstał na podstawie materiałów wydawnictwa Nowa Era, którego podręcznik jest wykorzystywany na lekcji fizyki i jest jego autorską

Bardziej szczegółowo

Zestaw zadań na I etap konkursu fizycznego. Zad. 1 Kamień spadał swobodnie z wysokości h=20m. Średnia prędkość kamienia wynosiła :

Zestaw zadań na I etap konkursu fizycznego. Zad. 1 Kamień spadał swobodnie z wysokości h=20m. Średnia prędkość kamienia wynosiła : Zestaw zadań na I etap konkursu fizycznego Zad. 1 Kamień spadał swobodnie z wysokości h=20m. Średnia prędkość kamienia wynosiła : A) 5m/s B) 10m/s C) 20m/s D) 40m/s. Zad.2 Samochód o masie 1 tony poruszał

Bardziej szczegółowo

Ruch jednostajnie zmienny prostoliniowy

Ruch jednostajnie zmienny prostoliniowy Ruch jednostajnie zmienny prostoliniowy Przyspieszenie w ruchu jednostajnie zmiennym prostoliniowym Jest to taki ruch, w którym wektor przyspieszenia jest stały, co do wartości (niezerowej), kierunku i

Bardziej szczegółowo

Dynamika: układy nieinercjalne

Dynamika: układy nieinercjalne Dynamika: układy nieinercjalne Spis treści 1 Układ inercjalny 2 Układy nieinercjalne 2.1 Opis ruchu 2.2 Prawa ruchu 2.3 Ruch poziomy 2.4 Równia 2.5 Spadek swobodny 3 Układy obracające się 3.1 Układ inercjalny

Bardziej szczegółowo

ZADANIA PRACA, MOC, ENREGIA

ZADANIA PRACA, MOC, ENREGIA ZADANIA PRACA, MOC, ENREGIA Aby energia układu wzrosła musi być wykonana nad ciałem praca przez siłę zewnętrzną (spoza układu ciał) Ciało, które posiada energię jest zdolne do wykonania pracy w sensie

Bardziej szczegółowo

ZADANIA Z KINEMATYKI

ZADANIA Z KINEMATYKI ZADANIA Z KINEMATYKI 1. Określ na poszczególnych przykładach czy względem określonego układu odniesienia ciało jest w ruchu, czy w spoczynku: a) kubek stojący na stole względem stołu b) kubek stojący na

Bardziej szczegółowo

14R POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII. POZIOM ROZSZERZONY (od początku do grawitacji)

14R POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII. POZIOM ROZSZERZONY (od początku do grawitacji) Włodzimierz Wolczyński 14R POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII POZIOM ROZSZERZONY (od początku do grawitacji) Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią

Bardziej szczegółowo

PRACA. MOC. ENERGIA. 1/20

PRACA. MOC. ENERGIA. 1/20 PRACA. MOC. ENERGIA. 1/20 Czym jest energia? Większość zjawisk w przyrodzie związana jest z przemianami energii. Energia może zostać przekazana od jednego ciała do drugiego lub ulec przemianie z jednej

Bardziej szczegółowo

Wymagania edukacyjne do nowej podstawy programowej z fizyki realizowanej w zakresie rozszerzonym Kinematyka

Wymagania edukacyjne do nowej podstawy programowej z fizyki realizowanej w zakresie rozszerzonym Kinematyka 1 edukacyjne do nowej podstawy programowej z fizyki realizowanej w zakresie rozszerzonym Kinematyka *W nawiasie podano alternatywny temat lekcji (jeśli nazwa zagadnienia jest długa) bądź tematy lekcji

Bardziej szczegółowo

Test powtórzeniowy nr 1

Test powtórzeniowy nr 1 Test powtórzeniowy nr 1 Grupa A... imię i nazwisko ucznia...... data klasa W zadaniach 1. 19. wstaw krzyżyk w kwadracik obok wybranej odpowiedzi. Informacja do zadań 1. 5. Na wykresie przedstawiono zależność

Bardziej szczegółowo

Podstawy fizyki sezon 1 V. Ruch obrotowy 1 (!)

Podstawy fizyki sezon 1 V. Ruch obrotowy 1 (!) Podstawy fizyki sezon 1 V. Ruch obrotowy 1 (!) Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Kinematyka ruchu

Bardziej szczegółowo

Ruch jednowymiarowy. Autorzy: Zbigniew Kąkol Kamil Kutorasiński

Ruch jednowymiarowy. Autorzy: Zbigniew Kąkol Kamil Kutorasiński Ruch jednowymiarowy Autorzy: Zbigniew Kąkol Kamil Kutorasiński 017 Ruch jednowymiarowy Autorzy: Zbigniew Kąkol, Kamil Kutorasiński Dział Fizyki zajmujący się opisem ruchu ciał nazywamy kinematyką. Definicja

Bardziej szczegółowo

Oddziaływania Grawitacja

Oddziaływania Grawitacja Oddziaływania Grawitacja OPRACOWANIE Oddziaływania. Żadne ciało nie jest wolne od oddziaływania innych ciał na nie. Każdy z nas poddany jest przyciąganiu ziemskiemu, które utrzymuje nas na powierzchni

Bardziej szczegółowo

Zasada zachowania pędu

Zasada zachowania pędu Zasada zachowania pędu Zasada zachowania pędu Układ izolowany Układem izolowanym nazwiemy układ, w którym każde ciało może w dowolny sposób oddziaływać z innymi elementami układu, ale brak jest oddziaływań

Bardziej szczegółowo

KONKURS MATEMATYCZNO FIZYCZNY 11 marca 2010 r. Klasa II

KONKURS MATEMATYCZNO FIZYCZNY 11 marca 2010 r. Klasa II ...... kod ucznia... klasa KONKURS MATEMATYCZNO FIZYCZNY marca 200 r. Klasa II... ilość punktów Drogi uczniu! Przed Tobą zestaw 4 zadań. Pierwsze 0 to zadania zamknięte. Rozwiązanie tych zadań polega na

Bardziej szczegółowo

Podstawy fizyki sezon 1 VII. Pole grawitacyjne*

Podstawy fizyki sezon 1 VII. Pole grawitacyjne* Podstawy fizyki sezon 1 VII. Pole grawitacyjne* Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha * Resnick, Halliday,

Bardziej szczegółowo

Fizyka. Kurs przygotowawczy. na studia inżynierskie. mgr Kamila Haule

Fizyka. Kurs przygotowawczy. na studia inżynierskie. mgr Kamila Haule Fizyka Kurs przygotowawczy na studia inżynierskie mgr Kamila Haule Zderzenia Zasada zachowania pędu Pęd i druga zasada dynamiki Pęd cząstki (ciała) to wektor prędkości pomnożony przez masę. r p = r mv

Bardziej szczegółowo

SPRAWDZIAN Nr 1 (wersja A)

SPRAWDZIAN Nr 1 (wersja A) SPRAWDZIAN Nr 1 (wersja A) 1. Parasol leżący na fotelu jadącego samochodu względem tego samochodu Ojest w ruchu spoczywa względem szosy, po której jedzie samochód x (m)n Qjest w ruchu spoczywa 4^> 2. Chłopiec

Bardziej szczegółowo

PODSTAWY FIZYKI - WYKŁAD 3 ENERGIA I PRACA SIŁA WYPORU. Piotr Nieżurawski. Wydział Fizyki. Uniwersytet Warszawski

PODSTAWY FIZYKI - WYKŁAD 3 ENERGIA I PRACA SIŁA WYPORU. Piotr Nieżurawski. Wydział Fizyki. Uniwersytet Warszawski PODSTAWY FIZYKI - WYKŁAD 3 ENERGIA I PRACA SIŁA WYPORU Piotr Nieżurawski pniez@fuw.edu.pl Wydział Fizyki Uniwersytet Warszawski http://www.fuw.edu.pl/~pniez/bioinformatyka/ 1 Co to jest praca? Dla punktu

Bardziej szczegółowo

Grawitacja okiem biol chemów i Linuxów.

Grawitacja okiem biol chemów i Linuxów. Grawitacja okiem biol chemów i Linuxów. Spis treści 1. Odrobina teorii 2. Prawo powszechnego ciążenia 3. Geotropizm 4. Grawitacja na małą skalę ciężkość ciał 5. Grawitacja nie z tej Ziemi 6. Grawitacja

Bardziej szczegółowo

Twórcza szkoła dla twórczego ucznia Projekt współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Twórcza szkoła dla twórczego ucznia Projekt współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego SCENARIUSZ LEKCJI PRZEDMIOT: FIZYKA TEMAT: Pierwsza zasada dynamiki Bezwładność ciała AUTOR SCENARIUSZA: mgr Krystyna Glanc OPRACOWANIE ELEKTRONICZNO GRAFICZNE : mgr Beata Rusin TEMAT LEKCJI Pierwsza zasada

Bardziej szczegółowo

Lp. lekcji Uszczegółowienie treści Wymagania na ocenę dopuszczającą dostateczną dobrą bardzo dobrą

Lp. lekcji Uszczegółowienie treści Wymagania na ocenę dopuszczającą dostateczną dobrą bardzo dobrą Wymagania edukacyjne dla klasy: I TAK, I TI, I TE, I LP/ZI Lp. lekcji Uszczegółowienie treści Wymagania na ocenę dopuszczającą dostateczną dobrą bardzo dobrą 1 2 3 4 5 6 7 Kinematyka - opis ruchu Uczeń:

Bardziej szczegółowo

Zestaw 1cR. Dane: t = 6 s czas spadania ciała, g = 10 m/s 2 przyspieszenie ziemskie. Szukane: H wysokość, z której rzucono ciało poziomo, Rozwiązanie

Zestaw 1cR. Dane: t = 6 s czas spadania ciała, g = 10 m/s 2 przyspieszenie ziemskie. Szukane: H wysokość, z której rzucono ciało poziomo, Rozwiązanie Zestaw 1cR Zadanie 1 Sterowiec wisi nieruchomo na wysokości H nad punktem A położonym bezpośrednio pod nim na poziomej powierzchni lotniska. Ze sterowca wyrzucono poziomo ciało, nadając mu prędkość początkową

Bardziej szczegółowo

ROZWIĄZUJEMY ZADANIA Z FIZYKI

ROZWIĄZUJEMY ZADANIA Z FIZYKI ROZWIĄZUJEMY ZADANIA Z FIZYKI Rozwiązując zadnia otwarte PAMIĘTAJ o: wypisaniu danych i szukanych, zamianie jednostek na podstawowe, wypisaniu potrzebnych wzorów, w razie potrzeby przekształceniu wzorów,

Bardziej szczegółowo

b) Oblicz ten ułamek dla zderzeń z jądrami ołowiu, węgla. Iloraz mas tych jąder do masy neutronu wynosi: 206 dla ołowiu i 12 dla węgla.

b) Oblicz ten ułamek dla zderzeń z jądrami ołowiu, węgla. Iloraz mas tych jąder do masy neutronu wynosi: 206 dla ołowiu i 12 dla węgla. Zadanie 1 Szybkie neutrony, powstające w reaktorze jądrowym, muszą zostać spowolnione, by mogły wydajnie uczestniczyć w łańcuchowej reakcji rozszczepienia jąder. W tym celu doprowadza się do ich zderzeń

Bardziej szczegółowo

Mechanika ogólna / Tadeusz Niezgodziński. - Wyd. 1, dodr. 5. Warszawa, Spis treści

Mechanika ogólna / Tadeusz Niezgodziński. - Wyd. 1, dodr. 5. Warszawa, Spis treści Mechanika ogólna / Tadeusz Niezgodziński. - Wyd. 1, dodr. 5. Warszawa, 2010 Spis treści Część I. STATYKA 1. Prawa Newtona. Zasady statyki i reakcje więzów 11 1.1. Prawa Newtona 11 1.2. Jednostki masy i

Bardziej szczegółowo

Tarcie poślizgowe

Tarcie poślizgowe 3.3.1. Tarcie poślizgowe Przy omawianiu więzów w p. 3.2.1 reakcję wynikającą z oddziaływania ciała na ciało B (rys. 3.4) rozłożyliśmy na składową normalną i składową styczną T, którą nazwaliśmy siłą tarcia.

Bardziej szczegółowo

Test powtórzeniowy nr 1

Test powtórzeniowy nr 1 Test powtórzeniowy nr 1 Grupa B... imię i nazwisko ucznia...... data klasa W zadaniach 1. 19. wstaw krzyżyk w kwadracik obok wybranej odpowiedzi. Informacja do zadań 1. 5. Wykres przedstawia zależność

Bardziej szczegółowo

3. Zadanie nr 21 z rozdziału 7. książki HRW

3. Zadanie nr 21 z rozdziału 7. książki HRW Lista 3. do kursu Fizyka; rok. ak. 2012/13 sem. letni W. Inż. Środ.; kierunek Inż. Środowiska Tabele wzorów matematycznych (http://www.if.pwr.wroc.pl/~wsalejda/mat-wzory.pdf) i fizycznych (http://www.if.pwr.wroc.pl/~wsalejda/wzf1.pdf;

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z FIZYKI KLASA I

WYMAGANIA EDUKACYJNE Z FIZYKI KLASA I WYMAGANIA EDUKACYJNE Z FIZYKI KLASA I Ocenę dopuszczającą otrzymuje uczeń, który wie: - jakie działania człowieka mogą prowadzić do degradacji środowiska, - jakie czynności powinny być przez człowieka

Bardziej szczegółowo

Grawitacja - powtórka

Grawitacja - powtórka Grawitacja - powtórka 1. Oceń prawdziwość każdego zdania. Zaznacz, jeśli zdanie jest prawdziwe, lub, jeśli jest A. Jednorodne pole grawitacyjne istniejące w obszarze sali lekcyjnej jest wycinkiem centralnego

Bardziej szczegółowo

Praca, moc, energia. 1. Klasyfikacja energii. W = Epoczątkowa Ekońcowa

Praca, moc, energia. 1. Klasyfikacja energii. W = Epoczątkowa Ekońcowa Praca, moc, energia 1. Klasyfikacja energii. Jeżeli ciało posiada energię, to ma również zdolnoć do wykonania pracy kosztem częci swojej energii. W = Epoczątkowa Ekońcowa Wewnętrzna Energia Mechaniczna

Bardziej szczegółowo

Ćwiczenie: "Ruch po okręgu"

Ćwiczenie: Ruch po okręgu Ćwiczenie: "Ruch po okręgu" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: 1. Kinematyka

Bardziej szczegółowo

14 POLE GRAWITACYJNE. Włodzimierz Wolczyński. Wzór Newtona. G- stała grawitacji 6, Natężenie pola grawitacyjnego.

14 POLE GRAWITACYJNE. Włodzimierz Wolczyński. Wzór Newtona. G- stała grawitacji 6, Natężenie pola grawitacyjnego. Włodzimierz Wolczyński 14 POLE GRAWITACYJNE Wzór Newtona M r m G- stała grawitacji Natężenie pola grawitacyjnego 6,67 10 jednostka [ N/kg] Przyspieszenie grawitacyjne jednostka [m/s 2 ] Praca w polu grawitacyjnym

Bardziej szczegółowo

Od redakcji. Symbolem oznaczono zadania wykraczające poza zakres materiału omówionego w podręczniku Fizyka z plusem cz. 2.

Od redakcji. Symbolem oznaczono zadania wykraczające poza zakres materiału omówionego w podręczniku Fizyka z plusem cz. 2. Od redakcji Niniejszy zbiór zadań powstał z myślą o tych wszystkich, dla których rozwiązanie zadania z fizyki nie polega wyłącznie na mechanicznym przekształceniu wzorów i podstawieniu do nich danych.

Bardziej szczegółowo

Spotkania z fizyka 2. Rozkład materiału nauczania (propozycja)

Spotkania z fizyka 2. Rozkład materiału nauczania (propozycja) Spotkania z fizyka 2. Rozkład materiału nauczania (propozycja) Temat lekcji Siła wypadkowa siła wypadkowa, składanie sił o tym samym kierunku, R składanie sił o różnych kierunkach, siły równoważące się.

Bardziej szczegółowo

WOJEWÓDZKI KONKURS Z FIZYKI DLA UCZNIÓW GIMNAZJUM, ROK SZKOLNY 2015/2016, ETAP REJONOWY

WOJEWÓDZKI KONKURS Z FIZYKI DLA UCZNIÓW GIMNAZJUM, ROK SZKOLNY 2015/2016, ETAP REJONOWY WOJEWÓDZKI KONKURS Z FIZYKI DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 2015/2016 IMIĘ I NAZWISKO UCZNIA wpisuje komisja konkursowa po rozkodowaniu pracy! KOD UCZNIA: ETAP II REJONOWY Informacje: 1. Czas rozwiązywania

Bardziej szczegółowo

09R POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII. POZIOM ROZSZERZONY (dynamika ruchu prostoliniowego)

09R POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII. POZIOM ROZSZERZONY (dynamika ruchu prostoliniowego) Włodzimierz Wolczyński 09R POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII POZIOM ROZSZERZONY (dynamika ruchu prostoliniowego) Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią

Bardziej szczegółowo

(t) w przedziale (0 s 16 s). b) Uzupełnij tabelę, wpisując w drugiej kolumnie rodzaj ruchu, jakim poruszała się mrówka w kolejnych przedziałach czasu.

(t) w przedziale (0 s 16 s). b) Uzupełnij tabelę, wpisując w drugiej kolumnie rodzaj ruchu, jakim poruszała się mrówka w kolejnych przedziałach czasu. 1 1 x (m/s) 4 0 4 1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 t (s) a) Narysuj wykres a x (t) w przedziale (0 s 16 s). b) Uzupełnij tabelę, wpisując w drugiej kolumnie rodzaj ruchu, jakim poruszała się mrówka

Bardziej szczegółowo

Podstawy Procesów i Konstrukcji Inżynierskich. Praca, moc, energia INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA

Podstawy Procesów i Konstrukcji Inżynierskich. Praca, moc, energia INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA Podstawy Procesów i Konstrukcji Inżynierskich Praca, moc, energia Energia Energia jest to wielkość skalarna, charakteryzująca stan, w jakim znajduje się jedno lub wiele ciał. Energia jest miarą różnych

Bardziej szczegółowo

GRAWITACJA MODUŁ 6 SCENARIUSZ TEMATYCZNY LEKCJA NR 2 FIZYKA ZAKRES ROZSZERZONY WIRTUALNE LABORATORIA FIZYCZNE NOWOCZESNĄ METODĄ NAUCZANIA.

GRAWITACJA MODUŁ 6 SCENARIUSZ TEMATYCZNY LEKCJA NR 2 FIZYKA ZAKRES ROZSZERZONY WIRTUALNE LABORATORIA FIZYCZNE NOWOCZESNĄ METODĄ NAUCZANIA. MODUŁ 6 SCENARIUSZ TEMATYCZNY GRAWITACJA OPRACOWANE W RAMACH PROJEKTU: FIZYKA ZAKRES ROZSZERZONY WIRTUALNE LABORATORIA FIZYCZNE NOWOCZESNĄ METODĄ NAUCZANIA. PROGRAM NAUCZANIA FIZYKI Z ELEMENTAMI TECHNOLOGII

Bardziej szczegółowo

Przedmiotowe ocenianie Ciekawa fizyka - Część 2/1 Tabela wymagań programowych na poszczególne oceny

Przedmiotowe ocenianie Ciekawa fizyka - Część 2/1 Tabela wymagań programowych na poszczególne oceny Przedmiotowe ocenianie Ciekawa fizyka - Część 2/1 Tabela wymagań programowych na poszczególne oceny Rok szkolny 2015/2016 Temat lekcji w podręczniku Wymagania programowe P - podstawowe R - rozszerzające

Bardziej szczegółowo