NAUKA I TECHNIKA W GRECJI I RZYMIE
|
|
- Małgorzata Maj
- 9 lat temu
- Przeglądów:
Transkrypt
1 NAUKA I TECHNIKA W GRECJI I RZYMIE
2 p.n.e Tales Anaksymander Anaksymenes Heraklit Pitagoras Parmenides Anaksagoras Empedokles Leukippos Demokryt Budda Kung-tsy Epikur Sokrates Platon Arystoteles Eudoksos Euklides Straton Herodot Hippokrates Archimedes Arystarch Eratostenes Ktesibios Appolonios Hipparch n.e.
3 Świat antyczny
4 Filozofowie jońscy Przepowiednia całkowitego zaćmienia Słońca 28 maja 585 r. p.n.e. Talesz Miletu (ok p.n.e.) Kiedy mianowicie [Lidyjczycy i Medowie] przy równych szansach przedłużali wojnę, zdarzyło się w szóstym roku wrogich ich zmagań, że podczas walki dzień nagle ustąpił przed nocą. Tę przemianę dnia przepowiedział był Jończykom Tales z Miletu, a jako termin ustalił właśnie ten rok, w którym istotnie ona nastąpiła. Lidyjczycy jednak i Medowie, widząc, że z dnia zrobiła się noc, zaniechali walki i obie strony tym bardziej się pospieszyły żeby zawrzeć pokój. Herodot, Dzieje
5 Filozofowie jońscy Pratworzywo Tales z Miletu woda Anaksymander (ok p.n.e.) απειρον Anaksymenes (ok p.n.e.) powietrze Heraklit z Efezu (ok p.n.e.) ogień
6 Polskie przekłady dzieł Arystotelesa i Platona, z których przytaczane są cytaty: Fizyka - tłum. Kazimierz Leśniak, PWN Warszawa 1968 Metafizyka - tłum. Kazimierz Leśniak, PWN Warszawa 1984 O niebie - tłum. Paweł Siwek, PWN Warszawa 1980 Meteorologika - tłum. Antoni Paciorek, PWN Warszawa 1982 Mechanika - tłum. Leopold Regner, PWN Warszawa 1978 O powstawaniu i ginięciu - tłum. Leopold Regner, PWN Warszawa 1981 Timajos - tłum. Paweł Siwek, PWN Warszawa 1986
7 Pitagoras z Samos (ok p.n.e.) Naczelną ideą w filozofii pitagorejskiej było, że liczby nie tylko reprezentują relacje między zjawiskami, ale są substancją rzeczy, przyczyną każdego zjawiska w przyrodzie. O ile więc filozofowie jońscy kładli nacisk na substancję wszechświata, to pitagorejczycy podkreślali jego formę i proporcję.
8 Wszystkie własności liczb i harmonii, jeżeli tylko mogli wykazać ich zgodność ze zjawiskami niebieskimi, częściami nieba i całym ładem we wszechświecie, zbierali i włączali do swego systemu; a jeżeli gdzieś powstawała jakaś luka, szybko ją wypełniali, ażeby tylko całą teorię uczynić spójną. Na przykład, ponieważ liczba 10 jest według nich doskonała i obejmuje całą naturę liczb, wobec czego twierdzili, że również i ilość ciał niebieskich krążących po niebie wynosi dziesięć, ale ponieważ widzialnych ciał jest tylko dziewięć, wobec tego wynaleźli jako ciało dziesiąte Przeciw-Ziemię.... Arystoteles, Metafizyka, Księga alfa 986a
9 Pitagorejczycy dzielili matematykę na cztery części: arytmetykę, geometrię, muzykę i astronomię (muzykę uważali za arytmetykę stosowaną, a astronomię - za geometrię stosowaną) > quadrivium w uniwersytetach średniowiecznych
10 Pitagorejczycy dzielili liczby na trójkątne, kwadratowe, prostokątne etc = 10 (tetraktys) jedność + para przeciwieństw + harmonia + kosmos liczby trójkątne 1 : 2 oktawa 2 : 3 kwarta 3 : 4 kwinta
11 ...tak zwani pitagorejczycy pierwsi zająwszy się naukami matematycznymi nauki te rozwinęli, a zaprawiwszy się w nich sądzili, że ich zasady są zasadami wszystkich rzeczy. Skoro tedy liczby zajmują z natury pierwsze miejsce wśród tych zasad, a w liczbach, w większym stopniu niż w ogniu, ziemi i wodzie, można dostrzec, jak sądzili, wiele podobieństw do rzeczy istniejących i powstających - taka a taka własność liczb jest sprawiedliwością, inna sprzyjającą okolicznością - i podobnie jest z prawie każdą rzeczą; dostrzegli też w liczbach właściwości i proporcje muzyki; skoro więc wszystkie inne rzeczy wzorowane są, jak im się zdawało, w całej naturze na liczbach, a liczby wydają się pierwszymi w całej naturze, sądzili, że elementy liczb są elementami wszystkich rzeczy, a całe niebo jest harmonią i liczbą. Arystoteles, Metafizyka, Księga alfa, 985b, 986a
12 Przeciwnego zdania są ci, którzy należą do szkoły italskiej, zwani pitagorejczykami. Twierdzą oni mianowicie, że w środku wszechświata jest ogień, a Ziemia jest tylko jedną z gwiazd i swoim ruchem dokoła środka powoduje dzień i noc. Prócz tego dobierają do pary jeszcze inną Ziemię, przeciwległą do naszej i nazywają ją Antychton (Przeciw-Ziemią). Zamiast opierać swoje poglądy i wyjaśnienia przyczyn na zjawiskach zaobserwowanych, wciągają zjawiska do kadr swoich rozumowań i mniemań i starają się dostosować je do nich. Arystoteles, O niebie, 295a
13 Powstanie teorii atomistycznej Leukippos z Miletu (?) V w. p.n.e. Demokryt z Abdery (ok p.n.e.) Epikur z Samos ( p.n.e.) Uczniowie Leukipposa i Demokryta nazywali najmniejsze ciała pierwotne atomami i twierdzili, że w zależności od różnicy ich kształtów, położenia i porządku, ciała z nich ułożone są gorące czy ogniste, jeżeli składają się z atomów bardziej ostrych, drobniejszych, których wzajemne położenie jest podobne, podczas gdy ciała zimne i wodniste składają się z atomów przeciwnych; pierwsze są błyszczące i jasne, drugie matowe i ciemne. (Symplikjos, komentarz do Fizyki Arystotelesa)
14 Empedokles z Akragas (ok p.n.e.) Teoria czterech elementów (ριζώµατα) Dwie zasady czynne: φιλία - miłość i νεικος - nienawiść; jedna z nich łączy elementy, druga je rozdziela
15 Akragas było w V w. p.n.e. jednym z największych miast greckich. Ludność czterokrotnie większa niż obecnie
16 Anaksagoras z Kladzomen (ok p.n.e.) Słońce jest rozżarzoną kulą większą od Peloponezu Pierwszy znany przypadek prześladowania za poglądy naukowe
17 Platon p.n.e. Poglądy fizyczne głównie w dziełach Timajos i Krytiasz Akademia Platońska (387 p.n.e. 529 n.e.)
18 Akademia Platońska i Liceum Arystotelesa
19 Należy jednak wiedzieć, że bryły te są tak małe, iż z powodu maleńkich ich rozmiarów nigdy nie możemy żadnej z nich spostrzec indywidualnie w żadnym gatunku. Dopiero, gdy się złożą w wielkiej liczbie razem, masy z nich utworzone stają się widoczne. Timajos 56c
20 Eudoksos z Knidos (ok p.n.e.) Liczba sfer współśrodkowych Księżyc Słońce Merkury Wenus Mars Jowisz Saturn Gwiazdy Eudoksos Kalippos Arystoteles Platon jest bardziej znany szerszemu ogółowi, ale z punktu widzenia nauki, epokę Platona powinno się nazywać epoką Eudoksosa. George Sarton
21 Jest jednak rzeczą konieczną, jeżeli wszystkie połączone sfery mają wyjaśniać obserwowane zjawiska, ażeby każda planeta miała inną sferę (o jedną mniej niż dotąd się im przyznawało), które by krążyły w kierunku odwrotnym i sprowadzały do tej samej pozycji najdalszą sferę gwiazdy, która w każdym przypadku jest usytuowana poniżej danej gwiazdy. Tylko w ten sposób wszystkie działające siły mogą wywoływać ruch planet. Ponieważ sfer, w których się poruszają same planety, jest osiem dla Saturna i Jowisza, a dwadzieścia pięć dla pozostałych i skoro z tych sfer tylko te nie wymagają ruchu w kierunku przeciwnym, w których porusza się planeta najniżej ze wszystkich usytuowana, wobec tego dla dwóch pierwszych planet będzie sześć sfer poruszających się w kierunku odwrotnym i szesnaście dla czterech planet pozostałych. Ogółem sfer o ruchu prostym i o ruchu przeciwnym będzie pięćdziesiąt pięć. (Arystoteles, Metafizyka, Księga lambda, 1074a)
22 Arystoteles ze Stagiry ( p.n.e.) Stworzył spójny system wiedzy obejmujący wszystkie aspekty świata. Kilkadziesiąt dzieł poświęconych filozofii naturalnej, logice, metafizyce, etyce, polityce, sztuce, retoryce, psychologii i biologii [Liceum (szkoła perypatetyków) od 335 r.]
23 Poglądy fizyczne Arystotelesa zawarte głównie w jego dziełach: Fizyka O niebie Meteorologika O powstawaniu i ginięciu Metafizyka O duszy Mechanika O barwach
24 Podstawy fizyki Arystotelesa 1. Dychotomiczny podział świata na części rządzone odmiennymi prawami: sfera podksiężycowa - cztery elementy, sfera ponadksiężycowa - eter 2. Ruch: urzeczywistnienie bytu potencjalnego, wymaga przyczyny 3. Cztery rodzaje przyczyn (materialna, formalna, sprawcza i celowa) 4. Pojęcie miejsca naturalnego 5. Ruch przemieszczający: naturalny lub wymuszony 6. Zasady dynamiki Arystotelesa dla sfery podksiężycowej: 1. Ciało nie poddane wpływom zewnętrznym jest w spoczynku 2. Prędkość ciała wprawianego w ruch przez zewnętrzną przyczynę jest proporcjonalna do działającej siły i odwrotnie proporcjonalna do oporu ośrodka 7. Próżnia nie może istnieć
25 System świata według Arystotelesa Jest jasne, że poza niebem nie ma ani miejsca, ani próżni, ani czasu. O niebie 279a
26 nieznajomość istoty ruchu mogłaby doprowadzić w konsekwencji do nieznajomości przyrody. Arystoteles, Fizyka, Księga III, 200b
27 Nie ma ruchu poza rzeczami; bo to, co się zmienia, zmienia się zawsze albo substancjalnie, albo ilościowo, albo jakościowo, albo zmienia swoje położenie. Arystoteles, Fizyka 201a
28 Skoro każdy rodzaj bytu może być wyróżniony bądź jako potencjalny, bądź jako w pełni urzeczywistniony, wobec tego urzeczywistnienie (entelechia) bytu potencjalnego jako takiego będzie właśnie ruchem; oto na przykład entelechią tego, co się zmienia, o ile się zmienia, będzie zmiana jakościowa; entelechią tego, co jest zdolne do wzrostu oraz jego przeciwieństwa, tzn. tego, co jest zdolne do zmniejszania się (brak w tym wypadku wspólnej nazwy) - będzie przyrost i ubytek; entelechią tego, co jest zdolne do powstawania i ginięcia, będzie powstawanie i ginięcie; wreszcie entelechią tego, co może zmieniać swoje miejsce - będzie ruch przemieszczający. Arystoteles, Fizyka 214a
29 Wszystko, co się porusza, musi być poruszane przez coś; bo jeżeli nie ma źródła ruchu w sobie, jasne jest, że jest poruszane przez coś innego; musi być coś innego, co je porusza. Ruch pocisku według fizyki Arystotelesa Arystoteles, Fizyka, Księga 7, 241b
30 ...ciała rzucone poruszają się, chociaż nie mają już kontaktu ze źródłem impulsu. A poruszają się albo wskutek kolejnej zmiany miejsca, jak twierdzą, albo wskutek tego, że wprawione w ruch powietrze popycha ciało, ruchem szybszym od jego naturalnego ruchu, ku właściwemu miejscu. Jednakże w próżni nie może zachodzić żaden z tych wypadków; nic tu się nie może poruszać prócz ciała przez coś unoszonego. Dalej, nikt nie potrafi wyjaśnić, wskutek czego ciało wprawione w ruch gdzieś się musi zatrzymać; dlaczego zatrzyma się raczej w tym niż innym miejscu? A zatem ciało albo będzie się znajdować w spoczynku, albo będzie się poruszać w nieskończoność, jeżeli tylko nie stanie mu na drodze jakieś inne silniejsze ciało. Arystoteles, Fizyka, 215a
31 Prędkości nie traktowano w starożytności jako stosunku drogi do czasu, s/t, gdyż zgodnie z przekonaniem Greków stosunki można było tworzyć tylko z wielkości jednorodnych. Zatem prędkości dwóch ruchów porównywano albo porównując czasy przebycia takiej samej drogi, albo drogi przebyte w jednakowym czasie. Ta tradycja antyczna utrzymała się aż do połowy XVIII wieku! (Galileusz i Newton też nie znali jeszcze pojęcia prędkości jako stosunku drogi do czasu)
32 Widzimy, że ciało o pewnym określonym ciężarze porusza się szybciej niż inne; a dzieje się to z dwóch przyczyn: albo z powodu różnicy ośrodka, w którym ciało się porusza, a którym może być np. woda, powietrze, ziemia, albo jeżeli ośrodek jest ten sam, poruszające się ciała różnią się ciężarem..niechaj ciało A porusza się przez ośrodek B w czasie Γ i przez o wiele rzadszy ośrodek w czasie E; jeżeli B i będą równe pod względem długości, to czas poruszania się ciała A będzie proporcjonalny do oporu ośrodka. Niechaj ośrodkiem B będzie woda, a ośrodkiem powietrze, wówczas wskutek tego, że powietrze jest rzadsze i mniej cielesne niż woda, A będzie się poruszać przez ośrodek szybciej niż przez B. Zachodzi więc między powietrzem a wodą taka sama proporcja, jak między szybkością w jednym a szybkością w drugim ośrodku. Jeżeli więc powietrze jest dwa razy rzadsze od wody, wobec tego ciało potrzebuje na przejście ośrodka B dwa razy więcej czasu w stosunku do tego, ile by potrzebowało na przejście ośrodka, a czas Γ będzie dwa razy dłuższy od czasu E. I podobnie, zawsze w miarę tego, jak ośrodek będzie mniej cielesny i mniej oporny, a łatwiej się rozstępujący, ruch ciała będzie szybszy. Arystoteles, Fizyka 215a
33 Jednakże między próżnią a ciałem nie ma żadnej proporcji, tak jak jej również nie ma między zerem a liczbą. Bo oto 4 przewyższa 3 o 1, a 2 więcej niż o 1, a 1 przewyższa o jeszcze większą ilość niż 2; natomiast zero nie pozostaje w żadnej proporcji do jakiejkolwiek liczby; albowiem to, co przewyższa, musi się dzielić na nadwyżkę i to, co zostało przewyższone; a więc 4 nie da się rozłożyć na nadwyżkę w stosunku do zera i na zero. Również z tej samej przyczyny linia nie jest większa od punktu, chyba że jest złożona z punktów. Podobnie próżnia nie pozostaje w żadnej proporcji do pełni, a także ruchy odbywające się w obu tych ośrodkach nie pozostają w żadnej proporcji do siebie. Jeżeli przeto ciało porusza się w ośrodku gęstym na takiej a takiej odległości, w takim a takim czasie, to w próżni porusza się z szybkością, która się nie da ująć w żadną proporcję. Arystoteles, Fizyka 215b
34 Niech np. Z będzie próżnią równą pod względem wielkości B i ; następnie, jeżeli A ma przebiec i poruszać się w niej w pewnym czasie H, krótszym od E, wówczas próżnia będzie pozostawać w takiej samej proporcji do pełni. Jednakże A przebędzie odcinek Θ ośrodka w czasie równym H. Również w ten sposób będzie przebiegać w tym samym czasie każde ciało przez ośrodek Z, który przewyższa powietrze gęstością w takiej proporcji, jak czas E czas H. Jeżeli bowiem Z będzie w takiej proporcji rzadsze od, w jakiej E przewyższa H, wówczas A, jeżeli się porusza poprzez Z, przebędzie go w czasie odwrotnie proporcjonalnym do szybkości ruchu, tzn. w czasie równym H. Jeżeli zatem Z nie ma żadnego ciała, A przebędzie Z jeszcze szybciej. Przebiegnięcie to dokonało się jednak w czasie H; a więc ciało A przebiegło w jednakowym czasie przestrzeń niezależnie od tego czy była pusta, czy pełna. A przecież to niemożliwe. Jest zatem jasne, iż jeżeli istnieje czas, w którym jakieściało przebiega jakąś część próżni, musi w rezultacie powstać ta niemożliwość: ciało może przebiec w jednakowym czasie próżnię, jak i pełnię, albowiem istniałoby ciało pozostające do innego ciała w tym samym stosunku, w jakim pewien czas pozostaje do innego. Arystoteles, Fizyka 216a
35 Jeżeli dany ciężar porusza się przez daną odległość w określonym czasie, ciężar większy przejdzie tę odległość w czasie krótszym, i czasy będą odwrotnie proporcjonalne do ciężarów: jeśli np. pół ciężaru przebędzie daną odległość w czasie d, to cały ciężar przebędzie ją w czasie d/2. Arystoteles, O niebie 274a...większa ilość ognia porusza się zawsze prędzej ku górze niż mniejsza jego ilość, zupełnie jak większa ilość złota lub ołowiu porusza się szybciej ku dołowi niż ilość mniejsza. Tak samo ma się rzecz z każdym innym ciałem ciężkim. Arystoteles, O niebie 309b
36 Twierdzimy, iż ogień, powietrze, woda oraz ziemia powstają z siebie nawzajem, a w każdym z nich potencjalnie zawiera się każde, jak to ma miejsce wtedy, gdy wiele rzeczy ma to samo podłoże, do którego sprowadza się ich ostateczny rozkład. Arystoteles, Meteorologika 339b
37 Dedukcja: 1. Wszystkie łabędzie są białe 2. Marysia jest łabędziem 3. Marysia jest biała Indukcja: 1. Marysia jest biała i jest łabędziem 2. Ania jest biała i jest łabędziem 3. Krysia jest biała i jest łabędziem Wszystkie łabędzie są białe Abdukcja: 1. Wszystkie łabędzie są białe 2. Mruczek jest biały 3. Mruczek jest łabędziem
38 (Aleksandria przy Egipcie) Muzeum Aleksandryjskie Mouseion - miejsce poświęcone muzom Instytut badawczy (około 1000 uczonych) oraz uczelnia (Ptolemeusz I Soter, ok. 300 p.n.e. lub Ptolemeusz II Filadelfos) Wielka biblioteka (Brucheion i Sarapeion) Ogród botaniczny, ogród zoologiczny Laboratorium anatomiczne Obserwatorium astronomiczne
39 Biblioteka aleksandryjska
40 Biblioteka aleksandryjska około zwojów w czasach Cezara 48/47 p.n.e. biblioteka Bruchejon spłonęła podczas walk Cezara w Aleksandrii (389) 391 biblioteka Sarapejon zniszczona z rozkazu biskupa Aleksandrii, Teofila 642 ostateczne zniszczenie przez armię kalifa Omara
41 Uczestnikom misji wykopaliskowej kierowanej przez dr Grzegorza Michałka z Centrum Archeologii Śródziemnomorskiej Uniwersytetu Warszawskiego udało się niedawno odsłonić sale wykładowe starożytnej Aleksandrii (fot. Małgorzata Krawczyk, 2003)
42 Elementy w XIII księgach 1-6 Geometria płaska, 7-10 Arytmetyka, teoria liczb Stereometria Euklides (ok p.n.e.) Wiele twierdzeń w Elementach można przypisać wcześniejszym geometrom, ale możemy założyć, że wszystkie te, których nie można przypisać innym, zostały odkryte przez samego Euklidesa; liczba ich jest znaczna. Jeśli zaś chodzi o układ, to można bezpiecznie przyjąć, że w znacznym stopniu jest to dzieło samego Euklidesa. Stworzył on pomnik, który w swej symetrii, wewnętrznym pięknie i jasności jest tak cudowny jak Partenon, ale niepowtarzalnie bardziej złożony i bardziej trwały. (GeorgeSarton) Optyka, Katoptryka (prawo odbicia światła)
43 Rozchodzenie się światła po liniach prostych było znane od bardzo dawna i właściwość tę wykorzystywano w budownictwie. Dopiero jednak Euklides sformułował tę zasadę i wykorzystał do rozważań z optyki geometrycznej
44 Ci spośród matematyków, którzy starają się obliczyć wielkość obwodu Ziemi, dochodzą do miary stadiów. Arystoteles, O niebie, 298a...jak wynika z obliczeń astronomów, Słońce przekracza Ziemię wielkością, odległość natomiast gwiazd od Ziemi jest większa niż od Słońca - podobnie jak odległość Słońca od Ziemi przewyższa odległość Słońca do Księżyca - zatem stożek wyznaczony przez promienie słoneczne zakończy się w niewielkiej odległości od Ziemi i cień Ziemi, który nazywamy nocą, nie przedłuży się do gwiazd. Arystoteles, Meteorologika, 345a
45
46 Arystarch z Samos Wyniki Obecnie 1. Stosunek odległości Ziemia-Słońce i Ziemia-Księżyc = 19 (~400) 2. Średnica Słońca = 19 średnic Księżyca (~ 400) 3. Promień orbity Księżyca = 9 1/2 średnic Ziemi (~ 30) 4. Średnica Słońca = 6 3/4 średnic Ziemi (~ 109) 5. Średnica Ziemi = 57/20 = 2,85 średnic Księżyca (~ 3,7)
47
48
49
50
51
52 Archimedes ( p.n.e.) Większość dzieł poświęcona matematyce O kuli i walcu Kwadratura paraboli O liniach spiralnych O konoidach i sferoidach O wymierzaniu koła O liczbie piasku 3 10/71< π < 3 10/70 z analizy 96-kąta foremnego O równowadze płaszczyzn O ciałach pływających
53 Archimedes - O równowadze płaszczyzn Postulaty 1. Ciężary równe, zawieszone w odległościach równych, są w równowadze. 2. Ciężary równe, zawieszone w odległościach nierównych, nie są w równowadze, i ciężar zawieszony w odległości większej opuszcza się w dół. 3. Jeżeli ciężary zawieszone w pewnych odległościach są w równowadze i jeśli dodamy coś do jednego z tych ciężarów, to one nie będą już w równowadze i ten, do którego coś dodaliśmy, opuści się w dół.... Twierdzenie I. Jeśli ciężary zawieszone w odległościach równych są w równowadze, to ciężary te są równe. Twierdzenie II. Ciężary nierówne, zawieszone w odległościach równych, nie są w równowadze i ciężar większy opuszcza się w dół. Twierdzenie III. Ciężary nierówne, zawieszone w odległościach nierównych, mogą znajdować się w równowadze i wtedy większy z nich będzie zawieszony w odległości mniejszej. Niech A, B będą ciężarami nierównymi i niech A będzie większy. Niech te ciężary, zawieszone w odległościach nierównych AG, GB będą w równowadze. Najpierw dowodzi się, że długość AG jest mniejsza. W końcu Archimedes formułuje prawo dźwigni, że ciężary nierówne są w równowadze jeśli są zawieszone w odległościach odwrotnie proporcjonalnych do tych ciężarów.
54 Prawo dźwigni znajduje się już - ale bez dowodu - we wcześniejszej o stulecie, przypisywanej Arystotelesowi Mechanice:...w działaniu dźwigni są trzy czynniki, a mianowicie podpora, czyli zawieszenie, czyli oś, i dwie siły nacisku, a mianowicie siła poruszająca i ciężar poruszany. Ciężar poruszany ma się do siły poruszającej, jak się ma odwrotnie długość do długości. Zawsze im bardziej dłuższe ramię będzie oddalone od podpory, tym łatwiej wprawi w ruch.
55 Archimedes w dziele O liczbie piasku :..Wszechświatem większość astronomów nazywa sferę, której środkiem jest środek Ziemi, a promień jest równy odległości od środka Ziemi do środka Słońca... Ale Arystarch z Samos ogłosił dzieło zawierające pewne hipotezy, z których wynika, jako konsekwencja poczynionych założeń, że prawdziwy wszechświat jest dużo większy niż ten, o którym wspomnieliśmy. Jego hipotezy to, że gwiazdy stałe i Słońce pozostają nieruchome, że Ziemia krąży po obwodzie koła, wokół Słońca znajdującego się w jego środku, i że sfera gwiazd stałych, mająca za środek także Słońce, jest tak wielka, że okrąg, po którym według jego przypuszczenia obiega Ziemia, tak ma się do odległości do gwiazd stałych jak środek sfery ma się do jej powierzchni. Łatwo zauważyć, że jest to niemożliwe, ponieważ środek sfery w ogóle nie ma wielkości i nie sposób sobie wyobrazić w jakim stosunku miałby być do powierzchni sfery. Musimy więc przyjąć, że Arystarch rozumiał to tak: Ponieważ uważamy Ziemię za środek wszechświata, więc stosunek jej rozmiarów do tego, co nazywamy wszechświatem,jest równy stosunkowi, w jakim sfera zawierająca okrąg, po którym według jego przypuszczenia obiega Ziemia, ma się do sfery gwiazd stałych...
56 Łącząc geometrię z obiektami fizycznymi Archimedes osiągnął to, co zarówno Platon jak Arystoteles uznawali za niemożliwe. Platon: twierdzenia matematyczne są idealne, wieczne, a więc rzeczywiste i prawdziwe - natomiast świat postrzegany zmysłami jest pozbawiony takiej realności i prawdziwości. Arystoteles: matematyka zajmuje się abstrakcją, podczas gdy obiekty fizyczne są rzeczywiste i opisuje się je za pomocą form i jakości.
57 Matematyka egipska i babilońska - przepisy podawane bez uzasadnienia. Matematyka grecka - już w V w. p.n.e. podawanie dowodów. Pitagorejczycy odkryli liczby niewymierne. W III w. p.n.e. zakończenie budowy podstaw geometrii, zapoczątkowanie teorii liczb, teorii przecięć stożkowych, antycznych form rachunku całkowego (metoda wyczerpywania) i różniczkowego. Pojawiły się zastosowania w mechanice, muzyce, optyce. Potem rozwinęła się geometria sferyczna, trygonometria cięciw i trygonometria sferyczna. Ten poziom matematyki wystarczał nawet do opracowania skomplikowanego systemu skomplikowanego systemu Ptolemeusza.
58 Tabliczki mnożenia Grecka Rzymska Arabska
59 Ptolemeusz (ok ) Almagest Hipotezy planetarne Geografia Optyka Tetrabiblos Centiloquium
60
61 Narzędzia astronomii Ptolemeusza Epicykl Ekwant Ekscentryk Teoria ruchu Księżyca
62 Osobliwości systemu Ptolemeusza: 1. Środki epicykli planet wewnętrznych, Merkurego i Wenus - zawsze na linii Słońce Ziemia 2. Linie łączące planety zewnętrzne (Marsa, Jowisza i Saturna) ze środkami ich epicykli zawsze równoległe do linii Ziemia -Słońce (Rysunek uproszczony, nie zawiera ekwantów ani wielokrotnych epicykli) Almagest Ptolemeusza był podstawowym traktatem astronomicznym przez około 1500 lat
63 Średnia odległość od Ziemi (w jednostkach promienia Ziemi) Ptolemeusz al-battani Kopernik Tycho Obecnie Słońce Saturn Gwiazdy stałe , (Proxima)
64 Ptolemeusz - Optyka Załamanie światła wchodzącego do wody z powietrza Prawo załamania światła nie zostało znalezione (stosowane przybliżenie: α/β = constlub β = aα + bα 2 ) Schemat układu Ptolemeusza do pomiaru załamania światła
65 Heron z Aleksandrii (ok ) Mechanika (opis maszyn prostych) Pneumatyka (m.in. automaty, próżnia) Katoptryka (m.in. zasada najkrótszej drogi) O istnieniu pustych przestrzeni można także przekonać się na podstawie następujących rozważań: jeśliby nie było takich przestrzeni, to ani światło, ani ciepło, ani żadna inna siła materialna nie mogłaby przenikać przez wodę, powietrze i jakiekolwiek ciało. Jak na przykład promienie słońca mogłyby przenikać wodę do dna naczynia?... Jest też jasne, że w wodzie są puste przestrzenie, ponieważ kiedy wleje się do niej wino, to rozchodzi się ono w całej jej objętości, czego by nie mogło uczynić, gdyby nie było próżni w wodzie. Światło także może przez siebie przenikać, ponieważ kiedy zapalimy kilka lamp, to wszystkie przedmioty zostają jasno oświetlone, a promienie przechodzą przez siebie we wszystkich kierunkach Pneumatyka,Wstęp
66 Inni uczeni aleksandryjscy: - Herofil wybitny lekarz, twórca metody naukowej - Hipparch ojciec trygonometrii (tablice) pierwszy model heliocentryczny!!! - Hypatia pierwsza wybitna matematyczka - Pappus, Theon, Diofanes wybitni matematycy
67 Hypatia z Aleksandrii
68 Technika grecka
69 Technika grecka
70 Maszyna z Antikithira Znaleziona we wraku statku zatopionego w 65 r. p.n.e.
71 Przykłady budowli rzymskich Rzymski akwedukt Pont du Gard Rzymska świątynia w Baalbek (Liban) II w. p.n.e. Mauzoleum Teodoryka (Rawenna)
72 Przykłady budowli rzymskich Świątynia Jowisza Nimes Koloseum Rzym ( miejsc)
73
74 Uczeni rzymscy Witruwiusz (Marcus Vitruvius Pollio) I w. p.n.e. - De Architectura libri X Warron (Marcus Terentius Varro) (116-27p.n.e.) - Disciplinarum libri IX (Encyklopedia 9 dyscyplin: gramatyki, dialektyki, retoryki, arytmetyki, geometrii, astronomii, muzyki, medycyny, architektury)
75 Uczeni rzymscy Lukrecjusz (Titus Lucretius Caro) (ok p.n.e.) - De rerum natura Pliniusz Starszy (Gaius Plinius Secundus) (23-79) Naturalis historia (Historia Naturalna w 37 księgach) cytowania 327 greckich i 146 rzymskich autorów Seneka Młodszy (Lucius Annaeus Seneca) (ok. 3-65) Questiones naturales
76 Dzieła Newtona nie można zrozumieć bez znajomości nauki antycznej. Newton nie tworzył w próżni. Bez zadziwiającej pracy Ptolemeusza, który uzupełnił i zakończył astronomię antyczną, nie była by możliwa Astronomia nova Keplera, a więc i mechanika Newtona. Bez przekrojów stożkowych Apoloniusza, które Newton znał dogłębnie, jest równie nie do pomyślenia rozwinięcie przezeń prawa grawitacji. A rachunek całkowy Newtona można pojąć jedynie jako kontynuację wyznaczania pól i objętości przez Archimedesa. Historia mechaniki jako nauki ścisłej rozpoczyna się Archimedesa prawami dźwigni, prawami hydrostatyki i wyznaczaniem środka masy. Krótko mówiąc, wszystkie osiągnięcia matematyki, mechaniki i astronomii, które zbiegają się w dziele Newtona, biorą swój początek w Grecji. Vander Waerden, Science awakening
NAUKA I TECHNIKA W GRECJI I RZYMIE
NAUKA I TECHNIKA W GRECJI I RZYMIE p.n.e. 600 500 400 300 200 100 1 Tales Anaksymander Anaksymenes Heraklit Pitagoras Parmenides Anaksagoras Empedokles Leukippos Demokryt Budda Kung-tsy Epikur Sokrates
p.n.e. n.e. 600 500 400 300 200 100
Nauka grecka p.n.e. n.e. 600 500 400 300 200 100 1 Tales Anaksymander Anaksymenes Heraklit Pitagoras Parmenides Anaksagoras Empedokles Leukippos Demokryt Epikur Sokrates Platon Arystoteles Eudoksos Euklides
Uczeni greccy chronologicznie
Wykład 3 Grecy 1 Uczeni greccy chronologicznie p.n.e. 600 n.e. 500 400 300 200 100 0 100 200 Tales Anaksymander Anaksymenes Heraklit Pitagoras Parmenides Anaksagoras Empedokles Leukippos Demokryt Sokrates
Historia myśli naukowej. Ewolucja poglądów związanych z budową Wszechświata. dr inż. Romuald Kędzierski
Historia myśli naukowej Ewolucja poglądów związanych z budową Wszechświata dr inż. Romuald Kędzierski Wszechświat według uczonych starożytnych Starożytny Babilon -Ziemia jest nieruchomą półkulą, która
NIE FAŁSZOWAĆ FIZYKI!
* Jacek Własak NIE FAŁSZOWAĆ FIZYKI! Zdania: 1. Ziemia krąży wokół Słońca 2. Słońce krąży wokół Ziemi Są jednakowo prawdziwe!!! RUCH JEST WZGLĘDNY. Podział Fizyki 1. Budowa materii i oddziaływania 2. Mechanika
Podstawy fizyki sezon 1 VII. Pole grawitacyjne*
Podstawy fizyki sezon 1 VII. Pole grawitacyjne* Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha * Resnick, Halliday,
Astronomia. Znając przyspieszenie grawitacyjne planety (ciała), obliczyć możemy ciężar ciała drugiego.
Astronomia M = masa ciała G = stała grawitacji (6,67 10-11 [N m 2 /kg 2 ]) R, r = odległość dwóch ciał/promień Fg = ciężar ciała g = przyspieszenie grawitacyjne ( 9,8 m/s²) V I = pierwsza prędkość kosmiczna
Filozofia przyrody, Wykład V - Filozofia Arystotelesa
Filozofia przyrody, Wykład V - Filozofia Arystotelesa 2011-10-01 Tematyka wykładu 1 Arystoteles - filozof systematyczny 2 3 4 Różnice w metodzie uprawiania nauki Krytyka platońskiej teorii idei Podział
Filozofia, Pedagogika, Wykład III - Filozofia archaiczna
Filozofia, Pedagogika, Wykład III - Filozofia archaiczna 2009-09-04 Plan wykładu 1 Jońska filozofia przyrody - wprowadzenie 2 3 Jońska filozofia przyrody - problematyka Centralna problematyka filozofii
Filozofia, Historia, Wykład V - Filozofia Arystotelesa
Filozofia, Historia, Wykład V - Filozofia Arystotelesa 2010-10-01 Tematyka wykładu 1 Arystoteles - filozof systematyczny 2 3 4 Podział nauk Arystoteles podzielił wszystkie dyscypliny wiedzy na trzy grupy:
Jak zmieni się wartość siły oddziaływania między dwoma ciałami o masie m każde, jeżeli odległość między ich środkami zmniejszy się dwa razy.
I ABC FIZYKA 2018/2019 Tematyka kartkówek oraz zestaw zadań na sprawdzian - Dział I Grawitacja 1.1 1. Podaj główne założenia teorii geocentrycznej Ptolemeusza. 2. Podaj treść II prawa Keplera. 3. Odpowiedz
DYNAMIKA dr Mikolaj Szopa
dr Mikolaj Szopa 17.10.2015 Do 1600 r. uważano, że naturalną cechą materii jest pozostawanie w stanie spoczynku. Dopiero Galileusz zauważył, że to stan ruchu nie zmienia się, dopóki nie ingerujemy I prawo
Fizyka i Chemia Ziemi
Fizyka i Chemia Ziemi Temat 4: Ruch geocentryczny i heliocentryczny planet T.J. Jopek jopek@amu.edu.pl IOA UAM Układ Planetarny - klasyfikacja. Planety grupy ziemskiej: Merkury Wenus Ziemia Mars 2. Planety
ETAP II. Astronomia to nauka. pochodzeniem i ewolucją. planet i gwiazd. na wydarzenia na Ziemi.
ETAP II Konkurencja I Ach te definicje! (każda poprawnie ułożona definicja warta jest aż dwa punkty) Astronomia to nauka o ciałach niebieskich zajmująca się badaniem ich położenia, ruchów, odległości i
Sprawdzian 2. Fizyka Świat fizyki. Astronomia. Sprawdziany podsumowujące. sin = 0,0166 cos = 0,9999 tg = 0,01659 ctg = 60,3058
Imię i nazwisko Data Klasa Wersja A Sprawdzian.. Jedna jednostka astronomiczna to odległość jaką przebywa światło (biegnące z szybkością 300 000 km/h) w ciągu jednego roku. jaką przebywa światło (biegnące
1. Obserwacje nieba 2. Gwiazdozbiór na północnej strefie niebieskiej 3. Gwiazdozbiór na południowej strefie niebieskiej 4. Ruch gwiazd 5.
Budowa i ewolucja Wszechświata Autor: Weronika Gawrych Spis treści: 1. Obserwacje nieba 2. Gwiazdozbiór na północnej strefie niebieskiej 3. Gwiazdozbiór na południowej strefie niebieskiej 4. Ruch gwiazd
Elementy astronomii w nauczaniu przyrody. dr Krzysztof Rochowicz Zakład Dydaktyki Fizyki UMK 2011
Elementy astronomii w nauczaniu przyrody dr Krzysztof Rochowicz Zakład Dydaktyki Fizyki UMK 2011 Szkic referatu Krótki przegląd wątków tematycznych przedmiotu Przyroda w podstawie MEN Astronomiczne zasoby
Grawitacja - powtórka
Grawitacja - powtórka 1. Oceń prawdziwość każdego zdania. Zaznacz, jeśli zdanie jest prawdziwe, lub, jeśli jest A. Jednorodne pole grawitacyjne istniejące w obszarze sali lekcyjnej jest wycinkiem centralnego
Fizyka i Chemia Ziemi
Fizyka i Chemia Ziemi Ruch geocentryczny i heliocentryczny planet T.J. Jopek jopek@amu.edu.pl IOA UAM 013-01-4 T.J.Jopek, Fizyka i chemia Ziemi 1 Układ Planetarny - klasyfikacja 1. Planety grupy ziemskiej:
Filozofia, Socjologia, Wykład II - Podział filozofii. Filozofia archaiczna
Filozofia, Socjologia, Wykład II - Podział filozofii. Filozofia archaiczna 2011-10-01 Plan wykładu 1 Klasyczny podział dyscyplin filozoficznych Metafizyka Ontologia Epistemologia Logika Etyka Estetyka
Cud grecki. Cud grecki. Wrocław, 2 marca 2016
Wrocław, 2 marca 2016 Wykształcenie podstawowe Spośród wielu twierdzeń i faktów pochodzących ze starożytnej Grecji w szkole na lekcjach matematyki pojawiają się: Twierdzenie Talesa Wykształcenie podstawowe
KARTA PRACY NAUCZYCIELA
KARTA PRACY NAUCZYCIELA Przedmiot: Klasa: Temat: Data Uwagi: Matematyka III gimnazjum Objętość brył podobnych Nie wszystkie zadania muszą zostać wykonane. Wszystko zależy od poziomu wiadomości danej klasy.
GRAWITACJA MODUŁ 6 SCENARIUSZ TEMATYCZNY LEKCJA NR 2 FIZYKA ZAKRES ROZSZERZONY WIRTUALNE LABORATORIA FIZYCZNE NOWOCZESNĄ METODĄ NAUCZANIA.
MODUŁ 6 SCENARIUSZ TEMATYCZNY GRAWITACJA OPRACOWANE W RAMACH PROJEKTU: FIZYKA ZAKRES ROZSZERZONY WIRTUALNE LABORATORIA FIZYCZNE NOWOCZESNĄ METODĄ NAUCZANIA. PROGRAM NAUCZANIA FIZYKI Z ELEMENTAMI TECHNOLOGII
Sprawdzian Na rysunku przedstawiono siłę, którą kula o masie m przyciąga kulę o masie 2m.
Imię i nazwisko Data Klasa Wersja A Sprawdzian 1. 1. Orbita każdej planety jest elipsą, a Słońce znajduje się w jednym z jej ognisk. Treść tego prawa podał a) Kopernik. b) Newton. c) Galileusz. d) Kepler..
(ok p.n.e.)
(ok. 572-497 p.n.e.) Pitagoras pochodził z wyspy Samos. Znany jest głównie z słynnego twierdzenia o trójkącie prostokątnym, powszechnie zwanego jako twierdzenie Pitagorasa. Twierdzenie Pitagorasa ilustracja
ARGUMENTY KOSMOLOGICZNE. Sformułowane na gruncie nauk przyrodniczych
ARGUMENTY KOSMOLOGICZNE Sformułowane na gruncie nauk przyrodniczych O CO CHODZI W TYM ARGUMENCIE Argument ten ma pokazać, że istnieje zewnętrzna przyczyna wszechświata o naturze wyższej niż wszystko, co
Pozorne orbity planet Z notatek prof. Antoniego Opolskiego. Tomasz Mrozek Instytut Astronomiczny UWr Zakład Fizyki Słońca CBK PAN
Pozorne orbity planet Z notatek prof. Antoniego Opolskiego Tomasz Mrozek Instytut Astronomiczny UWr Zakład Fizyki Słońca CBK PAN Początek Młody miłośnik astronomii patrzy w niebo Młody miłośnik astronomii
Od redakcji. Symbolem oznaczono zadania wykraczające poza zakres materiału omówionego w podręczniku Fizyka z plusem cz. 2.
Od redakcji Niniejszy zbiór zadań powstał z myślą o tych wszystkich, dla których rozwiązanie zadania z fizyki nie polega wyłącznie na mechanicznym przekształceniu wzorów i podstawieniu do nich danych.
14. Obrazy świata II
14. Obrazy świata II Starożytność i średniowiecze Andrzej Wiśniewski Andrzej.Wisniewski@amu.edu.pl Wstęp do filozofii Materiały do wykładu 2015/2016 Starożytność wytworzyła wiele teorii. My jednak skupimy
Optyka 2012/13 powtórzenie
strona 1 Imię i nazwisko ucznia Data...... Klasa... Zadanie 1. Słońce w ciągu dnia przemieszcza się na niebie ze wschodu na zachód. W którym kierunku obraca się Ziemia? Zadanie 2. Na rysunku przedstawiono
GSP077 Pakiet. KArty pracy. MateMatyka. Ekstraklasa 6klasisty matematyka kpracy 6 pak 1.indd 1
GSP077 klasa Pakiet 6 KArty pracy MateMatyka Ekstraklasa 6klasisty matematyka kpracy 6 pak.indd 9/24/3 2:2 PM Instrukcja matematyka Uważnie czytaj teksty zadań i polecenia. Rozwiązania zapisz długopisem
14. Obrazy świata II. Starożytność i średniowiecze. Andrzej Wiśniewski Wstęp do filozofii Materiały do wykładu
14. Obrazy świata II Starożytność i średniowiecze Andrzej Wiśniewski Andrzej.Wisniewski@amu.edu.pl Wstęp do filozofii Materiały do wykładu Starożytność wytworzyła wiele teorii. My jednak skupimy się na
1. Dyscypliny filozoficzne. Andrzej Wiśniewski Wstęp do filozofii Materiały do wykładu 2015/2016
1. Dyscypliny filozoficzne Andrzej Wiśniewski Andrzej.Wisniewski@amu.edu.pl Wstęp do filozofii Materiały do wykładu 2015/2016 Pochodzenie nazwy filozofia Wyraz filozofia pochodzi od dwóch greckich słów:
Jak poznawaliśmy. Marek Stęślicki. Instytut Astronomiczny UWr
Jak poznawaliśmy Wszechświat Marek Stęślicki Instytut Astronomiczny UWr Fot. Babak Tafreshi Prehistoria Fot. Josch Hambsch Prehistoria Czas ekspozycji - 11h Prehistoria Fot. Justin Quinnell Ruch roczny
Prezentacja. Układ Słoneczny
Prezentacja Układ Słoneczny Układ Słoneczny Układ Słoneczny układ planetarny składający się ze Słońca i powiązanych z nim grawitacyjnie ciał niebieskich. Ciała te to osiem planet, 166 znanych księżyców
PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1
PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1 Planimetria to dział geometrii, w którym przedmiotem badań są własności figur geometrycznych leżących na płaszczyźnie (patrz określenie płaszczyzny). Pojęcia
Dlaczego matematyka jest wszędzie?
Festiwal Nauki. Wydział MiNI PW. 27 września 2014 Dlaczego matematyka jest wszędzie? Dlaczego świat jest matematyczny? Autor: Paweł Stacewicz (PW) Czy matematyka jest WSZĘDZIE? w życiu praktycznym nie
SP Klasa VI, temat 2
SP Klasa VI, temat 2 SP Klasa VI, temat 2 SP Klasa VI, temat 2 SP Klasa VI, temat 2 SP Klasa VI, temat 2 SP Klasa VI, temat 2 SP Klasa VI, temat 2 SP Klasa VI, temat 2 zagiąć NAUKOWCY SP Klasa VI, temat
STRUKTURA REWOLUCJI NAUKOWYCH. Rafał Demkowicz-Dobrzański Centrum Fizyki Teoretycznej PAN
STRUKTURA REWOLUCJI NAUKOWYCH Rafał Demkowicz-Dobrzański Centrum Fizyki Teoretycznej PAN WSZECHŚWIAT CXXVI Festiwal Nauki, Rzym, 180AD OBRÓT KRYSZTAŁOWEJ SFERY GWIAZD CXXVI Festiwal Nauki, Rzym, 180AD
Weronika Łabaj. Geometria Bolyaia-Łobaczewskiego
Weronika Łabaj Geometria Bolyaia-Łobaczewskiego Tematem mojej pracy jest geometria hiperboliczna, od nazwisk jej twórców nazywana też geometrią Bolyaia-Łobaczewskiego. Mimo, że odkryto ją dopiero w XIX
Wielcy rewolucjoniści nauki
Isaak Newton Wilhelm Roentgen Albert Einstein Max Planck Wielcy rewolucjoniści nauki Erwin Schrödinger Werner Heisenberg Niels Bohr dr inż. Romuald Kędzierski W swoim słynnym dziele Matematyczne podstawy
Filozofia, Historia, Wykład IV - Platońska teoria idei
Filozofia, Historia, Wykład IV - Platońska teoria idei 2010-10-01 Tematyka wykładu 1 Metafora jaskini 2 Świat materialny - świat pozoru Świat idei - świat prawdziwy Relacja między światem idei i światem
Kontrola wiadomości Grawitacja i elementy astronomii
Kontrola wiadomości Grawitacja i elementy astronomii I LO im. Stefana Żeromskiego w Lęborku 15 października Kartkówka w klasie IA - 20 minut Grupa 1 1 Wykonaj rysunek ilustrujący sposób wyznaczania odległości
Ściąga eksperta. Ruch obiegowy i obrotowy Ziemi. - filmy edukacyjne on-line. Ruch obrotowy i obiegowy Ziemi.
Ruch obiegowy i obrotowy Ziemi Ruch obrotowy i obiegowy Ziemi Ruch obiegowy W starożytności uważano, że wszystkie ciała niebieskie wraz ze Słońcem poruszają się wokół Ziemi. Jest to tzw. teoria geocentryczna.
Egzamin maturalny z fizyki i astronomii 5 Poziom podstawowy
Egzamin maturalny z fizyki i astronomii 5 Poziom podstawowy 14. Kule (3 pkt) Dwie małe jednorodne kule A i B o jednakowych masach umieszczono w odległości 10 cm od siebie. Kule te oddziaływały wówczas
Wykład 4. Rzym i Średniowiecze
Wykład 4 Rzym i Średniowiecze 1 Wstęp Poza kręgiem hellenistycznym brak w czasach dominacji Rzymu jakichkolwiek dokonań z nauk przyrodniczych, poza wydaniami prac kompilacyjnych Na Arystotelesie na długo
KRZYŻÓWKA 2. 11. Może być np. równoboczny lub rozwartokątny. Jego pole to a b HASŁO:
KRZYŻÓWKA.Wyznaczają ją dwa punkty.. Jego pole to π r² 3. Jego pole to a a 4.Figura przestrzenna, której podstawą jest dowolny wielokąt, a ściany boczne są trójkątami o wspólnym wierzchołku. 5.Prosta mająca
Elementy dynamiki klasycznej - wprowadzenie. dr inż. Romuald Kędzierski
Elementy dynamiki klasycznej - wprowadzenie dr inż. Romuald Kędzierski Po czym można rozpoznać, że na ciało działają siły? Możliwe skutki działania sił: Po skutkach działania sił. - zmiana kierunku ruchu
Zapisy podstawy programowej Uczeń: 2. 1) wyjaśnia cechy budowy i określa położenie różnych ciał niebieskich we Wszechświecie;
Geografia listopad Liceum klasa I, poziom rozszerzony XI Ziemia we wszechświecie Zapisy podstawy programowej Uczeń: 2. 1) wyjaśnia cechy budowy i określa położenie różnych ciał niebieskich we Wszechświecie;
JAK MATEMATYKA POZWALA OPISYWAĆ WSZECHŚWIAT. 1 Leszek Błaszkiewicz
JAK MATEMATYKA POZWALA OPISYWAĆ WSZECHŚWIAT 1 Leszek Błaszkiewicz 2 Matematyka w Astrometrii Matematyka w Astrometrii Astrometria (astronomia pozycyjna) najstarszy dział astronomii zajmujący się pomiarami
SCENARIUSZ LEKCJI DO DZIAŁU:
Autorka: Małgorzata Kacprzykowska SCENARIUSZ LEKCJI DO DZIAŁU: Wprowadzenie do filozofii Temat (4): Dlaczego zadajemy pytania? Cele lekcji: poznanie istoty pytań filozoficznych, stawianie pytań filozoficznych,
SPRAWDZIAN NR Merkury krąży wokół Słońca po orbicie, którą możemy uznać za kołową.
SPRAWDZIAN NR 1 IMIĘ I NAZWISKO: KLASA: GRUPA A 1. Merkury krąży wokół Słońca po orbicie, którą możemy uznać za kołową. Zaznacz poprawne dokończenie zdania. Siłę powodującą ruch Merkurego wokół Słońca
GEOMETRIA ELEMENTARNA
Bardo, 7 11 XII A. D. 2016 I Uniwersytecki Obóz Olimpiady Matematycznej GEOMETRIA ELEMENTARNA materiały przygotował Antoni Kamiński na podstawie zbiorów zadań: Przygotowanie do olimpiad matematycznych
PRACA Pracą mechaniczną nazywamy iloczyn wartości siły i wartości przemieszczenia, które nastąpiło zgodnie ze zwrotem działającej siły.
PRACA Pracą mechaniczną nazywamy iloczyn wartości siły i wartości przemieszczenia, które nastąpiło zgodnie ze zwrotem działającej siły. Pracę oznaczamy literą W Pracę obliczamy ze wzoru: W = F s W praca;
KONKURS ASTRONOMICZNY
SZKOLNY KLUB PRZYRODNICZY ALTAIR KONKURS ASTRONOMICZNY ETAP PIERWSZY 1. Jakie znasz ciała niebieskie? Gwiazdy, planety, planety karłowate, księŝyce, planetoidy, komety, kwazary, czarne dziury, ciemna materia....
Krzyżówka oraz hasła do krzyżówki. Kalina R., Przewodnik po matematyce dla klas VII-VIII, część IV, SENS, Poznań 1997, s.20-22.
Omnibus matematyczny 1. Cele lekcji a) Wiadomości Uczeń: zna pojęcia matematyczne z zakresu szkoły podstawowej i gimnazjum. b) Umiejętności Uczeń: potrafi podać odpowiednie pojęcie matematyczne na podstawie
Zadania do testu Wszechświat i Ziemia
INSTRUKCJA DLA UCZNIA Przeczytaj uważnie czas trwania tekstu 40 min. ). W tekście, który otrzymałeś są zadania. - z luką - rozszerzonej wypowiedzi - zadania na dobieranie ). Nawet na najłatwiejsze pytania
14 POLE GRAWITACYJNE. Włodzimierz Wolczyński. Wzór Newtona. G- stała grawitacji 6, Natężenie pola grawitacyjnego.
Włodzimierz Wolczyński 14 POLE GRAWITACYJNE Wzór Newtona M r m G- stała grawitacji Natężenie pola grawitacyjnego 6,67 10 jednostka [ N/kg] Przyspieszenie grawitacyjne jednostka [m/s 2 ] Praca w polu grawitacyjnym
Optyka stanowi dział fizyki, który zajmuje się światłem (także promieniowaniem niewidzialnym dla ludzkiego oka).
Optyka geometryczna Optyka stanowi dział fizyki, który zajmuje się światłem (także promieniowaniem niewidzialnym dla ludzkiego oka). Założeniem optyki geometrycznej jest, że światło rozchodzi się jako
Czy i/lub w jakim sensie można uważać, że świat jest matematyczny? Wprowadzenie do dyskusji J. Lubacz, luty 2018
Czy i/lub w jakim sensie można uważać, że świat jest matematyczny? Wprowadzenie do dyskusji J. Lubacz, luty 2018 Do czego odnoszą się poniższe stwierdzenia? Do tego, czym jest matematyka dla świata, w
Filozofia przyrody - Filozofia Eleatów i Demokryta
5 lutego 2012 Plan wykładu 1 Filozofia Parmenidesa z Elei Ontologia Parmenidesa Epistemologiczny aspekt Parmenidejskiej filozofii 2 3 4 Materializm Ontologia Parmenidesa Epistemologiczny aspekt Parmenidejskiej
SPIS TREŚCI ««*» ( # * *»»
««*» ( # * *»» CZĘŚĆ I. POJĘCIA PODSTAWOWE 1. Co to jest fizyka? 11 2. Wielkości fizyczne 11 3. Prawa fizyki 17 4. Teorie fizyki 19 5. Układ jednostek SI 20 6. Stałe fizyczne 20 CZĘŚĆ II. MECHANIKA 7.
PODSTAWY > Figury płaskie (1) KĄTY. Kąt składa się z ramion i wierzchołka. Jego wielkość jest mierzona w stopniach:
PODSTAWY > Figury płaskie (1) KĄTY Kąt składa się z ramion i wierzchołka. Jego wielkość jest mierzona w stopniach: Kąt możemy opisać wpisując w łuk jego miarę (gdy jest znana). Gdy nie znamy miary kąta,
Ruchy planet. Wykład 29 listopada 2005 roku
Ruchy planet planety wewnętrzne: Merkury, Wenus planety zewnętrzne: Mars, Jowisz, Saturn, Uran, Neptun, Pluton Ruch planet wewnętrznych zachodzi w cyklu: koniunkcja dolna, elongacja wschodnia, koniunkcja
Są to liczby najpowszechniej używane w życiu codziennym.
NR1 LICZBY RZECZYWISTE ZASTOSOWANIE: Są to liczby najpowszechniej używane w życiu codziennym. Określanie ilości lat, Określanie ilości osób znajdujących się w pokoju i tym podobne, Określanie wzrostu,
WSZECHŚWIAT = KOSMOS
Wszechświat czyli po łacinie Uniwersum jest tym samym co Kosmos w języku i rozumieniu Greków. WSZECHŚWIAT = KOSMOS Grecy i my dziś definiujemy: KOSMOS to WSZYSTKO Nie wolno wskazywać lub wyobrażać sobie
Test sprawdzający wiedzę z fizyki z zakresu gimnazjum autor: Dorota Jeziorek-Knioła
Test 2 1. (4 p.) Wskaż zdania prawdziwe i zdania fałszywe, wstawiając w odpowiednich miejscach znak. I. Zmniejszenie liczby żarówek połączonych równolegle powoduje wzrost natężenia II. III. IV. prądu w
REGULAMIN I WOJEWÓDZKIEGO KONKURSU WIEDZY ASTRONOMICZNEJ KASJOPEJA
REGULAMIN I WOJEWÓDZKIEGO KONKURSU WIEDZY ASTRONOMICZNEJ KASJOPEJA ORGANIZOWANEGO W WOJEWÓDZTWIE LUBUSKIM W ROKU SZKOLNYM 2012/2013 DLA UCZNIÓW SZKÓŁ GIMNZJALNYCH I PONADGIMNAZJALYCH 1 Konkurs z astronomii
Podstawy fizyki sezon 1 VII. Pole grawitacyjne*
Podstawy fizyki sezon 1 VII. Pole grawitacyjne* Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha * Resnick, Halliday,
pobrano z serwisu Fizyka Dla Każdego - http://fizyka.dk - zadania fizyka, wzory fizyka, matura fizyka
4. Pole grawitacyjne. Praca. Moc.Energia zadania z arkusza I 4.8 4.1 4.9 4.2 4.10 4.3 4.4 4.11 4.12 4.5 4.13 4.14 4.6 4.15 4.7 4.16 4.17 4. Pole grawitacyjne. Praca. Moc.Energia - 1 - 4.18 4.27 4.19 4.20
GRAWITACJA I ELEMENTY ASTRONOMII
MODUŁ 1 SCENARIUSZ TEMATYCZNY GRAWITACJA I ELEMENTY ASTRONOMII OPRACOWANE W RAMACH PROJEKTU: FIZYKA ZAKRES PODSTAWOWY WIRTUALNE LABORATORIA FIZYCZNE NOWOCZESNĄ METODĄ NAUCZANIA. PROGRAM NAUCZANIA FIZYKI
METODY KONSTRUKCJI ZA POMOCĄ CYRKLA. WYKŁAD 1 Czas: 45
METODY KONSTRUKCJI ZA POMOCĄ CYRKLA WYKŁAD 1 Czas: 45 O KONSTRUKCJACH GEOMETRYCZNYCH 1. Starożytni matematycy posługiwali się konstrukcjami geometrycznymi. 2. Wykonanie konstrukcji polega na narysowaniu
Zasady dynamiki Newtona. dr inż. Romuald Kędzierski
Zasady dynamiki Newtona dr inż. Romuald Kędzierski Czy do utrzymania ciała w ruchu jednostajnym prostoliniowym potrzebna jest siła? Arystoteles 384-322 p.n.e. Do utrzymania ciała w ruchu jednostajnym prostoliniowym
Mity na temat średniowiecza i renesansu
Filozofia renesansu Mity na temat średniowiecza i renesansu średniowiecze było epoką zabobonu a renesans epoką rozumu średniowiecze nie znało starożytności i dopiero renesans zaczął się do niej odwoływać
Dlaczego nie wystarczają liczby wymierne
Dlaczego nie wystarczają liczby wymierne Analiza zajmuje się problemami, w których pojawia się przejście graniczne. Przykładami takich problemów w matematyce bądź fizyce mogą być: 1. Pojęcie prędkości
Troszkę Geometrii. Kinga Kolczyńska - Przybycień
Spis tresci O Geometrii 1 O Geometrii 2 3 4 5 6 7 Spis tresci O Geometrii 1 O Geometrii 2 3 4 5 6 7 Kilka słów o mierzeniu Otóż jak sama nazwa Geometria (z gr geo-ziemia, metria-miara) ma ona coś wspólnego
STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH
STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH Stereometria jest działem geometrii, którego przedmiotem badań są bryły przestrzenne oraz ich właściwości. WZAJEMNE POŁOŻENIE PROSTYCH W PRZESTRZENI 2 proste
Treści dopełniające Uczeń potrafi:
P Lp. Temat lekcji Treści podstawowe 1 Elementy działań na wektorach podać przykłady wielkości fizycznych skalarnych i wektorowych, wymienić cechy wektora, dodać wektory, odjąć wektor od wektora, pomnożyć
Klasa I Część wspólna Klasa II Kształtowane dyspozycja Temat tygodniowy Temat dnia Mikołaj Kopernik. Mikołaj Kopernik.
SCENARIUSZ ZAJĘĆ W KLASACH ŁĄCZONYCH I i II Klasa I Część wspólna Klasa II Kształtowane dyspozycja Temat Znani Polacy. Znani Polacy. tygodniowy Temat dnia Mikołaj Kopernik. Mikołaj Kopernik. Zagadnienia
PROSZĘ UWAŻNIE SŁUCHAĆ NA KOŃCU PREZENTACJI BĘDZIE TEST SPRAWDZAJĄCY
PROSZĘ UWAŻNIE SŁUCHAĆ NA KOŃCU PREZENTACJI BĘDZIE TEST SPRAWDZAJĄCY RUCH OBROTOWY ZIEMI Ruch obrotowy to ruch Ziemi wokół własnej osi. Oś Ziemi jest teoretyczną linią prostą, która przechodzi przez Biegun
Podstawy Procesów i Konstrukcji Inżynierskich. Dynamika
Podstawy Procesów i Konstrukcji Inżynierskich Dynamika Prowadzący: Kierunek Wyróżniony przez PKA Mechanika klasyczna Mechanika klasyczna to dział mechaniki w fizyce opisujący : - ruch ciał - kinematyka,
Klimat na planetach. Szkoła Podstawowa Klasy VII-VIII Gimnazjum Klasa III Doświadczenie konkursowe 2
Szkoła Podstawowa Klasy VII-VIII Gimnazjum Klasa III Doświadczenie konkursowe Rok 019 1. Wstęp teoretyczny Podstawowym źródłem ciepła na powierzchni planet Układu Słonecznego, w tym Ziemi, jest dochodzące
Wykład 5 - całki ruchu zagadnienia n ciał i perturbacje ruchu keplerowskiego
Wykład 5 - całki ruchu zagadnienia n ciał i perturbacje ruchu keplerowskiego 20.03.2013 Układ n ciał przyciągających się siłami grawitacji Mamy n ciał przyciągających się siłami grawitacji. Masy ciał oznaczamy
Platon ( ) Herma Platona (Muzeum Kapitolińskie w Rzymie)
Platon (427-347) Herma Platona (Muzeum Kapitolińskie w Rzymie) Życie Platona ur. 7 maja 427 (matka - Periktione, ojciec - Ariston) pierwsze kontakty z filozofią u Kratylosa (skrajny heraklityzm) spotyka
Nowoczesna teoria atomistyczna
Nowoczesna teoria atomistyczna Joseph Louis Proust Prawo stosunków stałych (1797) (1754-1826) John Dalton, Prawo stosunków wielokrotnych (1804) Louis Joseph Gay-Lussac Prawo stosunków objętościowych (1808)
Od kryształowych sfer do upadku Plutona
Od kryształowych sfer do upadku Plutona Kiedy Układ Słoneczny był Wszechświatem 1 0 o - 30 o 21.03-20.04 LU.HUN.GA - Najemnik Aries Baran 2 30 o - 60 o 21.04-21.05 GU.AN.NA - Byk Niebios Taurus Byk 3 60
Maria Romanowska UDOWODNIJ, ŻE... PRZYKŁADOWE ZADANIA MATURALNE Z MATEMATYKI
Maria Romanowska UDOWODNIJ, ŻE... PRZYKŁADOWE ZADANIA MATURALNE Z MATEMATYKI Matematyka dla liceum ogólnokształcącego i technikum w zakresie podstawowym i rozszerzonym Z E S Z Y T M E T O D Y C Z N Y Miejski
W poszukiwaniu nowej Ziemi. Andrzej Udalski Obserwatorium Astronomiczne Uniwersytetu Warszawskiego
W poszukiwaniu nowej Ziemi Andrzej Udalski Obserwatorium Astronomiczne Uniwersytetu Warszawskiego Gdzie mieszkamy? Ziemia: Masa = 1 M E Średnica = 1 R E Słońce: 1 M S = 333950 M E Średnica = 109 R E Jowisz
Test na koniec nauki w klasie trzeciej gimnazjum
8 Test na koniec nauki w klasie trzeciej gimnazjum imię i nazwisko ucznia...... data klasa Test 2 1 Na przeciwległych ścianach każdej z pięciu sześciennych kostek umieszczono odpowiednio liczby: 1 i 1,
ODDZIAŁYWANIA W PRZYRODZIE ODDZIAŁYWANIA GRAWITACYJNE
ODDZIAŁYWANIA W PRZYRODZIE ODDZIAŁYWANIA GRAWITACYJNE 1. Ruch planet dookoła Słońca Najjaśniejszą gwiazdą na niebie jest Słońce. W przeszłości debatowano na temat związku Ziemi i Słońca, a także innych
str 1 WYMAGANIA EDUKACYJNE ( ) - matematyka - poziom podstawowy Dariusz Drabczyk
str 1 WYMAGANIA EDUKACYJNE (2017-2018) - matematyka - poziom podstawowy Dariusz Drabczyk Klasa 3e: wpisy oznaczone jako: (T) TRYGONOMETRIA, (PII) PLANIMETRIA II, (RP) RACHUNEK PRAWDOPODOBIEŃSTWA, (ST)
ASTRONOMIA Klasa Ia Rok szkolny 2012/2013
1 ASTRONOMIA Klasa Ia Rok szkolny 2012/2013 NR Temat Konieczne 1 Niebo w oczach dawnych kultur i cywilizacji - wie, jakie były wyobrażenia starożytnych (zwłaszcza starożytnych Greków) na budowę Podstawowe
Mini tablice matematyczne. Figury geometryczne
Mini tablice matematyczne Figury geometryczne Spis treści Własności kwadratu Ciekawostka:Kwadrat magiczny Prostokąt Własności prostokąta Trapez Własności trapezu Równoległobok Własności równoległoboku
Szczegółowe wymagania edukacyjne na poszczególne oceny śródroczne i roczne z przedmiotu: FIZYKA. Nauczyciel przedmiotu: Marzena Kozłowska
Szczegółowe wymagania edukacyjne na poszczególne oceny śródroczne i roczne z przedmiotu: FIZYKA Nauczyciel przedmiotu: Marzena Kozłowska Szczegółowe wymagania edukacyjne zostały sporządzone z wykorzystaniem
Mikołaj Kopernik patron naszej szkoły
Mikołaj Kopernik patron naszej szkoły W skrócie... Obserwacje astronomiczne: Mikołaj Kopernik, mimo licznych zainteresowań, nadal dogłębnie zajmował się teorią budowy świata. Wykazał między innymi pewne
Fizyka dla Informatyków Wykład 5 GRAWITACJA
Fizyka dla Informatyków Wykład 5 GRAWITACJA Katedra Informatyki Stosowanej PJWSTK 2009 Spis treści 1 2 3 Prawo ciążenia 4 Spis treści 1 2 3 Prawo ciążenia 4 Spis treści 1 2 3 Prawo ciążenia 4 Spis treści
I zasada dynamiki Newtona
I zasada dynamiki Newtona Każde ciało pozostaje w spoczynku lub porusza się ze stałą prędkością po linii prostej dopóki nie zadziała na nie niezrównoważona siła z zewnątrz. Jeśli! F i = 0! i v = 0 lub
MATEMATYKA. WYMAGANIA EDUKACYJNE KLASA I, II, III Bożena Tarnowiecka, Arkadiusz Wolski. KLASA I Wymagania
MATEMATYKA WYMAGANIA EDUKACYJNE KLASA I, II, III Bożena Tarnowiecka, Arkadiusz Wolski Treści zapisane kursywą (i oznaczone gwiazdką) wykraczają poza podstawę programową. Nauczyciel może je realizować,
Teoria ruchu Księżyca
Wykład 9 - Ruch Księżyca. Odkształcenia związane z rotacją, oddziaływanie przypływowe, efekty relatywistyczne, efekty związane z promieniowaniem Słońca. 14.04.2014 Miesiące księżycowe Miesiąc synodyczny
Sprawa otyłości Ziemi
Logo designed by Armella Leung, www.armella.fr.to Sprawa otyłości Ziemi Tomasz Kacik Zespół Szkół Handlowych w Sopocie Wstęp Poglądy o kulistości Ziemi głosili już filozofowie szkoły pitagorejskiej, a