2.6 Zmienne stacjonarne i niestacjonarne 2.6. ZMIENNE STACJONARNE I NIESTACJONARNE 33. RYSUNEK 2.6: PKB w wyrażeniu realnym

Wielkość: px
Rozpocząć pokaz od strony:

Download "2.6 Zmienne stacjonarne i niestacjonarne 2.6. ZMIENNE STACJONARNE I NIESTACJONARNE 33. RYSUNEK 2.6: PKB w wyrażeniu realnym"

Transkrypt

1 2.6. ZMIENNE STACJONARNE I NIESTACJONARNE 33 tale. Rysunek 2.6 ilustruje sezonowość w logarytmie PKB w wyrażeniu realnym. Realny PKB został uzyskany poprzez zdeflowanie nominalnego PKB przez indeks cen konsumpcyjnych CP I. Zauważmy, że dla surowych na dominującą tendencję nakładają się zmiany sezonowe. Na rysunku znajduje się także wyrównany sezonowo PKB, przy czym wyrównania sezonowego dokonano metodą średniej ruchomej y t = 1 4 (y t + y t 1 + y t 2 + y t 3 ). Na podstawie wykresu zmiennych wyrównanych sezonowo wyraźnie łatwiej jest odczytać tendencję zarysowującą się w danych. 1995q1 1996q1 1997q1 1998q1 1999q1 2000q1 2001q1 2002q1 2003q1 2004q1 2005q1 ln(pkb) niewyrównany sezonowo wyrównany sezonowo 1995q1 1996q1 1997q1 1998q1 1999q1 2000q1 2001q1 2002q1 2003q1 2004q1 2005q Pierwsze różnice ln(pkb) RYSUNEK 2.6: PKB w wyrażeniu realnym Na rysunku przedstawiono także sezonowe różnice nominalnego PKB. Na wykresie tym nie jest widoczna sezonowość, za to można wyraźnie widać zmiany stopu wzrostu nominalnego PKB. PYTANIA: 1. Wyjaśnić co to znaczy, że w danych występuje sezonowość i omówić sposoby uwzględniania sezonowości w procesie modelowania. 2.6 Zmienne stacjonarne i niestacjonarne Jednym z podstawowych pojęć stosowanych w analizie szeregów czasowych jest pojęcie stacjonarności zmiennej 2. Intuicyjnie zmienna stacjonarna to zmienna, której własności nie zmieniają się wraz z upływ czasu. W ekonometrii używanych jest kilka definicji stacjonarności. Najczęściej posługujemy się pojęciem słabej (kowariacyjnej) stacjonarności 3. 2 W bardziej formalnym matematycznym kontekście mówimy o procesach stochastycznych zamiast o szeregach czasowych 3 W przypadku silnej stacjonarności zakładamy dodatkowo stałość rozkładu zmiennej w czasie.

2 34 ROZDZIAŁ 2. MODELE DYNAMICZNE DEFINICJA 2.15 Zmienna y t jest słabo stacjonarna jeśli spełnia następujace założenia: 1. wartość oczekiwana y t jest skończona i stała w czasie E (y t ) = µ < 2. wariancja y t jest skończona i stała w czasie Var (y t ) = σ 2 < 3. kowariancje między realizacjami y t zależa jedynie od dystansu w czasie h dla dowolnych t 1, t 2 i h. Cov (y t1, y t1 +h) = Cov (y t2, y t2 +h) = γ h Założenie o stacjonarności zmiennych w modelu jest niezbędne przy wyprowadzaniu rozkładów typowych statystyk testowych używanych przy testowaniu hipotez. Pokazano, że w przypadku, gdy w modelu występują zmienne niestacjonarne, rozkłady asymptotyczne statystyk testowych są niestandardowe. Może to doprowadzić do błędnych wyników wnioskowania statystycznego. Najważniejszym przypadkiem negatywnego wpływu niestacjonarności na proces wnioskowania statystycznego jest przypadek uzyskiwania pozornie istotnych statystyk t, przy testowaniu istotności zmiennych w modelu. Do problemu tego wrócimy jeszcze w podrozdziale Badanie stacjonarności zmiennych w modelu może być traktowane jako test diagnostyczny, który weryfikuje prawdziwość założeń koniecznych do tego, by standardowe procedury testowania hipotez były prawidłowe. PRZYKŁAD 2.16 Stacjonarność białego szumu Często rozpatrywanym przykładem zmiennej stacjonarnego jest biały szum. Realizacje takiego procesu oznaczamy jako x t IID ( 0, σ 2), gdzie skrót IID oznacza, że realizacje x t są niezależne i mają identyczne rozkłady (Independently and Identically Distributed ). Biały szum ma więc rozkład stały w czasie, o wartości oczekiwanej 0 i skończonej wariancji σ 2, przy czym realizacje x t i x s są niezależne dla t s. Biały szum jest istotnie zmienną stacjonarną, ponieważ E (x t ) = 0, Var (x t ) = σ 2 a Cov (x t, x s ) = 0 dla t s. Innym przykładem zmiennej stacjonarnej jest zmienna z modelu AR (1) y t = αy t 1 + ε t ε t IID ( 0, σ 2) dla α < 1. W tym przypadku udowodnienie stacjonarności jest nieco trudniejsze. Podstawiając y t = αy t 2 + ε t 1 do poprzedniego wzoru otrzymujemy y t = α 2 y t 2 + αε t 1 + ε t postępując tak tak rekurencyjnie uzyskamy: y t = α i ε t i

3 2.6. ZMIENNE STACJONARNE I NIESTACJONARNE 35 Wartość oczekiwana, wariancja i kowariancje dla y t są równe ( ) E (y t ) = E α i ε t i = α i E (ε t i ) = 0 }{{} 0 ( ) Var (y t ) = Var α i ε t i = α 2i σ 2 Var (ε t i ) = }{{} 1 α 2 σ 2 ( ) Cov (y t, y t h ) = Cov α i ε t i, α i ε t i h = Cov ( h 1 α i ε t i + a h i=1 α i ε t i h, = α h α 2i Var (ε t i h ) = α h σ 2 i=h 1 α 2 ) α i ε t i h Przy liczeniu przyjęliśmy założenie, że α < 1. Założenie to jest warunkiem koniecznym stacjonarności zmiennej AR (1). Zmienna stacjonarna AR (1) została zilustrowana na rysunku 2.7. Na wykresie tym widać wyraźnie charakterystyczną dla zmiennych I (0) tendencję do powrotu do średniej RYSUNEK 2.7: Zmienna AR(1), α = 0.5 RYSUNEK 2.8: Zmienna AR(1)+trend Standardowa definicja stacjonarności okazuje się w wielu przypadkach zbyt restrykcyjna. Zmienne ekonomiczne oscylują nie tyle wokół stałej ale wokół pewnego trendu. Definiuje się zatem pojęcie zmiennej stacjonarnej wokół trendu (trendostacjonarnej). Zmienna jest trendostacjonarna jeśli jej odchylenia od trendu, zdefiniowane jako y t E (y t ), są stacjonarne. PRZYKŁAD 2.17 Zmienna stacjonarna wokół trendu liniowego. Model trendu liniowego definiowany jest w sposób następujący: y t = α + βt + ε t

4 36 ROZDZIAŁ 2. MODELE DYNAMICZNE gdzie ε t, gdzie ε t jest stacjonarne. W takim przypadku E (y t ) = α + βt a y t E (y t ) = ε t jest stacjonarna Zmienna stacjonarna wokół trendu zilustrowana jest na rysunku (2.8). Jedną z interesujących własności zmiennej słabo stacjonarnej jest możliwość przedstawienia jej za pomocą modelu średniej ruchomej o nieskończonej liczbie opóźnień. Możliwość takiego zapisu wynika z następującego twierdzenia: TWIERDZENIE 2.18 (WOLDA O DEKOMPOZYCJI) Jeśli zmienna x t jest słabo stacjonarna, to można ja przedstawić jako x t = θ iε t i, przy czym ε t ma następujace własności: E (ε t ) = 0, Var (ε t ) = σ 2 < i Cov (ε t, ε s ) = 0 dla t s. Zaburzenia losowe ε t traktujemy jako innowacje a więc losowe i nieprzewidywalne szoki, które determinują przebieg zmiennej w czasie. Zauważmy, że wariancja x t może być zapisana jako ( ) Var (x t ) = Var θ i ε t i = θi 2 Var (ε t i ) = σε 2 θ 2 i Założyliśmy, że x t jest stacjonarna, a więc Var (x t ) = σε 2 θ2 i <. Dowolny szereg o elementach większych od zera zbiega do wartości skończonej, jeśli jego elementy zbiegają do zera. Wynika z tego, że szereg θ2 i <. Wynika z tego, że lim i θ i = 0. Zatem dla zmiennych stacjonarnych wpływ danej innowacji maleje z upływem czasu do zera Zmienne zintegrowane Założenie, że zaburzenia losowe mają malejący z upływem czasu wpływ na zmienną, wydaje się w przypadku wielu zmiennych ekonomicznych intuicyjnie uzasadniony. W przypadku innych zmiennych ekonomicznych wpływ zaburzeń losowego nigdy nie wygasa. Przykładem takiej zmiennej może być rozwój technologiczny. Innowacje technologiczne wpływają na poziom technologii w sposób trwały, ponieważ innowacje zazwyczaj nie ulegają zapomnieniu. Zmienne, dla których wpływ zdarzeń losowych nie wygasa z czasem, są zmiennymi niestacjonarnymi. W zastosowaniach ekonometrycznych największe praktyczne znaczenie mają zmienne niestacjonarne, które można sprowadzić do stacjonarności poprzez różnicowanie. Zmienne takie nazywamy zmiennymi zintegrowanymi. Celem ujednolicenia zapisu mówi się, że zmienne stacjonarne są zintegrowane rzędu zerowego y t I (0). Zmienną, która po zastosowaniu d-tych różnic staje się zmienną stacjonarną, a więc taką, dla której d y t I (0) oznaczany jako y t I (d).

5 2.6. ZMIENNE STACJONARNE I NIESTACJONARNE 37 Badanie rzędu integracji bładzenia przypadkowego Przykładem zmiennej niestacjonarnej I (1) jest błądzenie przypadkowe y t = y t 1 + ε t ε t IID ( 0, σ 2) PRZYKŁAD 2.19 Jeśli podstawimy w tym wzorze za y t 1 = y t 2 + ε t 1, to uzyskamy y t = y t 2 + ε t 1 + ε t podstawiając rekurencyjnie w ten sam sposób y t 2, y t 3,... uzyskujemy: t y t = y 0 + Przy założeniu, że y 0 = 0: s=1 ε s E (y t ) = 0 t Var (y t ) = Var (ε s ) = tσ 2 s=1 t h Cov (y t, y t h ) = Var (ε s ) = (t h) σ 2 s=1 Wariancja i kowariancje błądzenia przypadkowego zależą od czasu - zmienna ta jest niestacjonarna! Zauważmy, że kowariancje między realizacjami zmiennej maleją bardzo wolno - w przybliżeniu liniowo. Odejmując od obu stron y t 1 otrzymujemy: y t y t 1 = y t = ε t Po zastosowaniu pierwszych różnic otrzymaliśmy zmienną zachowującą się zgodnie z modelem białego szumu - zmienną I (0). Wnioskujemy z tego, że błądzenie przypadkowe jest I (1) Model błądzenia przypadkowego można rozbudować o tak zwany dryf. Model taki ma następującą postać: y t = α + y t 1 + ε t Rekurencyjnie podstawiając do tego wzoru y t 1, y t 2,..., y 0 i zakładając, że y 0 = 0 otrzymujemy t y t = αt + W przypadku błądzenia przypadkowego z dryfem wartość oczekiwana zmiennej y t jest równa E (y t ) = αt. Element αt nazywamy trendem deterministycznym a t ε t nazywamy trendem stochastycznym. Przykładowe wykresy błądzenia przypadkowego i błądzenia przypadkowego z dryfem znajdują się na rysunkach 2.9 i Na rysunkach tych widać, że w przeciwieństwie do zmiennych stacjonarnych, zmienne I (1) nie zbiegają ani średniej, ani do trendu. Czy pojęcie niestacjonarności zmiennych i rzędu integracji ma jakiekolwiek znaczenie praktyczne? Odpowiedzi na to pytanie udziela znany artykuł Nelsona i Plossera (1982), którzy wykazali, że znacząca część makroekonomicznych zmiennych dla gospodarki amerykańskiej zachowuje się tak, jak zmienne niestacjonarne. Uważa się obecnie, że znaczna część zmiennych makroekonomicznych jest zintegrowana rzędu pierwszego I (1). Wydaje się, że istnieją też zmienne ekonomiczne, które są zinte- s=0 ε s

6 38 ROZDZIAŁ 2. MODELE DYNAMICZNE RYSUNEK 2.9: Błądzenie przypadkowe - zmienna I(1) RYSUNEK 2.10: Błądzenie przypadkowe z dryfem - zmienna I(1) growane rzędu drugiego I (2). Istnieje przekonanie, że zmienne I (3) stanowią wśród zmiennych ekonomicznych rzadkość, lub też wcale nie występują. Samo istnienie zmiennych niestacjonarnych było znane już za czasów, kiedy zaczęto modelować zmienne za pomocą metodologii Boxa-Jenkinsa. Zauważono wtedy, że wśród zmiennych ekonomicznych istnieją zmienne, dla których korelacja między poszczególnymi realizacjami jest bardzo wysoka i bardzo wolno maleje w czasie. W rezultacie, wielkość funkcji ACF prawie nie maleje. Dla tego typu zmiennych otrzymywano wartość funkcji P ACF dla k = 1 bliską jedynki. Na rysunku 2.11 zilustrowano przykładowe funkcje ACF i P ACF dla błądzenie przypadkowego. Funkcja autokorelacji Opóźnienie 95% przedział ufności Funkcja autokorelacji cząstkowej Opóźnienie 95% przedział ufności RYSUNEK 2.11: ACF i P ACF dla błądzenia przypadkowego I (1)

7 2.6. ZMIENNE STACJONARNE I NIESTACJONARNE 39 W tego typu przypadkach Box i Jenkins proponowali zróżnicować modelowaną zmienną i modelować w standardowy sposób pierwsze różnice. W przypadku, gdyby problem się powtórzył dla pierwszych różnic, stosowano dwukrotne różnicowanie itd. Proponowany przez Boxa-Jenkinsa sposób postępowania odpowiada sprowadzaniu zmiennej zintegrowane stopnia d do stacjonarności poprzez d-krotne różnicowanie d y t I (0). Model ARMA (p, q) zbudowany dla d-tych różnic y t nazywamy modelem ARIMA (p, d, q) (AutoRegressive Integrated Moving Avarage). Podobnie jak w przypadku samego sposobu doboru p i q, zamiast ustalać właściwy rząd integracji na podstawie wykresów ACF i P ACF, obecnie posługujemy się raczej formalnymi testami statystycznymi. Testy te nazywane są testami na istnienie pierwiastka jednostkowego (unit root tests). Nazwa ta związana jest z rozważaniami na temat własności równań różnicowych, za pomocą których można zapisać modele autoregresyjne. PYTANIA: 1. Podać definicję zmienne stacjonarnej i trendostacjonarnej. 2. Wyjaśnić, co to są zmienne I(0) i I(1) i udowodnić, że biały szum jest zmienną I (0) a błądzenie przypadkowe zmienną I(1) Test Dickey-Fullera (DF ) Najwcześniejszym i najpopularniejszym testem, za pomocą którego można ustalić, czy zmienna jest stacjonarna, czy niestacjonarna - jest test Dickey-Fullera. Hipoteza zerowa w tym teście mówi, że zmienna jest niestacjonarna i opisana jest modelem błądzenia przypadkowego. W przypadku hipotezy alternatywnej zakładamy, że zmienna jest stacjonarna i dana modelem AR (1). Formalnie hipotezę zerową zapisujemy jako ograniczenie nałożone na parametr β w modelu: y t = βy t 1 + ε t (2.2) ε t IID ( 0, σ 2) W modelu tym, jeśli prawdziwa jest H 0 : β = 1, to zmienna y t jest błądzeniem przypadkowym i jest niestacjonarna. Dla prawdziwej hipotezy alternatywnej H 1 : β < 1, y t jest zmienną stacjonarną AR (1). Przy zastosowaniu prostych przekształceń można sprowadzić testowanie hipotezy zerowej do testowania istotności zmiennej. Odejmując od obu stron równania (2.2) y t 1 otrzymujemy y t = (β 1) y t 1 + ε t = ρy t 1 + ε t Formułując hipotezę zerową i alternatywną w kategoriach wielkości parametru ρ otrzymujemy:

8 40 ROZDZIAŁ 2. MODELE DYNAMICZNE H 0 : ρ = 0, y t jest niestacjonarna H 0 : ρ ( 2, 0), y t jest stacjonarna Może się wydawać, że przeprowadzenie testu DF jest banalnie proste - wystarczy porównać wielkość statystyki t dla oszacowania parametru ρ z tablicami wartości krytycznych rozkładu t-studenta. Niestety sprawa nie jest taka prosta. Rozkłady statystyk testowych w przypadku modelu, w którym występują zmienne niestacjonarne, są niestandardowe. Szczęśliwe w przypadku testu Dickey-Fullera dostępne są tablice prawidłowych wartości krytycznych. Można je znaleźć na końcu tego podręcznika. Test Dickey-Fullera wygląda przeprowadzamy następująco. W pierwszym kroku szacujemy regresję y t na y t 1. Następnie porównujemy statystykę t dla y t 1 z wartościami krytycznymi testu DF. Jeśli uzyskana wartość statystyka testowej jest mniejsza od wartości krytycznej odrzucamy H 0 o niestacjonarności i przyjmujemy H 1 o stacjonarności badanej zmiennej. Pewne dodatkowe komplikacje pojawiają się jeżeli chcemy zastosować test DF do badania trendostacjonarności. Kluczowa w tym przypadku jest forma równania regresji zastosowanego podczas testowania trendostacjonarności. W praktyce rozpatruje się cztery przypadki: regresji bez stałej, regresji ze stałą, regresji ze stałą i trendem liniowym oraz regresji ze stałą, trendem liniowym oraz trendem kwadratowym. 1. równanie regresji: y t = ρy t 1 + ε t hipoteza zerowa: błądzenie przypadkowe H 0 : ρ = 0 hipoteza alternatywna: model AR (1) bez stałej H 1 : ρ ( 2, 0) 2. równanie regresji: y t = α 1 + ρy t 1 + ε t hipoteza zerowa: błądzenie przypadkowe H 0 : ρ = 0, α 1 = 0 zmienna trendostacjonarna: model AR (1) ze stałą H 1 : ρ ( 2, 0) 3. równanie regresji: y t = α 1 + α 2 t + ρy t 1 + ε t hipoteza zerowa: błądzenie przypadkowe z dryfem H 0 : ρ = 0, α 2 = 0 hipoteza alternatywna: model AR (1) z trendem liniowym H 1 : ρ ( 2, 0) 4. równanie regresji:

9 2.6. ZMIENNE STACJONARNE I NIESTACJONARNE 41 y t = α 1 + α 2 t + α 3 t 2 + ρy t 1 + ε t hipoteza zerowa: błądzenie przypadkowe z dryfem kwadratowym H 0 : ρ = 0, α 3 = 0 hipoteza alternatywna: model AR (1) z trendem kwadratowym H 1 : ρ ( 2, 0) Problemem teoretycznym związanym z testowaniem stacjonarności za pomocą testu DF jest potencjalna różnica w sposobie zdefiniowania trendu deterministycznego dla H 0 i H 1. Na przykład, że dla przypadku 2 gdybyśmy założyli, że α 1 0 to dla H 0 wartość oczekiwana y t byłaby równa E (y t ) = y 0 + α 1 t (trend liniowy), a przy hipotezie alternatywnej E (y t ) = α 1 1 ρ (brak trendu). Z tego powodu staramy się sformułować H 0 tak, by trend przy H 0 i H 1 miał ten samą postać. W praktyce testujemy H 0 testując jedynie warunek, że ρ = 0. Z literatury przedmiotu nie wynika jasno, czym powinniśmy się kierować przy wyborze między regresją (1), (2) i (3). Sugeruje się wybór na podstawie nieformalnego przebadania wykresu zmiennej y t. Wybór ten wpływa przy tym nie tylko na szacowaną regresję, ale także na dobór wartości krytycznej. Rozkład testu Dickey-Fullera zależy bowiem od sposobu, w jaki zdefiniowany jest trend deterministyczny. Na koniec uwaga techniczna. Wielkości krytyczne rozkładu statystyki DF są zawsze ujemne. W tablicach testu Dickey-Fullerra, które znajdują się na końcu tej książki, wartości krytyczne dla testu DF pojawiają się w kolumnie dla k = Rozszerzony test Dickey-Fullera (ADF ) Pierwotna wersja testu DF została z czasem uogólniona. Uogólniona wersja umożliwia prawidłowe testowanie rzędu integracji zmiennych także w przypadku, gdy y t pochodzi z modelu y t = y t 1 + ε t ε t I (0) O błędach losowych zakładamy dalej, że są stacjonarne, ale mogą być skorelowane. Uogólnienie to ma duże znaczenie, ponieważ często w praktyce reszty z regresji y t = ρy t 1 + ε t wykazują silną autokorelację. Jak było już wcześniej wyjaśniane, autokorelacja w regresji z opóźnioną zmienną zależną jest dużym problemem, ponieważ prowadzi do wystąpienia problemu równoczesności i brak zgodności oszacowań. Rozszerzony test DF różni się od standardowego testu rozszerzeniem regresji o dodatkowe elementy, których celem jest eliminacja autokorelacji reszt. Test tej postaci nazywamy rozszerzonym testem Dickey-Fullera ADF (Augmented Dickey Fuller).

10 42 ROZDZIAŁ 2. MODELE DYNAMICZNE Celem uzyskania statystyki testowej przeprowadzamy regresję postaci: y t = ρy t 1 + k γ i y t i + ε t i=1 } {{ } rozszerzenie przy czym ilość opóźnień k dobrana jest w taki sposób, by z reszt wyeliminować autokorelację. Zwykle k uzyskujemy przy pomocy metodę od ogólnego do szczegółowego bądź przy użyciu kryteriów informacyjnych. Statystyką testową dla testu ADF jest, tak jak w przypadku testu DF, statystyka t policzona dla oszacowania parametru przy y t 1. Dla dużych prób tablice wartości krytycznych dla testy ADF są takie same, jak w standardowym teście DF. Jednak dla małych prób, małopróbkowe wartości krytyczne policzone dla testu DF są jedynie aproksymacją prawdziwych wartości krytycznych testu ADF. Stałą bądź trend uwzględnienia się w modelu w ten sam sposób jak w teście DF. PRZYKŁAD 2.20 Badanie stacjonarność nominalnego PKB w Polsce - test ADF. Dane z lat Wykres realnego PKB (policzonego przy użyciu deflatora CPI) znajduje się na rysunku 2.6 a jej funkcja ACF i P ACF znajduje się na rysunku Funkcja autokorelacji Opóźnienie Funkcja autokorelacji Opóźnienie 95% przedział ufności 95% przedział ufności Funkcja autokorelacji cząstkowej Opóźnienie Funkcja autokorelacji cząstkowej Opóźnienie 95% przedział ufności 95% przedział ufności RYSUNEK 2.12: Funkcja ACF i P ACF dla ln(pkb) RYSUNEK 2.13: Funkcja ACF i P ACF dla 4 ln(pkb) Na podstawie wykresu 2.12 wydaje się, że pkb t = ln (P KB t / CP I t ) jest niestacjonarne. Charakterystyczne są przy tym wyższe wartości funkcji ACF dla wielokrotności 4 oraz maksimum funkcji P ACF bliski 1 dla k = 4. Oba te elementy sugerują, że zgodnie z wykresem 2.6, występowanie silnej sezonowości kwartalnej. W związku z tym postaramy się sprowadzić zmienną pkb t do stacjonarności poprzez różnicowanie sezonowe. W przypadku czwartych różnic pkb t (rysunek 2.13) nie jest jasne, czy są one stacjonarne, czy niestacjonarne. Wykresy funkcji ACF opadają powoli do zera dosyć wolno, a dla k = 1 funkcje P ACF jest dosyć wysoka. Analizując stacjonarność poziomów pkb t uwzględniamy w regresji stałą. Celem pozbycia się autokorelacji składnika losowego w regresji uwzględniono jedno opóźnienie pierwszych różnic zmiennej pkb t.

11 2.6. ZMIENNE STACJONARNE I NIESTACJONARNE 43 TABELA 2.2: Test ADF, poziomy pkb t Współczynnik Bład std t pkb t pkb t stała Dla α = 0.05 wartość krytyczna dla testu DF wynosi Ponieważ wartość statystyki testowej 2.27 > 2.96, więc hipotezy zerowej o niestacjonarności P KB nie można się odrzucić. Wartość p dla testu Breuscha-Godfreya przeprowadzonego dla reszt z tej regresji wynosi 0.49, a więc dodając opóźnione pierwsze różnice rzeczywiście udało nam się pozbyć autokorelacji reszt. Przebadajmy teraz stacjonarność czwartych różnic PKB (logarytmów stóp wzrostu PKB). Stosujemy test ADF dla modelu ze stałą. TABELA 2.3: Test ADF, różnice sezonowe 4 pkb t Współczynnik Bład std t 4 pkb t pkb t stała W tym przypadku statystyka testowa wynosi i jest większa od wartości krytycznej równej Na podstawie wyniku testu wnioskujemy, że 4 pkb t jest niestacjonarne. Przebadajmy teraz stacjonarność pierwszych różnic logarytmów stóp wzrostu PKB (pierwszych różnic czwartych różnic logarytmów PKB). Stosujemy test ADF dla modelu bez stałej. Autokorelację reszt udaje się wyeliminować dopiero po dodaniu do regresji trzech opóźnień 2 4 pkb. TABELA 2.4: Test ADF, różnice różnic sezonowych 2 4 pkb t Współczynnik Bład std t 4 pkb t pkb t pkb t pkb t W tym przypadku statystyka testowa wynosi 2.50 i jest mniejsza od wartości krytycznej równej Na podstawie wyniku testu wnioskujemy, że 4 pkb t jest stacjonarne. W efekcie wnioskujemy, że logarytm stopy wzrostu P KB (kwartał do odpowiedniego kwartału 4 pkb t ) jest zmienną I (1) Uzyskany wynik jest raczej nietypowy. W większości krajów stopa wzrostu PKB jest stacjonarna. Być może szereg czasowy dla Polski jest jeszcze zbyt krótki, by odrzucić hipotezę o niestacjonarności. Wyjaśnienie to potwierdza do pewnego stopnia wynik testu stacjonarności, który omówimy w następnym podrozdziale. PYTANIA: 1. Opisać procedurę testowania stacjonarności za pomocą rozszerzonego testu Dickey- Fullera (ADF ). 2. Opisać jak dla różnych modeli trendów formułujemy hipotezę zerową i alternatywną w rozszerzonym teście Dickeya-Fullera (ADF )

12 44 ROZDZIAŁ 2. MODELE DYNAMICZNE Test KPSS Test Dickey-Fullera bada stacjonarność zmiennej poprzez testowanie hipotezy zerowej o jej niestacjonarności. Opracowano także testy, które badają stacjonarność zmiennej poprzez testowanie hipotezy zerowej o stacjonarności. Najbardziej popularnym testem tego rodzaju jest test KP SS (Kwiatkowski, Philips, Schmidt, Shin). Test KP SS oparty jest na następującym modelu statystycznym: y t = δ + ζ t + ε t, gdzie ε t jest IID ( 0, σ 2 ε), a ζt jest nieobserwowalne i jest błądzeniem przypadkowym: ζ t = ζ t 1 + u t u t IID ( 0, σ 2 u). W przypadku, gdy σu 2 > 0 zmienna y t jako suma zmiennych I (0) i I (1) jest zmienną I (1). Jeśli jednak σu 2 = 0, to ζ t jest stałe w czasie i zmienna y t jako suma stałej i zmiennej I (0) będzie zmienną I (0). Hipoteza zerowa i alternatywna w teście KP SS mają następującą postać: H 0 : σu 2 = 0, zmienna y t jest stacjonarna, H 1 : σu 2 > 0, zmienna y t jest niestacjonarna. Hipotezę zerową dla tego testu odrzuca się w przypadku, gdy statystyka testowa jest większa od wartości krytycznej. Statystyka testowa tego testu jest zawsze większa od zera. Podobnie jak test DF, także test KP SS uogólniono na przypadek testowania trendostacjonarności oraz przypadek, gdy ε t jest stacjonarne ale skorelowane. Nie będziemy tutaj szczegółowo omawiać sposobu liczenia statystyki testowej dla testu KP SS, ponieważ wymagałoby to wprowadzenia pojęć związanych z modelami ze zmiennymi nieobserwowalnymi i estymacji nieparametrycznej. PRZYKŁAD 2.21 (c.d. 2.20) Badanie stacjonarność nominalnego PKB w Polsce - test KPSS Przetestujmy stacjonarność stóp wzrostu P KB za pomocą testu KP SS. Wielkości uzyskanych statystyk testowych zależą od ilości opóźnień uwzględnionych w trakcie estymacji. Test przeprowadzono dla logarytmu realnego PKB (pkb t ), logarytmów stóp wzrostu realnego PKB ( 4 pkb t ) i pierwszych różnic stóp wzrostu realnego PKB ( 4 pkb t ). Otrzymane wielkości statystyk testowych znajdują się w tabeli poniżej: TABELA 2.5: Statystyki testu KPSS Opóźnienia pkb pkb pkb Wartość krytyczna dla poziomu istotności α = 0.05 dla testu KP SS wynosi Wynik testu KP SS dla pkb t nie jest jednoznaczny, ponieważ dla większej niż 4 liczby opóźnień nie jesteśmy w stanie odrzucić hipotezy o stacjonarności. Dla tej samej, co w teście ADF

13 2.6. ZMIENNE STACJONARNE I NIESTACJONARNE 45 liczby opóźnień (równej 1) hipotezę zerową o stacjonarności odrzucamy. Testując stacjonarność 4 pkb t dochodzimy do wniosku, że hipotezę zerową o stacjonarności odrzucamy dla każdej liczby opóźnień. Z kolei w przypadku testowania stacjonarności 4 pkb t, hipotezy o stacjonarności nie da się odrzucić dla żadnej liczby opóźnień. Kłopotliwym problemem praktycznym są sprzeczne wyniki testu DF i KP SS. Jeśli liczba obserwacji w szeregu czasowym jest mała, okazuje się często, że nie jest możliwe odrzucenie H 0 o niestacjonarności w teście ADF, ale nie jest też możliwe odrzucenie H 0 o stacjonarności zmiennej w teście KP SS. W przypadku uzyskania takiego wyniku nie wiemy, czy zmienna jest stacjonarna, czy niestacjonarna. W takim przypadku proponuje się w literaturze przedmiotu sformalizowane procedury ważenia wyników tych testów. PYTANIA: 1. Na czym polega najważniejsza różnica między testowaniem stacjonarności za pomocą testu ADF i KP SS? Regresja pozorna Jedną z najważniejszych przyczyn, dla których testuje się stacjonarność zmiennych jest problem regresji pozornej (spurious regression). Problem ten może pojawić się w modelu, w którym część ze zmiennych nie jest stacjonarna, najczęściej wtedy, gdy zmienna objaśniana i część ze zmiennych objaśniających jest zmiennymi I (1). W takim przypadku statystyki t dla zmiennych I (1) okazują się z reguły istotne. Dzieje się tak nawet w przypadku, gdy liczba obserwacji jest wysoka, a między zmiennymi objaśniającymi a zmienną objaśnianą nie ma żadnego rzeczywistego związku. Problem regresji pozornej bierze się stąd, że rozkład statystyki t w przypadku, kiedy zmienne w modelu są niestacjonarne, nie jest rozkładem t-studenta. Co więcej, im większa jest liczba obserwacji tym bardziej rozkład ten różni się od rozkładu t- studenta. Regresja pozorna - eksperyment Monte Carlo PRZYKŁAD 2.22 Za pomocą generatora liczb losowych wygenerowano zmienne y t i x t y t = y t 1 + ε t x t = x t 1 + η t ε N ( 0, σ 2 I ) i η N ( 0, σ 2 I ). Zmienne y t i x t są niezależnymi błądzeniami przypadkowymi. Powyższe błądzenia przypadkowe wygenerowano dla liczby obserwacji wynoszących 10, 100 i Następnie przeprowadzono regresję y t na stałej i x t : y t = β 0 + β 1 x t + e t Ponieważ y t i x t są niezależne, więc prawdziwa hipoteza zerowa mówi, że H 0 : β 1 = 0. Przeprowadzono test powyższej hipotezy zerowej, przy czym posłużono się standardowymi wielkościami krytycznymi z tablic t-studenta. Generowanie szeregów, przeprowadzanie regresji i testowanie H 0 powtórzono 1000 razy a następnie policzono udział odrzuceń hipotezy zerowej w ogóle przeprowadzonych testów. Uzyskane wyniki znajdują się w tabeli poniżej.

14 46 ROZDZIAŁ 2. MODELE DYNAMICZNE TABELA 2.6: Regresja pozorna, p-stwo błędu I rodzaju wartość krytyczna Pr ( t > t α ) liczba obserwacji t α z dystrybuanty t symulacja α = α = α = Uzyskany wynik symulacji wskazuje na istotę problemu. Mimo założonego poziomu istotności na poziomie α = 0.05, prawdziwe prawdopodobieństwo popełnienia błędu I rodzaju rośnie wraz z liczbą obserwacji prawie do 1. Dla dużej liczby obserwacji jest niemal pewne, że dla całkowicie niezależne zmienne I (1) zostaną na podstawie testu t uznane za powiązane ze sobą! Problem regresji pozornej może doprowadzić do zbudowania modelu, w którym zależności między zmiennymi są całkowicie pozorne. Błąd ten jest jednym z najczęstszych błędów popełnianych w analizie szeregów czasowych. Analiza statystyczna dostarcza nam też pewnego pocieszającego wniosku. Można pokazać, że estymator M N K jest estymatorem zgodnym także w przypadku, kiedy zmienna objaśniana i zmienne objaśniające są zmiennymi I (1). Choć w takim przypadku nie da się przeprowadzić wnioskowania przy użyciu standardowych statystyk testowych, to jednak same oszacowania parametrów są, dla dużych prób, prawidłowe. Prostym rozwiązaniem problemu regresji pozornej jest przekształcenie go na model na pierwszych różnicach zmiennych. Przekształcenie to, dla prostego modelu z jedną zmienną egzogeniczną, przeprowadzamy w sposób następujący: odejmując stronami uzyskujemy y t = α + βx t + u t (2.3) y t 1 = α + βx t 1 + u t 1 y t = β x t + ε t (2.4) gdzie ε t = u t. Jeśli y t I (1), x t I (1), to y t I (0), x t I (0). Model na pierwszych różnicach zmiennych I (1) jest modelem dla zmiennych stacjonarnych i można w nim przeprowadzić wnioskowanie statystyczne za pomocą standardowych statystyk testowych. Model, w których zmienne zostały do sprowadzone poprzez różnicowanie są często stosowane w praktyce. Często jednak takie rozwiązanie problemu niestacjonarności zmiennych nie jest w pełni satysfakcjonujące. Jeśli między zmiennymi występuje relacja długookresowa, to nie jest możliwe jej odtworzenie na podstawie oszacowań uzyskanych z modelu na pierwszych różnicach. Z równania (2.4) nie uzyskamy oszacowania stałej w relacji długookresowej, ponieważ w równaniu tym stała nie występuje. Co więcej, nie ma gwarancji, że parametry oszacowane z równania (2.4) rzeczywiście odnoszą się do równowagi długookresowej.

15 2.7. KOINTEGRACJA 47 Przykładowo w modelu: t 1 y t = βx t + stan równowagi długookresowej nie istnieje, ponieważ wpływ zaburzeń losowych nie wygasa z czasem, a więc y t nie ma tendencji do powrotu do równowagi długookresowej. Jeśli jednak zastosujemy różnicowanie w modelu, to otrzymamy model o tej samej postaci, co model na pierwszych różnicach uzyskany z modelu (2.3). Spróbujmy na podstawie modelu na pierwszych różnicach zmiennych znaleźć stan równowagi długookresowej. Licząc wartości oczekiwane dla obu stron równania (2.4) otrzymujemy: E (y t y t 1 ) = E (x t x t 1 ) β, Równowagę długookresową znajdujemy przyjmując, że y = E (y t ) = E (y t 1 ) =... i x = E (x t ) = E (x t 1 ) =.... Jednak dla modelu na pierwszych różnicach otrzymujemy w tym przypadku niewiele mówiącą tożsamość 0 = 0β. Model na pierwszych różnicach zmiennych nie nadaje się więc do analizowania długookresowych zależności między poziomami zmiennymi. PYTANIA: 1. Wyjaśnić, na czym polega zjawisko regresji pozornej. 2. Dlaczego przed przystąpieniem do weryfikacji hipotez o istotności zmiennych w modelu szacowanym na szeregu czasowym powinniśmy przetestować ich rząd integracji? 2.7 Kointegracja Rozwiązanie problemu sformułowanego w poprzednim rozdziale możliwe jest dzięki pojęciu kointegracji. O zmiennych x 1t I (1) i x 2t I (1) mówimy, że są skointegrowane, jeśli istnieje takie β, że x 1t + βx 2t jest I (0). Ogólniej, o zmiennych I (1) mówimy, że są skointegrowane, jeśli istnieje taka ich kombinacja liniowa która jest stacjonarna. Definicję kointegracji można uogólnić na przypadek wielu zmiennych w sposób następujący: DEFINICJA 2.23 O wektorze [y t, x t ], którego każdy element jest I (1), mówimy, że jest skointegrowany, jeśli istnieje wektor β, że y t βx t I (0). Wspomnieliśmy już kiedyś o pojęciu trendów stochastycznych. Zmienne są skointegrowane, jeśli mają wspólny trend stochastyczny. Zmienne błądzą więc w sposób przypadkowy, ale ich zachowanie jest podobne do siebie. Wektorem kointegrującym nazywamy współczynniki w kombinacji liniowej, która sprowadza wektor zmiennych losowych do stacjonarności. W przypadku kiedy [ kombinacja ta ma postać y t βx t I (0), wektorem kointegrującym jest wektor. ] 1 β Przykładowy wykres zmiennych zintegrowanych znajduje się na rysunku ε t i

16 48 ROZDZIAŁ 2. MODELE DYNAMICZNE RYSUNEK 2.14: Zmienne skointegrowane PRZYKŁAD 2.24 Załóżmy, że zmienna x t jest błądzeniem przypadkowym x t = x t 1 + u t u t IID ( 0, σu 2 ) Z kolei zmienna y t jest dana wzorem y t = α + βx t + ε t ε t IID ( 0, σε 2 ) Łatwo sprawdzić, że zmienne y t I (1) i x t I (1). Zauważmy jednak, że y t βx t = α + ε t I (0) Wektor (y t, x t ) jest skointegrowany z wektorem kointegrującym [1, β]. Pojęcie kointegracji umożliwia analizę relacji długookresowych w przypadku zmiennych niestacjonarnych. Zajmiemy się w następnym podrozdziale Mechanizm korekty błędem Pojęcie kointegracji można powiązać z pojęciem równowagi długookresowej za pomocą twierdzeniem Grangera. Twierdzenie Grangera łączy pojęcie kointegracji z modelem korekty błędem. Model korekty błędem opisuje sposób w jaki dokonują się dostosowania zmiennej objaśnianej do relacji długookresowej. Twierdzenie Grangera brzmi następująco: TWIERDZENIE 2.25 Jeśli (y t, x t ) sa skointegrowane, oraz y t i x t sa I (1), to y t można przedstawić w postaci Mechanizmu Korekty Błędem (ECM Error Correction

17 2.7. KOINTEGRACJA 49 Mechanism) k 1 k 1 y t = α (y t 1 x t 1 β) + θ i y t i + x t i γ i + ε t gdzie y t 1 x t 1 β I (0), ε t I (0). i=1 Twierdzenia Grangera umożliwia interpretacje wektora kointegrującego jako relacji długookresowej między zmiennymi. Pokażemy to posługując się standardowym sposobem znajdywania równowagi długookresowej w modelu. Jeśli założymy, że y = E (y t ) =... = E (y t k ) to wartości oczekiwane pierwszych różnic y t będą równe 0 E ( y t ) =... = E ( y k 1 ) = 0 Podobnie dla wielkości zmiennych egzogenicznych mamy: x = E (x t ) =... = E (x t k ) E ( x t ) =... = E ( x k 1 ) = 0 Stosując operator wartości oczekiwanej do obu stron ECM uzyskujemy więc: 0 = α (y x β) Dzieląc obie strony przez α otrzymujemy wzór na równowagę długookresowa postaci y = x β. Równowaga ta interpretowana jest w kontekście ECM jako relacja między zmiennymi, do której dostosowuje się zmienna y t. Mechanizm dostosowań realizowany jest za pośrednictwem elementu y t x t β, który jest odchyleniem od równowagi długookresowej (błędem). Element ten wpływa na wielkość y t poprzez czynnik α (y t 1 x t 1 β). Czynnik ten koryguje błędy. W przypadku, gdy błąd jest dodatni, a więc gdy y t x t 1 β > 0, wielkość y t powinna być skorygowana w dół, co implikuje, że α < 0. Szybkość dostosowań jest determinowana przez wielkość parametru α. Błędy rzeczywiście korygowane, jeśli α ( 2, 0). W typowych przypadkach α ( 1, 0). Pozostaje nam jeszcze do omówienie część modelu związana z opóźnieniami y i x. Współczynniki θ i i γ i związane są z krótkookresową dynamiką zmiennej zależnej i z reguły nie interpretuje się ich bardziej szczegółowo. Procedurę testowania kointegracji i estymacji ECM omówimy w następnym podrozdziale.

18 50 ROZDZIAŁ 2. MODELE DYNAMICZNE Dwustopniowa metoda Engla-Grangera Procedurę Engla-Grangera możemy stosować, gdy y t i wszystkie zmienne zawarte w x t są I (1). Z tego powodu badanie kointegracji zaczynamy od przetestowania, czy zmienna zależna i wszystkie zmienne niezależne są I (1). Jeśli okaże się to prawdą, przystępujemy do właściwego badania kointegracji. Testując kointegrację korzystamy z tego, że estymator M N K jest zgodny, nawet w przypadku, kiedy zmienne w modelu są I (1). Jeśli zmienna y t i zmienne x t są skointegrowane z wektorem kointegrującym [ 1, β ], to ut w równaniu y t = x t β+ u t (2.5) jest stacjonarne. Ponieważ z MNK otrzymujemy zgodne oszacowanie β, więc reszty û t = y t x t β też są stacjonarne. Testowanie kointegracji przeprowadzamy więc testując stacjonarność reszt û t przy zastosowaniu testu ADF. Testować więc hipotezę H 0 : ρ = 0 w regresji û t = ρu t 1 + ξ t. (2.6) Hipotezą zerową w teście ADF będzie niestacjonarność û t a więc brak kointegracji. Na rozkład statystyki testowej ma wpływ liczba zmiennych objaśniających w równaniu (2.5). Fakt ten należy uwzględnić przy doborze odpowiedniej wartości krytycznej. Wartości krytyczne dla testu ADF można znaleźć na końcu tej książki, przy czym liczba k znajdująca się w nagłówku tablicy oznacza liczbę zmiennych objaśniających w równaniu (2.5). Małopróbkowe wartości krytyczne znajdujące się w tablicy stanowią jedynie aproksymację rzeczywistych małopróbkowych wartości krytycznych, które w przypadku testu na kointegrację zależą także od wartości parametrów modelu. Podobnie jak w przypadku testów na rząd integracji także w przypadku testów na kointegrację pojawia się problem sposobu uwzględnienia występowania stałej lub trendu w zależności kointegrującej. W przypadku testowania kointegracji ewentualną stałą lub trend umieszczamy w równaniu regresji (2.5). Wartości krytyczne testu na kointegrację zależą zarówno od liczby zmiennych egzogenicznych w regresji (2.5) jak i od występowania w tej regresji stałej bądź trendu. Jeśli reszty są stacjonarne, to można oszacować ECM wykorzystując uzyskane na pierwszym etapie oszacowanie β. Szacowane równanie ma postać: ( ) y t = α y t 1 x t 1 β } {{ } û t 1 k 1 k 1 + θ i y t i + x t i γ i + ɛ t i=1 Uzyskane oszacowania α, θ 1,..., θ k, γ 1,..., γ k są zgodne a ich rozkłady są standardowe. Liczbę opóźnień k ustala się w ten sposób, by wyeliminować autokorelację reszt. Przy ustalaniu k można posłużyć się metodą od ogólnego do szczegółowego bądź kryteriami informacyjnymi.

19 2.7. KOINTEGRACJA 51 PRZYKŁAD 2.26 Modelowanie funkcji konsumpcji za pomoca Mechanizmu Korekty Błędem Zmienną objaśnianą jest logarytm realnej konsumpcji zmienną objaśniającą logarytm PKB. Obie zmienne realne uzyskano poprzez podzielenie zmiennych nominalnych przez CP I. Model został policzony dla danych kwartalnych Najpierw ustalony został rząd integracji zmiennych. Przeprowadzony w przykładzie 2.20 test ADF wykazał, że logarytm stopy wzrostu P KB ( 4 pkb t ) jest I (1). Wyniki analogicznych testów dla logarytmu konsumpcji (cons t ) są następujące: w modelu z stałą i jednym opóźnieniem przy wartości krytyczne dla α = 0.05 równej Hipotezy o niestacjonarności zmiennej cons t nie da się odrzucić. Wynik testu ADF dla 4 cons dla modelu ze stałą i jednym opóźnieniem daje statystykę testową na poziomie 2.969, przy wartości krytycznej dla α = 0.1 na poziomie 2.63, co oznacza, że nie ma podstaw do odrzucenia hipotezy o niestacjonarności 4 cons t. Jednak przy poziomie istotności α = 0.05 i wartości krytycznej 2.96 hipoteza zerowa zostałaby (marginalnie) odrzucona. Na koniec testujemy stacjonarność 4 cons t w modelu bez stałej. Hipotezę zerową o niestacjonarności odrzucamy, ponieważ wartość krytyczna wynosi 1.97 a statystyka testowa W przypadku obu testów nie zaobserwowano autokorelacji reszt. Łącznie wyniki testów wskazują, że 4 cons t I (1). 1995q1 1996q1 1997q1 1998q1 1999q1 2000q1 2001q1 2002q1 2003q1 2004q1 2005q Wzrost PKB Wzrost konsumpcji RYSUNEK 2.15: 4 ln (P KB) i 4 ln (CONS) Wydaje się, że zmienne 4 pkb i zmienna 4 cons są I (1) więc badanie relacji długookresowej między nimi możliwe jest poprzez badanie kointegracji. Na pierwszym stopniu procedury Engla-Grangera, oszacujemy relację długookresową. Regresja 4 cons na 4 pkb dała następujące oszacowania: 4 cons t = pkb t (2.7) Uzyskana oszacowanie wielkości elastyczności stopy wzrostu konsumpcji względem stopy wzrostu dochodu jest bardzo bliskie jedynki, co zgodne jest z teorią makroekonomii. Z regresji (2.7) uzyskujemy reszty i przeprowadzamy dla nich test Dickey-Fullera. Otrzymana wielkość statystyki testowej wynosi 4.046, co pozwala na odrzucenie hipotezy zerowej o braku kointegracji, ponieważ wartość krytyczna testu ADF jest w tym przypadku równa Z wyniku testu wnioskujemy, że między zmiennymi występuje kointegracja. Wyestymujemy teraz model korekty błędem. Jako zmienną ecm t oznaczyliśmy reszty z

20 52 ROZDZIAŁ 2. MODELE DYNAMICZNE regresji (2.7), czyli oszacowania odchyleń od równowagi długookresowej. TABELA 2.7: Oszacowania parametrów ECM dla konumpcji 4 cons t Współczynnik Bład Std t Pr ( t > t ) ecm t cons t Wielkość współczynnika przy ecm t 1 oznacza, że 25.2% odchylenia od równowagi długookresowej korygowana jest w ciągu jednego kwartału. Wartość p dla testu Breuscha- Godfreya na poziomie wskazuje, że dla przyjętej liczby opóźnień w modelu nie występuje problem autokorelacji. PYTANIA: 1. Wyjaśnić, jaki jest związek między kointegracją a mechanizmem korekty błędem (ECM). 2. Podaj interpretację poszczególnych współczynników w mechanizmie korekty błędem (ECM). 3. Opisać metodę testowania kointegracji za pomocą dwustopniowej metody Engla- Grangera. 2.8 Heteroskedastyczność w szeregach czasowych W omawianych dotychczas modelach dynamicznych koncentrowaliśmy się na związku między y t i opóźnionymi wartościami zmiennych objaśniających. Zakładaliśmy przy tym, że wariancja błędu losowego ε t nie zmienia się w czasie. Założenie o stałości wariancji jest jednak nierealistyczne dla ważnej klasy problemów analizowanych we współczesnej ekonomii. Modelowanie zmienności wariancji omówimy w kontekście analizy danych z rynków finansowych (ceny akcji, kursy walut etc.), ponieważ jest to dziedzina, w której tego typu modele znajdują najszersze zastosowanie. Na rynkach tych często obserwujemy, że okresy spokoju przeplatają się z okresami wysokiej zmienności. Można zatem podejrzewać, że dla rynków tych wariancja czynnika losowego zmienia się w czasie. Modelowanie szeregów czasowych pochodzących z rynków finansowych ma pewne specyficzne cechy. Pierwsza z nich wynika z faktu, że dostosowania cenowe wiążą się na tych rynkach z bardzo małymi kosztami. Jeśli prawdziwa jest hipoteza o racjonalnych oczekiwaniach, to ceny akcji dzisiaj powinny być równe oczekiwanym (przewidywanym) cenom w przyszłości zdyskontowanym przez średnią zyskowność wycenianego instrumentu finansowego. Zależność tę można ująć w sposób następujący: E (P t I t 1 ) = (1 + r) P t 1, (2.8) gdzie I t jest zbiorem wszystkich informacji dostępnych w czasie t, a P t jest ceną w okresie t. Jeśli warunek ten nie jest spełniony, to możliwe jest arbitraż, to jest przeprowadzenie operacji, która da zysk większy od średniego, bez ponoszenia dodatkowego ryzyka. Hipotezę o tym, że rynek finansowy spełnia warunek (2.8) nazywamy hipo-

Stanisław Cichocki. Natalia Nehrebecka. Zajęcia 15-16

Stanisław Cichocki. Natalia Nehrebecka. Zajęcia 15-16 Stanisław Cichocki Natalia Nehrebecka Zajęcia 15-16 1 1. Sezonowość 2. Zmienne stacjonarne 3. Zmienne zintegrowane 4. Test Dickey-Fullera 5. Rozszerzony test Dickey-Fullera 6. Test KPSS 7. Regresja pozorna

Bardziej szczegółowo

Przyczynowość Kointegracja. Kointegracja. Kointegracja

Przyczynowość Kointegracja. Kointegracja. Kointegracja korelacja a związek o charakterze przyczynowo-skutkowym korelacja a związek o charakterze przyczynowo-skutkowym Przyczynowość w sensie Grangera Zmienna x jest przyczyną w sensie Grangera zmiennej y jeżeli

Bardziej szczegółowo

Stacjonarność Integracja. Integracja. Integracja

Stacjonarność Integracja. Integracja. Integracja Biały szum AR(1) Słaba stacjonarność Szereg czasowy nazywamy słabo (wariancyjnie) stacjonarnym jeżeli: Biały szum AR(1) Słaba stacjonarność Szereg czasowy nazywamy słabo (wariancyjnie) stacjonarnym jeżeli:

Bardziej szczegółowo

1 Modele ADL - interpretacja współczynników

1 Modele ADL - interpretacja współczynników 1 Modele ADL - interpretacja współczynników ZADANIE 1.1 Dany jest proces DL następującej postaci: y t = µ + β 0 x t + β 1 x t 1 + ε t. 1. Wyjaśnić, jaka jest intepretacja współczynników β 0 i β 1. 2. Pokazać

Bardziej szczegółowo

0.1 Modele Dynamiczne

0.1 Modele Dynamiczne 0.1 Modele Dynamiczne 0.1.1 Wprowadzenie Często konkretne działanie czy zjawisko ekonomiczne nie tylko zależy od bieżących wartości pewnych wskaźników - zmiennych objaśniających modelu, ale również od

Bardziej szczegółowo

Ekonometria. Modelowanie szeregów czasowych. Stacjonarność. Testy pierwiastka jednostkowego. Modele ARDL. Kointegracja. Jakub Mućk

Ekonometria. Modelowanie szeregów czasowych. Stacjonarność. Testy pierwiastka jednostkowego. Modele ARDL. Kointegracja. Jakub Mućk Ekonometria Modelowanie szeregów czasowych. Stacjonarność. Testy pierwiastka jednostkowego. Modele ARDL. Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Ćwiczenia 5 & 6 Szaeregi czasowe 1

Bardziej szczegółowo

Podczas zajęć będziemy zajmować się głownie procesami ergodycznymi zdefiniowanymi na przestrzeniach ciągłych.

Podczas zajęć będziemy zajmować się głownie procesami ergodycznymi zdefiniowanymi na przestrzeniach ciągłych. Trochę teorii W celu przeprowadzenia rygorystycznej ekonometrycznej analizy szeregu finansowego będziemy traktowali obserwowany ciąg danych (x 1, x 2,..., x T ) jako realizację pewnego procesu stochastycznego.

Bardziej szczegółowo

O sezonowości mówimy wtedy, gdy zmienna zmienia się w pewnym cyklu zwykle zwiazanym z cyklem rocznym

O sezonowości mówimy wtedy, gdy zmienna zmienia się w pewnym cyklu zwykle zwiazanym z cyklem rocznym Sezonowość O sezonowości mówimy wtedy, gdy zmienna zmienia się w pewnym cyklu zwykle zwiazanym z cyklem rocznym Na przykład zmienne kwartalne charakteryzuja się zwykle sezonowościa kwartalna a zmienne

Bardziej szczegółowo

0.1 Modele Dynamiczne

0.1 Modele Dynamiczne 0.1 Modele Dynamiczne 0.1.1 Wprowadzenie Często konkretne działanie czy zjawisko ekonomiczne nie tylko zależy od bieżących wartości pewnych wskaźników - zmiennych objaśniających modelu, ale również od

Bardziej szczegółowo

Ekonometria Wykład 5. Procesy stochastyczne, stacjonarność, integracja. Dr Michał Gradzewicz Katedra Ekonomii I KAE

Ekonometria Wykład 5. Procesy stochastyczne, stacjonarność, integracja. Dr Michał Gradzewicz Katedra Ekonomii I KAE Ekonometria Wykład 5. Procesy stochastyczne, stacjonarność, integracja Dr Michał Gradzewicz Katedra Ekonomii I KAE Ekonometria szeregów czasowych Procesy stochastyczne Stacjonarność i biały szum Niestacjonarność:

Bardziej szczegółowo

Stanisław Cichocki. Natalia Neherbecka. Zajęcia 13

Stanisław Cichocki. Natalia Neherbecka. Zajęcia 13 Stanisław Cichocki Natalia Neherbecka Zajęcia 13 1 1. Kryteria informacyjne 2. Testowanie autokorelacji 3. Modele dynamiczne: modele o rozłożonych opóźnieniach (DL) modele autoregresyjne o rozłożonych

Bardziej szczegółowo

Ekonometria. Modelowanie szeregów czasowych. Stacjonarność. Testy pierwiastka jednostkowego. Modele ARDL. Kointegracja. Jakub Mućk

Ekonometria. Modelowanie szeregów czasowych. Stacjonarność. Testy pierwiastka jednostkowego. Modele ARDL. Kointegracja. Jakub Mućk Ekonometria Modelowanie szeregów czasowych. Stacjonarność. Testy pierwiastka jednostkowego. Modele ARDL. Kointegracja Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Wykład 5 & 6 Szaeregi

Bardziej szczegółowo

Stanisław Cihcocki. Natalia Nehrebecka

Stanisław Cihcocki. Natalia Nehrebecka Stanisław Cihcocki Natalia Nehrebecka 1 1. Kryteria informacyjne 2. Testowanie autokorelacji w modelu 3. Modele dynamiczne: modele o rozłożonych opóźnieniach (DL) modele autoregresyjne o rozłożonych opóźnieniach

Bardziej szczegółowo

EKONOMETRIA STOSOWANA PRZYKŁADOWE ZADANIA EGZAMINACYJNE

EKONOMETRIA STOSOWANA PRZYKŁADOWE ZADANIA EGZAMINACYJNE EKONOMETRIA STOSOWANA PRZYKŁADOWE ZADANIA EGZAMINACYJNE ZADANIE 1 Oszacowano zależność między luką popytowa a stopą inflacji dla gospodarki niemieckiej. Wyniki estymacji są następujące: Estymacja KMNK,

Bardziej szczegółowo

166 Wstęp do statystyki matematycznej

166 Wstęp do statystyki matematycznej 166 Wstęp do statystyki matematycznej Etap trzeci realizacji procesu analizy danych statystycznych w zasadzie powinien rozwiązać nasz zasadniczy problem związany z identyfikacją cechy populacji generalnej

Bardziej szczegółowo

3. Analiza własności szeregu czasowego i wybór typu modelu

3. Analiza własności szeregu czasowego i wybór typu modelu 3. Analiza własności szeregu czasowego i wybór typu modelu 1. Metody analizy własności szeregu czasowego obserwacji 1.1. Analiza wykresu szeregu czasowego 1.2. Analiza statystyk opisowych zmiennej prognozowanej

Bardziej szczegółowo

Statystyka matematyczna dla leśników

Statystyka matematyczna dla leśników Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 03/04 Wykład 5 Testy statystyczne Ogólne zasady testowania hipotez statystycznych, rodzaje

Bardziej szczegółowo

Niestacjonarne zmienne czasowe własności i testowanie

Niestacjonarne zmienne czasowe własności i testowanie Materiał dla studentów Niestacjonarne zmienne czasowe własności i testowanie (studium przypadku) Część 3: Przykłady testowania niestacjonarności Nazwa przedmiotu: ekonometria finansowa I (22204), analiza

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 12

Stanisław Cichocki. Natalia Nehrebecka. Wykład 12 Stanisław Cichocki Natalia Nehrebecka Wykład 12 1 1.Problemy z danymi Zmienne pominięte Zmienne nieistotne 2. Autokorelacja o Testowanie autokorelacji 1.Problemy z danymi Zmienne pominięte Zmienne nieistotne

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 9

Stanisław Cichocki. Natalia Nehrebecka. Wykład 9 Stanisław Cichocki Natalia Nehrebecka Wykład 9 1 1. Dodatkowe założenie KMRL 2. Testowanie hipotez prostych Rozkład estymatora b Testowanie hipotez prostych przy użyciu statystyki t 3. Przedziały ufności

Bardziej szczegółowo

Rozdział 2: Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów

Rozdział 2: Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów Rozdział : Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów W tym rozdziale omówione zostaną dwie najpopularniejsze metody estymacji parametrów w ekonometrycznych modelach nieliniowych,

Bardziej szczegółowo

Stanisław Cichocki Natalia Neherbecka

Stanisław Cichocki Natalia Neherbecka Stanisław Cichocki Natalia Neherbecka 13 marca 2010 1 1. Kryteria informacyjne 2. Modele dynamiczne: modele o rozłożonych opóźnieniach (DL) modele autoregresyjne o rozłożonych opóźnieniach (ADL) 3. Analiza

Bardziej szczegółowo

Egzamin z ekonometrii wersja IiE, MSEMAT

Egzamin z ekonometrii wersja IiE, MSEMAT Egzamin z ekonometrii wersja IiE, MSEMAT 04-02-2016 Pytania teoretyczne 1. Za pomocą jakiego testu weryfikowana jest normalność składnika losowego? Jakiemu założeniu KMRL odpowiada w tym teście? Jakie

Bardziej szczegółowo

Natalia Neherbecka. 11 czerwca 2010

Natalia Neherbecka. 11 czerwca 2010 Natalia Neherbecka 11 czerwca 2010 1 1. Konsekwencje heteroskedastyczności i autokorelacji 2. Uogólniona MNK 3. Stosowalna Uogólniona MNK 4. Odporne macierze wariancji i kowariancji b 2 1. Konsekwencje

Bardziej szczegółowo

Wprowadzenie Modele o opóźnieniach rozłożonych Modele autoregresyjne o opóźnieniach rozłożonych. Modele dynamiczne.

Wprowadzenie Modele o opóźnieniach rozłożonych Modele autoregresyjne o opóźnieniach rozłożonych. Modele dynamiczne. opisują kształtowanie się zjawiska w czasie opisują kształtowanie się zjawiska w czasie Najważniejszymi zastosowaniami modeli dynamicznych są opisują kształtowanie się zjawiska w czasie Najważniejszymi

Bardziej szczegółowo

Ekonometria Ćwiczenia 19/01/05

Ekonometria Ćwiczenia 19/01/05 Oszacowano regresję stopy bezrobocia (unemp) na wzroście realnego PKB (pkb) i stopie inflacji (cpi) oraz na zmiennych zero-jedynkowych związanymi z kwartałami (season). Regresję przeprowadzono na danych

Bardziej szczegółowo

TEST STATYSTYCZNY. Jeżeli hipotezę zerową odrzucimy na danym poziomie istotności, to odrzucimy ją na każdym większym poziomie istotności.

TEST STATYSTYCZNY. Jeżeli hipotezę zerową odrzucimy na danym poziomie istotności, to odrzucimy ją na każdym większym poziomie istotności. TEST STATYSTYCZNY Testem statystycznym nazywamy regułę postępowania rozstrzygająca, przy jakich wynikach z próby hipotezę sprawdzaną H 0 należy odrzucić, a przy jakich nie ma podstaw do jej odrzucenia.

Bardziej szczegółowo

Wprowadzenie do analizy korelacji i regresji

Wprowadzenie do analizy korelacji i regresji Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących

Bardziej szczegółowo

Prognozowanie i Symulacje. Wykład VI. Niestacjonarne szeregi czasowe

Prognozowanie i Symulacje. Wykład VI. Niestacjonarne szeregi czasowe Prognozowanie i Symulacje. Wykład VI. e-mail:e.kozlovski@pollub.pl Spis treści Analiza stacjonarności szeregów czasowych 1 Analiza stacjonarności szeregów czasowych Modele niestacjonarne Szeregi TS i DS

Bardziej szczegółowo

Testy pierwiastka jednostkowego

Testy pierwiastka jednostkowego 2 listopada 2017 Proces generujący ceny Wnioski Słaba efektywność rynkowa i błądzenie przypadkowe Załóżmy, że rynek jest słabo efektywny Logarytmicznej stopy zwrotu ( p t = ln ( Pt P t 1 )) w czasie t

Bardziej szczegółowo

Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1.

Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1. tel. 44 683 1 55 tel. kom. 64 566 811 e-mail: biuro@wszechwiedza.pl Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: gdzie: y t X t y t = 1 X 1

Bardziej szczegółowo

Testowanie hipotez statystycznych

Testowanie hipotez statystycznych Testowanie hipotez statystycznych Wyk lad 9 Natalia Nehrebecka Stanis law Cichocki 28 listopada 2018 Plan zaj eć 1 Rozk lad estymatora b 2 3 dla parametrów 4 Hipotezy l aczne - test F 5 Dodatkowe za lożenie

Bardziej szczegółowo

Value at Risk (VaR) Jerzy Mycielski WNE. Jerzy Mycielski (Institute) Value at Risk (VaR) / 16

Value at Risk (VaR) Jerzy Mycielski WNE. Jerzy Mycielski (Institute) Value at Risk (VaR) / 16 Value at Risk (VaR) Jerzy Mycielski WNE 2018 Jerzy Mycielski (Institute) Value at Risk (VaR) 2018 1 / 16 Warunkowa heteroskedastyczność O warunkowej autoregresyjnej heteroskedastyczności mówimy, gdy σ

Bardziej szczegółowo

Ekonometria Wykład 6 - Kointegracja, rozkłady opóźnień. Dr Michał Gradzewicz Katedra Ekonomii I KAE

Ekonometria Wykład 6 - Kointegracja, rozkłady opóźnień. Dr Michał Gradzewicz Katedra Ekonomii I KAE Ekonometria Wykład 6 - Kointegracja, rozkłady opóźnień Dr Michał Gradzewicz Katedra Ekonomii I KAE Plan wykładu Ekonometria wielu szeregów czasowych i analiza zależności pomiędzy nimi Przykłady ważnych

Bardziej szczegółowo

2. Założenie niezależności zakłóceń modelu - autokorelacja składnika losowego - test Durbina - Watsona

2. Założenie niezależności zakłóceń modelu - autokorelacja składnika losowego - test Durbina - Watsona Sprawdzanie założeń przyjętych o modelu (etap IIIC przyjętego schematu modelowania regresyjnego) 1. Szum 2. Założenie niezależności zakłóceń modelu - autokorelacja składnika losowego - test Durbina - Watsona

Bardziej szczegółowo

Zadanie 1 1. Czy wykresy zmiennych sugerują, że zmienne są stacjonarne. Czy występuje sezonowość?

Zadanie 1 1. Czy wykresy zmiennych sugerują, że zmienne są stacjonarne. Czy występuje sezonowość? Zadanie 1 1. Czy wykresy zmiennych sugerują, że zmienne są stacjonarne. Czy występuje sezonowość? Wykres stopy bezrobocia rejestrowanego w okresie 01.1998 12.2008, dane Polskie 22 20 18 16 stopa 14 12

Bardziej szczegółowo

1. Stacjonarnośd i niestacjonarnośd szeregów czasowych 2. Test ADF i test KPSS 3. Budowa modeli ARMA dla zmiennych niestacjonarnych 4.

1. Stacjonarnośd i niestacjonarnośd szeregów czasowych 2. Test ADF i test KPSS 3. Budowa modeli ARMA dla zmiennych niestacjonarnych 4. 1. Stacjonarnośd i niestacjonarnośd szeregów czasowych 2. Test ADF i test KPSS 3. Budowa modeli ARMA dla zmiennych niestacjonarnych 4. Prognozowanie stóp zwrotu na podstawie modeli ARMA 5. Relacje kointegrujące

Bardziej szczegółowo

VI WYKŁAD STATYSTYKA. 9/04/2014 B8 sala 0.10B Godz. 15:15

VI WYKŁAD STATYSTYKA. 9/04/2014 B8 sala 0.10B Godz. 15:15 VI WYKŁAD STATYSTYKA 9/04/2014 B8 sala 0.10B Godz. 15:15 WYKŁAD 6 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI Weryfikacja hipotez ( błędy I i II rodzaju, poziom istotności, zasady

Bardziej szczegółowo

Wprowadzenie Model ARMA Sezonowość Prognozowanie Model regresji z błędami ARMA. Modele ARMA

Wprowadzenie Model ARMA Sezonowość Prognozowanie Model regresji z błędami ARMA. Modele ARMA Ważną klasę modeli dynamicznych stanowią modele ARMA(p, q) Ważną klasę modeli dynamicznych stanowią modele ARMA(p, q) Modele tej klasy są modelami ateoretycznymi Ważną klasę modeli dynamicznych stanowią

Bardziej szczegółowo

Testowanie hipotez statystycznych

Testowanie hipotez statystycznych round Testowanie hipotez statystycznych Wyk lad 9 Natalia Nehrebecka Stanis law Cichocki 13 grudnia 2014 Plan zajeć 1 Rozk lad estymatora b Rozk lad sumy kwadratów reszt 2 Hipotezy proste - test t Badanie

Bardziej szczegółowo

Ekonometria egzamin 02/02/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora.

Ekonometria egzamin 02/02/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora. imię, nazwisko, nr indeksu: Ekonometria egzamin 0/0/0. Egzamin trwa 90 minut.. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu. Złamanie

Bardziej szczegółowo

Przykład 2. Stopa bezrobocia

Przykład 2. Stopa bezrobocia Przykład 2 Stopa bezrobocia Stopa bezrobocia. Komentarz: model ekonometryczny stopy bezrobocia w Polsce jest modelem nieliniowym autoregresyjnym. Podobnie jak model podaŝy pieniądza zbudowany został w

Bardziej szczegółowo

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 8

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 8 Stanisław Cichocki Natalia Nehrebecka Zajęcia 8 1. Testy diagnostyczne 2. Testowanie prawidłowości formy funkcyjnej modelu 3. Testowanie normalności składników losowych 4. Testowanie stabilności parametrów

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący

Bardziej szczegółowo

Statystyka. Rozkład prawdopodobieństwa Testowanie hipotez. Wykład III ( )

Statystyka. Rozkład prawdopodobieństwa Testowanie hipotez. Wykład III ( ) Statystyka Rozkład prawdopodobieństwa Testowanie hipotez Wykład III (04.01.2016) Rozkład t-studenta Rozkład T jest rozkładem pomocniczym we wnioskowaniu statystycznym; stosuje się go wyznaczenia przedziału

Bardziej szczegółowo

Stanisław Cichocki Natalia Nehrebecka. Wykład 3

Stanisław Cichocki Natalia Nehrebecka. Wykład 3 Sanisław Cichocki Naalia Nehrebecka Wykład 3 1 1. Regresja pozorna 2. Funkcje ACF i PACF 3. Badanie sacjonarności Tes Dickey-Fullera (DF) Rozszerzony es Dickey-Fullera (ADF) 2 1. Regresja pozorna 2. Funkcje

Bardziej szczegółowo

Idea. θ = θ 0, Hipoteza statystyczna Obszary krytyczne Błąd pierwszego i drugiego rodzaju p-wartość

Idea. θ = θ 0, Hipoteza statystyczna Obszary krytyczne Błąd pierwszego i drugiego rodzaju p-wartość Idea Niech θ oznacza parametr modelu statystycznego. Dotychczasowe rozważania dotyczyły metod estymacji tego parametru. Teraz zamiast szacować nieznaną wartość parametru będziemy weryfikowali hipotezę

Bardziej szczegółowo

Uogólniona Metoda Momentów

Uogólniona Metoda Momentów Uogólniona Metoda Momentów Momenty z próby daż a do momentów teoretycznych (Prawo Wielkich Liczb) plim 1 n y i = E (y) n i=1 Klasyczna Metoda Momentów (M M) polega na szacowaniu momentów teoretycznych

Bardziej szczegółowo

Szeregi czasowe, analiza zależności krótkoi długozasięgowych

Szeregi czasowe, analiza zależności krótkoi długozasięgowych Szeregi czasowe, analiza zależności krótkoi długozasięgowych Rafał Weron rweron@im.pwr.wroc.pl Definicje Mając dany proces {X t } autokowariancję definiujemy jako : γ(t, t ) = cov(x t, X t ) = = E[(X t

Bardziej szczegółowo

Efektywność rynku w przypadku FOREX Weryfikacja hipotezy o efektywności dla FOREX FOREX. Jerzy Mycielski. 4 grudnia 2018

Efektywność rynku w przypadku FOREX Weryfikacja hipotezy o efektywności dla FOREX FOREX. Jerzy Mycielski. 4 grudnia 2018 4 grudnia 2018 Zabezpieczony parytet stóp procentowych (CIP - Covered Interest Parity) Warunek braku arbitrażu: inwestycja w złotówkach powinna dać tę samą stopę zwrotu co całkowicie zabezpieczona inwestycja

Bardziej szczegółowo

Weryfikacja hipotez statystycznych

Weryfikacja hipotez statystycznych Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta

Bardziej szczegółowo

Testowanie hipotez statystycznych. Wnioskowanie statystyczne

Testowanie hipotez statystycznych. Wnioskowanie statystyczne Testowanie hipotez statystycznych Wnioskowanie statystyczne Hipoteza statystyczna to dowolne przypuszczenie co do rozkładu populacji generalnej (jego postaci funkcyjnej lub wartości parametrów). Hipotezy

Bardziej szczegółowo

Testowanie hipotez statystycznych

Testowanie hipotez statystycznych Testowanie hipotez statystycznych Wyk lad 8 Natalia Nehrebecka Stanis law Cichocki 29 listopada 2015 Plan zajeć 1 Rozk lad estymatora b Rozk lad sumy kwadratów reszt 2 Hipotezy proste - test t Badanie

Bardziej szczegółowo

Statystyka Matematyczna Anna Janicka

Statystyka Matematyczna Anna Janicka Statystyka Matematyczna Anna Janicka wykład IX, 25.04.2016 TESTOWANIE HIPOTEZ STATYSTYCZNYCH Plan na dzisiaj 1. Hipoteza statystyczna 2. Test statystyczny 3. Błędy I-go i II-go rodzaju 4. Poziom istotności,

Bardziej szczegółowo

Ekonometria. Zajęcia

Ekonometria. Zajęcia Ekonometria Zajęcia 16.05.2018 Wstęp hipoteza itp. Model gęstości zaludnienia ( model gradientu gęstości ) zakłada, że gęstość zaludnienia zależy od odległości od okręgu centralnego: y t = Ae βx t (1)

Bardziej szczegółowo

Testowanie hipotez statystycznych

Testowanie hipotez statystycznych Agenda Instytut Matematyki Politechniki Łódzkiej 2 stycznia 2012 Agenda Agenda 1 Wprowadzenie Agenda 2 Hipoteza oraz błędy I i II rodzaju Hipoteza alternatywna Statystyka testowa Zbiór krytyczny Poziom

Bardziej szczegółowo

LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI

LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI WERYFIKACJA HIPOTEZ Hipoteza statystyczna jakiekolwiek przypuszczenie dotyczące populacji generalnej- jej poszczególnych

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 12

Stanisław Cichocki. Natalia Nehrebecka. Wykład 12 Stanisław Cichocki Natalia Nehrebecka Wykład 1 1 1. Testy diagnostyczne Testowanie stabilności parametrów modelu: test Chowa. Heteroskedastyczność Konsekwencje Testowanie heteroskedastyczności 1. Testy

Bardziej szczegółowo

Modele dynamiczne. Rozdział 2

Modele dynamiczne. Rozdział 2 Rozdział 2 Modele dynamiczne Modele dynamiczne są to modele, których celem jest opisanie procesu dostosowań do stanu równowagi. Modele takie szacowane są na szeregach czasowych. Własności dynamiczne systemu

Bardziej szczegółowo

Modele warunkowej heteroscedastyczności

Modele warunkowej heteroscedastyczności Teoria Przykład - zwroty z WIG Niskie koszty transakcyjne Teoria Przykład - zwroty z WIG Niskie koszty transakcyjne Racjonalne oczekiwania inwestorów P t = E(P t+1 I t ) 1 + R (1) Teoria Przykład - zwroty

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka

Stanisław Cichocki. Natalia Nehrebecka Stanisław Cichocki Natalia Nehrebecka 1. Testy diagnostyczne 2. Testowanie prawidłowości formy funkcyjnej modelu 3. Testowanie normalności składników losowych 4. Testowanie stabilności parametrów 5. Testowanie

Bardziej szczegółowo

Modele DSGE. Jerzy Mycielski. Maj Jerzy Mycielski () Modele DSGE Maj / 11

Modele DSGE. Jerzy Mycielski. Maj Jerzy Mycielski () Modele DSGE Maj / 11 Modele DSGE Jerzy Mycielski Maj 2008 Jerzy Mycielski () Modele DSGE Maj 2008 1 / 11 Modele DSGE DSGE - Dynamiczne, stochastyczne modele równowagi ogólnej (Dynamic Stochastic General Equilibrium Model)

Bardziej szczegółowo

parametrów strukturalnych modelu = Y zmienna objaśniana, X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających,

parametrów strukturalnych modelu = Y zmienna objaśniana, X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających, 诲 瞴瞶 瞶 ƭ0 ƭ 瞰 parametrów strukturalnych modelu Y zmienna objaśniana, = + + + + + X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających, α 0, α 1, α 2,,α k parametry strukturalne modelu, k+1 parametrów

Bardziej szczegółowo

Czasowy wymiar danych

Czasowy wymiar danych Problem autokorelacji Model regresji dla szeregów czasowych Model regresji dla szeregów czasowych y t = X t β + ε t Zasadnicze różnice 1 Budowa prognoz 2 Problem stabilności parametrów 3 Problem autokorelacji

Bardziej szczegółowo

Heteroskedastyczość w szeregach czasowyh

Heteroskedastyczość w szeregach czasowyh Heteroskedastyczość w szeregach czasowyh Czesto zakłada się, że szeregi czasowe wykazuja autokorelację ae sa homoskedastyczne W rzeczywistości jednak często wariancja zmienia się w czasie Dobrym przykładem

Bardziej szczegółowo

Własności statystyczne regresji liniowej. Wykład 4

Własności statystyczne regresji liniowej. Wykład 4 Własności statystyczne regresji liniowej Wykład 4 Plan Własności zmiennych losowych Normalna regresja liniowa Własności regresji liniowej Literatura B. Hansen (2017+) Econometrics, Rozdział 5 Własności

Bardziej szczegółowo

Błędy przy testowaniu hipotez statystycznych. Decyzja H 0 jest prawdziwa H 0 jest faszywa

Błędy przy testowaniu hipotez statystycznych. Decyzja H 0 jest prawdziwa H 0 jest faszywa Weryfikacja hipotez statystycznych Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy populacji, o prawdziwości lub fałszywości którego wnioskuje się na podstawie

Bardziej szczegółowo

Kolokwium ze statystyki matematycznej

Kolokwium ze statystyki matematycznej Kolokwium ze statystyki matematycznej 28.05.2011 Zadanie 1 Niech X będzie zmienną losową z rozkładu o gęstości dla, gdzie 0 jest nieznanym parametrem. Na podstawie pojedynczej obserwacji weryfikujemy hipotezę

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 13

Stanisław Cichocki. Natalia Nehrebecka. Wykład 13 Stanisław Cichocki Natalia Nehrebecka Wykład 13 1 1. Autokorelacja Konsekwencje Testowanie autokorelacji 2. Metody radzenia sobie z heteroskedastycznością i autokorelacją Uogólniona Metoda Najmniejszych

Bardziej szczegółowo

Zadania ze statystyki, cz.7 - hipotezy statystyczne, błąd standardowy, testowanie hipotez statystycznych

Zadania ze statystyki, cz.7 - hipotezy statystyczne, błąd standardowy, testowanie hipotez statystycznych Zadania ze statystyki, cz.7 - hipotezy statystyczne, błąd standardowy, testowanie hipotez statystycznych Zad. 1 Średnia ocen z semestru letniego w populacji studentów socjologii w roku akademickim 2011/2012

Bardziej szczegółowo

Stanisław Cichocki Natalia Nehrebecka. Wykład 7

Stanisław Cichocki Natalia Nehrebecka. Wykład 7 Stanisław Cichocki Natalia Nehrebecka Wykład 7 1 1. Metoda Największej Wiarygodności MNW 2. Założenia MNW 3. Własności estymatorów MNW 4. Testowanie hipotez w MNW 2 1. Metoda Największej Wiarygodności

Bardziej szczegółowo

Weryfikacja hipotez statystycznych. KG (CC) Statystyka 26 V / 1

Weryfikacja hipotez statystycznych. KG (CC) Statystyka 26 V / 1 Weryfikacja hipotez statystycznych KG (CC) Statystyka 26 V 2009 1 / 1 Sformułowanie problemu Weryfikacja hipotez statystycznych jest drugą (po estymacji) metodą uogólniania wyników uzyskanych w próbie

Bardziej szczegółowo

TESTOWANIE HIPOTEZ Przez hipotezę statystyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas cechy.

TESTOWANIE HIPOTEZ Przez hipotezę statystyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas cechy. TESTOWANIE HIPOTEZ Przez hipotezę statystyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas cechy. Hipotezy dzielimy na parametryczne i nieparametryczne. Zajmiemy

Bardziej szczegółowo

Ekonometria egzamin 01/02/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora.

Ekonometria egzamin 01/02/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora. imię, nazwisko, nr indeksu: Ekonometria egzamin 01/02/2019 1. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu.

Bardziej szczegółowo

Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r

Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r Statystyka matematyczna Testowanie hipotez i estymacja parametrów Wrocław, 18.03.2016r Plan wykładu: 1. Testowanie hipotez 2. Etapy testowania hipotez 3. Błędy 4. Testowanie wielokrotne 5. Estymacja parametrów

Bardziej szczegółowo

Uwaga. Decyzje brzmią różnie! Testy parametryczne dotyczące nieznanej wartości

Uwaga. Decyzje brzmią różnie! Testy parametryczne dotyczące nieznanej wartości TESTOWANIE HIPOTEZ Przez hipotezę statystyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu, z którego pochodzi próbka. Hipotezy dzielimy na parametryczne i nieparametryczne. Parametrycznymi

Bardziej szczegółowo

Prognozowanie i Symulacje. Wykład I. Matematyczne metody prognozowania

Prognozowanie i Symulacje. Wykład I. Matematyczne metody prognozowania Prognozowanie i Symulacje. Wykład I. e-mail:e.kozlovski@pollub.pl Spis treści Szeregi czasowe 1 Szeregi czasowe 2 3 Szeregi czasowe Definicja 1 Szereg czasowy jest to proces stochastyczny z czasem dyskretnym

Bardziej szczegółowo

Ekonometria. Prognozowanie ekonometryczne, ocena stabilności oszacowań parametrów strukturalnych. Jakub Mućk. Katedra Ekonomii Ilościowej

Ekonometria. Prognozowanie ekonometryczne, ocena stabilności oszacowań parametrów strukturalnych. Jakub Mućk. Katedra Ekonomii Ilościowej Ekonometria Prognozowanie ekonometryczne, ocena stabilności oszacowań parametrów strukturalnych Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Wykład 4 Prognozowanie, stabilność 1 / 17 Agenda

Bardziej szczegółowo

7.4 Automatyczne stawianie prognoz

7.4 Automatyczne stawianie prognoz szeregów czasowych za pomocą pakietu SPSS Następnie korzystamy z menu DANE WYBIERZ OBSERWACJE i wybieramy opcję WSZYSTKIE OBSERWACJE (wówczas wszystkie obserwacje są aktywne). Wreszcie wybieramy z menu

Bardziej szczegółowo

Testowanie hipotez statystycznych. Wprowadzenie

Testowanie hipotez statystycznych. Wprowadzenie Wrocław University of Technology Testowanie hipotez statystycznych. Wprowadzenie Jakub Tomczak Politechnika Wrocławska jakub.tomczak@pwr.edu.pl 10.04.2014 Pojęcia wstępne Populacja (statystyczna) zbiór,

Bardziej szczegółowo

Ekonometria. Ćwiczenia nr 3. Jakub Mućk. Katedra Ekonomii Ilościowej

Ekonometria. Ćwiczenia nr 3. Jakub Mućk. Katedra Ekonomii Ilościowej Ekonometria Ćwiczenia nr 3 Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Ćwiczenia 3 Własności składnika losowego 1 / 18 Agenda KMNK przypomnienie 1 KMNK przypomnienie 2 3 4 Jakub Mućk

Bardziej szczegółowo

Kalibracja. W obu przypadkach jeśli mamy dane, to możemy znaleźć równowagę: Konwesatorium z Ekonometrii, IV rok, WNE UW 1

Kalibracja. W obu przypadkach jeśli mamy dane, to możemy znaleźć równowagę: Konwesatorium z Ekonometrii, IV rok, WNE UW 1 Kalibracja Kalibracja - nazwa pochodzi z nauk ścisłych - kalibrowanie instrumentu oznacza wyznaczanie jego skali (np. kalibrowanie termometru polega na wyznaczeniu 0C i 100C tak by oznaczały punkt zamarzania

Bardziej szczegółowo

Modele zapisane w przestrzeni stanów

Modele zapisane w przestrzeni stanów Modele zapisane w przestrzeni stanów Modele Przestrzeni Stanów (State Space Models) sa to modele, w których część parametrów jest nieobserwowalna i losowa. Zachowanie wielowymiarowej zmiennej y t zależy

Bardziej szczegółowo

Metoda Johansena objaśnienia i przykłady

Metoda Johansena objaśnienia i przykłady Metoda Johansena objaśnienia i przykłady Model wektorowej autoregresji rzędu p, VAR(p), ma postad gdzie oznacza wektor zmiennych endogenicznych modelu. Model VAR jest stabilny, jeżeli dla, tzn. wielomian

Bardziej szczegółowo

Rozdział 8. Regresja. Definiowanie modelu

Rozdział 8. Regresja. Definiowanie modelu Rozdział 8 Regresja Definiowanie modelu Analizę korelacji można traktować jako wstęp do analizy regresji. Jeżeli wykresy rozrzutu oraz wartości współczynników korelacji wskazują na istniejąca współzmienność

Bardziej szczegółowo

Modelowanie ekonometryczne

Modelowanie ekonometryczne Modelowanie ekonometryczne Kamil Skoczylas Kamilskoczylas@wp.pl 1. Wstęp Otaczający nas świat to zbiór różnych zjawisk. W zależności od zainteresowań człowiek staje się obserwatorem niektórych z nich.

Bardziej szczegółowo

Prawdopodobieństwo i rozkład normalny cd.

Prawdopodobieństwo i rozkład normalny cd. # # Prawdopodobieństwo i rozkład normalny cd. Michał Daszykowski, Ivana Stanimirova Instytut Chemii Uniwersytet Śląski w Katowicach Ul. Szkolna 9 40-006 Katowice E-mail: www: mdaszyk@us.edu.pl istanimi@us.edu.pl

Bardziej szczegółowo

1 Metoda Najmniejszych Kwadratów (MNK) 2 Interpretacja parametrów modelu. 3 Klasyczny Model Regresji Liniowej (KMRL)

1 Metoda Najmniejszych Kwadratów (MNK) 2 Interpretacja parametrów modelu. 3 Klasyczny Model Regresji Liniowej (KMRL) 1 Metoda Najmniejszych Kwadratów (MNK) 1. Co to jest zmienna endogeniczna, a co to zmienne egzogeniczna? 2. Podaj postać macierzy obserwacji dla modelu y t = a + bt + ε t 3. Co to jest wartość dopasowana,

Bardziej szczegółowo

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl

Bardziej szczegółowo

Dr Łukasz Goczek. Uniwersytet Warszawski

Dr Łukasz Goczek. Uniwersytet Warszawski Dr Łukasz Goczek Uniwersytet Warszawski Wykłady do końca: Niezależność polityki pieniężnej w długim okresie 2 wykłady Wzrost długookresowy w gospodarce otwartej 2 wykłady Egzamin 12.06.2013, godz. 17 sala

Bardziej szczegółowo

Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski

Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Książka jest nowoczesnym podręcznikiem przeznaczonym dla studentów uczelni i wydziałów ekonomicznych. Wykład podzielono na cztery części. W pierwszej

Bardziej szczegółowo

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com Analiza korelacji i regresji KORELACJA zależność liniowa Obserwujemy parę cech ilościowych (X,Y). Doświadczenie jest tak pomyślane, aby obserwowane pary cech X i Y (tzn i ta para x i i y i dla różnych

Bardziej szczegółowo

Ekonometria / G. S. Maddala ; red. nauk. przekł. Marek Gruszczyński. wyd. 2, dodr. 1. Warszawa, Spis treści

Ekonometria / G. S. Maddala ; red. nauk. przekł. Marek Gruszczyński. wyd. 2, dodr. 1. Warszawa, Spis treści Ekonometria / G. S. Maddala ; red. nauk. przekł. Marek Gruszczyński. wyd. 2, dodr. 1. Warszawa, 2013 Spis treści Przedsłowie 15 Przedmowa do drugiego wydania 17 Przedmowa do trzeciego wydania 21 Nekrolog

Bardziej szczegółowo

Analiza zależności cech ilościowych regresja liniowa (Wykład 13)

Analiza zależności cech ilościowych regresja liniowa (Wykład 13) Analiza zależności cech ilościowych regresja liniowa (Wykład 13) dr Mariusz Grządziel semestr letni 2012 Przykład wprowadzajacy W zbiorze danych homedata (z pakietu R-owskiego UsingR) można znaleźć ceny

Bardziej szczegółowo

Egzamin z ekonometrii - wersja ogólna

Egzamin z ekonometrii - wersja ogólna Egzamin z ekonometrii - wersja ogólna 06-02-2019 Regulamin egzaminu 1. Egzamin trwa 90 min. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu.

Bardziej szczegółowo

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 9 i 10 - Weryfikacja hipotez statystycznych

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 9 i 10 - Weryfikacja hipotez statystycznych WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 9 i 10 - Weryfikacja hipotez statystycznych Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 9 i 10 1 / 30 TESTOWANIE HIPOTEZ STATYSTYCZNYCH

Bardziej szczegółowo

4. Średnia i autoregresja zmiennej prognozowanej

4. Średnia i autoregresja zmiennej prognozowanej 4. Średnia i autoregresja zmiennej prognozowanej 1. Średnia w próbie uczącej Własności: y = y = 1 N y = y t = 1, 2, T s = s = 1 N 1 y y R = 0 v = s 1 +, 2. Przykład. Miesięczna sprzedaż żelazek (szt.)

Bardziej szczegółowo

Testowanie hipotez statystycznych związanych ą z szacowaniem i oceną ą modelu ekonometrycznego

Testowanie hipotez statystycznych związanych ą z szacowaniem i oceną ą modelu ekonometrycznego Testowanie hipotez statystycznych związanych ą z szacowaniem i oceną ą modelu ekonometrycznego Ze względu na jakość uzyskiwanych ocen parametrów strukturalnych modelu oraz weryfikację modelu, metoda najmniejszych

Bardziej szczegółowo

TESTOWANIE HIPOTEZ STATYSTYCZNYCH Hipotezą statystyczną nazywamy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas cechy.

TESTOWANIE HIPOTEZ STATYSTYCZNYCH Hipotezą statystyczną nazywamy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas cechy. TESTOWANIE HIPOTEZ STATYSTYCZNYCH Hipotezą statystyczną nazywamy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas cechy. Hipotezy dzielimy na parametryczne i nieparametryczne. Zajmiemy

Bardziej szczegółowo