Tomasz Pawlak. Zastosowania Metod Inteligencji Obliczeniowej
|
|
- Sylwia Kubicka
- 6 lat temu
- Przeglądów:
Transkrypt
1 1 Zastosowania Metod Inteligencji Obliczeniowej Tomasz Pawlak
2 2 Plan prezentacji Sprawy organizacyjne Wprowadzenie do metod inteligencji obliczeniowej Studium wybranych przypadków zastosowań IO
3 3 Dane kontaktowe Pokój: BT Konsultacje: Piątek 9:30 11:00 Lepiej: umawiać się mailowo
4 4 Plan wykładu Studium wybranych przypadków zastosowań IO Uczenie maszynowe Paradygmaty uczenia maszynowego Wybrane metody uczenia maszynowego Programowanie genetyczne Podstawowe sformułowanie Rozszerzenia
5 5 Bibliografia: uczenie maszynowe Peter Flach, Machine Learning: The Art and Science of Algorithms that Make Sense of Data, Cambridge University Press, 2012
6 6 Bibliografia: programowanie genetyczne Riccardo Poli, William B. Langdon, Nicholas F. McPhee, A Field Guide to Genetic Programming, lulu.com,
7 7 Bibliografia Wikipedia! Ale raczej angielska
8 8 Zakres laboratorium Klasyfikatory drzewiaste Klasyfikatory regułowe Regresja symboliczna
9 9 Zasady zaliczenia Wykład Test Obecność nieobowiązkowa Laboratorium Realizacja trzech projektów ćwiczeniowych
10 10 Pytania?
11 11 Co to jest inteligencja obliczeniowa?
12 11 Co to jest inteligencja obliczeniowa? Inteligencja Obliczeniowa (ang. Computational Intelligence, CI) Zbiór inspirowanych biologicznie metod uczenia się Budowa modeli procesów rzeczywistych Wspólna cecha Uczenie z niedokładnych, niepewnych lub częściowych danych Stosowane tam, gdzie klasyczne metody (ręcznego) modelowania nie sprawdzają się
13 12 Inteligencja sztuczna vs obliczeniowa
14 12 Inteligencja sztuczna vs obliczeniowa Inteligencja sztuczna Obliczenia twarde (ang. hard computing)
15 12 Inteligencja sztuczna vs obliczeniowa Inteligencja sztuczna Obliczenia twarde (ang. hard computing) Logika binarna Prawda i fałsz
16 12 Inteligencja sztuczna vs obliczeniowa Inteligencja sztuczna Obliczenia twarde (ang. hard computing) Logika binarna Prawda i fałsz Wiedza kodowana ręcznie
17 12 Inteligencja sztuczna vs obliczeniowa Inteligencja sztuczna Obliczenia twarde (ang. hard computing) Logika binarna Prawda i fałsz Wiedza kodowana ręcznie Metody klasyczne
18 12 Inteligencja sztuczna vs obliczeniowa Inteligencja sztuczna Obliczenia twarde (ang. hard computing) Logika binarna Prawda i fałsz Wiedza kodowana ręcznie Metody klasyczne Siłowe przeszukiwanie
19 12 Inteligencja sztuczna vs obliczeniowa Inteligencja sztuczna Obliczenia twarde (ang. hard computing) Logika binarna Prawda i fałsz Inteligencja obliczeniowa Obliczenia miękkie (ang. soft computing) Wiedza kodowana ręcznie Metody klasyczne Siłowe przeszukiwanie
20 12 Inteligencja sztuczna vs obliczeniowa Inteligencja sztuczna Obliczenia twarde (ang. hard computing) Inteligencja obliczeniowa Obliczenia miękkie (ang. soft computing) Logika binarna Logika rozmyta Prawda i fałsz Prawdopodobieństwa Współczynniki pewności itp. Wiedza kodowana ręcznie Metody klasyczne Siłowe przeszukiwanie
21 12 Inteligencja sztuczna vs obliczeniowa Inteligencja sztuczna Obliczenia twarde (ang. hard computing) Inteligencja obliczeniowa Obliczenia miękkie (ang. soft computing) Logika binarna Logika rozmyta Prawda i fałsz Prawdopodobieństwa Współczynniki pewności itp. Wiedza kodowana ręcznie Odkrywanie wiedzy z danych Metody klasyczne Siłowe przeszukiwanie
22 12 Inteligencja sztuczna vs obliczeniowa Inteligencja sztuczna Obliczenia twarde (ang. hard computing) Inteligencja obliczeniowa Obliczenia miękkie (ang. soft computing) Logika binarna Logika rozmyta Prawda i fałsz Prawdopodobieństwa Współczynniki pewności itp. Wiedza kodowana ręcznie Odkrywanie wiedzy z danych Metody klasyczne Symulacja procesów naturalnych Siłowe przeszukiwanie
23 12 Inteligencja sztuczna vs obliczeniowa Inteligencja sztuczna Obliczenia twarde (ang. hard computing) Inteligencja obliczeniowa Obliczenia miękkie (ang. soft computing) Logika binarna Logika rozmyta Prawda i fałsz Prawdopodobieństwa Współczynniki pewności itp. Wiedza kodowana ręcznie Odkrywanie wiedzy z danych Metody klasyczne Symulacja procesów naturalnych Siłowe przeszukiwanie Symulacja inteligencji ludzkiej
24 Inteligencja obliczeniowa vs uczenie maszynowe 13 Inteligencja obliczeniowa Obliczenia miękkie (ang. soft computing) Logika rozmyta Prawdopodobieństwa Współczynniki pewności itp. Odkrywanie wiedzy z danych Symulacja procesów naturalnych Symulacja inteligencji ludzkiej
25 Inteligencja obliczeniowa vs uczenie maszynowe 13 Inteligencja obliczeniowa Obliczenia miękkie (ang. soft computing) Uczenie maszynowe Obliczenia miękkie (ang. soft computing) Logika rozmyta Prawdopodobieństwa Współczynniki pewności itp. Odkrywanie wiedzy z danych Symulacja procesów naturalnych Symulacja inteligencji ludzkiej
26 Inteligencja obliczeniowa vs uczenie maszynowe 13 Inteligencja obliczeniowa Obliczenia miękkie (ang. soft computing) Uczenie maszynowe Obliczenia miękkie (ang. soft computing) Logika rozmyta Prawdopodobieństwa Współczynniki pewności itp. Logika rozmyta Prawdopodobieństwa Współczynniki pewności itp. Odkrywanie wiedzy z danych Symulacja procesów naturalnych Symulacja inteligencji ludzkiej
27 Inteligencja obliczeniowa vs uczenie maszynowe 13 Inteligencja obliczeniowa Obliczenia miękkie (ang. soft computing) Uczenie maszynowe Obliczenia miękkie (ang. soft computing) Logika rozmyta Prawdopodobieństwa Współczynniki pewności itp. Logika rozmyta Prawdopodobieństwa Współczynniki pewności itp. Odkrywanie wiedzy z danych Odkrywanie wiedzy z danych Symulacja procesów naturalnych Symulacja inteligencji ludzkiej
28 Inteligencja obliczeniowa vs uczenie maszynowe 13 Inteligencja obliczeniowa Obliczenia miękkie (ang. soft computing) Logika rozmyta Prawdopodobieństwa Współczynniki pewności itp. Odkrywanie wiedzy z danych Symulacja procesów naturalnych Symulacja inteligencji ludzkiej Uczenie maszynowe Obliczenia miękkie (ang. soft computing) Logika rozmyta Prawdopodobieństwa Współczynniki pewności itp. Odkrywanie wiedzy z danych Metody bazujące na statystyce
29 Inteligencja obliczeniowa vs uczenie maszynowe 13 Inteligencja obliczeniowa Obliczenia miękkie (ang. soft computing) Logika rozmyta Prawdopodobieństwa Współczynniki pewności itp. Odkrywanie wiedzy z danych Symulacja procesów naturalnych Symulacja inteligencji ludzkiej Uczenie maszynowe Obliczenia miękkie (ang. soft computing) Logika rozmyta Prawdopodobieństwa Współczynniki pewności itp. Odkrywanie wiedzy z danych Metody bazujące na statystyce Maksymalizacja sztucznych współczynników jakości
30 14 Filary inteligencji obliczeniowej Logika rozmyta Sztuczne sieci neuronowe Obliczenia ewolucyjne Teoria uczenia Metody probabilistyczne
31 15 Logika rozmyta (ang. fuzzy logic)
32 15 Logika rozmyta (ang. fuzzy logic) Nic nie jest czarne albo białe, istnieją odcienie szarości
33 15 Logika rozmyta (ang. fuzzy logic) Nic nie jest czarne albo białe, istnieją odcienie szarości Typy danych bazujące na liczbach rzeczywistych Zmienne losowe Prawdopodobieństwa Współczynniki pewności
34 15 Logika rozmyta (ang. fuzzy logic) Nic nie jest czarne albo białe, istnieją odcienie szarości Typy danych bazujące na liczbach rzeczywistych Zmienne losowe Prawdopodobieństwa Współczynniki pewności Metody pomiaru Niepewności Szumu w danych
35 15 Logika rozmyta (ang. fuzzy logic) Nic nie jest czarne albo białe, istnieją odcienie szarości Typy danych bazujące na liczbach rzeczywistych Zmienne losowe Prawdopodobieństwa Współczynniki pewności Metody pomiaru Niepewności Szumu w danych Wnioskowanie przybliżone
36 15 Logika rozmyta (ang. fuzzy logic) Nic nie jest czarne albo białe, istnieją odcienie szarości Typy danych bazujące na liczbach rzeczywistych Zmienne losowe Prawdopodobieństwa Współczynniki pewności Metody pomiaru Niepewności Szumu w danych Wnioskowanie przybliżone Odporność na błędy Np.: niewielkie różnice w danych
37 16 Sztuczne sieci neuronowe (ang. artificial neural networks) Źródło: Laurentaylorj - Praca własna, CC BY-SA 3.0,
38 16 Sztuczne sieci neuronowe (ang. artificial neural networks) Neuron Wiele wejść Jedno wyjście Funkcja przejścia/aktywacji Symulacja działania neuronu naturalnego Źródło: Laurentaylorj - Praca własna, CC BY-SA 3.0,
39 16 Sztuczne sieci neuronowe (ang. artificial neural networks) Neuron Wiele wejść Jedno wyjście Funkcja przejścia/aktywacji Symulacja działania neuronu naturalnego Sieć neuronowa Graf powiązań między neuronami Wyjścia neuronów powiązane z wejściami innych neuronów Niepowiązane wejścia i wyjścia służą za wejście/wyjście sieci Symulacja działania mózgu Źródło: Laurentaylorj - Praca własna, CC BY-SA 3.0,
40 17 Zastosowania sieci neuronowych Analiza danych, klasyfikacja i regresja Pamięć asocjacyjna (skojarzeniowa) Detekcja wzorców i klastrowanie Systemy autonomicznej kontroli
41 18 Obliczenia ewolucyjne
42 18 Obliczenia ewolucyjne Symulacja ewolucji naturalnej
43 18 Obliczenia ewolucyjne Symulacja ewolucji naturalnej Populacja osobników (rozwiązań)
44 18 Obliczenia ewolucyjne Symulacja ewolucji naturalnej Populacja osobników (rozwiązań) Selekcja naturalna
45 18 Obliczenia ewolucyjne Symulacja ewolucji naturalnej Populacja osobników (rozwiązań) Selekcja naturalna Przetrwanie najlepiej dopasowanych
46 18 Obliczenia ewolucyjne Symulacja ewolucji naturalnej Populacja osobników (rozwiązań) Selekcja naturalna Przetrwanie najlepiej dopasowanych Operacje genetyczne Krzyżowanie rozwiązań Tworzenie rozwiązań łączących cechy innych osobników Mutacja rozwiązań Drobna zmiana cech rozwiązania
47 19 Zastosowania obliczeń ewolucyjnych Symulacja procesów populacyjnych Optymalizacja heurystyczna Bez gwarancji znalezienie optimum Optymalizacja wielokryterialna Poszukiwanie rozwiązania minimalizującego wiele kryteriów Zazwyczaj takie rozwiązanie nie istnieje Występuje przetarg między kryteriami Poszukiwanie rozwiązania niezdominowanego Nie gorszego od pozostałych na wszystkich kryteriach
48 20 Front Pareto Dwa minimalizowane kryteria A i B są niezdominowane Nie istnieje rozwiązanie nie gorsze na każdym kryterium A i B są nieporównywalne C jest ściśle gorsze od A i B Źródło: Nojhan - Praca własna, CC BY-SA 3.0,
49 21 Teoria uczenia (ang. learning theory) Zapożyczenie z psychologii i kognitywistyki Ogół metod symulujących ludzkie uczenie Zapamiętywanie Powtarzanie Detekcja i utrwalanie częstych wzorców Uwzględnianie kontekstu (stanu środowiska) Uwzględnianie wcześniejszych doświadczeń
50 22 Metody probabilistyczne Narzędzia zapożyczone ze statystyki Analiza losowości Analiza częstości występowania Analiza powiązań między zmiennymi Np.: korelacji Służą realizacji zadań logiki rozmytej
51 23 Przykłady zastosowań CI
52 24 Detekcja zawartości obrazu Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton, ImageNet Classification with Deep Convolutional Neural Networks
53 25 Autonomiczny robot Atlas Boston Dynamics
54 27 Boty gier wykorzystujące informacje wizualne Michał Kempka, Grzegorz Runc, Jakub Toczek, Marek Wydmuch, Wojciech Jaśkowski, VizDoom, Instytut Informatyki Politechnika Poznańska
55 28 Pojazd autonomiczny Stanley zwycięzca DARPA Grand Challenge 2005, dystans: 212,4km, czas: 6:54h.
56 29 Pytania?
Algorytmy genetyczne
9 listopada 2010 y ewolucyjne - zbiór metod optymalizacji inspirowanych analogiami biologicznymi (ewolucja naturalna). Pojęcia odwzorowujące naturalne zjawiska: Osobnik Populacja Genotyp Fenotyp Gen Chromosom
Metody i techniki sztucznej inteligencji / Leszek Rutkowski. wyd. 2, 3 dodr. Warszawa, Spis treści
Metody i techniki sztucznej inteligencji / Leszek Rutkowski. wyd. 2, 3 dodr. Warszawa, 2012 Spis treści Przedmowa do wydania drugiego Przedmowa IX X 1. Wstęp 1 2. Wybrane zagadnienia sztucznej inteligencji
KARTA MODUŁU KSZTAŁCENIA
KARTA MODUŁU KSZTAŁCENIA I. Informacje ogólne 1 Nazwa modułu kształcenia Sztuczna inteligencja 2 Nazwa jednostki prowadzącej moduł Instytut Informatyki, Zakład Informatyki Stosowanej 3 Kod modułu (wypełnia
Optymalizacja ciągła
Optymalizacja ciągła 0. Wprowadzenie Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 28.02.2019 1 / 11 Kontakt wojciech.kotlowski@cs.put.poznan.pl http://www.cs.put.poznan.pl/wkotlowski/mp/
Sieci neuronowe i algorytmy uczenia Czyli co i jak andrzej.rusiecki.staff.iiar.pwr.wroc.pl s.
Sieci neuronowe i algorytmy uczenia Czyli co i jak 2016 andrzej.rusiecki@pwr.edu.pl andrzej.rusiecki.staff.iiar.pwr.wroc.pl s. 230/C-3 O co chodzi? Celem przedmiotu jest ogólne zapoznanie się z podstawowymi
Wstęp do Sztucznej Inteligencji
Wstęp do Sztucznej Inteligencji Algorytmy Genetyczne Joanna Kołodziej Politechnika Krakowska Wydział Fizyki, Matematyki i Informatyki Metody heurystyczne Algorytm efektywny: koszt zastosowania (mierzony
Nazwa przedmiotu: METODY SZTUCZNEJ INTELIGENCJI W ZAGADNIENIACH EKONOMICZNYCH Artificial intelligence methods in economic issues Kierunek:
Nazwa przedmiotu: METODY SZTUCZNEJ INTELIGENCJI W ZAGADNIENIACH EKONOMICZNYCH Artificial intelligence methods in economic issues Kierunek: Forma studiów: Informatyka Stacjonarne Rodzaj przedmiotu: obowiązkowy
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: obowiązkowy w ramach treści kierunkowych, moduł kierunkowy oólny Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: INTELIGENTNE SYSTEMY OBLICZENIOWE Systems Based on Computational Intelligence Kierunek: Inżynieria Biomedyczna Rodzaj przedmiotu: obowiązkowy moduł specjalności informatyka medyczna Rodzaj
Algorytm genetyczny (genetic algorithm)-
Optymalizacja W praktyce inżynierskiej często zachodzi potrzeba znalezienia parametrów, dla których system/urządzenie będzie działać w sposób optymalny. Klasyczne podejście do optymalizacji: sformułowanie
KARTA PRZEDMIOTU. 17. Efekty kształcenia:
Z1-PU7 WYDANIE N1 Strona 1 z 4 (pieczęć wydziału) KARTA PRZEDMIOTU 1. Nazwa przedmiotu: CYBERNETYKA 2. Kod przedmiotu: CYB 3. Karta przedmiotu ważna od roku akademickiego: 2012/2013 4. Forma kształcenia:
O badaniach nad SZTUCZNĄ INTELIGENCJĄ
O badaniach nad SZTUCZNĄ INTELIGENCJĄ Wykład 7. O badaniach nad sztuczną inteligencją Co nazywamy SZTUCZNĄ INTELIGENCJĄ? szczególny rodzaj programów komputerowych, a niekiedy maszyn. SI szczególną własność
1.7. Eksploracja danych: pogłębianie, przeszukiwanie i wyławianie
Wykaz tabel Wykaz rysunków Przedmowa 1. Wprowadzenie 1.1. Wprowadzenie do eksploracji danych 1.2. Natura zbiorów danych 1.3. Rodzaje struktur: modele i wzorce 1.4. Zadania eksploracji danych 1.5. Komponenty
Algorytm Genetyczny. zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych
Algorytm Genetyczny zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych Dlaczego Algorytmy Inspirowane Naturą? Rozwój nowych technologii: złożone problemy obliczeniowe w
Algorytmy ewolucyjne 1
Algorytmy ewolucyjne 1 2 Zasady zaliczenia przedmiotu Prowadzący (wykład i pracownie specjalistyczną): Wojciech Kwedlo, pokój 205. Konsultacje dla studentów studiów dziennych: poniedziałek,środa, godz
O badaniach nad SZTUCZNĄ INTELIGENCJĄ
O badaniach nad SZTUCZNĄ INTELIGENCJĄ Jak określa się inteligencję naturalną? Jak określa się inteligencję naturalną? Inteligencja wg psychologów to: Przyrodzona, choć rozwijana w toku dojrzewania i uczenia
WIEDZA METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING. Adrian Horzyk. Akademia Górniczo-Hutnicza
METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING WIEDZA Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra Automatyki
O badaniach nad SZTUCZNĄ INTELIGENCJĄ
O badaniach nad SZTUCZNĄ INTELIGENCJĄ SZTUCZNA INTELIGENCJA dwa podstawowe znaczenia Co nazywamy sztuczną inteligencją? zaawansowane systemy informatyczne (np. uczące się), pewną dyscyplinę badawczą (dział
Algorytmy genetyczne. Dariusz Banasiak. Katedra Informatyki Technicznej Wydział Elektroniki
Dariusz Banasiak Katedra Informatyki Technicznej Wydział Elektroniki Obliczenia ewolucyjne (EC evolutionary computing) lub algorytmy ewolucyjne (EA evolutionary algorithms) to ogólne określenia używane
Ewolucja sieci Sztuczna inteligencja i uczenie maszynowe
Ewolucja sieci Sztuczna inteligencja i uczenie maszynowe Piotr Chołda Katedra Telekomunikacji AGH 11 kwietnia 2018 r. Plan prezentacji 1 O co chodzi? 2 Podstawowe definicje 3 Przegląd metod Ewolucja sieci:
Obliczenia ewolucyjne - plan wykładu
Obliczenia ewolucyjne - plan wykładu Wprowadzenie Algorytmy genetyczne Programowanie genetyczne Programowanie ewolucyjne Strategie ewolucyjne Inne modele obliczeń ewolucyjnych Podsumowanie Ewolucja Ewolucja
Sztuczna inteligencja stan wiedzy, perspektywy rozwoju i problemy etyczne. Piotr Bilski Instytut Radioelektroniki i Technik Multimedialnych
Sztuczna inteligencja stan wiedzy, perspektywy rozwoju i problemy etyczne Piotr Bilski Instytut Radioelektroniki i Technik Multimedialnych Plan wystąpienia Co to jest sztuczna inteligencja? Pojęcie słabej
kierunkowy (podstawowy / kierunkowy / inny HES) nieobowiązkowy (obowiązkowy / nieobowiązkowy) polski drugi semestr letni (semestr zimowy / letni)
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013
Wprowadzenie do teorii systemów ekspertowych
Myślące komputery przyszłość czy utopia? Wprowadzenie do teorii systemów ekspertowych Roman Simiński siminski@us.edu.pl Wizja inteligentnych maszyn jest od wielu lat obecna w literaturze oraz filmach z
Równoważność algorytmów optymalizacji
Równoważność algorytmów optymalizacji Reguła nie ma nic za darmo (ang. no free lunch theory): efektywność różnych typowych algorytmów szukania uśredniona po wszystkich możliwych problemach optymalizacyjnych
Plan. Zakres badań teorii optymalizacji. Teoria optymalizacji. Teoria optymalizacji a badania operacyjne. Badania operacyjne i teoria optymalizacji
Badania operacyjne i teoria optymalizacji Instytut Informatyki Poznań, 2011/2012 1 2 3 Teoria optymalizacji Teoria optymalizacji a badania operacyjne Teoria optymalizacji zajmuje się badaniem metod optymalizacji
Sztuczna inteligencja
Sztuczna inteligencja Przykładowe zastosowania Piotr Fulmański Wydział Matematyki i Informatyki, Uniwersytet Łódzki, Polska 12 czerwca 2008 Plan 1 Czym jest (naturalna) inteligencja? 2 Czym jest (sztuczna)
Inżynieria danych I stopień Praktyczny Studia stacjonarne Wszystkie specjalności Katedra Inżynierii Produkcji Dr Małgorzata Lucińska
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 205/206 Z-ID-602 Wprowadzenie do uczenia maszynowego Introduction to Machine Learning
Ewolucja sieci Sztuczna inteligencja i uczenie maszynowe
Ewolucja sieci Sztuczna inteligencja i uczenie maszynowe dr hab. inż. Piotr Chołda Katedra Telekomunikacji AGH 27 marca 2019 r. Plan prezentacji 1 O co chodzi? 2 Podstawowe definicje 3 Przegląd metod Ewolucja
ID1SII4. Informatyka I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) stacjonarne (stacjonarne / niestacjonarne)
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu ID1SII4 Nazwa modułu Systemy inteligentne 1 Nazwa modułu w języku angielskim Intelligent
Optymalizacja optymalizacji
7 maja 2008 Wstęp Optymalizacja lokalna Optymalizacja globalna Algorytmy genetyczne Badane czasteczki Wykorzystane oprogramowanie (Algorytm genetyczny) 2 Sieć neuronowa Pochodne met-enkefaliny Optymalizacja
Podstawy Sztucznej Inteligencji (PSZT)
Podstawy Sztucznej Inteligencji (PSZT) Paweł Wawrzyński Uczenie maszynowe Sztuczne sieci neuronowe Plan na dziś Uczenie maszynowe Problem aproksymacji funkcji Sieci neuronowe PSZT, zima 2013, wykład 12
Sztuczna inteligencja i uczenie maszynowe w robotyce i systemach autonomicznych: AI/ML w robotyce, robotyka w AI/ML
Sztuczna inteligencja i uczenie maszynowe w robotyce i systemach autonomicznych: AI/ML w robotyce, robotyka w AI/ML Piotr Skrzypczyński Instytut Automatyki, Robotyki i Inżynierii Informatycznej, Politechnika
Algorytmy metaheurystyczne podsumowanie
dr hab. inż. Instytut Informatyki Politechnika Poznańska www.cs.put.poznan.pl/mkomosinski, Andrzej Jaszkiewicz Problem optymalizacji kombinatorycznej Problem optymalizacji kombinatorycznej jest problemem
Algorytmy ewolucyjne NAZEWNICTWO
Algorytmy ewolucyjne http://zajecia.jakubw.pl/nai NAZEWNICTWO Algorytmy ewolucyjne nazwa ogólna, obejmująca metody szczegółowe, jak np.: algorytmy genetyczne programowanie genetyczne strategie ewolucyjne
Algorytmy wspomagania decyzji Czyli co i jak andrzej.rusiecki.staff.iiar.pwr.wroc.pl s. 230/C-3
Algorytmy wspomagania decyzji Czyli co i jak 2018 andrzej.rusiecki@pwr.edu.pl andrzej.rusiecki.staff.iiar.pwr.wroc.pl s. 230/C-3 O co chodzi? Celem przedmiotu jest ogólne zapoznanie się z podstawowymi
Sztuczna inteligencja - wprowadzenie
Sztuczna inteligencja - wprowadzenie Dariusz Banasiak Katedra Informatyki Technicznej W4/K9 Politechnika Wrocławska Sztuczna inteligencja komputerów - wprowadzenie Kontakt: dr inż. Dariusz Banasiak, pok.
Kierunek Informatyka stosowana Studia stacjonarne Studia pierwszego stopnia
Studia pierwszego stopnia I rok Matematyka dyskretna 30 30 Egzamin 5 Analiza matematyczna 30 30 Egzamin 5 Algebra liniowa 30 30 Egzamin 5 Statystyka i rachunek prawdopodobieństwa 30 30 Egzamin 5 Opracowywanie
Nowoczesne techniki informatyczne Program: 1. Sztuczna inteligencja. a) definicja; b) podział: Systemy ekspertowe Algorytmy ewolucyjne Logika rozmyta Sztuczne sieci neuronowe c) historia; 2. Systemy eksperckie
Metody Rozmyte i Algorytmy Ewolucyjne
mgr inż. Wydział Matematyczno-Przyrodniczy Szkoła Nauk Ścisłych Uniwersytet Kardynała Stefana Wyszyńskiego Wykład wstępny Plan prezentacji 1 Wprowadzenie Kontakt Tematyka wykładu Zasady zaliczenia 2 3
Stefan Sokołowski SZTUCZNAINTELIGENCJA. Inst. Informatyki UG, Gdańsk, 2009/2010
Stefan Sokołowski SZTUCZNAINTELIGENCJA Inst. Informatyki UG, Gdańsk, 2009/2010 Wykład1,17II2010,str.1 SZTUCZNA INTELIGENCJA reguły gry Zasadnicze informacje: http://inf.ug.edu.pl/ stefan/dydaktyka/sztintel/
Uniwersytet w Białymstoku Wydział Ekonomiczno-Informatyczny w Wilnie SYLLABUS na rok akademicki 2012/2013 http://www.wilno.uwb.edu.
SYLLABUS na rok akademicki 01/013 Tryb studiów Studia stacjonarne Kierunek studiów Informatyka Poziom studiów Pierwszego stopnia Rok studiów/ semestr /3 Specjalność Bez specjalności Kod katedry/zakładu
LABORATORIUM 4: Algorytmy ewolucyjne cz. 2 wpływ operatorów krzyżowania i mutacji na skuteczność poszukiwań AE
Instytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny, Politechnika Śląska www.imio.polsl.pl METODY HEURYSTYCZNE LABORATORIUM 4: Algorytmy ewolucyjne cz. 2 wpływ operatorów krzyżowania
Inżynieria Wiedzy i Systemy Ekspertowe. Niepewność wiedzy. dr inż. Michał Bereta Politechnika Krakowska
Inżynieria Wiedzy i Systemy Ekspertowe Niepewność wiedzy dr inż. Michał Bereta Politechnika Krakowska http://torus.uck.pk.edu.pl/~beretam/ beretam@torus.uck.pk.edu.pl 1 Logika Rozmyta (Fuzzy Logic) Mimo
Algorytmy wspomagania decyzji Czyli co i jak andrzej.rusiecki.staff.iiar.pwr.wroc.pl s.
Algorytmy wspomagania decyzji Czyli co i jak 2013 andrzej.rusiecki@pwr.wroc.pl andrzej.rusiecki.staff.iiar.pwr.wroc.pl s. 911/D-20 O co chodzi? Celem przedmiotu jest ogólne zapoznanie się z podstawowymi
Harmonogram INFORMATYKA ANALITYCZNA Rok akademicki 2016/17 semestr letni
Studia licencjackie I ROK: Analiza Matematyczna 2 wykład dr hab. Rafał Pierzchała poniedziałki 8-10 0174 Analiza Matematyczna 2 ćw gr 1 dr hab. Rafał Pierzchała poniedziałki 10-12 0086 Analiza Matematyczna
SZTUCZNA INTELIGENCJA
Stefan Sokołowski SZTUCZNA INTELIGENCJA Inst Informatyki UG, Gdańsk, 2009/2010 Wykład1,17II2010,str1 SZTUCZNA INTELIGENCJA reguły gry Zasadnicze informacje: http://infugedupl/ stefan/dydaktyka/sztintel/
Festiwal Myśli Abstrakcyjnej, Warszawa, Czy SZTUCZNA INTELIGENCJA potrzebuje FILOZOFII?
Festiwal Myśli Abstrakcyjnej, Warszawa, 22.10.2017 Czy SZTUCZNA INTELIGENCJA potrzebuje FILOZOFII? Dwa kluczowe terminy Co nazywamy sztuczną inteligencją? zaawansowane systemy informatyczne (np. uczące
Odkrywanie algorytmów kwantowych za pomocą programowania genetycznego
Odkrywanie algorytmów kwantowych za pomocą programowania genetycznego Piotr Rybak Koło naukowe fizyków Migacz, Uniwersytet Wrocławski Piotr Rybak (Migacz UWr) Odkrywanie algorytmów kwantowych 1 / 17 Spis
Metody Sztucznej Inteligencji Methods of Artificial Intelligence. Elektrotechnika II stopień ogólno akademicki. niestacjonarne. przedmiot kierunkowy
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013
Deep Learning na przykładzie Deep Belief Networks
Deep Learning na przykładzie Deep Belief Networks Jan Karwowski Zakład Sztucznej Inteligencji i Metod Obliczeniowych Wydział Matematyki i Nauk Informacyjnych PW 20 V 2014 Jan Karwowski (MiNI) Deep Learning
LABORATORIUM 3: Wpływ operatorów krzyżowania na skuteczność poszukiwań AE
Instytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny, Politechnika Śląska www.imio.polsl.pl OBLICZENIA EWOLUCYJNE LABORATORIUM 3: Wpływ operatorów krzyżowania na skuteczność
Instytut Automatyki i Inżynierii Informatycznej Politechniki Poznańskiej. Adam Meissner. Elementy uczenia maszynowego
Instytut Automatyki i Inżynierii Informatycznej Politechniki Poznańskiej Adam Meissner Adam.Meissner@put.poznan.pl http://www.man.poznan.pl/~ameis Elementy uczenia maszynowego Literatura [1] Bolc L., Zaremba
Jacek Skorupski pok. 251 tel konsultacje: poniedziałek , sobota zjazdowa
Jacek Skorupski pok. 251 tel. 234-7339 jsk@wt.pw.edu.pl http://skorupski.waw.pl/mmt prezentacje ogłoszenia konsultacje: poniedziałek 16 15-18, sobota zjazdowa 9 40-10 25 Udział w zajęciach Kontrola wyników
Dobór parametrów algorytmu ewolucyjnego
Dobór parametrów algorytmu ewolucyjnego 1 2 Wstęp Algorytm ewolucyjny posiada wiele parametrów. Przykładowo dla algorytmu genetycznego są to: prawdopodobieństwa stosowania operatorów mutacji i krzyżowania.
Optymalizacja. Wybrane algorytmy
dr hab. inż. Instytut Informatyki Politechnika Poznańska www.cs.put.poznan.pl/mkomosinski, Andrzej Jaszkiewicz Problem optymalizacji kombinatorycznej Problem optymalizacji kombinatorycznej jest problemem
Informatyka I stopień (I stopień / II stopień) ogólno akademicki (ogólno akademicki / praktyczny) kierunkowy (podstawowy / kierunkowy / inny HES)
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Zastosowanie sztucznych sieci neuronowych Nazwa modułu w informatyce Application of artificial
Metody sztucznej inteligencji w układach sterowania METODY SZTUCZNEJ INTELIGENCJI W UKŁADACH STEROWANIA
1 Metody sztucznej inteligencji w układach sterowania Podstawy algorytmów genetycznych oraz ich aplikacje w procesach optymalizacji Sztuczne sieci neuronowe-formalne podstawy i wybrane aplikacje Wprowadzenie
Algorytm indukcji klasyfikatora za pomocą EA z automatycznym przełączaniem ukierunkowań
Algorytm indukcji klasyfikatora za pomocą EA z automatycznym przełączaniem ukierunkowań Anna Manerowska, Michal Kozakiewicz 2.12.2009 1 Wstęp Jako projekt na przedmiot MEUM (Metody Ewolucyjne Uczenia Maszyn)
Algorytmy stochastyczne, wykład 01 Podstawowy algorytm genetyczny
Algorytmy stochastyczne, wykład 01 J. Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2014-02-21 In memoriam prof. dr hab. Tomasz Schreiber (1975-2010) 1 2 3 Różne Orientacyjny
Widzenie komputerowe (computer vision)
Widzenie komputerowe (computer vision) dr inż. Marcin Wilczewski 2018/2019 Organizacja zajęć Tematyka wykładu Cele Python jako narzędzie uczenia maszynowego i widzenia komputerowego. Binaryzacja i segmentacja
Narzędzia AI. Jakub Wróblewski jakubw@pjwstk.edu.pl Pokój 312. http://zajecia.jakubw.pl SZTUCZNA INTELIGENCJA (ARTIFICIAL INTELLIGENCE)
Narzędzia AI Jakub Wróblewski jakubw@pjwstk.edu.pl Pokój 312 http://zajecia.jakubw.pl SZTUCZNA INTELIGENCJA (ARTIFICIAL INTELLIGENCE) Nauka o maszynach realizujących zadania, które wymagają inteligencji
Inteligencja. Władysław Kopaliśki, Słownik wyrazów obcych i zwrotów obcojęzycznych
Wstęp Inteligencja Władysław Kopaliśki, Słownik wyrazów obcych i zwrotów obcojęzycznych inteligencja psych. zdolność rozumienia, kojarzenia; pojętność, bystrość; zdolność znajdowania właściwych, celowych
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA SYSTEMY ROZMYTE Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra Automatyki i Inżynierii Biomedycznej Laboratorium
Systemy uczące się wykład 1
Systemy uczące się wykład 1 dr Przemysław Juszczuk Katedra Inżynierii Wiedzy, Uniwersytet Ekonomiczny 5 X 2018 e-mail: przemyslaw.juszczuk@ue.katowice.pl Konsultacje: na stronie katedry + na stronie domowej
Podstawy Sztucznej Inteligencji Sztuczne Sieci Neuronowe. Krzysztof Regulski, WIMiIP, KISiM, B5, pok. 408
Podstawy Sztucznej Inteligencji Sztuczne Sieci Neuronowe Krzysztof Regulski, WIMiIP, KISiM, regulski@aghedupl B5, pok 408 Inteligencja Czy inteligencja jest jakąś jedną dziedziną, czy też jest to nazwa
Zastosowanie sztucznej inteligencji w testowaniu oprogramowania
Zastosowanie sztucznej inteligencji w testowaniu oprogramowania Problem NP Problem NP (niedeterministycznie wielomianowy, ang. nondeterministic polynomial) to problem decyzyjny, dla którego rozwiązanie
Inspiracje soft computing. Soft computing. Terminy genetyczne i ich odpowiedniki w algorytmach genetycznych. Elementarny algorytm genetyczny
Soft computing Soft computing tym róŝni się od klasycznych obliczeń (hard computing), Ŝe jest odporny na brak precyzji i niepewność danych wejściowych. Obliczenia soft computing mają inspiracje ze świata
METODY INTELIGENCJI OBLICZENIOWEJ. ZASTOSOWANIE SIECI NEURONOWYCH W PROGNOZOWANIU
FOLIA UNIVERSITATIS AGRICULTURAE STETINENSIS Folia Univ. Agric. Stetin. 2007, Oeconomica 258 (49), 107 122 Henryk MARJAK METODY INTELIGENCJI OBLICZENIOWEJ. ZASTOSOWANIE SIECI NEURONOWYCH W PROGNOZOWANIU
Sylabus modułu kształcenia na studiach wyższych. Nazwa Wydziału. Nazwa jednostki prowadzącej moduł Nazwa modułu kształcenia
Załącznik nr 4 do zarządzenia nr 12 Rektora UJ z 15 lutego 2012 r. Sylabus modułu kształcenia na studiach wyższych Nazwa Wydziału Nazwa jednostki prowadzącej moduł Nazwa modułu kształcenia Wydział Matematyki
PODYPLOMOWE STUDIA ZAAWANSOWANE METODY ANALIZY DANYCH I DATA MINING W BIZNESIE
UNIWERSYTET WARMIŃSKO-MAZURSKI W OLSZTYNIE PODYPLOMOWE STUDIA ZAAWANSOWANE METODY ANALIZY DANYCH I DATA MINING W BIZNESIE http://matman.uwm.edu.pl/psi e-mail: psi@matman.uwm.edu.pl ul. Słoneczna 54 10-561
TEORETYCZNE PODSTAWY INFORMATYKI
1 TEORETYCZNE PODSTAWY INFORMATYKI WFAiS UJ, Informatyka Stosowana I rok studiów, I stopień Wykład 16 2 Data Science: Uczenie maszynowe Uczenie maszynowe: co to znaczy? Metody Regresja Klasyfikacja Klastering
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA WYKŁAD 10. WNIOSKOWANIE W LOGICE ROZMYTEJ Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska WNIOSKOWANIE W LOGICE DWUWARTOŚCIOWEJ W logice
Algorytmy ewolucyjne
Algorytmy ewolucyjne Dr inż. Michał Bereta p. 144 / 10, Instytut Modelowania Komputerowego mbereta@pk.edu.pl beretam@torus.uck.pk.edu.pl www.michalbereta.pl Problemy świata rzeczywistego często wymagają
2.1.M.06: Modelowanie i wspomaganie komputerowe w inżynierii powierzchni
2nd Workshop on Foresight of surface properties formation leading technologies of engineering materials and biomaterials in Białka Tatrzańska, Poland 29th-30th November 2009 1 Panel nt. Procesy wytwarzania
Wykorzystanie metod ewolucyjnych w projektowaniu algorytmów kwantowych
Wykorzystanie metod ewolucyjnych w projektowaniu algorytmów kwantowych mgr inż. Robert Nowotniak Politechnika Łódzka 1 października 2008 Robert Nowotniak 1 października 2008 1 / 18 Plan referatu 1 Informatyka
Algorytm memetyczny w grach wielokryterialnych z odroczoną preferencją celów. Adam Żychowski
Algorytm memetyczny w grach wielokryterialnych z odroczoną preferencją celów Adam Żychowski Definicja problemu dwóch graczy: P 1 (minimalizator) oraz P 2 (maksymalizator) S 1, S 2 zbiory strategii graczy
WAE Jarosław Arabas Pełny schemat algorytmu ewolucyjnego
WAE Jarosław Arabas Pełny schemat algorytmu ewolucyjnego Algorytm ewolucyjny algorytm ewolucyjny inicjuj P 0 {P 0 1, P 0 2... P 0 μ } t 0 H P 0 while! stop for (i 1: λ) if (a< p c ) O t i mutation(crossover
PLAN WYKŁADU OPTYMALIZACJA GLOBALNA OPERATOR KRZYŻOWANIA ETAPY KRZYŻOWANIA
PLAN WYKŁADU Operator krzyżowania Operator mutacji Operator inwersji Sukcesja Przykłady symulacji AG Kodowanie - rodzaje OPTYMALIZACJA GLOBALNA Wykład 3 dr inż. Agnieszka Bołtuć OPERATOR KRZYŻOWANIA Wymiana
PODSTAWY BAZ DANYCH. 19. Perspektywy baz danych. 2009/2010 Notatki do wykładu "Podstawy baz danych"
PODSTAWY BAZ DANYCH 19. Perspektywy baz danych 1 Perspektywy baz danych Temporalna baza danych Temporalna baza danych - baza danych posiadająca informację o czasie wprowadzenia lub czasie ważności zawartych
V Seminarium Naukowe "Inżynierskie zastosowania technologii informatycznych" - relacja
V Seminarium Naukowe "Inżynierskie zastosowania technologii informatycznych" - relacja W dniu 27.06.2015 odbyło się V Seminarium Naukowe Inżynierskie zastosowania technologii informatycznych. Organizatorzy
4.1. Wprowadzenie...70 4.2. Podstawowe definicje...71 4.3. Algorytm określania wartości parametrów w regresji logistycznej...74
3 Wykaz najważniejszych skrótów...8 Przedmowa... 10 1. Podstawowe pojęcia data mining...11 1.1. Wprowadzenie...12 1.2. Podstawowe zadania eksploracji danych...13 1.3. Główne etapy eksploracji danych...15
Plan wykładów METODY SZTUCZNEJ INTELIGENCJI W UKŁADACH STEROWANIA
1 Plan wykładów Podstawy algorytmów genetycznych oraz ich aplikacje w procesach optymalizacji Sztuczne sieci neuronowe-formalne podstawy i wybrane aplikacje Wprowadzenie formysztucznej inteligencji Elementy
Systemy agentowe. Uwagi organizacyjne i wprowadzenie. Jędrzej Potoniec
Systemy agentowe Uwagi organizacyjne i wprowadzenie Jędrzej Potoniec Kontakt mgr inż. Jędrzej Potoniec Jedrzej.Potoniec@cs.put.poznan.pl http://www.cs.put.poznan.pl/jpotoniec https://github.com/jpotoniec/sa
Problemy z ograniczeniami
Problemy z ograniczeniami 1 2 Dlaczego zadania z ograniczeniami Wiele praktycznych problemów to problemy z ograniczeniami. Problemy trudne obliczeniowo (np-trudne) to prawie zawsze problemy z ograniczeniami.
Instytut Automatyki i Inżynierii Informatycznej Politechniki Poznańskiej. Adam Meissner. Elementy uczenia maszynowego
Instytut Automatyki i Inżynierii Informatycznej Politechniki Poznańskiej Adam Meissner Adam.Meissner@put.poznan.pl http://www.man.poznan.pl/~ameis Elementy uczenia maszynowego Literatura [1] Bolc L., Zaremba
Wykład wprowadzający
Monitorowanie i Diagnostyka w Systemach Sterowania na studiach II stopnia specjalności: Systemy Sterowania i Podejmowania Decyzji Wykład wprowadzający dr inż. Michał Grochowski kiss.pg.mg@gmail.com michal.grochowski@pg.gda.pl
Katedra Informatyki Stosowanej. Algorytmy ewolucyjne. Inteligencja obliczeniowa
Wydział Zarządzania AGH Katedra Informatyki Stosowanej Algorytmy ewolucyjne Treść wykładu Wprowadzenie Zasada działania Podział EA Cechy EA Algorytm genetyczny 2 EA - wprowadzenie Algorytmy ewolucyjne
1. Historia 2. Podstawy neurobiologii 3. Definicje i inne kłamstwa 4. Sztuczny neuron i zasady działania SSN. Agenda
Sieci neuropodobne 1. Historia 2. Podstawy neurobiologii 3. Definicje i inne kłamstwa 4. Sztuczny neuron i zasady działania SSN Agenda Trochę neurobiologii System nerwowy w organizmach żywych tworzą trzy
Systemy uczące się Lab 4
Systemy uczące się Lab 4 dr Przemysław Juszczuk Katedra Inżynierii Wiedzy, Uniwersytet Ekonomiczny 26 X 2018 Projekt zaliczeniowy Podstawą zaliczenia ćwiczeń jest indywidualne wykonanie projektu uwzględniającego
Prof. Stanisław Jankowski
Prof. Stanisław Jankowski Zakład Sztucznej Inteligencji Zespół Statystycznych Systemów Uczących się p. 228 sjank@ise.pw.edu.pl Zakres badań: Sztuczne sieci neuronowe Maszyny wektorów nośnych SVM Maszyny
Algorytmy genetyczne
Algorytmy genetyczne Motto: Zamiast pracowicie poszukiwać najlepszego rozwiązania problemu informatycznego lepiej pozwolić, żeby komputer sam sobie to rozwiązanie wyhodował! Algorytmy genetyczne służą
KARTA PRZEDMIOTU. Systemy agentowe w informatyce D1_7
KARTA PRZEDMIOTU. Informacje ogólne Nazwa przedmiotu i kod (wg planu studiów): Nazwa przedmiotu (j. ang.): Kierunek studiów: Specjalność/specjalizacja: Poziom kształcenia: Profil kształcenia: Forma studiów:
KARTA PRZEDMIOTU. Dyscyplina:
KARTA PRZEDMIOTU Jednostka: WIPiE Dyscyplina: Poziom studiów: 3 Semestr: 3 lub 4 Forma studiów: stacjonarne Język wykładowy: Nazwa przedmiotu: Metody sztucznej inteligencji Symbol przedmiotu: MSI Liczba
Katedra Systemów Decyzyjnych. Kierownik: prof. dr hab. inż. Zdzisław Kowalczuk ksd@eti.pg.gda.pl
Katedra Systemów Decyzyjnych Kierownik: prof. dr hab. inż. Zdzisław Kowalczuk ksd@eti.pg.gda.pl 2010 Kadra KSD profesor zwyczajny 6 adiunktów, w tym 1 z habilitacją 4 asystentów 7 doktorantów Wydział Elektroniki,
Dariusz Brzeziński Instytut Informatyki, Politechnika Poznańska
Dariusz Brzeziński Instytut Informatyki, Politechnika Poznańska Podstawowe architektury sieci neuronowych Generowanie sztucznych danych Jak się nie przemęczyć Korzystanie z istniejących wag Zamrażanie
Historia sztucznej inteligencji. Przygotował: Konrad Słoniewski
Historia sztucznej inteligencji Przygotował: Konrad Słoniewski Prahistoria Mit o Pigmalionie Pandora ulepiona z gliny Talos olbrzym z brązu Starożytna Grecja System sylogizmów Arystotelesa (VI w. p.n.e.)
Wstęp do sieci neuronowych laboratorium 01 Organizacja zajęć. Perceptron prosty
Wstęp do sieci neuronowych laboratorium 01 Organizacja zajęć. Perceptron prosty Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2012-10-03 Projekt pn. Wzmocnienie potencjału
Algorytm hybrydowy dla alokacji portfela inwestycyjnego przy ograniczonych zasobach
Adam Stawowy Algorytm hybrydowy dla alokacji portfela inwestycyjnego przy ograniczonych zasobach Summary: We present a meta-heuristic to combine Monte Carlo simulation with genetic algorithm for Capital
Wykład organizacyjny
Automatyka - zastosowania, metody i narzędzia, perspektywy na studiach I stopnia specjalności: Automatyka i systemy sterowania Wykład organizacyjny dr inż. Michał Grochowski kiss.pg.mg@gmail.com michal.grochowski@pg.gda.pl