Problemy z ograniczeniami
|
|
- Antoni Łuczak
- 2 lat temu
- Przeglądów:
Transkrypt
1 Problemy z ograniczeniami 1
2 2 Dlaczego zadania z ograniczeniami Wiele praktycznych problemów to problemy z ograniczeniami. Problemy trudne obliczeniowo (np-trudne) to prawie zawsze problemy z ograniczeniami. Ograniczenia sprawiają, że nie każda kombinacja zmiennych z których każda ma poprawną (ze swojej dziedzin) wartość jest rozwiązaniem dopuszczalnym problemu. Niestety radzenie sobie z ograniczeniami nie jest proste w przypadku algorytmów ewolucyjnych, ponieważ operatory krzyżowania i mutacji nie uwzględniają ograniczeń. Nawet jeżeli rodzice spełniają ograniczenia i są rozwiązaniami dopuszczalnymi, nie mamy gwarancji że wynik krzyżowania i mutacji będzie rozwiązaniem dopuszczalnym. Problemy z ograniczeniami możemy podzielić na: Problemy optymalizacji z ograniczeniami. Problemy spełnienia ograniczeń.
3 3 Swobodna przestrzeń przeszukiwań Mamy L zmiennych x 1,x 2,, x L. z których każda ma swoją dziedzinę D 1, D 2,, D L. Dziedziny mogą być dyskretne albo ciągłe (ale jeżeli są ciągłe to są wypukłe) Swobodną przestrzenią poszukiwań nazywamy iloczyn kartezjański D=D 1 D 2 D L Cecha swobodnej przestrzeni poszukiwań: sprawdzenie czy rozwiązanie x=(x 1,x 2,, x L ) należy do dziedziny D możemy przeprowadzić wykonując osobny test przynależności zmiennej x i do dziedziny D i ; jeżeli wszystkie testy dadzą wynik pozytywny to x D Przykład swobodnej przestrzeni przeszukiwań: x i 5.12 dla i=1,2,...,l.\ Swobodna przestrzeń poszukiwań nie sprawia problemów przy optymalizacji algorytmami ewolucyjnymi, ponieważ, nawet jeżeli wynik operatorów krzyżowania i mutacji nie należy do tej przestrzeni, to bardzo łatwo możemy to wymusić wykonując poprawki dla indywidualnych zmiennych. Przykładowo: if (x i <-5.12) x i =-5.12 if (x i >5.12) x i =5.12
4 4 Klasyfikacja problemów z ograniczeniami Ograniczenia TAK NIE Funkcja celu TAK NIE Probmlem optymalizacji z ograniczeniami Problem optymalizacji bez ograniczeń Problem spełniania ograniczeń Nie ma problemu Terminologia angielska: free optimization problem (problem optymalizacji bez ograniczeń) constraint satisfaction problem (problem spełniania ograniczeń) constrained optimization problem (problem optymalizacji z ograniczeniami).
5 5 Problem spełnienia ograniczeń ` Dana jest para (D,φ), gdzie D jest swobodną przestrzenią poszukiwań, a φ jest formułą (funkcją boolowską na zbiorze D). Formuła φ jest nazywana warunkiem dopuszczalności (ang. feasibility condition). Zazwyczaj warunek dopuszczalności jest warunkiem złożonym, składającym się z wielu ograniczeń, z których każde narzuca ograniczenie dla dopuszczalnych kombinacji wartości zmiennych. Przykład: 3-kolorowanie grafu. Dany jest graf G=(V,E), gdzie Czy istnieje takie przypisanie kolorów wierzchołkom, które pozwala na pokolorowanie grafu przy pomocy trzech kolorów tak, że nie istnieją dwa wierzchołki połączone krawędzią którym przypisano ten sam kolor. Bardziej formalnie: E V V swobodną przestrzenią przeszukiwań jest D L, gdzie L= V a D={1,2,3}. (Każda z L zmiennych ma tę samą dziedzinę).niech rozwiązanie x ma postać (x 1,x 2,...,x L ) x =true e E C x x, x =true e 1, 2, L C e jest ograniczeniem związanym z krawędzią e. Niech e=(k,l) C e x 1, x 2,, x L =true x k x l
6 6 3-kolorowanie grafu przykład Problem NP-trudny. Trudność rozwiązania problemu spełnienia ograniczeń przez algorytm ewolucyjny polega na braku funkcji do optymalizacji. Można w tym sobie poradzić przekształcając zbiór ograniczeń w funkcję celu do zminimalizowania, taką że osiągnięcie minimum oznacza spełnienie ograniczeń.
7 Problem optymalizacji dyskretnej z ograniczeniami - binarne zagadnienie plecakowe 7 Dane jest N przedmiotów, z których każdy posiada masę m i wartość w i Dany jest plecak, który możemy umieścić elementy o sumarycznej masie M Jakie przedmioty zabrać do plecaka, tak aby sumaryczna wartość przedmiotów była jak największa? i Nazwa m i w i 1 Zegarek Buty Spodnie Czapka Kurtka Piwo 1 1 M=2
8 8 Zagadnienie plecakowe: sformułowanie i Nazwa m i w i 1 Zegarek Buty Spodnie Czapka Kurtka Piwo 1 1 M=2 Postać rozwiązania: (L=6) x=[ x 1, x 2, x 3, x 4, x 5, x 6 ], x i {0,1} Optymalizowana funkcja: Ograniczenie L f ( x)= 1 L g ( x)= 1 x i w i x i m i < M
9 9 Metody radzenia sobie z ograniczeniami Operatory krzyżowania/mutacji/inicjalizacji zachowujące ograniczenia (jeżeli rodzice spełniają ograniczenia to potomkowie także). Przykład: operatory krzyżowania i mutacji dla problemu komiwojażera. W niektórych zadaniach wygenerowanie rozwiązania dopuszczalnego jest problemem trudnym obliczeniowo (np. NP-trudnym). Stosuj funkcje kary, obniżające dopasowanie osobnika naruszającego ograniczenia. Zakładamy przy tym, że możliwe jest obliczenie dopasowania dla niedopuszczalnego rozwiązania. Stosuj algorytm naprawy konwertujący rozwiązania dopuszczalne na niedopuszczalne. Stosuj dekoder odwzorowujący genotyp w fenotyp, tak że rozwiązania (fenotypy) są zawsze dopuszczalne. Stosuj kombinację powyższych technik (np. operator i inicjalizacja gwarantujące spełnienie części ograniczeń, pozostałe przekształć w funkcję kary)
10 10 Funkcje kary Zakładając problem minimalizacji, zastosowanie funkcji kary polega na przekształceniu funkcji celu f(x) w funkcję f'(x): f ' x = f x P d x, F gdzie d(x,f) jest odległością rozwiązania x od przestrzeni rozwiązań dopuszczalnych. P jest funkcją kary spełniającą warunek P(0)=0, P(d) jest funkcją rosnącą. Jeżeli w zadaniu mamy m ograniczeń, to funkcja kary może być zapisana jako: m P (d (x, F ))= i=1 ω i (d i ( x)) k gdzie d i (x) jest karą za naruszenie i-tego ograniczenia, ω i ograniczenia, k jest parametrem (często 1 lub dwa). Problem ze zdefiniowaniem wag ograniczeń: jest wagą i-tego Zbyt duże wagi: Każde rozwiązanie dopuszczalne jest w minimum lokalnym f'(x). Zbyt małe wagi: algorytm znajduje rozwiązanie niedopuszczalne.
11 Funkcja P 1 : E P 1 x = i=1 3-kolorowanie grafu - funkcja kary i x,c i i x,c i ={ 1 jeżeli C i x = false 0 jeżeli C i x =true C i to ograniczenie związane z i-tą krawędzią. Funkcja P 1 zlicza liczbę niepoprawnych krawędzi (łączących wierzchołki o identycznym kolorze). Funkcja P 2 zlicza liczbę niepoprawnych wierzchołków (wierzchołków dla których istnieje przynajmniej jeden wierzchołek połączony krawędzią, i mający taki sam kolor). Wynik algorytmu (algorytm skonfigurowany na minimalizację): Jeżeli zatrzymasz się z wartością funkcji kary równą 0, to rozwiązanie spełnia ograniczenia. Jeżeli zatrzymasz się z wartością funkcji kary większą od zera, to nie udało się znaleźć rozwiązania spełniającego ograniczenia, (nie ma gwarancji że takiego rozwiązania nie ma). 11
12 12 3-kolorowanie grafu - dekoder Rozwiązanie ma postać permutacji wierzchołków (Możemy wykorzystać operatory działające na permutacjach, w szczególności krzyżowanie OX). Dekoder odwzorowuje przestrzeń wszystkich permutacji w przestrzeń kolorowań w następujący sposób: Przypisuj kolory do wierzchołków w kolejności wskazanej w permutacji, próbując kolorów o rosnących numerach. (Jeżeli przypisanie wierzchołkowi v koloru pierwszego spowodowałoby naruszenie ograniczeń, ponieważ inny już pokolorowany wierzchołek połączony z v krawędzią ma kolor pierwszy, to spróbuj koloru drugiego). Jeżeli wierzchołek v nie da się pokolorować za pomocą trzech kolorów bez naruszenia ograniczeń, to zostaw go niepokolorowany). Funkcję dopasowania zdefiniuj jako liczbę wierzchołków, które pozostały niepokolorowane. Funkcja ta ma następującą własność jest równa minimum (0) jeżeli wszystkie wierzchołki zostały pokolorowane przy pomocy trzech kolorów. W ten sposób przekształciliśmy problem optymalizacji z ograniczeniami w inny problem optymalizacji z ograniczeniami, dla którego znamy operatory ewolucyjne zachowujące dopuszczalność rozwiązań.
13 13 Zagadnienie plecakowe: funkcja kary L Jedyne ograniczenie ma postać: g ( x)= x i m i < M 1 Funkcja kary P(x) może mieć postać: L P x ={ 1 x i m i M 2 L jeżeli x i m i M 1 0 w przeciwnym wypadku ω jest parametrem. Kara rośnie proporcjonalnie do kwadratu naruszenia ograniczenia. Funkcja dopasowania przyjmuje postać: L f ( x)= 1 x i w i P (x)
14 Zagadnienie plecakowe: algorytmy naprawy oraz dekodery Dodatkowy krok po krzyżowaniu i mutacji: naprawa rozwiązań niedopuszczalnych. Algorytm 1 (probabilistyczny): Losowo usuwaj przedmioty z plecaka aż uzyskasz spełnienie ograniczenia. Algorytm 2: (deterministyczny). Posortuj przedmioty w plecaku pod względem stosunku w i /m i. Usuwaj przedmioty począwszy od przedmiotu o najmniejszym stosunku w i /m i. Algorytm 2 może być również wykorzystany jako dekoder. Stosowany jest wtedy do obliczenia dopasowania osobnika. W tym przypadku osobnik otrzymuje dopasowanie rozwiązania dopuszczalnego otrzymanego w wyniku zastosowania algorytmu 2, ale nie jego genotyp. 14
15 15 Projekt z zagadnieniem plecakowym Powinien zawierać porównanie 4 algorytmów: Z funkcją kary. Z naprawą (dwa algorytmy) Z dekoderem.
16 16 Literatura Michalewicz Z., Algorytmy genetyczne + struktury danych=programy ewolucyjne, WNT, Warszawa 19, rozdział 7 poświęcony problemom optymalizacji z ograniczeniami. A. E. Eiben, J. Smith, Introduction to Evolutionary Computing, Springer, 2003, rozdział 7 poświęcony problemom z ograniczeniami. B. G. W. Craenen, A. E. Eiben, J. I. van Hemert, Comparing evolutionary algorithms on binary constraint satisfaction problems, IEEE Transactions on Evolutionary Computation, 7(5), s , artykuł na temat problemów spełnienia ograniczeń. A. E. Smith and D. W. Coit, Penalty functions, Handbook of Evolutionary Computation, Oxford University Press and Institute of Physics Publishing, omówienie i klasyfikacja funkcji kar.
Algorytmy ewolucyjne 1
Algorytmy ewolucyjne 1 2 Zasady zaliczenia przedmiotu Prowadzący (wykład i pracownie specjalistyczną): Wojciech Kwedlo, pokój 205. Konsultacje dla studentów studiów dziennych: poniedziałek,środa, godz
Algorytm Genetyczny. zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych
Algorytm Genetyczny zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych Dlaczego Algorytmy Inspirowane Naturą? Rozwój nowych technologii: złożone problemy obliczeniowe w
METODY SZTUCZNEJ INTELIGENCJI algorytmy ewolucyjne
METODY SZTUCZNEJ INTELIGENCJI algorytmy ewolucyjne dr hab. inż. Andrzej Obuchowicz, prof. UZ Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski A. Obuchowicz: MSI - algorytmy ewolucyjne
Algorytmy memetyczne (hybrydowe algorytmy ewolucyjne)
Algorytmy memetyczne (hybrydowe algorytmy ewolucyjne) 1 2 Wstęp Termin zaproponowany przez Pablo Moscato (1989). Kombinacja algorytmu ewolucyjnego z algorytmem poszukiwań lokalnych, tak że algorytm poszukiwań
Algorytmy stochastyczne laboratorium 03
Algorytmy stochastyczne laboratorium 03 Jarosław Piersa 10 marca 2014 1 Projekty 1.1 Problem plecakowy (1p) Oznaczenia: dany zbiór przedmiotów x 1,.., x N, każdy przedmiot ma określoną wagę w(x i ) i wartość
LABORATORIUM 4: Algorytmy ewolucyjne cz. 2 wpływ operatorów krzyżowania i mutacji na skuteczność poszukiwań AE
Instytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny, Politechnika Śląska www.imio.polsl.pl METODY HEURYSTYCZNE LABORATORIUM 4: Algorytmy ewolucyjne cz. 2 wpływ operatorów krzyżowania
Algorytmy genetyczne
9 listopada 2010 y ewolucyjne - zbiór metod optymalizacji inspirowanych analogiami biologicznymi (ewolucja naturalna). Pojęcia odwzorowujące naturalne zjawiska: Osobnik Populacja Genotyp Fenotyp Gen Chromosom
Techniki optymalizacji
Techniki optymalizacji Wprowadzenie Maciej Hapke maciej.hapke at put.poznan.pl Literatura D.E. Goldberg Algorytmy genetyczne i zastosowania, WNT, 1995 Z. Michalewicz Algorytmy genetyczne + struktury danych
Metody przeszukiwania
Metody przeszukiwania Co to jest przeszukiwanie Przeszukiwanie polega na odnajdywaniu rozwiązania w dyskretnej przestrzeni rozwiązao. Zwykle przeszukiwanie polega na znalezieniu określonego rozwiązania
Matematyka Dyskretna - zadania
zad. 1. Chcemy zdefiniować rekurencyjnie zbiór Z wszystkich trójkątów równoramiennych ABC, gdzie współrzędne wierzchołków będą liczbami całkowitymi, wierzchołek A zawsze będzie leżeć w początku układu
WPROWADZENIE DO SZTUCZNEJ INTELIGENCJI
POLITECHNIKA WARSZAWSKA WYDZIAŁ MECHANICZNY ENERGETYKI I LOTNICTWA MEL WPROWADZENIE DO SZTUCZNEJ INTELIGENCJI NS 586 Dr inż. Franciszek Dul 5. ROZWIĄZYWANIE PROBLEMÓW Z OGRANICZENIAMI Problemy z ograniczeniami
Generowanie i optymalizacja harmonogramu za pomoca
Generowanie i optymalizacja harmonogramu za pomoca na przykładzie generatora planu zajęć Matematyka Stosowana i Informatyka Stosowana Wydział Fizyki Technicznej i Matematyki Stosowanej Politechnika Gdańska
MIO - LABORATORIUM. Imię i nazwisko Rok ak. Gr. Sem. Komputer Data ... 20 / EC3 VIII LAB...
MIO - LABORATORIUM Temat ćwiczenia: TSP - Problem komiwojażera Imię i nazwisko Rok ak. Gr. Sem. Komputer Data Podpis prowadzącego... 20 / EC3 VIII LAB...... Zadanie Zapoznać się z problemem komiwojażera
Algorytmy genetyczne. Materiały do laboratorium PSI. Studia niestacjonarne
Algorytmy genetyczne Materiały do laboratorium PSI Studia niestacjonarne Podstawowy algorytm genetyczny (PAG) Schemat blokowy algorytmu genetycznego Znaczenia, pochodzących z biologii i genetyki, pojęć
Badania operacyjne: Wykład Zastosowanie kolorowania grafów w planowaniu produkcji typu no-idle
Badania operacyjne: Wykład Zastosowanie kolorowania grafów w planowaniu produkcji typu no-idle Paweł Szołtysek 12 czerwca 2008 Streszczenie Planowanie produkcji jest jednym z problemów optymalizacji dyskretnej,
Algorytmy ewolucyjne NAZEWNICTWO
Algorytmy ewolucyjne http://zajecia.jakubw.pl/nai NAZEWNICTWO Algorytmy ewolucyjne nazwa ogólna, obejmująca metody szczegółowe, jak np.: algorytmy genetyczne programowanie genetyczne strategie ewolucyjne
Matematyka od zaraz zatrudnię
Uniwersytet Jagielloński Gdzie jest matematyka? Soczewka, 26-28 listopada 2010 Kolorowanie grafów Dobre kolorowanie wierzchołków grafu, to nadanie im kolorów w taki sposób, że każde dwa wierzchołki połaczone
Algorytmy genetyczne. Materiały do laboratorium PSI. Studia stacjonarne i niestacjonarne
Algorytmy genetyczne Materiały do laboratorium PSI Studia stacjonarne i niestacjonarne Podstawowy algorytm genetyczny (PAG) Schemat blokowy algorytmu genetycznego Znaczenia, pochodzących z biologii i genetyki,
Zadanie 5 - Algorytmy genetyczne (optymalizacja)
Zadanie 5 - Algorytmy genetyczne (optymalizacja) Marcin Pietrzykowski mpietrzykowski@wi.zut.edu.pl wersja 1.0 1 Cel Celem zadania jest zapoznanie się z Algorytmami Genetycznymi w celu rozwiązywanie zadania
Algorytmy genetyczne dla problemu komiwojażera (ang. traveling salesperson)
Algorytmy genetyczne dla problemu komiwojażera (ang. traveling salesperson) 1 2 Wprowadzenie Sztandarowy problem optymalizacji kombinatorycznej. Problem NP-trudny. Potrzeba poszukiwania heurystyk. Chętnie
Wyznaczanie optymalnej trasy problem komiwojażera
Wyznaczanie optymalnej trasy problem komiwojażera Optymalizacja w podejmowaniu decyzji Opracowała: mgr inż. Natalia Malinowska Wrocław, dn. 28.03.2017 Wydział Elektroniki Politechnika Wrocławska Plan prezentacji
Rachunek podziałów i elementy teorii grafów będą stosowane w procedurach redukcji argumentów i dekompozycji funkcji boolowskich.
Pojęcia podstawowe c.d. Rachunek podziałów Elementy teorii grafów Klasy zgodności Rachunek podziałów i elementy teorii grafów będą stosowane w procedurach redukcji argumentów i dekompozycji funkcji boolowskich.
Działanie algorytmu oparte jest na minimalizacji funkcji celu jako suma funkcji kosztu ( ) oraz funkcji heurystycznej ( ).
Algorytm A* Opracowanie: Joanna Raczyńska 1.Wstęp Algorytm A* jest heurystycznym algorytmem służącym do znajdowania najkrótszej ścieżki w grafie. Jest to algorytm zupełny i optymalny, co oznacza, że zawsze
Algorytmy i struktury danych
POLITECHNIKA KRAKOWSKA - WIEiK KATEDRA AUTOMATYKI i TECHNIK INFORMACYJNYCH Algorytmy i struktury danych www.pk.edu.pl/~zk/aisd_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl Wykład 5: Algorytmy
LABORATORIUM 3: Wpływ operatorów krzyżowania na skuteczność poszukiwań AE
Instytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny, Politechnika Śląska www.imio.polsl.pl OBLICZENIA EWOLUCYJNE LABORATORIUM 3: Wpływ operatorów krzyżowania na skuteczność
Matematyczne Podstawy Informatyki
Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Twierdzenie 2.1 Niech G będzie grafem prostym
Klasyczne zagadnienie przydziału
Klasyczne zagadnienie przydziału Można wyodrębnić kilka grup problemów, w których zadaniem jest odpowiednie rozmieszczenie posiadanych zasobów. Najprostszy problem tej grupy nazywamy klasycznym zagadnieniem
Algorytmy ewolucyjne - algorytmy genetyczne. I. Karcz-Dulęba
Algorytmy ewolucyjne - algorytmy genetyczne I. Karcz-Dulęba Algorytmy klasyczne a algorytmy ewolucyjne Przeszukiwanie przestrzeni przez jeden punkt bazowy Przeszukiwanie przestrzeni przez zbiór punktów
PLAN WYKŁADU OPTYMALIZACJA GLOBALNA ZADANIE KOMIWOJAŻERA METODY ROZWIĄZYWANIA. Specyfika zadania komiwojażera Reprezentacje Operatory
PLAN WYKŁADU Specyfika zadania komiwojażera Reprezentacje Operatory OPTYMALIZACJA GLOBALNA Wykład 5 dr inż. Agnieszka Bołtuć ZADANIE KOMIWOJAŻERA Koncepcja: komiwojażer musi odwiedzić każde miasto na swoim
Algorytmy ewolucyjne. Łukasz Przybyłek Studenckie Koło Naukowe BRAINS
Algorytmy ewolucyjne Łukasz Przybyłek Studenckie Koło Naukowe BRAINS 1 Wprowadzenie Algorytmy ewolucyjne ogólne algorytmy optymalizacji operujące na populacji rozwiązań, inspirowane biologicznymi zjawiskami,
Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe.
Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe. zajecia.jakubw.pl/nai Literatura: S. Osowski, Sieci neuronowe w ujęciu algorytmicznym. WNT, Warszawa 997. PODSTAWOWE ZAGADNIENIA TECHNICZNE AI
Algorytmy genetyczne
Algorytmy genetyczne Motto: Zamiast pracowicie poszukiwać najlepszego rozwiązania problemu informatycznego lepiej pozwolić, żeby komputer sam sobie to rozwiązanie wyhodował! Algorytmy genetyczne służą
ALGORYTMY EWOLUCYJNE W OPTYMALIZACJI JEDNOKRYTERIALNEJ
ALGORYTMY EWOLUCYJNE W OPTYMALIZACJI JEDNOKRYTERIALNEJ Zalety: nie wprowadzają żadnych ograniczeń na sformułowanie problemu optymalizacyjnego. Funkcja celu może być wielowartościowa i nieciągła, obszar
EGZAMIN - Wersja A. ALGORYTMY I STRUKTURY DANYCH Lisek89 opracowanie kartki od Pani dr E. Koszelew
1. ( pkt) Dany jest algorytm, który dla dowolnej liczby naturalnej n, powinien wyznaczyd sumę kolejnych liczb naturalnych mniejszych od n. Wynik algorytmu jest zapisany w zmiennej suma. Algorytm i=1; suma=0;
Modyfikacje i ulepszenia standardowego algorytmu genetycznego
Modyfikacje i ulepszenia standardowego algorytmu genetycznego 1 2 Przypomnienie: pseudokod SGA t=0; initialize(p 0 ); while(!termination_condition(p t )) { evaluate(p t ); T t =selection(p t ); O t =crossover(t
Algorytmy genetyczne w optymalizacji
Algorytmy genetyczne w optymalizacji Literatura 1. David E. Goldberg, Algorytmy genetyczne i ich zastosowania, WNT, Warszawa 1998; 2. Zbigniew Michalewicz, Algorytmy genetyczne + struktury danych = programy
Metody Programowania
POLITECHNIKA KRAKOWSKA - WIEiK KATEDRA AUTOMATYKI i TECHNIK INFORMACYJNYCH Metody Programowania www.pk.edu.pl/~zk/mp_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl Wykład 8: Wyszukiwanie
Obliczenia ewolucyjne - plan wykładu
Obliczenia ewolucyjne - plan wykładu Wprowadzenie Algorytmy genetyczne Programowanie genetyczne Programowanie ewolucyjne Strategie ewolucyjne Inne modele obliczeń ewolucyjnych Podsumowanie Ewolucja Ewolucja
Algorytmy Mrówkowe. Daniel Błaszkiewicz. 11 maja 2011. Instytut Informatyki Uniwersytetu Wrocławskiego
Algorytmy Mrówkowe Instytut Informatyki Uniwersytetu Wrocławskiego 11 maja 2011 Opis Mrówki w naturze Algorytmy to stosunkowo nowy gatunek algorytmów optymalizacyjnych stworzony przez Marco Dorigo w 1992
Algorytmy i struktury danych. Drzewa: BST, kopce. Letnie Warsztaty Matematyczno-Informatyczne
Algorytmy i struktury danych Drzewa: BST, kopce Letnie Warsztaty Matematyczno-Informatyczne Drzewa: BST, kopce Definicja drzewa Drzewo (ang. tree) to nieskierowany, acykliczny, spójny graf. Drzewo może
Algorytmy genetyczne (AG)
Algorytmy genetyczne (AG) 1. Wprowadzenie do AG a) ewolucja darwinowska b) podstawowe definicje c) operatory genetyczne d) konstruowanie AG e) standardowy AG f) przykład rozwiązania g) naprawdę bardzo,
Wstęp do Sztucznej Inteligencji
Wstęp do Sztucznej Inteligencji Algorytmy Genetyczne Joanna Kołodziej Politechnika Krakowska Wydział Fizyki, Matematyki i Informatyki Metody heurystyczne Algorytm efektywny: koszt zastosowania (mierzony
10. Kolorowanie wierzchołków grafu
p. 10. Kolorowanie wierzchołków grafu 10.1 Definicje i twierdzenia Przez k-kolorowanie wierzchołków grafu G rozumiemy przyporzadkowanie każdemu wierzchołkowi grafu G jednego z k kolorów 1, 2,...,k. p.
Algorytmy i struktury danych. Co dziś? Tytułem przypomnienia metoda dziel i zwyciężaj. Wykład VIII Elementarne techniki algorytmiczne
Algorytmy i struktury danych Wykład VIII Elementarne techniki algorytmiczne Co dziś? Algorytmy zachłanne (greedyalgorithms) 2 Tytułem przypomnienia metoda dziel i zwyciężaj. Problem można podzielić na
Plan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA?
/9/ Zagadnienie transportowe Optymalizacja w procesach biznesowych Wykład --9 Plan wykładu Przykład zagadnienia transportowego Sformułowanie problemu Własności zagadnienia transportowego Metoda potencjałów
Algorytmy genetyczne. Dariusz Banasiak. Katedra Informatyki Technicznej Wydział Elektroniki
Dariusz Banasiak Katedra Informatyki Technicznej Wydział Elektroniki Obliczenia ewolucyjne (EC evolutionary computing) lub algorytmy ewolucyjne (EA evolutionary algorithms) to ogólne określenia używane
Algorytm genetyczny (genetic algorithm)-
Optymalizacja W praktyce inżynierskiej często zachodzi potrzeba znalezienia parametrów, dla których system/urządzenie będzie działać w sposób optymalny. Klasyczne podejście do optymalizacji: sformułowanie
Kolorowanie wierzchołków Kolorowanie krawędzi Kolorowanie regionów i map. Wykład 8. Kolorowanie
Wykład 8. Kolorowanie 1 / 62 Kolorowanie wierzchołków - definicja Zbiory niezależne Niech G będzie grafem bez pętli. Definicja Mówimy, że G jest grafem k kolorowalnym, jeśli każdemu wierzchołkowi możemy
Optymalizacja. Przeszukiwanie lokalne
dr hab. inż. Instytut Informatyki Politechnika Poznańska www.cs.put.poznan.pl/mkomosinski, Maciej Hapke Idea sąsiedztwa Definicja sąsiedztwa x S zbiór N(x) S rozwiązań, które leżą blisko rozwiązania x
Przypomnij sobie krótki wstęp do teorii grafów przedstawiony na początku semestru.
Spis treści 1 Drzewa 1.1 Drzewa binarne 1.1.1 Zadanie 1.1.2 Drzewo BST (Binary Search Tree) 1.1.2.1 Zadanie 1 1.1.2.2 Zadanie 2 1.1.2.3 Zadanie 3 1.1.2.4 Usuwanie węzła w drzewie BST 1.1.2.5 Zadanie 4
Temat: Algorytmy zachłanne
Temat: Algorytmy zachłanne Algorytm zachłanny ( ang. greedy algorithm) wykonuje zawsze działanie, które wydaje się w danej chwili najkorzystniejsze. Wybiera zatem lokalnie optymalną możliwość w nadziei,
Odkrywanie algorytmów kwantowych za pomocą programowania genetycznego
Odkrywanie algorytmów kwantowych za pomocą programowania genetycznego Piotr Rybak Koło naukowe fizyków Migacz, Uniwersytet Wrocławski Piotr Rybak (Migacz UWr) Odkrywanie algorytmów kwantowych 1 / 17 Spis
Tomasz M. Gwizdałła 2012/13
METODY METODY OPTYMALIZACJI OPTYMALIZACJI Tomasz M. Gwizdałła 2012/13 Informacje wstępne Tomasz Gwizdałła Katedra Fizyki Ciała Stałego UŁ Pomorska 149/153, p.523b tel. 6355709 tomgwizd@uni.lodz.pl http://www.wfis.uni.lodz.pl/staff/tgwizdalla
FUNKCJE. (odwzorowania) Funkcje 1
FUNKCJE (odwzorowania) Funkcje 1 W matematyce funkcja ze zbioru X w zbiór Y nazywa się odwzorowanie (przyporządkowanie), które każdemu elementowi zbioru X przypisuje jeden, i tylko jeden element zbioru
Wybrane podstawowe rodzaje algorytmów
Wybrane podstawowe rodzaje algorytmów Tomasz Głowacki tglowacki@cs.put.poznan.pl Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii informatycznych
Algorytmy ewolucyjne
Algorytmy ewolucyjne wprowadzenie Piotr Lipiński lipinski@ii.uni.wroc.pl Piotr Lipiński Algorytmy ewolucyjne p.1/16 Cel wykładu zapoznanie studentów z algorytmami ewolucyjnymi, przede wszystkim nowoczesnymi
Algorytm hybrydowy dla alokacji portfela inwestycyjnego przy ograniczonych zasobach
Adam Stawowy Algorytm hybrydowy dla alokacji portfela inwestycyjnego przy ograniczonych zasobach Summary: We present a meta-heuristic to combine Monte Carlo simulation with genetic algorithm for Capital
6. Klasyczny algorytm genetyczny. 1
6. Klasyczny algorytm genetyczny. 1 Idea algorytmu genetycznego została zaczerpnięta z nauk przyrodniczych opisujących zjawiska doboru naturalnego i dziedziczenia. Mechanizmy te polegają na przetrwaniu
Optymalizacja. Wybrane algorytmy
dr hab. inż. Instytut Informatyki Politechnika Poznańska www.cs.put.poznan.pl/mkomosinski, Andrzej Jaszkiewicz Problem optymalizacji kombinatorycznej Problem optymalizacji kombinatorycznej jest problemem
Algorytmika Problemów Trudnych
Algorytmika Problemów Trudnych Wykład 9 Tomasz Krawczyk krawczyk@tcs.uj.edu.pl Kraków, semestr letni 2016/17 plan wykładu Algorytmy aproksymacyjne: Pojęcie algorytmu aproksymacyjnego i współczynnika aproksymowalności.
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2011-10-11 1 Modelowanie funkcji logicznych
Standardowy algorytm genetyczny
Standardowy algorytm genetyczny 1 Szybki przegląd 2 Opracowany w USA w latach 70. Wcześni badacze: John H. Holland. Autor monografii Adaptation in Natural and Artificial Systems, wydanej w 1975 r., (teoria
Analiza algorytmów zadania podstawowe
Analiza algorytmów zadania podstawowe Zadanie 1 Zliczanie Zliczaj(n) 1 r 0 2 for i 1 to n 1 3 do for j i + 1 to n 4 do for k 1 to j 5 do r r + 1 6 return r 0 Jaka wartość zostanie zwrócona przez powyższą
ALGORYTMY GENETYCZNE ćwiczenia
ćwiczenia Wykorzystaj algorytmy genetyczne do wyznaczenia minimum globalnego funkcji testowej: 1. Wylosuj dwuwymiarową tablicę 100x2 liczb 8-bitowych z zakresu [-100; +100] reprezentujących inicjalną populację
Przeszukiwanie z nawrotami. Wykład 8. Przeszukiwanie z nawrotami. J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 238 / 279
Wykład 8 J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 238 / 279 sformułowanie problemu przegląd drzewa poszukiwań przykłady problemów wybrane narzędzia programistyczne J. Cichoń, P. Kobylański
ALHE Z11 Jarosław Arabas wykład 11
ALHE Z11 Jarosław Arabas wykład 11 algorytm ewolucyjny inicjuj P 0 {x 1, x 2... x } t 0 while! stop for i 1: if a p c O t,i mutation crossover select P t, k else O t,i mutation select P t,1 P t 1 replacement
Laboratorium technik optymalizacji: układanie uniwersyteckiego planu zajęć
Laboratorium technik optymalizacji: układanie uniwersyteckiego planu zajęć Marek Kubiak Opis problemu Rozważany problem układania uniwersyteckiego planu zajęć (ang. University Course Timetabling Problem
Eksperymenty obliczeniowe z algorytmami ewolucyjnymi i porównania algorytmów.
Eksperymenty obliczeniowe z algorytmami ewolucyjnymi i porównania algorytmów. 1 Wprowadzenie Do tej pory nie rozważaliśmy odpowiedzi na pytanie, Po co uruchamiam algorytm ewolucyjny Kilka możliwych odpowiedzi:
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA WYKŁAD 13. PROBLEMY OPTYMALIZACYJNE Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska PROBLEMY OPTYMALIZACYJNE Optymalizacja poszukiwanie
Programowanie liniowe
Programowanie liniowe Maciej Drwal maciej.drwal@pwr.wroc.pl 1 Problem programowania liniowego min x c T x (1) Ax b, (2) x 0. (3) gdzie A R m n, c R n, b R m. Oznaczmy przez x rozwiązanie optymalne, tzn.
Modele i narzędzia optymalizacji w systemach informatycznych zarządzania
Politechnika Poznańska Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Joanna Józefowska POZNAŃ 2010/11 Spis treści Rozdział 1. Metoda programowania dynamicznego........... 5
Kolorowanie wierzchołków grafu
Kolorowanie wierzchołków grafu Niech G będzie grafem prostym. Przez k-kolorowanie właściwe wierzchołków grafu G rozumiemy takie przyporządkowanie wierzchołkom grafu liczb naturalnych ze zbioru {1,...,
Algorytmy ewolucyjne (3)
Algorytmy ewolucyjne (3) http://zajecia.jakubw.pl/nai KODOWANIE PERMUTACJI W pewnych zastosowaniach kodowanie binarne jest mniej naturalne, niż inne sposoby kodowania. Na przykład, w problemie komiwojażera
LABORATORIUM 7: Problem komiwojażera (TSP) cz. 2
Instytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny, Politechnika Śląska www.imio.polsl.pl OBLICZENIA EWOLUCYJNE LABORATORIUM 7: Problem komiwojażera (TSP) cz. 2 opracował:
Programowanie liniowe całkowitoliczbowe
Programowanie liniowe całkowitoliczbowe Jeżeli w zadaniu programowania liniowego pewne (lub wszystkie) zmienne musza przyjmować wartości całkowite, to takie zadanie nazywamy zadaniem programowania liniowego
WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA
DRZEWA i LASY Drzewem nazywamy graf spójny nie zawierający cykli elementarnych. Lasem nazywamy graf nie zawierający cykli elementarnych. Przykłady drzew i lasów takie krawędzie są wykluczone drzewo las
LABORATORIUM 2: Wpływ wielkości populacji i liczby pokoleń na skuteczność poszukiwań AE. opracował: dr inż. Witold Beluch
OBLICZENIA EWOLUCYJNE LABORATORIUM 2: Wpływ wielkości populacji i liczby pokoleń na skuteczność poszukiwań AE opracował: dr inż. Witold Beluch witold.beluch@polsl.pl Gliwice 12 OBLICZENIA EWOLUCYJNE LABORATORIUM
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2012-10-10 Projekt pn. Wzmocnienie
Definicje. Algorytm to:
Algorytmy Definicje Algorytm to: skończony ciąg operacji na obiektach, ze ściśle ustalonym porządkiem wykonania, dający możliwość realizacji zadania określonej klasy pewien ciąg czynności, który prowadzi
PLAN WYKŁADU OPTYMALIZACJA GLOBALNA OPERATOR KRZYŻOWANIA ETAPY KRZYŻOWANIA
PLAN WYKŁADU Operator krzyżowania Operator mutacji Operator inwersji Sukcesja Przykłady symulacji AG Kodowanie - rodzaje OPTYMALIZACJA GLOBALNA Wykład 3 dr inż. Agnieszka Bołtuć OPERATOR KRZYŻOWANIA Wymiana
Algorytmy ewolucyjne
Algorytmy ewolucyjne Dr inż. Michał Bereta p. 144 / 10, Instytut Modelowania Komputerowego mbereta@pk.edu.pl beretam@torus.uck.pk.edu.pl www.michalbereta.pl Problemy świata rzeczywistego często wymagają
ĆWICZENIE NR 1 WPROWADZENIE DO INFORMATYKI
J.NAWROCKI, M. ANTCZAK, H. ĆWIEK, W. FROHMBERG, A. HOFFA, M. KIERZYNKA, S.WĄSIK ĆWICZENIE NR 1 WPROWADZENIE DO INFORMATYKI ZAD. 1. Narysowad graf nieskierowany. Zmodyfikowad go w taki sposób, aby stał
Optymalizacja. Algorytmy dokładne
dr hab. inż. Instytut Informatyki Politechnika Poznańska www.cs.put.poznan.pl/mkomosinski, Maciej Hapke Organizacja zbioru rozwiązań w problemie SAT Wielokrotny podział na dwia podzbiory: x 1 = T, x 1
Algorytmy genetyczne. Paweł Cieśla. 8 stycznia 2009
Algorytmy genetyczne Paweł Cieśla 8 stycznia 2009 Genetyka - nauka o dziedziczeniu cech pomiędzy pokoleniami. Geny są czynnikami, które decydują o wyglądzie, zachowaniu, rozmnażaniu każdego żywego organizmu.
Document: Exercise*02*-*manual /11/ :31---page1of8 INSTRUKCJA DO ĆWICZENIA NR 2
Document: Exercise*02*-*manual ---2014/11/12 ---8:31---page1of8 PRZEDMIOT TEMAT KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 2 Wybrane zagadnienia z
Wykład 8. Drzewo rozpinające (minimum spanning tree)
Wykład 8 Drzewo rozpinające (minimum spanning tree) 1 Minimalne drzewo rozpinające - przegląd Definicja problemu Własności minimalnych drzew rozpinających Algorytm Kruskala Algorytm Prima Literatura Cormen,
Metoda określania pozycji wodnicy statków na podstawie pomiarów odległości statku od głowic laserowych
inż. Marek Duczkowski Metoda określania pozycji wodnicy statków na podstawie pomiarów odległości statku od głowic laserowych słowa kluczowe: algorytm gradientowy, optymalizacja, określanie wodnicy W artykule
Matematyka dyskretna - wykład - część Podstawowe algorytmy kombinatoryczne
A. Permutacja losowa Matematyka dyskretna - wykład - część 2 9. Podstawowe algorytmy kombinatoryczne Załóżmy, że mamy tablice p złożoną z n liczb (ponumerowanych od 0 do n 1). Aby wygenerować losową permutację
Wykład VII. Kryptografia Kierunek Informatyka - semestr V. dr inż. Janusz Słupik. Gliwice, 2014. Wydział Matematyki Stosowanej Politechniki Śląskiej
Wykład VII Kierunek Informatyka - semestr V Wydział Matematyki Stosowanej Politechniki Śląskiej Gliwice, 2014 c Copyright 2014 Janusz Słupik Problem pakowania plecaka System kryptograficzny Merklego-Hellmana
Zagadnienie transportowe
9//9 Zagadnienie transportowe Optymalizacja w procesach biznesowych Wykład Plan wykładu Przykład zagadnienia transportowego Sformułowanie problemu Własności zagadnienia transportowego Metoda potencjałów
Programowanie dynamiczne i algorytmy zachłanne
Programowanie dynamiczne i algorytmy zachłanne Tomasz Głowacki tglowacki@cs.put.poznan.pl Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii
zadaniem programowania liniowego całkowitoliczbowego. nazywamy zadaniem programowania liniowego 0-1. Zatem, w
Sformułowanie problemu Zastosowania Programowanie liniowe całkowitoliczbowe Jeżeli w zadaniu programowania liniowego pewne (lub wszystkie) zmienne musza przyjmować wartości całkowite, to takie zadanie
Ekonometria - ćwiczenia 10
Ekonometria - ćwiczenia 10 Mateusz Myśliwski Zakład Ekonometrii Stosowanej Instytut Ekonometrii Kolegium Analiz Ekonomicznych Szkoła Główna Handlowa 14 grudnia 2012 Wprowadzenie Optymalizacja liniowa Na
WEKTOROWE KODOWANIE PERMUTACJI. NOWE OPERATORY GENETYCZNE
WEKTOROWE KODOWANIE PERMUTACJI. NOWE OPERATORY GENETYCZNE Mariusz MAKUCHOWSKI Streszczenie: W pracy proponuje się alternatywny sposób kodowania permutacji. Prezentuje się szereg jego własności niewystępujących
POISSONOWSKA APROKSYMACJA W SYSTEMACH NIEZAWODNOŚCIOWYCH
POISSONOWSKA APROKSYMACJA W SYSTEMACH NIEZAWODNOŚCIOWYCH Barbara Popowska bpopowsk@math.put.poznan.pl Politechnika Poznańska http://www.put.poznan.pl/ PROGRAM REFERATU 1. WPROWADZENIE 2. GRAF JAKO MODEL
Metoda podziału i ograniczeń
Seminarium: Algorytmy heurystyczne Metoda podziału i ograniczeń Mateusz Łyczek Wrocław, 16 marca 011 r. 1 Metoda podziału i ograniczeń Metoda podziału i ograniczeń służy do rozwiązywania problemów optymalizacyjnych.
Reprezentacje grafów nieskierowanych Reprezentacje grafów skierowanych. Wykład 2. Reprezentacja komputerowa grafów
Wykład 2. Reprezentacja komputerowa grafów 1 / 69 Macierz incydencji Niech graf G będzie grafem nieskierowanym bez pętli o n wierzchołkach (x 1, x 2,..., x n) i m krawędziach (e 1, e 2,..., e m). 2 / 69
Minimalne drzewa rozpinające
KNM UŚ 26-28 listopada 2010 Ostrzeżenie Wprowadzenie Motywacja Definicje Niektóre pojęcia pojawiające się podczas tego referatu są naszymi autorskimi tłumaczeniami z języka angielskiego. Nie udało nam
SCHEMAT ROZWIĄZANIA ZADANIA OPTYMALIZACJI PRZY POMOCY ALGORYTMU GENETYCZNEGO
SCHEMAT ROZWIĄZANIA ZADANIA OPTYMALIZACJI PRZY POMOCY ALGORYTMU GENETYCZNEGO. Rzeczywistość (istniejąca lub projektowana).. Model fizyczny. 3. Model matematyczny (optymalizacyjny): a. Zmienne projektowania
Jeśli X jest przestrzenią o nieskończonej liczbie elementów:
Logika rozmyta 2 Zbiór rozmyty może być formalnie zapisany na dwa sposoby w zależności od tego z jakim typem przestrzeni elementów mamy do czynienia: Jeśli X jest przestrzenią o skończonej liczbie elementów