ALGORYTMY EWOLUCYJNE W OPTYMALIZACJI JEDNOKRYTERIALNEJ

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "ALGORYTMY EWOLUCYJNE W OPTYMALIZACJI JEDNOKRYTERIALNEJ"

Transkrypt

1 ALGORYTMY EWOLUCYJNE W OPTYMALIZACJI JEDNOKRYTERIALNEJ Zalety: nie wprowadzają żadnych ograniczeń na sformułowanie problemu optymalizacyjnego. Funkcja celu może być wielowartościowa i nieciągła, obszar dopuszczalny niespójny itp. Można je wykorzystać do rozwiązania każdego problemu optymalizacyjnego, tzn. problemu z ciągłymi, dyskretnymi, całkowitymi i mieszanymi zmiennymi decyzyjnymi.

2 Ogólne sformułowanie jednokryterialnego problemu optymalizacji: Znajdź wektor zmiennych decyzyjnych: x * = [x 1 *, x 2 *,..., x n * ] T spełniający: K ograniczeń nierównościowych g k (x) 0 k = 1,2,. K M ograniczeń równościowych h m (x) = 0 m = 1,2,. M i minimalizujący funkcję celu f(x) f(x * ) = min. f(x) oraz: g k (x * ) 0 k = 1,2,. K h m (x * ) = 0 m = 1,2,. M

3

4 FUNKCJA CELU I FUNKCJA PRZYSTOSOWANIA Odwzorowanie funkcji celu na funkcję przystosowania (skalowanie funkcji celu): Selekcja: proporcjonalna: skalowanie jest konieczne. turniejowa i rankingowa: skalowanie jest nieistotne.

5 Metody odwzorowania funkcji celu na funkcję dopasowania w przypadku selekcji proporcjonalnej: Sposób najprostszy: wykorzystanie dodatniej stałej i określenie funkcji przystosowania w postaci: gdzie : f ' ( x) C f ( x ) C f( x ) dla wszystkich x, lub t j - w iteracji t C max.{ f ( x )} j J J wielkość populacji

6 Statyczne skalowanie liniowe f ' ( x ) a f ( x) b a,b stałe parametry dla wszystkich iteracji. Dynamiczne skalowanie liniowe f ' t ( x ) a f ( x) b t a stały parametr dla wszystkich iteracji, b t parametr ustalany w każdej iteracji.

7 Metoda obcięcia f t '( x ) f ( x) [ ~ f ( x) c ] c stała - odchylenie standardowe populacji. ~ f ( x ) - wartość średnia dopasowania w populacji.

8 Skalowanie wykładnicze t f t f '( x) ( x) - wykładnik potęgi bliski jedności, np Skalowanie logarytmiczne f ( x) b log[ f ( x )] ' t t b stała większa od każdej wartości log[ ft ( x )]

9 Metoda ruchomej bazy (windowing) f ( x) f ( x ) f ' t t w w - szerokość okna (zwykle 2 10). f - najgorsza wartość w ostatnich w iteracjach. w

10 Normalizacja Problem maksimum: f ' t ft ( x) f ( x ) f f max min min Problem minimum: f ' t f f max t ( x ) max f ( x) f min

11 Selekcja turniejowa i rankingowa: skalowanie jest nieistotne.

12 UWZGLĘDNIANIE OGRANICZEŃ Znajdź wektor: x * minimalizujący funkcję celu: f(x) oraz spełniający K ograniczeń nierównościowych: g k (x) 0; M ograniczeń równościowych: h m (x) = 0. Operacje przeprowadzane losowo na chromosomach mogą generować rozwiązania niedopuszczalne (tzn. leżące poza obszarem dopuszczalnym wyznaczonym przez ograniczenia).

13 Metody generujące rozwiązania w obszarze dopuszczalnym: Metoda odrzucania W każdej iteracji chromosomy zawierające rozwiązania niedopuszczalne są odrzucane. (Działa skutecznie gdy obszar dopuszczalny zajmuje większa część całkowitej przestrzeni przeszukiwań.)

14 Metoda poprawiania W każdej iteracji chromosomy zawierające rozwiązania niedopuszczalne są reperowane, tak aby zawierały rozwiązania z obszaru dopuszczalnego. (Strategia reperowania zależy od natury problemu i często jest bardziej skomplikowana niż rozwiązywany problem)

15 Metoda funkcji kary Przeniesienie na grunt algorytmów ewolucyjnych techniki stosowanej w konwencjonalnych metodach optymalizacyjnych (rozwiązania spoza obszaru dopuszczalnego są karane przy wykorzystaniu współczynnika kary). Zasada generalna: problem z ograniczeniami jest transformowany do problemu bez ograniczeń, w wyniku włączenia ograniczeń do rozszerzonej funkcji celu: ( x, r) f ( x) r{ M m 1 [ h m ( x)] 2 K k 1 G k [ g k ( x)] 2 } r G k współczynnik kontrolujący wielkość członu kary - operator Heaviside = 0 gdy g k (x)>= 0 oraz = 1 gdy g k (x)<0.

16 SELEKCJA TURNIEJOWA W PROBLEMACH OPTYMALIZACJI Z OGRANICZENIAMI Jedna z najbardziej efektywnych metod rozwiązania zadania programowania nieliniowego z ograniczeniami.

17 Operator selekcji turniejowej: W selekcji biorą udział dwa chromosomy populacji rodzicielskiej. (i) Jeżeli oba chromosomy są z obszaru niedopuszczalnego, to do populacji tymczasowej wybierany jest chromosom położony bliżej obszaru dopuszczalnego (na podstawie oceny odległości od brzegu obszaru dopuszczalnego). Ocena odległości od obszaru dopuszczalnego: M m 1 ( x ) [ h ( x)] G [ g ( x)] m 2 K k 1 k k 2 W obszarze dopuszczalnym ( x ) 0. W obszarze niedopuszczalnym ( ) 0 x. Dla żadnego z chromosomów nie oblicza się wartości funkcji celu.

18 (ii) Jeżeli jeden chromosom jest z obszaru dopuszczalnego, a drugi z obszaru niedopuszczalnego, to do populacji tymczasowej wybierany jest chromosom należący do obszaru dopuszczalnego. Dla żadnego z chromosomów nie oblicza się wartości funkcji celu. (iii) Jeżeli oba chromosomy są z obszaru dopuszczalnego, to dla obu oblicza się wartość funkcji przystosowania i do populacji tymczasowej przechodzi chromosom o lepszej wartości tej funkcji.

Algorytm genetyczny (genetic algorithm)-

Algorytm genetyczny (genetic algorithm)- Optymalizacja W praktyce inżynierskiej często zachodzi potrzeba znalezienia parametrów, dla których system/urządzenie będzie działać w sposób optymalny. Klasyczne podejście do optymalizacji: sformułowanie

Bardziej szczegółowo

Algorytmy genetyczne w optymalizacji

Algorytmy genetyczne w optymalizacji Algorytmy genetyczne w optymalizacji Literatura 1. David E. Goldberg, Algorytmy genetyczne i ich zastosowania, WNT, Warszawa 1998; 2. Zbigniew Michalewicz, Algorytmy genetyczne + struktury danych = programy

Bardziej szczegółowo

SZTUCZNA INTELIGENCJA

SZTUCZNA INTELIGENCJA SZTUCZNA INTELIGENCJA WYKŁAD 13. PROBLEMY OPTYMALIZACYJNE Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska PROBLEMY OPTYMALIZACYJNE Optymalizacja poszukiwanie

Bardziej szczegółowo

Algorytmy genetyczne

Algorytmy genetyczne Politechnika Łódzka Katedra Informatyki Stosowanej Algorytmy genetyczne Wykład 2 Przygotował i prowadzi: Dr inż. Piotr Urbanek Powtórzenie Pytania: Jaki mechanizm jest stosowany w naturze do takiego modyfikowania

Bardziej szczegółowo

Algorytmy genetyczne. Materiały do laboratorium PSI. Studia stacjonarne i niestacjonarne

Algorytmy genetyczne. Materiały do laboratorium PSI. Studia stacjonarne i niestacjonarne Algorytmy genetyczne Materiały do laboratorium PSI Studia stacjonarne i niestacjonarne Podstawowy algorytm genetyczny (PAG) Schemat blokowy algorytmu genetycznego Znaczenia, pochodzących z biologii i genetyki,

Bardziej szczegółowo

Algorytmy genetyczne. Materiały do laboratorium PSI. Studia niestacjonarne

Algorytmy genetyczne. Materiały do laboratorium PSI. Studia niestacjonarne Algorytmy genetyczne Materiały do laboratorium PSI Studia niestacjonarne Podstawowy algorytm genetyczny (PAG) Schemat blokowy algorytmu genetycznego Znaczenia, pochodzących z biologii i genetyki, pojęć

Bardziej szczegółowo

Obliczenia ewolucyjne - plan wykładu

Obliczenia ewolucyjne - plan wykładu Obliczenia ewolucyjne - plan wykładu Wprowadzenie Algorytmy genetyczne Programowanie genetyczne Programowanie ewolucyjne Strategie ewolucyjne Inne modele obliczeń ewolucyjnych Podsumowanie Ewolucja Ewolucja

Bardziej szczegółowo

SCHEMAT ROZWIĄZANIA ZADANIA OPTYMALIZACJI PRZY POMOCY ALGORYTMU GENETYCZNEGO

SCHEMAT ROZWIĄZANIA ZADANIA OPTYMALIZACJI PRZY POMOCY ALGORYTMU GENETYCZNEGO SCHEMAT ROZWIĄZANIA ZADANIA OPTYMALIZACJI PRZY POMOCY ALGORYTMU GENETYCZNEGO. Rzeczywistość (istniejąca lub projektowana).. Model fizyczny. 3. Model matematyczny (optymalizacyjny): a. Zmienne projektowania

Bardziej szczegółowo

Algorytmy ewolucyjne. wprowadzenie

Algorytmy ewolucyjne. wprowadzenie Algorytmy ewolucyjne wprowadzenie Gracjan Wilczewski, www.mat.uni.torun.pl/~gracjan Toruń, 2005 Historia Podstawowy algorytm genetyczny został wprowadzony przez Johna Hollanda (Uniwersytet Michigan) i

Bardziej szczegółowo

PLAN WYKŁADU OPTYMALIZACJA GLOBALNA OPERATOR KRZYŻOWANIA ETAPY KRZYŻOWANIA

PLAN WYKŁADU OPTYMALIZACJA GLOBALNA OPERATOR KRZYŻOWANIA ETAPY KRZYŻOWANIA PLAN WYKŁADU Operator krzyżowania Operator mutacji Operator inwersji Sukcesja Przykłady symulacji AG Kodowanie - rodzaje OPTYMALIZACJA GLOBALNA Wykład 3 dr inż. Agnieszka Bołtuć OPERATOR KRZYŻOWANIA Wymiana

Bardziej szczegółowo

Document: Exercise*02*-*manual /11/ :31---page1of8 INSTRUKCJA DO ĆWICZENIA NR 2

Document: Exercise*02*-*manual /11/ :31---page1of8 INSTRUKCJA DO ĆWICZENIA NR 2 Document: Exercise*02*-*manual ---2014/11/12 ---8:31---page1of8 PRZEDMIOT TEMAT KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 2 Wybrane zagadnienia z

Bardziej szczegółowo

Algorytmy genetyczne

Algorytmy genetyczne Politechnika Łódzka Katedra Informatyki Stosowanej Algorytmy genetyczne Wykład 2 Przygotował i prowadzi: Dr inż. Piotr Urbanek Powtórzenie Pytania: Jaki mechanizm jest stosowany w naturze do takiego modyfikowania

Bardziej szczegółowo

Algorytmy genetyczne. Paweł Cieśla. 8 stycznia 2009

Algorytmy genetyczne. Paweł Cieśla. 8 stycznia 2009 Algorytmy genetyczne Paweł Cieśla 8 stycznia 2009 Genetyka - nauka o dziedziczeniu cech pomiędzy pokoleniami. Geny są czynnikami, które decydują o wyglądzie, zachowaniu, rozmnażaniu każdego żywego organizmu.

Bardziej szczegółowo

Optymalizacja. Przeszukiwanie lokalne

Optymalizacja. Przeszukiwanie lokalne dr hab. inż. Instytut Informatyki Politechnika Poznańska www.cs.put.poznan.pl/mkomosinski, Maciej Hapke Idea sąsiedztwa Definicja sąsiedztwa x S zbiór N(x) S rozwiązań, które leżą blisko rozwiązania x

Bardziej szczegółowo

Algorytmy ewolucyjne

Algorytmy ewolucyjne Algorytmy ewolucyjne Dr inż. Michał Bereta p. 144 / 10, Instytut Modelowania Komputerowego mbereta@pk.edu.pl beretam@torus.uck.pk.edu.pl www.michalbereta.pl Problemy świata rzeczywistego często wymagają

Bardziej szczegółowo

6. Klasyczny algorytm genetyczny. 1

6. Klasyczny algorytm genetyczny. 1 6. Klasyczny algorytm genetyczny. 1 Idea algorytmu genetycznego została zaczerpnięta z nauk przyrodniczych opisujących zjawiska doboru naturalnego i dziedziczenia. Mechanizmy te polegają na przetrwaniu

Bardziej szczegółowo

Algorytmy metaheurystyczne Wykład 6. Piotr Syga

Algorytmy metaheurystyczne Wykład 6. Piotr Syga Algorytmy metaheurystyczne Wykład 6 Piotr Syga 10.04.2017 Wprowadzenie Inspiracje Wprowadzenie ACS idea 1 Zaczynamy z pustym rozwiązaniem początkowym 2 Dzielimy problem na komponenty (przedmiot do zabrania,

Bardziej szczegółowo

Algorytmy ewolucyjne - algorytmy genetyczne. I. Karcz-Dulęba

Algorytmy ewolucyjne - algorytmy genetyczne. I. Karcz-Dulęba Algorytmy ewolucyjne - algorytmy genetyczne I. Karcz-Dulęba Algorytmy klasyczne a algorytmy ewolucyjne Przeszukiwanie przestrzeni przez jeden punkt bazowy Przeszukiwanie przestrzeni przez zbiór punktów

Bardziej szczegółowo

Jacek Skorupski pok. 251 tel konsultacje: poniedziałek , sobota zjazdowa

Jacek Skorupski pok. 251 tel konsultacje: poniedziałek , sobota zjazdowa Jacek Skorupski pok. 251 tel. 234-7339 jsk@wt.pw.edu.pl http://skorupski.waw.pl/mmt prezentacje ogłoszenia konsultacje: poniedziałek 16 15-18, sobota zjazdowa 9 40-10 25 Udział w zajęciach Kontrola wyników

Bardziej szczegółowo

Programowanie liniowe

Programowanie liniowe Programowanie liniowe Maciej Drwal maciej.drwal@pwr.wroc.pl 1 Problem programowania liniowego min x c T x (1) Ax b, (2) x 0. (3) gdzie A R m n, c R n, b R m. Oznaczmy przez x rozwiązanie optymalne, tzn.

Bardziej szczegółowo

Plan. Zakres badań teorii optymalizacji. Teoria optymalizacji. Teoria optymalizacji a badania operacyjne. Badania operacyjne i teoria optymalizacji

Plan. Zakres badań teorii optymalizacji. Teoria optymalizacji. Teoria optymalizacji a badania operacyjne. Badania operacyjne i teoria optymalizacji Badania operacyjne i teoria optymalizacji Instytut Informatyki Poznań, 2011/2012 1 2 3 Teoria optymalizacji Teoria optymalizacji a badania operacyjne Teoria optymalizacji zajmuje się badaniem metod optymalizacji

Bardziej szczegółowo

Algorytmy ewolucyjne optymalizacji wielokryterialnej sterowane preferencjami decydenta

Algorytmy ewolucyjne optymalizacji wielokryterialnej sterowane preferencjami decydenta Algorytmy ewolucyjne optymalizacji wielokryterialnej sterowane preferencjami decydenta Dr Janusz Miroforidis MGI Metro Group Information Technology Polska Sp. z o.o. listopad 2010 Wprowadzenie Plan prezentacji

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody systemowe i decyzyjne w informatyce Ćwiczenia lista zadań nr 3 autorzy: A. Gonczarek, J.M. Tomczak Zbiory i funkcje wypukłe Zad. 1 Pokazać, że następujące zbiory są wypukłe: a) płaszczyzna S = {x

Bardziej szczegółowo

Metody przeszukiwania

Metody przeszukiwania Metody przeszukiwania Co to jest przeszukiwanie Przeszukiwanie polega na odnajdywaniu rozwiązania w dyskretnej przestrzeni rozwiązao. Zwykle przeszukiwanie polega na znalezieniu określonego rozwiązania

Bardziej szczegółowo

Analiza wielokryterialna

Analiza wielokryterialna Analiza wielokryterialna dr hab. inż. Krzysztof Patan, prof. PWSZ Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa w Głogowie k.patan@issi.uz.zgora.pl Wprowadzenie Wielokryterialny wybór wariantu

Bardziej szczegółowo

Spis treści. Koszalin 2006 [BADANIA OPERACYJNE PROGRAMOWANIE LINIOWE]

Spis treści. Koszalin 2006 [BADANIA OPERACYJNE PROGRAMOWANIE LINIOWE] Spis treści 1 Zastosowanie Matlab a... 2 1.1 Wstęp... 2 1.2 Zagadnienie standardowe... 3 1.3 Zagadnienie transportowe... 5 1 Zastosowanie Matlab a Anna Tomkowska [BADANIA OPERACYJNE PROGRAMOWANIE LINIOWE]

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody systemowe i decyzyjne w informatyce Laboratorium Zadanie nr 3 Osada autor: A Gonczarek Celem poniższego zadania jest zrealizowanie fragmentu komputerowego przeciwnika w grze strategiczno-ekonomicznej

Bardziej szczegółowo

Algorytmy genetyczne

Algorytmy genetyczne 9 listopada 2010 y ewolucyjne - zbiór metod optymalizacji inspirowanych analogiami biologicznymi (ewolucja naturalna). Pojęcia odwzorowujące naturalne zjawiska: Osobnik Populacja Genotyp Fenotyp Gen Chromosom

Bardziej szczegółowo

Zadanie 5 - Algorytmy genetyczne (optymalizacja)

Zadanie 5 - Algorytmy genetyczne (optymalizacja) Zadanie 5 - Algorytmy genetyczne (optymalizacja) Marcin Pietrzykowski mpietrzykowski@wi.zut.edu.pl wersja 1.0 1 Cel Celem zadania jest zapoznanie się z Algorytmami Genetycznymi w celu rozwiązywanie zadania

Bardziej szczegółowo

Spis treści 377 379 WSTĘP... 9

Spis treści 377 379 WSTĘP... 9 Spis treści 377 379 Spis treści WSTĘP... 9 ZADANIE OPTYMALIZACJI... 9 PRZYKŁAD 1... 9 Założenia... 10 Model matematyczny zadania... 10 PRZYKŁAD 2... 10 PRZYKŁAD 3... 11 OPTYMALIZACJA A POLIOPTYMALIZACJA...

Bardziej szczegółowo

FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 2011, Oeconomica 285 (62), 45 50

FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 2011, Oeconomica 285 (62), 45 50 FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 2011, Oeconomica 285 (62), 45 50 Anna Landowska KLASYCZNY ALGORYTM GENETYCZNY W DYNAMICZNEJ OPTYMALIZACJI MODELU

Bardziej szczegółowo

Algorytmy genetyczne. Dariusz Banasiak. Katedra Informatyki Technicznej Wydział Elektroniki

Algorytmy genetyczne. Dariusz Banasiak. Katedra Informatyki Technicznej Wydział Elektroniki Dariusz Banasiak Katedra Informatyki Technicznej Wydział Elektroniki Obliczenia ewolucyjne (EC evolutionary computing) lub algorytmy ewolucyjne (EA evolutionary algorithms) to ogólne określenia używane

Bardziej szczegółowo

Optymalizacja. Wybrane algorytmy

Optymalizacja. Wybrane algorytmy dr hab. inż. Instytut Informatyki Politechnika Poznańska www.cs.put.poznan.pl/mkomosinski, Andrzej Jaszkiewicz Problem optymalizacji kombinatorycznej Problem optymalizacji kombinatorycznej jest problemem

Bardziej szczegółowo

Algorytm hybrydowy dla alokacji portfela inwestycyjnego przy ograniczonych zasobach

Algorytm hybrydowy dla alokacji portfela inwestycyjnego przy ograniczonych zasobach Adam Stawowy Algorytm hybrydowy dla alokacji portfela inwestycyjnego przy ograniczonych zasobach Summary: We present a meta-heuristic to combine Monte Carlo simulation with genetic algorithm for Capital

Bardziej szczegółowo

METODY SZTUCZNEJ INTELIGENCJI algorytmy ewolucyjne

METODY SZTUCZNEJ INTELIGENCJI algorytmy ewolucyjne METODY SZTUCZNEJ INTELIGENCJI algorytmy ewolucyjne dr hab. inż. Andrzej Obuchowicz, prof. UZ Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski A. Obuchowicz: MSI - algorytmy ewolucyjne

Bardziej szczegółowo

Ćwiczenia laboratoryjne - 7. Problem (diety) mieszanek w hutnictwie programowanie liniowe. Logistyka w Hutnictwie Ćw. L. 7

Ćwiczenia laboratoryjne - 7. Problem (diety) mieszanek w hutnictwie programowanie liniowe. Logistyka w Hutnictwie Ćw. L. 7 Ćwiczenia laboratoryjne - 7 Problem (diety) mieszanek w hutnictwie programowanie liniowe Ćw. L. 7 Konstrukcja modelu matematycznego Model matematyczny składa się z: Funkcji celu będącej matematycznym zapisem

Bardziej szczegółowo

ALGORYTMY GENETYCZNE ćwiczenia

ALGORYTMY GENETYCZNE ćwiczenia ćwiczenia Wykorzystaj algorytmy genetyczne do wyznaczenia minimum globalnego funkcji testowej: 1. Wylosuj dwuwymiarową tablicę 100x2 liczb 8-bitowych z zakresu [-100; +100] reprezentujących inicjalną populację

Bardziej szczegółowo

LABORATORIUM 4: Algorytmy ewolucyjne cz. 2 wpływ operatorów krzyżowania i mutacji na skuteczność poszukiwań AE

LABORATORIUM 4: Algorytmy ewolucyjne cz. 2 wpływ operatorów krzyżowania i mutacji na skuteczność poszukiwań AE Instytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny, Politechnika Śląska www.imio.polsl.pl METODY HEURYSTYCZNE LABORATORIUM 4: Algorytmy ewolucyjne cz. 2 wpływ operatorów krzyżowania

Bardziej szczegółowo

Algorytmy ewolucyjne. Łukasz Przybyłek Studenckie Koło Naukowe BRAINS

Algorytmy ewolucyjne. Łukasz Przybyłek Studenckie Koło Naukowe BRAINS Algorytmy ewolucyjne Łukasz Przybyłek Studenckie Koło Naukowe BRAINS 1 Wprowadzenie Algorytmy ewolucyjne ogólne algorytmy optymalizacji operujące na populacji rozwiązań, inspirowane biologicznymi zjawiskami,

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 7

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 7 STATYSTYKA I DOŚWIADCZALNICTWO Wykład 7 Analiza korelacji - współczynnik korelacji Pearsona Cel: ocena współzależności między dwiema zmiennymi ilościowymi Ocenia jedynie zależność liniową. r = cov(x,y

Bardziej szczegółowo

ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ NIELINIOWYCH PRZY POMOCY DODATKU SOLVER PROGRAMU MICROSOFT EXCEL. sin x2 (1)

ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ NIELINIOWYCH PRZY POMOCY DODATKU SOLVER PROGRAMU MICROSOFT EXCEL. sin x2 (1) ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ NIELINIOWYCH PRZY POMOCY DODATKU SOLVER PROGRAMU MICROSOFT EXCEL 1. Problem Rozważmy układ dwóch równań z dwiema niewiadomymi (x 1, x 2 ): 1 x1 sin x2 x2 cos x1 (1) Nie jest

Bardziej szczegółowo

Algorytmy ewolucyjne 1

Algorytmy ewolucyjne 1 Algorytmy ewolucyjne 1 2 Zasady zaliczenia przedmiotu Prowadzący (wykład i pracownie specjalistyczną): Wojciech Kwedlo, pokój 205. Konsultacje dla studentów studiów dziennych: poniedziałek,środa, godz

Bardziej szczegółowo

PLAN WYKŁADU OPTYMALIZACJA GLOBALNA HISTORIA NA CZYM BAZUJĄ AG

PLAN WYKŁADU OPTYMALIZACJA GLOBALNA HISTORIA NA CZYM BAZUJĄ AG PLAN WYKŁADU OPTYMALIZACJA GLOBALNA Wykład 2 dr inż. Agnieszka Bołtuć Historia Zadania Co odróżnia od klasycznych algorytmów Nazewnictwo Etapy Kodowanie, inicjalizacja, transformacja funkcji celu Selekcja

Bardziej szczegółowo

Metody Rozmyte i Algorytmy Ewolucyjne

Metody Rozmyte i Algorytmy Ewolucyjne mgr inż. Wydział Matematyczno-Przyrodniczy Szkoła Nauk Ścisłych Uniwersytet Kardynała Stefana Wyszyńskiego Podstawy optymalizacji Plan prezentacji 1 Podstawy matematyczne 2 3 Eliminacja ograniczeń Metody

Bardziej szczegółowo

Programowanie liniowe metoda sympleks

Programowanie liniowe metoda sympleks Programowanie liniowe metoda sympleks Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2009 Mirosław Sobolewski (UW) Warszawa, 2009 1 / 13

Bardziej szczegółowo

1 Programowanie całkowitoliczbowe PLC

1 Programowanie całkowitoliczbowe PLC Metody optymalizacji, wykład nr 9 Paweł Zieliński Programowanie całkowitoliczbowe PLC Literatura [] S.P. Bradley, A.C. Hax, T. L. Magnanti Applied Mathematical Programming Addison-Wesley Pub. Co. (Reading,

Bardziej szczegółowo

Algorytm Genetyczny. zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych

Algorytm Genetyczny. zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych Algorytm Genetyczny zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych Dlaczego Algorytmy Inspirowane Naturą? Rozwój nowych technologii: złożone problemy obliczeniowe w

Bardziej szczegółowo

Optymalizacja. doc. dr inż. Tadeusz Zieliński r. ak. 2013/14. Metody komputerowe w inżynierii komunikacyjnej. ograniczenie kosztów budowy.

Optymalizacja. doc. dr inż. Tadeusz Zieliński r. ak. 2013/14. Metody komputerowe w inżynierii komunikacyjnej. ograniczenie kosztów budowy. koszty optimum ograniczenie kosztów budowy Metody komputerowe w inżynierii komunikacyjnej Optymalizacja koszty całkowite koszty budowy koszty eksploatacji zła jakość rozwiązania dobra doc. dr inż. Tadeusz

Bardziej szczegółowo

K.Pieńkosz Badania Operacyjne Wprowadzenie 1. Badania Operacyjne. dr inż. Krzysztof Pieńkosz

K.Pieńkosz Badania Operacyjne Wprowadzenie 1. Badania Operacyjne. dr inż. Krzysztof Pieńkosz K.Pieńkosz Wprowadzenie 1 dr inż. Krzysztof Pieńkosz Instytut Automatyki i Informatyki Stosowanej Politechniki Warszawskiej pok. 560 A tel.: 234-78-64 e-mail: K.Pienkosz@ia.pw.edu.pl K.Pieńkosz Wprowadzenie

Bardziej szczegółowo

ZASTOSOWANIE PROGRAMOWANIA LINIOWEGO W ZAGADNIENIACH WSPOMAGANIA PROCESU PODEJMOWANIA DECYZJI

ZASTOSOWANIE PROGRAMOWANIA LINIOWEGO W ZAGADNIENIACH WSPOMAGANIA PROCESU PODEJMOWANIA DECYZJI Wstęp ZASTOSOWANIE PROGRAMOWANIA LINIOWEGO W ZAGADNIENIACH WSPOMAGANIA PROCESU PODEJMOWANIA DECYZJI Problem podejmowania decyzji jest jednym z zagadnień sterowania nadrzędnego. Proces podejmowania decyzji

Bardziej szczegółowo

Optymalizacja konstrukcji

Optymalizacja konstrukcji Optymalizacja konstrukcji Kształtowanie konstrukcyjne: nadanie właściwych cech konstrukcyjnych przeszłej maszynie określenie z jakiego punktu widzenia (wg jakiego kryterium oceny) będą oceniane alternatywne

Bardziej szczegółowo

Algorytmy genetyczne

Algorytmy genetyczne Algorytmy genetyczne Motto: Zamiast pracowicie poszukiwać najlepszego rozwiązania problemu informatycznego lepiej pozwolić, żeby komputer sam sobie to rozwiązanie wyhodował! Algorytmy genetyczne służą

Bardziej szczegółowo

SZTUCZNA INTELIGENCJA

SZTUCZNA INTELIGENCJA ZTUCZNA INTELIGENCJA WYKŁAD 6. ALGORYTMY GENETYCZNE - CHEMATY, METODY ELEKCJI Częstochowa 204 Dr hab. inż. Grzegorz Dude Wydział Eletryczny Politechnia Częstochowsa CHEMATY chemat zbór chromosomów o wspólnych

Bardziej szczegółowo

Programowanie liniowe metoda sympleks

Programowanie liniowe metoda sympleks Programowanie liniowe metoda sympleks Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2012 Mirosław Sobolewski (UW) Warszawa, 2012 1 / 12

Bardziej szczegółowo

Rozdział 6 PROGRAMOWANIE WYPUKŁE I KWADRATOWE

Rozdział 6 PROGRAMOWANIE WYPUKŁE I KWADRATOWE Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 6 PROGRAMOWANIE WYPUKŁE I KWADRATOWE 6. Ćwiczenia komputerowe Ćwiczenie 6.1

Bardziej szczegółowo

Techniki optymalizacji

Techniki optymalizacji Techniki optymalizacji Dokładne algorytmy optymalizacji Maciej Hapke maciej.hapke at put.poznan.pl Problem optymalizacji kombinatorycznej Problem optymalizacji kombinatorycznej jest problemem minimalizacji

Bardziej szczegółowo

Z52: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania, zagadnienie brzegowe.

Z52: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania, zagadnienie brzegowe. Z5: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania zagadnienie brzegowe Dyskretne operatory różniczkowania Numeryczne obliczanie pochodnych oraz rozwiązywanie

Bardziej szczegółowo

Generowanie i optymalizacja harmonogramu za pomoca

Generowanie i optymalizacja harmonogramu za pomoca Generowanie i optymalizacja harmonogramu za pomoca na przykładzie generatora planu zajęć Matematyka Stosowana i Informatyka Stosowana Wydział Fizyki Technicznej i Matematyki Stosowanej Politechnika Gdańska

Bardziej szczegółowo

Wykład XII. optymalizacja w relacyjnych bazach danych

Wykład XII. optymalizacja w relacyjnych bazach danych Optymalizacja wyznaczenie spośród dopuszczalnych rozwiązań danego problemu, rozwiązania najlepszego ze względu na przyjęte kryterium jakości ( np. koszt, zysk, niezawodność ) optymalizacja w relacyjnych

Bardziej szczegółowo

PEWNE METODY HYBRYDOWE W JEDNOKRYTERIALNEJ OPTYMALIZACJI KONSTRUKCJI SOME HYBRID METHODS FOR SINGLE CRITERIA DESIGN OPTIMIZATION

PEWNE METODY HYBRYDOWE W JEDNOKRYTERIALNEJ OPTYMALIZACJI KONSTRUKCJI SOME HYBRID METHODS FOR SINGLE CRITERIA DESIGN OPTIMIZATION STANISŁAW KRENICH PEWNE METODY HYBRYDOWE W JEDNOKRYTERIALNEJ OPTYMALIZACJI KONSTRUKCJI SOME HYBRID METHODS FOR SINGLE CRITERIA DESIGN OPTIMIZATION S t r e s z c z e n i e A b s t r a c t W artykule przedstawiono

Bardziej szczegółowo

Programowanie liniowe całkowitoliczbowe

Programowanie liniowe całkowitoliczbowe Programowanie liniowe całkowitoliczbowe Jeżeli w zadaniu programowania liniowego pewne (lub wszystkie) zmienne musza przyjmować wartości całkowite, to takie zadanie nazywamy zadaniem programowania liniowego

Bardziej szczegółowo

Dodatek Solver Teoria Dodatek Solver jest częścią zestawu poleceń czasami zwaną narzędziami analizy typu co-jśli (analiza typu co, jeśli?

Dodatek Solver Teoria Dodatek Solver jest częścią zestawu poleceń czasami zwaną narzędziami analizy typu co-jśli (analiza typu co, jeśli? Dodatek Solver Teoria Dodatek Solver jest częścią zestawu poleceń czasami zwaną narzędziami analizy typu co-jśli (analiza typu co, jeśli? : Proces zmieniania wartości w komórkach w celu sprawdzenia, jak

Bardziej szczegółowo

Problemy z ograniczeniami

Problemy z ograniczeniami Problemy z ograniczeniami 1 2 Dlaczego zadania z ograniczeniami Wiele praktycznych problemów to problemy z ograniczeniami. Problemy trudne obliczeniowo (np-trudne) to prawie zawsze problemy z ograniczeniami.

Bardziej szczegółowo

Wprowadzenie do badań operacyjnych - wykład 2 i 3

Wprowadzenie do badań operacyjnych - wykład 2 i 3 Wprowadzenie do badań operacyjnych - wykład 2 i 3 Hanna Furmańczyk 14 listopada 2008 Programowanie liniowe (PL) - wszystkie ograniczenia muszą być liniowe - wszystkie zmienne muszą być ciągłe n j=1 c j

Bardziej szczegółowo

Wymagania kl. 3. Zakres podstawowy i rozszerzony

Wymagania kl. 3. Zakres podstawowy i rozszerzony Wymagania kl. 3 Zakres podstawowy i rozszerzony Temat lekcji Zakres treści Osiągnięcia ucznia 1. RACHUNEK PRAWDOPODOBIEŃSTWA 1. Reguła mnożenia reguła mnożenia ilustracja zbioru wyników doświadczenia za

Bardziej szczegółowo

Wybrane podstawowe rodzaje algorytmów

Wybrane podstawowe rodzaje algorytmów Wybrane podstawowe rodzaje algorytmów Tomasz Głowacki tglowacki@cs.put.poznan.pl Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii informatycznych

Bardziej szczegółowo

Problem Komiwojażera - algorytmy metaheurystyczne

Problem Komiwojażera - algorytmy metaheurystyczne Problem Komiwojażera - algorytmy metaheurystyczne algorytm mrówkowy algorytm genetyczny by Bartosz Tomeczko. All rights reserved. 2010. TSP dlaczego metaheurystyki i heurystyki? TSP Travelling Salesman

Bardziej szczegółowo

Rozdział 9 PROGRAMOWANIE DYNAMICZNE

Rozdział 9 PROGRAMOWANIE DYNAMICZNE Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 9 PROGRAMOWANIE DYNAMICZNE 9.2. Ćwiczenia komputerowe Ćwiczenie 9.1 Wykorzystując

Bardziej szczegółowo

Złożoność algorytmów. Wstęp do Informatyki

Złożoność algorytmów. Wstęp do Informatyki Złożoność algorytmów Złożoność pamięciowa - liczba i rozmiar struktur danych wykorzystywanych w algorytmie Złożoność czasowa - liczba operacji elementarnych wykonywanych w trakcie przebiegu algorytmu Złożoność

Bardziej szczegółowo

Automatyczny dobór parametrów algorytmu genetycznego

Automatyczny dobór parametrów algorytmu genetycznego Automatyczny dobór parametrów algorytmu genetycznego Remigiusz Modrzejewski 22 grudnia 2008 Plan prezentacji Wstęp Atrakcyjność Pułapki Klasyfikacja Wstęp Atrakcyjność Pułapki Klasyfikacja Konstrukcja

Bardziej szczegółowo

Elementy modelowania matematycznego

Elementy modelowania matematycznego Elementy modelowania matematycznego Programowanie liniowe. Metoda Simplex. Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ ZADANIE LINIOWE Tortilla z ziemniaków i cebuli (4 porcje) 300

Bardziej szczegółowo

TOZ -Techniki optymalizacji w zarządzaniu

TOZ -Techniki optymalizacji w zarządzaniu TOZ -Techniki optymalizacji w zarządzaniu Wykład dla studentów II roku studiów II stopnia na kierunku Zarządzanie Semestr zimowy 2009/2010 Wykładowca: prof. dr hab. inż. Michał Inkielman Wykład 2 Optymalizacja

Bardziej szczegółowo

Metody Optymalizacji: Przeszukiwanie z listą tabu

Metody Optymalizacji: Przeszukiwanie z listą tabu Metody Optymalizacji: Przeszukiwanie z listą tabu Wojciech Kotłowski Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl pok. 2 (CW) tel. (61)665-2936 konsultacje: wtorek

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZENIA NR 1

INSTRUKCJA DO ĆWICZENIA NR 1 L01 ---2014/10/17 ---10:52---page1---#1 KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 1 PRZEDMIOT TEMAT Wybrane zagadnienia z optymalizacji elementów

Bardziej szczegółowo

Algorytmy genetyczne (AG)

Algorytmy genetyczne (AG) Algorytmy genetyczne (AG) 1. Wprowadzenie do AG a) ewolucja darwinowska b) podstawowe definicje c) operatory genetyczne d) konstruowanie AG e) standardowy AG f) przykład rozwiązania g) naprawdę bardzo,

Bardziej szczegółowo

Algorytmy decyzyjne będące alternatywą dla sieci neuronowych

Algorytmy decyzyjne będące alternatywą dla sieci neuronowych Algorytmy decyzyjne będące alternatywą dla sieci neuronowych Piotr Dalka Przykładowe algorytmy decyzyjne Sztuczne sieci neuronowe Algorytm k najbliższych sąsiadów Kaskada klasyfikatorów AdaBoost Naiwny

Bardziej szczegółowo

Metody i techniki sztucznej inteligencji / Leszek Rutkowski. wyd. 2, 3 dodr. Warszawa, Spis treści

Metody i techniki sztucznej inteligencji / Leszek Rutkowski. wyd. 2, 3 dodr. Warszawa, Spis treści Metody i techniki sztucznej inteligencji / Leszek Rutkowski. wyd. 2, 3 dodr. Warszawa, 2012 Spis treści Przedmowa do wydania drugiego Przedmowa IX X 1. Wstęp 1 2. Wybrane zagadnienia sztucznej inteligencji

Bardziej szczegółowo

WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ

WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ LABORATORIUM EKONOMIKA W ELEKTROTECHNICE INSTRUKCJA DO ĆWICZENIA 6 Analiza decyzji

Bardziej szczegółowo

Gospodarcze zastosowania algorytmów genetycznych

Gospodarcze zastosowania algorytmów genetycznych Marta Woźniak Gospodarcze zastosowania algorytmów genetycznych 1. Wstęp Ekonometria jako nauka zajmująca się ustalaniem za pomocą metod statystycznych ilościowych prawidłowości zachodzących w życiu gospodarczym

Bardziej szczegółowo

Politechnika Gdańska Wydział Oceanotechniki i Okrętownictwa. Marzec Podstawy teorii optymalizacji Oceanotechnika, II stop., sem.

Politechnika Gdańska Wydział Oceanotechniki i Okrętownictwa. Marzec Podstawy teorii optymalizacji Oceanotechnika, II stop., sem. Politechnika Gdańska Wydział Oceanotechniki i Okrętownictwa St. II stop., sem. I, Kierunek Oceanotechnika, Spec. Okrętowe Podstawy teorii optymalizacji Wykład 1 M. H. Ghaemi Marzec 2016 Podstawy teorii

Bardziej szczegółowo

Standardowy algorytm genetyczny

Standardowy algorytm genetyczny Standardowy algorytm genetyczny 1 Szybki przegląd 2 Opracowany w USA w latach 70. Wcześni badacze: John H. Holland. Autor monografii Adaptation in Natural and Artificial Systems, wydanej w 1975 r., (teoria

Bardziej szczegółowo

Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony. Klasa I (90 h)

Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony. Klasa I (90 h) Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony (według podręczników z serii MATeMAtyka) Klasa I (90 h) Temat Liczba godzin 1. Liczby rzeczywiste 15

Bardziej szczegółowo

KADD Minimalizacja funkcji

KADD Minimalizacja funkcji Minimalizacja funkcji Poszukiwanie minimum funkcji Foma kwadratowa Metody przybliżania minimum minimalizacja Minimalizacja w n wymiarach Metody poszukiwania minimum Otaczanie minimum Podział obszaru zawierającego

Bardziej szczegółowo

Heurystyki. Strategie poszukiwań

Heurystyki. Strategie poszukiwań Sztuczna inteligencja Heurystyki. Strategie poszukiwań Jacek Bartman Zakład Elektrotechniki i Informatyki Instytut Techniki Uniwersytet Rzeszowski DLACZEGO METODY PRZESZUKIWANIA? Sztuczna Inteligencja

Bardziej szczegółowo

Elementy Modelowania Matematycznego

Elementy Modelowania Matematycznego Elementy Modelowania Matematycznego Wykład 8 Programowanie nieliniowe Spis treści Programowanie nieliniowe Zadanie programowania nieliniowego Zadanie programowania nieliniowego jest identyczne jak dla

Bardziej szczegółowo

Matematyka do liceów i techników Szczegółowy rozkład materiału Klasa III zakres rozszerzony

Matematyka do liceów i techników Szczegółowy rozkład materiału Klasa III zakres rozszerzony Matematyka do liceów i techników Szczegółowy rozkład materiału Klasa III zakres rozszerzony 9 tygodni 6 godzin = 7 godziny Lp. Tematyka zajęć Liczba godzin I. Funkcja wykładnicza i funkcja logarytmiczna.

Bardziej szczegółowo

Szczegółowy rozkład materiału dla klasy 3b poziom rozszerzny cz. 1 - liceum

Szczegółowy rozkład materiału dla klasy 3b poziom rozszerzny cz. 1 - liceum Szczegółowy rozkład materiału dla klasy b poziom rozszerzny cz. - liceum WYDAWNICTWO PAZDRO GODZINY Lp. Tematyka zajęć Liczba godzin I. Funkcja wykładnicza i funkcja logarytmiczna. Potęga o wykładniku

Bardziej szczegółowo

Plan wynikowy. Klasa III Technik pojazdów samochodowych/ Technik urządzeń i systemów energetyki odnawialnej. Kształcenie ogólne w zakresie podstawowym

Plan wynikowy. Klasa III Technik pojazdów samochodowych/ Technik urządzeń i systemów energetyki odnawialnej. Kształcenie ogólne w zakresie podstawowym Oznaczenia: wymagania konieczne, P wymagania podstawowe, R wymagania rozszerzające, D wymagania dopełniające, W wymagania wykraczające. Plan wynikowy lasa III Technik pojazdów samochodowych/ Technik urządzeń

Bardziej szczegółowo

Programowanie matematyczne

Programowanie matematyczne dr Adam Sojda Badania Operacyjne Wykład Politechnika Śląska Programowanie matematyczne Programowanie matematyczne, to problem optymalizacyjny w postaci: f ( x) max przy warunkach g( x) 0 h( x) = 0 x X

Bardziej szczegółowo

Programowanie genetyczne

Programowanie genetyczne Dariusz Banasiak Katedra Informatyki Technicznej Wydział Elektroniki Programowanie genetyczne jest rozszerzeniem klasycznego algorytmu genetycznego i jest wykorzystywane do automatycznego generowania programów

Bardziej szczegółowo

Matematyka do liceów i techników Szczegółowy rozkład materiału Klasa III zakres rozszerzony 563/3/2014

Matematyka do liceów i techników Szczegółowy rozkład materiału Klasa III zakres rozszerzony 563/3/2014 Matematyka do liceów i techników Szczegółowy rozkład materiału Klasa III zakres rozszerzony 56//0 5 tygodni godzin = 75 godzin Lp. Tematyka zajęć I. Kombinatoryka i rachunek prawdopodobieństwa. Reguła

Bardziej szczegółowo

OPTYMALIZACJA KSZTAŁTU WYKRESU WÖHLERA Z WYKORZYSTANIEM ALGORYTMÓW EWOLUCYJNYCH W UJĘCIU DIAGNOSTYCZNYM

OPTYMALIZACJA KSZTAŁTU WYKRESU WÖHLERA Z WYKORZYSTANIEM ALGORYTMÓW EWOLUCYJNYCH W UJĘCIU DIAGNOSTYCZNYM mgr inż. Marta Woch *, prof. nadzw. dr hab. inż. Sylwester Kłysz *,** * Instytut Techniczny Wojsk Lotniczych, ** Uniwersytet Warmińsko-Mazurski w Olsztynie OPTYMALIZACJA KSZTAŁTU WYKRESU WÖHLERA Z WYKORZYSTANIEM

Bardziej szczegółowo

Algorytm simplex i dualność

Algorytm simplex i dualność Algorytm simplex i dualność Łukasz Kowalik Instytut Informatyki, Uniwersytet Warszawski April 15, 2016 Łukasz Kowalik (UW) LP April 15, 2016 1 / 35 Przypomnienie 1 Wierzchołkiem wielościanu P nazywamy

Bardziej szczegółowo

Kryteria oceniania z matematyki Klasa III poziom rozszerzony

Kryteria oceniania z matematyki Klasa III poziom rozszerzony Kryteria oceniania z matematyki Klasa III poziom rozszerzony Zakres Dopuszczający Dostateczny Dobry Bardzo dobry Funkcja potęgowa - zna i stosuje tw. o potęgach - zna wykresy funkcji potęgowej o dowolnym

Bardziej szczegółowo

Metody ilościowe w badaniach ekonomicznych

Metody ilościowe w badaniach ekonomicznych prof. dr hab. Tadeusz Trzaskalik dr hab. Maciej Nowak, prof. UE Wybór portfela projektów z wykorzystaniem wielokryterialnego programowania dynamicznego Metody ilościowe w badaniach ekonomicznych 19-06-2017

Bardziej szczegółowo

MATeMAtyka zakres rozszerzony

MATeMAtyka zakres rozszerzony MATeMAtyka zakres rozszerzony Proponowany rozkład materiału kl. I (160 h) (Na czerwono zaznaczono treści z zakresu rozszerzonego) Temat lekcji Liczba godzin 1. Liczby rzeczywiste 15 1. Liczby naturalne

Bardziej szczegółowo

Informatyka 1. Złożoność obliczeniowa

Informatyka 1. Złożoność obliczeniowa Informatyka 1 Wykład XI Złożoność obliczeniowa Robert Muszyński ZPCiR ICT PWr Zagadnienia: efektywność programów/algorytmów, sposoby zwiększania efektywności algorytmów, zasada 80 20, ocena efektywności

Bardziej szczegółowo

W4 Eksperyment niezawodnościowy

W4 Eksperyment niezawodnościowy W4 Eksperyment niezawodnościowy Henryk Maciejewski Jacek Jarnicki Jarosław Sugier www.zsk.iiar.pwr.edu.pl Badania niezawodnościowe i analiza statystyczna wyników 1. Co to są badania niezawodnościowe i

Bardziej szczegółowo

FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 2009, Oeconomica 275 (57), 53 58

FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 2009, Oeconomica 275 (57), 53 58 FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 2009, Oeconomica 275 (57), 53 58 Anna LANDOWSKA ROZWIĄZANIE PROBLEMU OPTYMALNEGO PRZYDZIAŁU ZA POMOCĄ KLASYCZNEGO

Bardziej szczegółowo

Standardowe zadanie programowania liniowego. Gliwice 1

Standardowe zadanie programowania liniowego. Gliwice 1 Standardowe zadanie programowania liniowego 1 Standardowe zadanie programowania liniowego Rozważamy proces, w którym zmiennymi są x 1, x 2,, x n. Proces poddany jest m ograniczeniom, zapisanymi w postaci

Bardziej szczegółowo