METODOLOGICZNE ASPEKTY FRAKTALNEGO MODELOWANIA RZECZYWISTOŚCI

Wielkość: px
Rozpocząć pokaz od strony:

Download "METODOLOGICZNE ASPEKTY FRAKTALNEGO MODELOWANIA RZECZYWISTOŚCI"

Transkrypt

1 METODOLOGICZNE ASPEKTY FRAKTALNEGO MODELOWANIA RZECZYWISTOŚCI WALDEMAR RATAJCZAK Instytut Geografii Społeczno-Ekonomicznej i Gospodarki Przestrzennej, Uniwersytet im. Adama Mickiewicza, Poznań 1. WSTĘP Poznanie geometryczne dotyczy tego, co wieczne - stwierdził Platon ponad dwa tysiące lat temu. Świadomość tego towarzyszyła człowiekowi od zarania dziejów. Najpierw przez wieki próbowano określić geometryczny kształt Ziemi, potem kształt orbit ciał niebieskich, by w czasach nowożytnych - dzięki geniuszowi Einsteina - opisać kształt czasoprzestrzeni. Wszystkie te wielkie akty poznania mogły nastąpić w wyniku rozwoju geometrii, która wyznaczała drogi opisu świata rzeczywistego, złożonego z nieogarniętej liczby obiektów o przeróżnych kształtach i formach przestrzennych. Jednak ani klasyczna geometria Euklidesa, ani geometria eliptyczna i hiperboliczna nie wystarczały do opisu całej złożoności Natury. Przede wszystkim dlatego, iż geometrie te badały własności figur wyidealizowanych, doskonałych w swym kształcie okręgów, elips, trójkątów, kul itp., w kontekście odwzorowań izometrycznych. Dopiero nowa geometria rozwijająca się od końca ubiegłego stulecia - topologia - stworzyła podstawy do rozważań nad holistycznymi własnościami obiektów, nad homomorfizmami (tj. bijekcjami w obie strony ciągłymi). Przedmiotem jej badań jest między innymi kształt i położenie, rozpatrywane w sensie własności figur, które zachowują się nawet wówczas, gdy zdeformowane figury tracą wszelkie własności metryczne i rzutowe. Stąd topologia rozumiana jest również jako geometria jakościowa, z której wywodzi się wszelkie inne poznanie geometryczne (por. ryc. 1, Harvey 1969: 205). Poznanie geometryczne ma niepodważalne znaczenie dla badań geograficznych, albowiem rozwój geometrii wpływał i wpływa na wyniki osiągane na gruncie geografii. Według Harvey'a (1969: ), geometria jest językiem form przestrzennych, przeto osiągnięcia geometrii mogą być wykorzystywane do rozwiązywania problemów geograficznych pod warunkiem, że będą one w sposób realistyczny i zadowalający wyrażone w terminach geometrii. Wniosek ten potwierdza dotychczasowe wykorzystanie formalnego języka geometrii do rozwiązywania wielu

2 zagadnień geograficznych, takich jak np. zdefiniowanie pojęcia przestrzeni, analiza przestrzenna, czy konstruowanie map (por. Chojnicki 1971: 301 i 1988: 11). 2. TOPOLOGIA Geometria przestrzeni topologicznych Geometria rzutów rzeczywistych Geometria afiniczna Geometria samopodobieństwa (fraktalna) Geometria podobieństwa Geometria równopowierzchniowa Geometria hiperboliczna Geometria euklidesowa Geometria eliptyczna Ryc. 1. Hierarchiczna struktura geometrii (Harvey 1969: 205, zmodyfikowane). W ostatnich latach zanotowano niezwykłe osiągnięcia w dziedzinie topologii związane z tzw. geometrią fraktalną. Fraktale - niedawno odkryte figury geometryczne - otwierają nowe, nieosiągalne dotąd możliwości w zakresie badania struktury świata rzeczywistego, a także jego dynamiki. W dziedzinie modelowania złożoności Natury pojawił się więc nowy język geometrii eksperymentalnej. To nowe podejście zostało zapoczątkowane pod koniec lat siedemdziesiątych pracami matematyka Benoit'a Mandelbrota 1, a następnie zostało podjęte przez wielu badaczy. Celem niniejszej pracy jest: 1 Benoit Mandelbrot urodził się w Warszawie (1924), wykształcił we Francji, a pracuje w Yale University oraz Laboratorium IBM, w USA

3 3. (1) przedstawienie niektórych aspektów teoretycznych geometrii fraktalnej oraz jej znaczenia dla badania ukrytej struktury rzeczywistości, (2) analiza zastosowań geometrii fraktalnej w badaniach geograficznych ze szczególnym uwzględnieniem aspektu metodologicznego. 2. CO TO SĄ OBIEKTY FRAKTALNE? "Chmury nie są kulami, góry stożkami, linie brzegowe kołami, kora nie jest płaska, ani też błyskawica nie porusza się po linii prostej" - napisał w The Fractal Geometry of Nature Mandelbrot (1982: 1). Wnikając głębiej w ten problem, dla uchwycenia nieregularności obiektów spotykanych w rzeczywistości, Mandelbrot odkrył nowe formy geometryczne, które od łacińskiego słowa fractus ("złamany") nazwał fraktalami. Wstępnie można stwierdzić, iż fraktale są obiektami geometrycznymi o łamanym lub nieregularnym kształcie, które wykazują samopodobną strukturę podczas zmierzającego do nieskończoności procesu redukcji ich rozmiarów. Fraktale cechują następujące własności geometryczne i algebraiczne: (1) nie posiadają unikalnej, charakterystycznej dla nich skali długości, gdyż powiększone lub pomniejszone nie zmieniają swych kształtów, (2) są samopodobne na każdym poziomie obserwacji (pomiaru) w tym sensie, że po wycięciu z nich dowolnej małej części i jej powiększeniu powstanie obiekt wiernie naśladujący całość, (3) przedstawione w sposób analityczny, opisywane są zależnościami rekurencyjnymi, a nie wzorami matematycznymi. Tradycyjne figury geometryczne takie jak koła, trójkąty czy kwadraty, nie spełniają tych własności. Wycięty fragment kwadratu nie przypomina całego kwadratu. Jednocześnie jednak niektóre z tych figur, np. koło, poddają się procedurze renormalizacji opartej na pojęciu samopodobieństwa, czyli tendencji do wielopoziomowego powtarzania identycznych struktur geometrycznych. W czystej matematyce takie obiekty zostały zdefiniowane znacznie wcześniej (oczywiście nie nazywano ich fraktalami), były one traktowane jako swego rodzaju przypadki szczególne, "monstra", które w pewnym sensie potwierdzały ograniczoną zdolność poznania klasycznej geometrii. W dzisiejszej terminologii nazywane są one fraktalami deterministycznymi. Natomiast fraktale spotykane w rzeczywistości (nie sztuczne) określa się

4 4. jako losowe Fraktale deterministyczne (matematyczne) Deterministycznym obiektem fraktalnym skonstruowanym najwcześniej, bo w 1883 r., jest zbiór Cantora 2. Zasady jego konstrukcji przedstawia ryc. 2a, są one następujące. Odcinek domknięty [0,1] dzieli się na trzy równe części, a następnie usuwa się zeń część środkową bez punktów brzegowych. Pozostają dwa odcinki z czterema punktami brzegowymi. Postępuje się z nimi jak z odcinkiem wyjściowym, tj. dzieli się na trzy równe części i usuwa część środkową. Po trzech krokach będzie 2 3 = 8 odcinków, każdy o długości 3 (-3) = 1/27. Po n krokach otrzyma się 2 n odcinków, każdy o długości 3 (-n). Dla odpowiednio dużego n otrzymuje się zbiór punktów. Jest to obiekt fraktalny - zbiór Cantora. Fraktala tego nie można dokładnie narysować, gdyż całkowita długość pozostałych odcinków wynosi (2/3) n i zmierza do zera gdy n rośnie. Jest to więc obiekt, który nie ma długości (por. Barnsley 1988a: 44). Ryc. 2. Konstrukcja zbioru Cantora i krzywej von Kocha. 2 Stewart (1994) podaje, że zbiór ten został faktycznie odkryty przez H. Smitha w 1875 r. Dopiero później Cantor wykorzystał ten pomysł.

5 5. Fraktalem deterministycznym, który posiada dokładnie odwrotną własność, tj. nieskończoną długość, jest krzywa stworzona w 1904 r. przez szwedzkiego matematyka Helge von Kocha. Zasada konstrukcji tej krzywej jest podobna jak w przypadku zbioru Cantora. Odcinek domknięty [0,1] dzieli się na trzy równe części, każda o długości 1/3. Następnie usuwa się odcinek środkowy, a powstałą lukę uzupełnia się górną częścią trójkąta równobocznego (bez podstawy) o bokach równych 1/3. W ten sposób powstaje motyw składający się z czterech odcinków, każdy o długości 1/3, przeto długość całego motywu wynosi 4/3. W drugim kroku każdy odcinek stanowi podstawę do utworzenia linii łamanej, składającej się z 4 x 4 = 16 odcinków, z których każdy ma długość 1/9. Zatem długość całej linii wynosi 16/9 = 4 2 /3 2. W trzecim kroku będą 4 3 = 64 odcinki, każdy o długości 1/3 3. Utworzona w ten sposób linia będzie miała całkowitą długość 4 3 /3 3. Geometryczne aspekty opisanego postępowania przedstawia ryc. 2b. Ryc. 3. Konstrukcja śnieżynki von Kocha. Zastosowanie tej samej procedury względem trójkąta równobocznego o boku a pozwala skonstruować płatek śniegu von Kocha (por. ryc. 3). Jest to obiekt fraktalny o skończonej powierzchni 2/5_3 a 2, którą ogranicza krzywa ciągła nie posiadająca w żadnym punkcie dobrze zdefiniowanego kierunku, ma ona natomiast skończoną długość. Inne dobrze znane w matematyce (wśród wielu innych) obiekty fraktalne to trójkąt, podkładka i dywan Sierpińskiego (1915), wszystkie o polu równym zeru, oraz gąbka Mengera o objętości także równej zeru. Wymienione obiekty mają tę samą własność, co zbiór Cantora, tj.

6 dowolnie wycięta część jest podobna do całości. Są to zatem obiekty samopodobne Fraktale naturalne (losowe) 6. Mandelbrot (1982) stwierdził, że własnościami analogicznymi do fraktali deterministycznych cechują się obiekty spotykane w rzeczywistości. Znanym przykładem potwierdzającym jego tezę jest tzw. eksperyment W.F. Richardsona ( ), który analizował długość wybrzeży Wielkiej Brytanii, Portugalii, Niemiec oraz Południowej Afryki. Richardson zauważył, że wyniki pomiaru długości linii wybrzeża zależą w dużym stopniu od skali mapy oraz odcinka pomiarowego. Im jednostka miary krótsza, tym linia wybrzeża dłuższa. Dla zachodniego wybrzeża Wielkiej Brytanii znalazł on następującą zależność liniową: log s = log a + log s 1 gdzie: s jest długością linii wybrzeża otrzymaną z iloczynu N a, a jest zmiennym odcinkiem miary, zaś s 1 jest długością linii wybrzeża, gdy odcinkiem miary jest 1 km. Powyższe równanie pośrednio ujmuje bardzo ważną własność fraktali, tj. ich wymiar. Szerzej problem ten zostanie przedstawiony poniżej. Natomiast wyniki pomiarów Richardsona prezentuje ryc. 4 (por. Mandelbrot 1982: 33, Lauwerier 1987: 30). Ryc. 4. Wyniki eksperymentu Richardsona (źródło: Lauwerier 1987: 30).

7 7. Eksperyment Richardsona potwierdził rzecz mało oczekiwaną: długość linii wybrzeża, podobnie jak krzywa von Kocha, zmierza do nieskończoności, jeśli długość odcinka miary zmierza w kierunku wartości infinitezymalnych (tj. nieskończenie małych), a prawdziwą długością wybrzeża jest nieskończoność, niezależnie od rozmiarów samego wybrzeża. Czy jednak linia wybrzeża ma strukturę samopodobną, tzn. czy powiększenie fragmentu linii wybrzeża daje podobne efekty, jak powiększenie fragmentu linii von Kocha? Okazuje się, że w przybliżeniu zarówno fraktal matematyczny jak i fraktal naturalny mają we wszystkich skalach 3 taką samą strukturę. Z ryc. 5 wynika, że powiększony kolejno na ryc. 5d, 5e i 5f fragment wybrzeża nadal wygląda jak całe wybrzeże na ryc. 5a. Z tym, że w tym przypadku "podobieństwo jest jedynie statystyczne - przy skalowaniu pozostają stałe średnie proporcje zatok i cypli, ale ich dokładne usytuowanie może ulec zmianie. Natomiast w przypadku fraktali matematycznych podobieństwo jest dokładne" (Stewart 1994: 256). Ryc. 5. Samopodobieństwo statystyczne fragmentu wybrzeża. 3 Skalę rozumie się tutaj odwrotnie niż w kartografii. Oznacza to, że skala badania jest tym większa, im większy fragment obiektu jest rozpatrywany.

8 8. Ryc. 6. Podkładki Sierpińskiego - fraktal deterministyczny samopodobny w każdej skali (źródło: Stauffer, Stanley 1996: 211). Fraktale naturalne różnią się od fraktali deterministycznych dwiema zasadniczymi cechami: (1) są samopodobne tylko statystycznie, (2) przy większej skali badania, tj. przy rozpatrywaniu coraz większych ich fragmentów, mogą utracić własność samopodobieństwa. Pierwsza cecha została zobrazowana ryciną 5 i opisana powyżej. Dla przedstawienia drugiej cechy wykorzystano klasyczny fraktal matematyczny, tj. podkładkę Sierpińskiego. Fraktal ten pokazany jest na ryc. 6. Widać, iż niezależnie od skali, tj. czy rozpatrywany jest jego mniejszy fragment czy też większy, zachowana jest własność samopodobieństwa. Wniosek ten potwierdza prostolinijny wykres funkcji: log ρ(l) = f(log L), (1) gdzie ρ(l) M(L)/L2 jest gęstością fraktala, L długością boku, natomiast M(L) jest jego "masą" wyrażoną liczbą

9 9. czarnych trójkątów położonych wewnątrz fraktala, gdy jego bok ma długość L (por. Stauffer, Stanley 1995: 167). W przypadku badania świata rzeczywistego może jednak zachodzić taka sytuacja, że fraktal naturalny jest fragmentem większej całości, która jednak nie jest fraktalem. Taki przypadek przedstawiono na rycinie 7a, gdzie występuje figura składająca się z 16 podkładek Sierpińskiego (fraktali). Figura ta, rozpatrywana jako całość w większej skali, nie jest fraktalem, gdyż w tej skali nie jest samopodobna, chociaż jej części (podkładki) są samopodobne. Ryc. 7. Utrata własności samopodobieństwa przez figurę złożoną z 16 fraktali (podkładek Sierpińskiego) (źródło: Stauffer, Stanley 1996: 234). Znalezienie punktu przejścia "fazowego", w którym pierwotny fraktal naturalny przestaje być fraktalem, gdyż traci własność samopodobieństwa, może być ważnym problemem badawczym (por. Stauffer, Stanley 1995: 187; Normant, Tricot 1993). Punkt taki pokazany jest na ryc. 7b.

10 POJĘCIE WYMIARU FRAKTALNEGO. DEFINICJA FRAKTALA 3.1. Wymiar fraktali matematycznych Ponieważ fraktale obrazują złożoność tak struktur matematycznych jak i świata rzeczywistego, powstaje pytanie, jak mierzyć stopień skomplikowania ich kształtu? Wiadomo, że długość linii brzegowych fraktali dąży do nieskończoności, przeto długość linii brzegowych nie jest dobrą miarą złożoności kształtu tych obiektów. Lepszą miarę zaproponował Mandelbrot w postaci pojęcia "wymiaru fraktalnego", który określa stopień meandrowania krzywej i jest w pewnym sensie miarą wypełnienia przestrzeni, w której ta krzywa jest zanurzona. W matematyce o takiej krzywej mówi się, że "czuje" przestrzeń (por. Schroeder 1991: 10). Pojęcie wymiaru fraktalnego prowadzi do zaskakujących spostrzeżeń i narusza powszechnie utrwalone w świadomości ludzkiej wyobrażenia o wymiarowaniu obiektów liniowych, powierzchniowych i objętościowych. Mimo iż wydaje się zupełnie oczywiste, że punkt ma wymiar 0, linia wymiar 1, płaszczyzna wymiar 2, a przestrzeń jest trójwymiarowa, to jednak pojęcie wymiaru w matematyce ma długą i niezupełnie jeszcze zakończoną historię. Na potrzebę głębszej analizy i bardziej precyzyjnego definiowania pojęcia wymiaru pierwszy zwrócił uwagę Poincaré w 1912 r. Stwierdził, że "prosta jest jednowymiarowa, ponieważ można rozdzielić dowolne dwa punkty na niej przecinając ją w jednym punkcie (który ma wymiar 0), natomiast płaszczyzna jest dwuwymiarowa, ponieważ dla rozdzielenia dowolnych dwóch punktów na płaszczyźnie musimy wyciąć całą krzywą zamkniętą (mającą wymiar 1). Nasuwa to myśl indukcyjnej natury wymiarowości: dana przestrzeń jest n- wymiarowa, jeżeli można rozdzielić dwa dowolne jej punkty usuwając podzbiór (n-1)- wymiarowy, i jeżeli podzbiór mniejszego wymiaru nie zawsze do tego wystarcza" (Courant, Robbins 1961: 323). Powyższe stwierdzenia wykazują, że towarzyszące człowiekowi odczucie natury wymiarowości nawiązuje właśnie do topologicznego wymiaru obiektów, tak matematycznych jak i naturalnych. Niektórzy matematycy, a wśród nich F. Hausdorff ( ), L.E.J. Brouwer ( ), A.S. Besicovich ( ) i A.N. Kołmogorow ( ), definiowali wymiar w inny sposób. Przy czym ich definicje charakteryzują tylko własności geometryczne obiektów, a naturę wymiarowości niekoniecznie opisują liczbami całkowitymi. Wymiar wyrażony liczbą

11 11. niecałkowitą - wydaje się to niemożliwe, ale taka właśnie sytuacja zachodzi w przypadku obiektów fraktalnych. Dla określenia wymiarowości fraktali Mandelbrot uprościł definicję wymiaru sformułowaną przez Hausdorffa w 1919 r.; u podstaw tej ostatniej leży pojęcie d-wymiarowej objętości figury. Wymiar Hausdorffa jest równy takiej wartości parametru d, przy której d-wymiarowa objętość zmienia się od nieskończoności do zera. Przy czym każda figura ma specyficzną wartość d, dla której zachodzi taka zmiana (Stewart 1994). Od strony teoretycznej definicja Hausdorffa jest skomplikowana (por. np. Peitgen i in. 1995: ), wiadomo natomiast, że wersja wymiaru Hausdorffa wykorzystana przez Mandelbrota ściśle odpowiada definicji pojemnościowej wymiaru sformułowanej przez Kołmogorowa w 1958 r. Idea wymiaru Kołmogorowa jest następująca (por. Kudrewicz 1993: 46). Niech obiekt geometryczny F zawarty w n-wymiarowej przestrzeni euklidesowej będzie pokryty zbiorem kostek (tj. kwadratów lub sześcianów odpowiednio dla n = 2 lub n = 3) o bokach równych h. Niech N(h) oznacza minimalną liczbę kostek potrzebnych do pokrycia całego obiektu. Wiadomo, że gdy h jest dostatecznie małe, to zachodzą następujące proporcjonalności (por. ryc. 8): (1) dla odcinka gładkiej linii: N(h) ~ (1/h), (2) dla płata gładkiej powierzchni: N(h) ~ (1/h) 2, (3) dla obszaru w R 3 : N(h) ~ (1/h) 3, (4) dla pewnych obiektów geometrycznych (fraktali): N(h) ~ (1/h) D, gdzie D nie jest liczbą całkowitą. Ryc. 8. Sposoby pokrycia obiektów geometrycznych: prostej, fragmentu płaszczyzny i fragmentu przestrzeni trójwymiarowej (źródło: Kudrewicz 1993: 46).

12 12. Kołmogorow zdefiniował wymiar pojemnościowy jako: D = lim logn(h) h 0 log ( 1 / h ) (2) Formuła o tej samej postaci została przyjęta przez Mandelbrota i nazwana wymiarem fraktalnym. Stwierdzono, że dla prostych fraktali wymiary: Hausdorffa oraz pojemnościowy są identyczne. Mimo więc, że ogólnie zachodzi nierówność D(F) d(f), gdzie D(F) jest wymiarem pojemnościowym, a d(f) oznacza wymiar Hausdorffa, dla określenia najważniejszej charakterystyki fraktala - jego wymiaru - wykorzystywana jest formuła (2) (Kudrewicz 1993). Definicja (2) może być przedstawiona w jeszcze innej postaci, tj.: lim h 0 D N(h) h = c 0 < c < (3) gdzie c jest stałą. Z równania można wywnioskować, że wymiar fraktalny jest wykładnikiem, który powoduje, że iloczyn N(h) h D jest skończony i niezerowy, gdy czynnik skalujący h 0. Iloczyn ten zmierza do zera lub, gdy D zmienia się o pewną infinitezymalną wartość (Schroeder 1991: 201, Ciesielski, Pogoda 1995: 183). Jeżeli c = 1, wówczas: N(h) h D = 1 logn(h) + D logh = 0 D = - logn(h) logh i ostatecznie w granicy: D = lim h 0 logn(h). log(1/ h) Na ryc. 9 pokazano, w jaki sposób wyznacza się wymiar fraktalny dla zbioru Cantora (9a)

13 13. oraz krzywej von Kocha (9b) przy wykorzystaniu formuły (2). W obu przypadkach długość wyjściowego odcinka wynosi 1, a redukcja długości w kolejnych krokach wynosi 1/3, zgodnie z opisem podanym wcześniej. Natomiast redukcja w innych skalach, tj. mniejszych lub większych od 0,33, może prowadzić do całkowicie odmiennych obiektów. Łatwo zauważyć, że długość zbioru Cantora zmierza do zera, a długość krzywej von Kocha zmierza do nieskończoności. Przy tym wymiar krzywej von Kocha jest dokładnie dwukrotnie większy aniżeli wymiar zbioru Cantora. W obu przypadkach wymiar jest liczbą niecałkowitą (i niewymierną). Z drugiej strony można spodziewać się, że wymiar zdefiniowany formułą (2), odniesiony do klasycznych figur geometrycznych, będzie wyrażony liczbą całkowitą i zgodny z ich wymiarem topologicznym. Ryc. 10 potwierdza to oczekiwanie. Dla wszystkich rozważanych przypadków, tj. odcinka linii o długości 1, kwadratu o boku 1 oraz sześcianu o boku 1, wymiar obliczony wg (2) pokrywa się z wymiarem topologicznym tych figur. Ryc. 9. Wymiar fraktalny zbioru Cantora i krzywej von Kocha.

14 14. Ryc. 10. Wymiar fraktalny klasycznych figur geometrycznych. Należy jednak zaznaczyć, że wymiar topologiczny nie zawsze pokrywa się z wymiarem Hausdorffa, gdyż np. zbiór Cantora ma wymiar topologiczny równy zeru, a wymiar topologiczny śnieżynki von Kocha wynosi 1 (ponieważ jej brzeg jest homeomorficzny z okręgiem). Istnieją również obiekty fraktalne, których wymiar fraktalny jest liczbą całkowitą, jak np. krzywa Hilberta ( ). Jej konstrukcję pokazano na ryc. 11. Krzywa ta posiada wymiar 2, a przecież nie jest płatem gładkiej powierzchni. Jest ona nazywana krzywą wypełniającą

15 15. przestrzeń. Innymi obiektami o podobnych własnościach są: krzywa Peano ( ) o wymiarze 2,0 oraz samoafiniczne "diabelskie schody" o wymiarze 1,0 4. Ryc. 11. Konstrukcja krzywej Hilberta. Wreszcie znane są takie obiekty fraktalne, których wymiar nie został dotąd określony, jak np. niektóre zbiory G. Julii ( ). Natomiast wymiar Hausdorffa brzegu najsłynniejszego fraktala - zbioru Mandelbrota, którego fantazyjne kształty uchodzą za jedne z najbardziej skomplikowanych jakie wymyślono w matematyce (por. Peitgen, Richter 1986) - został określony dopiero w 1991 r. przez Shishikurę (1991) i wynosi 2,0. Urzekające piękno długo ukrywało tajemnicę swego wymiaru. 4 Samoafiniczność zachodzi wówczas, gdy współczynniki skalowania nie są - jak w przypadku samopodobieństwa - identyczne we wszystkich kierunkach.

16 16. Ryc. 12. Fragmenty zbioru Mandelbrota. Ryc. 12 przedstawia dobrze znaną dekompozycję zbioru Mandelbrota. Przy kolejnych powiększeniach jego fragmentów pojawiają się coraz to nowe kompozycje kształtów. Uderzające jest również to, iż wewnątrz ukryte są identyczne struktury - coraz mniejsze zbiory Mandelbrota. Jego odkrywca - Mandelbrot - w pracy Peitgen i in. (1995: 471) wypowiedział się o tym zbiorze następująco: "Pod postacią zbioru Mandelbrota przyroda (a może matematyka?) daje nam wizualny odpowiednik tego, co w muzyce można by nazwać "tematem przewodnim i

17 17. jego wariacjami": wszędzie powtarzają się te same kształty, ale za każdym razem powtórzenie jest trochę inne. [...] zbiór ten stale oferuje nam nowości, nie jest on tak naprawdę fraktalem w myśl większości definicji: moglibyśmy nazwać go fraktalem brzegowym, granicznym fraktalem zawierającym wiele fraktali. W porównaniu z prawdziwymi fraktalami jego struktury są znacznie liczniejsze, jego harmonie bogatsze, a jego nieoczekiwaność jest bardziej nieoczekiwana" (Paitgen i in. 1995: 471). Na ogół jednak nie ma problemów z określeniem wymiarów fraktali matematycznych. Natomiast rozróżnienie pomiędzy ich wymiarem topologicznym oraz wymiarem fraktalnym posłużyło do sformułowania następującej definicji fraktala: fraktal to figura, której wymiar fraktalny jest różny od topologicznego (por. Ciesielski, Pogoda 1995: 184). Powyższa definicja wraz z podanymi wcześniej własnościami fraktali pozwala na ścisły opis tych obiektów Wymiar fraktali naturalnych (losowych) Geometryczną strukturę występujących w przyrodzie fraktali naturalnych 5 - podobnie jak fraktali matematycznych - najlepiej charakteryzuje ich wymiar. Richardson dowiódł, że w odniesieniu do długości linii wybrzeża (fraktala liniowego) spełniona jest ogólna zależność: L(a) = f(a), która ujawnia się w postaci prawa potęgowego: L(a) ~ a ε gdy a 0 (4) gdzie: L(a) jest długością linii wybrzeża przy ustalonym odcinku a, a - jest odcinkiem miary, np. odkładanym przy pomocy cyrkla 6, ε - jest wykładnikiem potęgowym o ujemnym znaku, jeśli L wzrasta gdy a maleje. 5 Za naturalne uważa się w tej pracy również obiekty fraktalne stworzone przez człowieka, jak np. miasta, systemy komunikacyjne, itp. występujące w krajobrazie geograficznym. 6 Odcinek miary oznacza się tutaj jako a (zamiast h) jedynie dla odróżnienia pomiarów przeprowadzanych względem fraktali naturalnych (nie matematycznych).

18 18. Można pokazać, że pomiędzy wykładnikiem potęgowym ε oraz wymiarem fraktalnym D obiektów liniowych zachodzi prosta zależność. Zgodnie z definicją wymiaru fraktalnego Mandelbrota, D = lim logn(a) a 0log( 1 / a ) Ponieważ N(a) = L(a)/a, to pomiędzy wymiarem fraktalnym a wykładnikiem ε zachodzi następujący związek: Dlog 1 a = logna ( ) 1 a D = Na ( ) 1 a D ( ) = La a -D a a = L( a) 1-D a = La ( ) = a ε Ponieważ 1-D a = a ε, stąd D = 1 - ε (5) W zastosowaniach praktycznych, wygodna jest formuła wymiaru fraktalnego wynikająca z następującego przekształcenia: ( ) -D a = La a

19 19. -D = logl(a) - loga loga D = lim a logl(a) loga (6) Należy zauważyć, że gdy zamiast (4) rozpatruje się zależność 1 La ( ) = f a a w szczególności ( ) La = 1 a ε znaczy to, że jeżeli L(a) rośnie, gdy f(1/a) rośnie (czyli a maleje), to funkcja potęgowa ma nachylenie dodatnie i zachodzi związek (por. Peitgen i in. 1995: 263): d = 1 + ε (7) Zależności (5) i (7) są spełnione przy empirycznym wyznaczaniu wymiaru fraktalnego obiektów liniowych Przy określaniu metodą statystyczną wymiarów fraktalnych obiektów powierzchniowych lub objętościowych, wygodnie jest wykorzystać następujący związek: D = Dt + ε gdzie D t oznacza wymiar topologiczny badanej figury (tj. 2 lub 3). W tym jednak przypadku ε jest wykładnikiem potęgowym wiążącym obwód figury z jej gęstością (por. Stauffer, Stanley 1995: 166). Wykorzystując wcześniej zapisane równanie Richardsona (4) i formułę (5), można obecnie pokazać, jaki jest wymiar fraktalny zachodniego wybrzeża Wielkiej Brytanii.

20 20. log L(a) = -0,22 log a + log s L(a) = s a-0,22 czyli D = 1 + 0,22 = 1,22. Uzyskana przez Richardsona wartość wymiaru fraktalnego oznacza, iż linia wybrzeża meandruje i odbiega od linii gładkiej, jednak nie w takim stopniu, jak czyni to krzywa Hilberta (por. ryc. 11), dla której D = 2,0. Natomiast linia wybrzeża W. Brytanii w swym przebiegu jest zbliżona do krzywej von Kocha, której wymiar fraktalny wynosi 1,2618. Przeto jej wersja losowa może być uważana za model wybrzeża W. Brytanii 7. Stosując takie samo podejście, określono wymiar fraktalny wybrzeża polskiego (wg aktulanego stanu granic). Odcinek miary zmieniał się w tym przypadku od a = 243 km do a = 1 km, natomiast czynnik wzrostu skali wynosił 3. Oszacowano równanie o następującej postaci (r 2 = 89%): czyli log L(a) = -0,071a + 2,70 L(a) = 501,7 a-0,071 Stąd wymiar fraktalny wybrzeża polskiego wynosi odpowiednio: D = 1 + 0,071 = 1,071. Nieznacznie przewyższa on jedność, co odpowiada rzeczywistości, gdyż wybrzeże polskie jest mało rozczłonkowane, a linia brzegowa meandruje w niewielkim stopniu. 7 Dokładniejsze pomiary wykazały, że wymiar fraktalny zachodniego wybrzeża Wielkiej Brytanii waha się pomiędzy 1,25 a 1,27 (por. Shelberg i in. 1983).

FRAKTALE I SAMOPODOBIEŃSTWO

FRAKTALE I SAMOPODOBIEŃSTWO FRAKTALE I SAMOPODOBIEŃSTWO Mariusz Gromada marzec 2003 mariusz.gromada@wp.pl http://multifraktal.net 1 Wstęp Fraktalem nazywamy każdy zbiór, dla którego wymiar Hausdorffa-Besicovitcha (tzw. wymiar fraktalny)

Bardziej szczegółowo

FRAKTALE. nie tworzą się z przypadku. Są tworzone naturalnie przez otaczającą nas przyrodę, bądź za pomocą

FRAKTALE. nie tworzą się z przypadku. Są tworzone naturalnie przez otaczającą nas przyrodę, bądź za pomocą Małgorzata Mielniczuk FRAKTALE Poniższy referat będzie traktować o fraktalach, majestatycznych wzorach, których kręte linie nie tworzą się z przypadku. Są tworzone naturalnie przez otaczającą nas przyrodę,

Bardziej szczegółowo

Fraktale deterministyczne i stochastyczne. Katarzyna Weron Katedra Fizyki Teoretycznej

Fraktale deterministyczne i stochastyczne. Katarzyna Weron Katedra Fizyki Teoretycznej Fraktale deterministyczne i stochastyczne Katarzyna Weron Katedra Fizyki Teoretycznej Szare i Zielone Scena z Fausta Goethego (1749-1832), Mefistofeles do doktora (2038-2039): Wszelka, mój bracie, teoria

Bardziej szczegółowo

Zbiór Cantora. Diabelskie schody.

Zbiór Cantora. Diabelskie schody. Zbiór Cantora. Diabelskie schody. Autor: Norbert Miękina Zespół Szkół nr 3 im. ks. prof. Józefa Tischnera ul. Krakowska 20 32-700 Bochnia tel. 14 612-27-79 Opiekun: mgr Barbara Góra 1 W matematyce sztuka

Bardziej szczegółowo

samopodobnym nieskończenie subtelny

samopodobnym nieskończenie subtelny Fraktale Co to jest fraktal? Według definicji potocznej fraktal jest obiektem samopodobnym tzn. takim, którego części są podobne do całości lub nieskończenie subtelny czyli taki, który ukazuje subtelne

Bardziej szczegółowo

Krzywa uniwersalna Sierpińskiego

Krzywa uniwersalna Sierpińskiego Krzywa uniwersalna Sierpińskiego Małgorzata Blaszke Karol Grzyb Streszczenie W niniejszej pracy omówimy krzywą uniwersalną Sierpińskiego, zwaną również dywanem Sierpińskiego. Pokażemy klasyczną metodę

Bardziej szczegółowo

Modele i symulacje - Scratch i Excel

Modele i symulacje - Scratch i Excel Instytut Matematyki Uniwersytet Gdański Literatura P. Szlagowski, Programowanie wizualne scratch 2.0 SCRATCH jest językiem programowania, w którym możesz stworzyć własne interaktywne historyjki, animacje,

Bardziej szczegółowo

Obliczenia inspirowane Naturą

Obliczenia inspirowane Naturą Obliczenia inspirowane Naturą Wykład 06 Geometria fraktalna Jarosław Miszczak IITiS PAN Gliwice 20/10/2016 1 / 43 1 Określenie nieformalne 2 Zbiór Mandelbrota 3 Określenie nieformalne pudełkowy Inne definicje

Bardziej szczegółowo

Podręcznik. Przykład 1: Wyborcy

Podręcznik. Przykład 1: Wyborcy MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN d.wojcik@nencki.gov.pl tel. 5892 424 http://www.neuroinf.pl/members/danek/swps/ Iwo Białynicki-Birula Iwona Białynicka-Birula

Bardziej szczegółowo

Plan prezentacji. Cechy charakterystyczne fraktali Zastosowanie fraktali Wymiar fraktalny D. Iteracyjny system funkcji (IFS)

Plan prezentacji. Cechy charakterystyczne fraktali Zastosowanie fraktali Wymiar fraktalny D. Iteracyjny system funkcji (IFS) Fraktale Plan prezentacji Wprowadzenie Cechy charakterystyczne fraktali Zastosowanie fraktali Wymiar fraktalny D Klasyczne fraktale Iteracyjny system funkcji (IFS) L-system Zbiory Julii i Mandelbrota Ruchy

Bardziej szczegółowo

PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1

PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1 PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1 Planimetria to dział geometrii, w którym przedmiotem badań są własności figur geometrycznych leżących na płaszczyźnie (patrz określenie płaszczyzny). Pojęcia

Bardziej szczegółowo

Fraktale. i Rachunek Prawdopodobieństwa

Fraktale. i Rachunek Prawdopodobieństwa Fraktale i Rachunek Prawdopodobieństwa Przyjrzyjmy się poniższemu rysunkowi, przedstawiającemu coś,, co kształtem tem przypomina drzewo o bardzo regularnej strukturze W jaki sposób b najłatwiej atwiej

Bardziej szczegółowo

Fraktale wokół nas. Leszek Rudak Uniwersytet Warszawski. informatyka +

Fraktale wokół nas. Leszek Rudak Uniwersytet Warszawski. informatyka + Fraktale wokół nas Leszek Rudak Uniwersytet Warszawski informatyka + 1 Podobieństwo figur informatyka + 2 Figury podobne Figury są podobne gdy proporcjonalnie zwiększając lub zmniejszając jedną z nich

Bardziej szczegółowo

WPROWADZENIE W GEOMETRIĘ GEOMETRIA W SZKOLE PODSTAWOWEJ

WPROWADZENIE W GEOMETRIĘ GEOMETRIA W SZKOLE PODSTAWOWEJ 1 WPROWADZENIE W GEOMETRIĘ GEOMETRIA W SZKOLE PODSTAWOWEJ 2 PIERWSZE KROKI W GEOMETRII Opracowała: Anna Nakoneczny Myślę, że my nigdy do dzisiejszego czasu nie żyliśmy w takim geometrycznym okresie. Wszystko

Bardziej szczegółowo

V Konkurs Matematyczny Politechniki Białostockiej

V Konkurs Matematyczny Politechniki Białostockiej V Konkurs Matematyczny Politechniki iałostockiej Rozwiązania - klasy pierwsze 27 kwietnia 2013 r. 1. ane są cztery liczby dodatnie a b c d. Wykazać że przynajmniej jedna z liczb a + b + c d b + c + d a

Bardziej szczegółowo

Projekt współfinansowany przez Unię Europejską ze środków Europejskiego Funduszu Społecznego

Projekt współfinansowany przez Unię Europejską ze środków Europejskiego Funduszu Społecznego Wstęp Rekurencja jest to wywołanie podprogramu (procedury) samej przez siebie. W logo zapis rekurencji będzie wyglądał następująco: oto nazwa_funkcji czynności_wykonywane_przez_procedurę nazwa_funkcji

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w klasie III gimnazjum

Wymagania edukacyjne z matematyki w klasie III gimnazjum Wymagania edukacyjne z matematyki w klasie III gimnazjum - nie potrafi konstrukcyjnie podzielić odcinka - nie potrafi konstruować figur jednokładnych - nie zna pojęcia skali - nie rozpoznaje figur jednokładnych

Bardziej szczegółowo

Zadania domowe. Ćwiczenie 2. Rysowanie obiektów 2-D przy pomocy tworów pierwotnych biblioteki graficznej OpenGL

Zadania domowe. Ćwiczenie 2. Rysowanie obiektów 2-D przy pomocy tworów pierwotnych biblioteki graficznej OpenGL Zadania domowe Ćwiczenie 2 Rysowanie obiektów 2-D przy pomocy tworów pierwotnych biblioteki graficznej OpenGL Zadanie 2.1 Fraktal plazmowy (Plasma fractal) Kwadrat należy pokryć prostokątną siatką 2 n

Bardziej szczegółowo

Sierpiński Carpet Project. W ZSTiL Zespół Szkół Technicznych i Licealnych

Sierpiński Carpet Project. W ZSTiL Zespół Szkół Technicznych i Licealnych Sierpiński Carpet Project W ZSTiL Zespół Szkół Technicznych i Licealnych Co to jest fraktal? Fraktale są obiektami matematycznymi, których podstawowa struktura powtarza się przy różnych powiększeniach.

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE III GIMNAZJUM

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE III GIMNAZJUM WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE III GIMNAZJUM OCENA ŚRÓDROCZNA: NIEDOSTATECZNY ocenę niedostateczny otrzymuje uczeń, który

Bardziej szczegółowo

Weronika Łabaj. Geometria Bolyaia-Łobaczewskiego

Weronika Łabaj. Geometria Bolyaia-Łobaczewskiego Weronika Łabaj Geometria Bolyaia-Łobaczewskiego Tematem mojej pracy jest geometria hiperboliczna, od nazwisk jej twórców nazywana też geometrią Bolyaia-Łobaczewskiego. Mimo, że odkryto ją dopiero w XIX

Bardziej szczegółowo

Dlaczego nie wystarczają liczby wymierne

Dlaczego nie wystarczają liczby wymierne Dlaczego nie wystarczają liczby wymierne Analiza zajmuje się problemami, w których pojawia się przejście graniczne. Przykładami takich problemów w matematyce bądź fizyce mogą być: 1. Pojęcie prędkości

Bardziej szczegółowo

Tematy: zadania tematyczne

Tematy: zadania tematyczne Tematy: zadania tematyczne 1. Ciągi liczbowe zadania typu udowodnij 1) Udowodnij, Ŝe jeŝeli liczby,, tworzą ciąg arytmetyczny ), to liczby,, takŝe tworzą ciąg arytmetyczny. 2) Ciąg jest ciągiem geometrycznym.

Bardziej szczegółowo

MATEMATYKA ZP Ramowy rozkład materiału na cały cykl kształcenia

MATEMATYKA ZP Ramowy rozkład materiału na cały cykl kształcenia MATEMATYKA ZP Ramowy rozkład materiału na cały cykl kształcenia KLASA I (3 h w tygodniu x 32 tyg. = 96 h; reszta godzin do dyspozycji nauczyciela) 1. Liczby rzeczywiste Zbiory Liczby naturalne Liczby wymierne

Bardziej szczegółowo

III. ZMIENNE LOSOWE JEDNOWYMIAROWE

III. ZMIENNE LOSOWE JEDNOWYMIAROWE III. ZMIENNE LOSOWE JEDNOWYMIAROWE.. Zmienna losowa i pojęcie rozkładu prawdopodobieństwa W dotychczas rozpatrywanych przykładach każdemu zdarzeniu była przyporządkowana odpowiednia wartość liczbowa. Ta

Bardziej szczegółowo

ZESTAWIENIE TEMATÓW Z MATEMATYKI Z PLUSEM DLA KLASY VIII Z WYMAGANIAMI PODSTAWY PROGRAMOWEJ WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ

ZESTAWIENIE TEMATÓW Z MATEMATYKI Z PLUSEM DLA KLASY VIII Z WYMAGANIAMI PODSTAWY PROGRAMOWEJ WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ ZESTAWIENIE TEMATÓW Z MATEMATYKI Z PLUSEM DLA KLASY VIII Z WYMAGANIAMI PODSTAWY PROGRAMOWEJ TEMAT LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ UWAGI 1. LICZBY I DZIAŁANIA 14 h

Bardziej szczegółowo

Wymagania przedmiotowe dla klasy 3as i 3b gimnazjum matematyka

Wymagania przedmiotowe dla klasy 3as i 3b gimnazjum matematyka Wymagania przedmiotowe dla klasy 3as i 3b gimnazjum matematyka TEMAT 5. Przekątna kwadratu. Wysokość trójkąta równobocznego 6. Trójkąty o kątach 90º, 45º, 45º oraz 90º, 30º, 60º 1. Okrąg opisany na trójkącie

Bardziej szczegółowo

Notatki przygotowawcze dotyczące inwersji na warsztaty O geometrii nieeuklidesowej hiperbolicznej Wrocław, grudzień 2013

Notatki przygotowawcze dotyczące inwersji na warsztaty O geometrii nieeuklidesowej hiperbolicznej Wrocław, grudzień 2013 Notatki przygotowawcze dotyczące inwersji na warsztaty O geometrii nieeuklidesowej hiperbolicznej Wrocław, grudzień 013 3.4.1 Inwersja względem okręgu. Inwersja względem okręgu jest przekształceniem płaszczyzny

Bardziej szczegółowo

Przedmiotowy system oceniania Wymagania na poszczególne oceny,,liczy się matematyka

Przedmiotowy system oceniania Wymagania na poszczególne oceny,,liczy się matematyka Przedmiotowy system oceniania Wymagania na poszczególne oceny,,liczy się matematyka I. Potęgi i pierwiastki. Klasa II 1. Zapisuje w postaci potęgi iloczyn tych samych czynników i odwrotnie. 2. Oblicza

Bardziej szczegółowo

STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH

STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH Stereometria jest działem geometrii, którego przedmiotem badań są bryły przestrzenne oraz ich właściwości. WZAJEMNE POŁOŻENIE PROSTYCH W PRZESTRZENI 2 proste

Bardziej szczegółowo

Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych ocen klasyfikacyjnych z matematyki klasa 2 (oddział gimnazjalny)

Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych ocen klasyfikacyjnych z matematyki klasa 2 (oddział gimnazjalny) edukacyjne niezbędne do uzyskania poszczególnych śródrocznych ocen klasyfikacyjnych z matematyki klasa 2 (oddział gimnazjalny) Stopień Rozdział 1. Potęgi i pierwiastki zapisuje w postaci potęgi iloczyn

Bardziej szczegółowo

SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa

SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa SIMR 06/07, Analiza, wykład, 07-0- Przestrzeń wektorowa Przestrzeń wektorowa (liniowa) - przestrzeń (zbiór) w której określone są działania (funkcje) dodawania elementów i mnożenia elementów przez liczbę

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne

Katalog wymagań programowych na poszczególne stopnie szkolne rozpoznaje figury podobne zna własności figur podobnych rozpoznaje trójkąty prostokątne podobne Rozdział 6. Figury podobne zna cechy podobieństwa trójkątów prostokątnych podobnych podaje skalę podobieństwa

Bardziej szczegółowo

ROZKŁAD MATERIAŁU DLA 3 KLASY GIMNAZJUM

ROZKŁAD MATERIAŁU DLA 3 KLASY GIMNAZJUM ROZKŁAD MATERIAŁU DLA 3 KLASY GIMNAZJUM TEMAT LICZBA GODZIN LEKCYJNYCH 1. LICZBY I WYRAŻENIA ALGEBRAICZNE (26 h) 1. Lekcja organizacyjna 1 2. System dziesiątkowy 2-4 3. System rzymski 5-6 WYMAGANIA SZCZEGÓŁOWE

Bardziej szczegółowo

Przykładami ciągów, które Czytelnik dobrze zna (a jeśli nie, to niniejszym poznaje), jest ciąg arytmetyczny:

Przykładami ciągów, które Czytelnik dobrze zna (a jeśli nie, to niniejszym poznaje), jest ciąg arytmetyczny: Podstawowe definicje Definicja ciągu Ciągiem nazywamy funkcję na zbiorze liczb naturalnych, tzn. przyporządkowanie każdej liczbie naturalnej jakiejś liczby rzeczywistej. (Mówimy wtedy o ciągu o wyrazach

Bardziej szczegółowo

Końcoworoczne kryteria oceniania dla klasy II z matematyki przygotowały mgr Magdalena Murawska i mgr Iwona Śliczner

Końcoworoczne kryteria oceniania dla klasy II z matematyki przygotowały mgr Magdalena Murawska i mgr Iwona Śliczner Końcoworoczne kryteria oceniania dla klasy II z matematyki przygotowały mgr Magdalena Murawska i mgr Iwona Śliczner Semestr I Rozdział: Potęgi i pierwiastki zapisuje w postaci potęgi iloczyn tych samych

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne

Katalog wymagań programowych na poszczególne stopnie szkolne rozpoznaje figury podobne zna własności figur podobnych rozpoznaje trójkąty prostokątne podobne Rozdział 6. Figury podobne zna cechy podobieństwa trójkątów prostokątnych podobnych podaje skalę podobieństwa

Bardziej szczegółowo

MATEMATYKA. WYMAGANIA EDUKACYJNE KLASA I, II, III Bożena Tarnowiecka, Arkadiusz Wolski. KLASA I Wymagania

MATEMATYKA. WYMAGANIA EDUKACYJNE KLASA I, II, III Bożena Tarnowiecka, Arkadiusz Wolski. KLASA I Wymagania MATEMATYKA WYMAGANIA EDUKACYJNE KLASA I, II, III Bożena Tarnowiecka, Arkadiusz Wolski Treści zapisane kursywą (i oznaczone gwiazdką) wykraczają poza podstawę programową. Nauczyciel może je realizować,

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ NA ROK SZKOLNY 2011/2012 DO PROGRAMU MATEMATYKA Z PLUSEM

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ NA ROK SZKOLNY 2011/2012 DO PROGRAMU MATEMATYKA Z PLUSEM WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ NA ROK SZKOLNY 2011/2012 DO PROGRAMU MATEMATYKA Z PLUSEM LICZBY, WYRAŻENIA ALGEBRAICZNE umie obliczyć potęgę o wykładniku naturalnym; umie obliczyć

Bardziej szczegółowo

Fraktale. Jerzy Pogonowski. Funkcje rekurencyjne. Zakład Logiki Stosowanej UAM

Fraktale. Jerzy Pogonowski. Funkcje rekurencyjne. Zakład Logiki Stosowanej UAM Fraktale Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Funkcje rekurencyjne Jerzy Pogonowski (MEG) Fraktale Funkcje rekurencyjne 1 / 56 Wprowadzenie Plan na dziś:

Bardziej szczegółowo

Algebra WYKŁAD 3 ALGEBRA 1

Algebra WYKŁAD 3 ALGEBRA 1 Algebra WYKŁAD 3 ALGEBRA 1 Liczby zespolone Postać wykładnicza liczby zespolonej Niech e oznacza stałą Eulera Definicja Równość e i cos isin nazywamy wzorem Eulera. ALGEBRA 2 Liczby zespolone Każdą liczbę

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE DLA KLASY III GIMNAZJUM W ZSPiG W CZARNYM DUNAJCU NA ROK SZKOLNY 2016/2017 ROCZNE

WYMAGANIA EDUKACYJNE DLA KLASY III GIMNAZJUM W ZSPiG W CZARNYM DUNAJCU NA ROK SZKOLNY 2016/2017 ROCZNE WYMAGANIA EDUKACYJNE DLA KLASY III GIMNAZJUM W ZSPiG W CZARNYM DUNAJCU NA ROK SZKOLNY 2016/2017 ROCZNE Przekształcenia algebraiczne Równania i układy równań Pojęcie funkcji. Własności funkcji. WYRAŻENIA

Bardziej szczegółowo

Równania miłości. autor: Tomasz Grębski

Równania miłości. autor: Tomasz Grębski Równania miłości autor: Tomasz Grębski Tytuł pewnie trochę dziwnie brzmi, bo czy miłość da się opisać równaniem? Symbolem miłości jest niewątpliwie Serce, a zatem spróbujmy opisać kształt serca równaniem

Bardziej szczegółowo

Wymagania edukacyjne z matematyki do programu pracy z podręcznikiem Matematyka wokół nas

Wymagania edukacyjne z matematyki do programu pracy z podręcznikiem Matematyka wokół nas Wymagania edukacyjne z matematyki do programu pracy z podręcznikiem Matematyka wokół nas klasa I 1)Działania na liczbach: dopuszczający: uczeń potrafi poprawnie wykonać cztery podstawowe działania na ułamkach

Bardziej szczegółowo

MATEMATYKA WYDZIAŁ MATEMATYKI - TEST 1

MATEMATYKA WYDZIAŁ MATEMATYKI - TEST 1 Wszelkie prawa zastrzeżone. Rozpowszechnianie, wypożyczanie i powielanie niniejszych testów w jakiejkolwiek formie surowo zabronione. W przypadku złamania zakazu mają zastosowanie przepisy dotyczące naruszenia

Bardziej szczegółowo

WYMAGANIA EDUKACUJNE Z MATEMATYKI Z PLUSEM DLA KLASY VIII WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ TEMAT

WYMAGANIA EDUKACUJNE Z MATEMATYKI Z PLUSEM DLA KLASY VIII WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ TEMAT WYMAGANIA EDUKACUJNE Z MATEMATYKI Z PLUSEM DLA KLASY VIII TEMAT WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. LICZBY I DZIAŁANIA System rzymski. Powtórzenie i utrwalenie umiejętności z zakresu podstawy

Bardziej szczegółowo

REALIZACJA TREŚCI PODSTAWY PROGRAMOWEJ PRZEZ PROGRAM MATEMATYKA Z PLUSEM

REALIZACJA TREŚCI PODSTAWY PROGRAMOWEJ PRZEZ PROGRAM MATEMATYKA Z PLUSEM REALIZACJA TREŚCI PODSTAWY PROGRAMOWEJ PRZEZ PROGRAM MATEMATYKA Z PLUSEM Treści nauczania wg podstawy programowej Podręcznik M+ Klasa I Klasa II Klasa III 1. Liczby wymierne dodatnie. Uczeń: 1) odczytuje

Bardziej szczegółowo

Fraktale w matematyce

Fraktale w matematyce Zeszyty Koła Naukowego Młodych sekcja matematyczno naukowo - techniczna Fraktale w matematyce Zeszyt I 009/00r. Spis treści:. Definicja fraktala. Przykłady fraktali 4. Zbiór Cantora.4. Dywan Sierpińskiego.

Bardziej szczegółowo

WYMAGANIA EGZAMINACYJNE DLA KLASY III GIMNAZJUM

WYMAGANIA EGZAMINACYJNE DLA KLASY III GIMNAZJUM WYMAGANIA EGZAMINACYJNE DLA KLASY III GIMNAZJUM TEMAT WYMAGANIA SZCZEGÓŁOWE 1. LICZBY I WYRAŻENIA ALGEBRAICZNE 2. System dziesiątkowy 1. Liczby wymierne dodatnie. Uczeń: 1) zaokrągla rozwinięcia dziesiętne

Bardziej szczegółowo

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą 1. Statystyka odczytać informacje z tabeli odczytać informacje z diagramu 2. Mnożenie i dzielenie potęg o tych samych podstawach 3. Mnożenie i dzielenie potęg o tych samych wykładnikach 4. Potęga o wykładniku

Bardziej szczegółowo

Wymagania edukacyjne niezbędne do otrzymania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z matematyki dla klasy VIII

Wymagania edukacyjne niezbędne do otrzymania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z matematyki dla klasy VIII Wymagania edukacyjne niezbędne do otrzymania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z matematyki dla klasy VIII Temat 1. System rzymski. 2. Własności liczb naturalnych. 3. Porównywanie

Bardziej szczegółowo

PLAN WYNIKOWY Z MAEMATYKI DLA KLASY II GIMNAZJUM do podręcznika MATEMATYKA 2001

PLAN WYNIKOWY Z MAEMATYKI DLA KLASY II GIMNAZJUM do podręcznika MATEMATYKA 2001 Bożena Bakiewicz, Bożena Pindral PLAN WYNIKOWY Z MAEMATYKI DLA KLASY II GIMNAZJUM do podręcznika MATEMATYKA 2001 Poziom wymagań: K - konieczny P - podstawowy R - rozszerzający D - dopełniający POTĘGI,

Bardziej szczegółowo

Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum. w roku szkolnym 2012/2013

Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum. w roku szkolnym 2012/2013 Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum w roku szkolnym 2012/2013 I. Zakres materiału do próbnego egzaminu maturalnego z matematyki: 1) liczby rzeczywiste 2) wyrażenia algebraiczne

Bardziej szczegółowo

Wymagania edukacyjne na poszczególne stopnie szkolne klasa III

Wymagania edukacyjne na poszczególne stopnie szkolne klasa III Wymagania edukacyjne na poszczególne stopnie szkolne klasa III Rozdział 1. Bryły - wie, czym jest graniastosłup, graniastosłup prosty, graniastosłup prawidłowy - wie, czym jest ostrosłup, ostrosłup prosty,

Bardziej szczegółowo

Wymagania na egzamin poprawkowy z matematyki dla klasy I C LO (Rok szkolny 2015/16) Wykaz zakładanych osiągnięć ucznia klasy I liceum

Wymagania na egzamin poprawkowy z matematyki dla klasy I C LO (Rok szkolny 2015/16) Wykaz zakładanych osiągnięć ucznia klasy I liceum Wymagania na egzamin poprawkowy z matematyki dla klasy I C LO (Rok szkolny 05/6) Wykaz zakładanych osiągnięć ucznia klasy I liceum (osiągnięcia ucznia w zakresie podstawowym) I. Liczby rzeczywiste. Język

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla kl. 2 Gimnazjum Publicznego im. Jana Pawła II w Żarnowcu w roku szkolnym 2016/2017

Wymagania edukacyjne z matematyki dla kl. 2 Gimnazjum Publicznego im. Jana Pawła II w Żarnowcu w roku szkolnym 2016/2017 NAUCZYCIEL: edukacyjne z matematyki dla kl. 2 Gimnazjum Publicznego im. Jana Pawła II w Żarnowcu w roku szkolnym 2016/2017 mgr Dorota Maj PODRĘCZNIK: Liczy się matematyka WYD. WSiP Na lekcjach matematyki

Bardziej szczegółowo

KONKURS ZOSTAŃ PITAGORASEM MUM. Podstawowe własności figur geometrycznych na płaszczyźnie

KONKURS ZOSTAŃ PITAGORASEM MUM. Podstawowe własności figur geometrycznych na płaszczyźnie KONKURS ZOSTAŃ PITAGORASEM MUM ETAP I TEST II Podstawowe własności figur geometrycznych na płaszczyźnie 1. A. Stosunek pola koła wpisanego w kwadrat o boku długości 6 do pola koła opisanego na tym kwadracie

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ W RUDKACH

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ W RUDKACH WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ W RUDKACH Marzena Zbrożyna DOPUSZCZAJĄCY: Uczeń potrafi: odczytać informacje z tabeli odczytać informacje z diagramu

Bardziej szczegółowo

Przedmiotowe zasady oceniania i wymagania edukacyjne z matematyki dla klasy drugiej gimnazjum

Przedmiotowe zasady oceniania i wymagania edukacyjne z matematyki dla klasy drugiej gimnazjum Przedmiotowe zasady oceniania i wymagania edukacyjne z matematyki dla klasy drugiej gimnazjum I. POTĘGI I PIERWIASTKI oblicza wartości potęg o wykładnikach całkowitych liczb różnych od zera zapisuje liczbę

Bardziej szczegółowo

A-1. Podaj aksjomaty przestrzeni topologicznej według W. Sierpińskiego: aksjomaty

A-1. Podaj aksjomaty przestrzeni topologicznej według W. Sierpińskiego: aksjomaty A-1. Podaj aksjomaty przestrzeni topologicznej według W. Sierpińskiego: aksjomaty T 1 przestrzeni. Czym ta aksjomatyka różni się od aksjomatyki zbiorów otwartych? A-2. Wyprowadź z aksjomatów topologii

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE II GIMNAZJUM

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE II GIMNAZJUM WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE II GIMNAZJUM OCENA ŚRÓDROCZNA: NIEDOSTATECZNY ocenę niedostateczny otrzymuje uczeń, który

Bardziej szczegółowo

Wymagania edukacyjne klasa trzecia.

Wymagania edukacyjne klasa trzecia. TEMAT Wymagania edukacyjne klasa trzecia. WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. LICZBY I WYRAŻENIA ALGEBRAICZNE Lekcja organizacyjna System dziesiątkowy System rzymski Liczby wymierne i niewymierne

Bardziej szczegółowo

TEST A. A-1. Podaj aksjomaty przestrzeni topologicznej według W. Sierpińskiego: aksjomaty

TEST A. A-1. Podaj aksjomaty przestrzeni topologicznej według W. Sierpińskiego: aksjomaty TEST A A-1. Podaj aksjomaty przestrzeni topologicznej według W. Sierpińskiego: aksjomaty T 1 przestrzeni. Czym ta aksjomatyka różni się od aksjomatyki zbiorów otwartych? A-2. Ile różnych zbiorów otwartych

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY MATEMATYKA KLASA 8 DZIAŁ 1. LICZBY I DZIAŁANIA

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY MATEMATYKA KLASA 8 DZIAŁ 1. LICZBY I DZIAŁANIA WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY MATEMATYKA KLASA 8 DZIAŁ 1. LICZBY I DZIAŁANIA zna znaki używane do zapisu liczb w systemie rzymskim; zna zasady zapisu liczb w systemie rzymskim; umie zapisać

Bardziej szczegółowo

Funkcje dwóch zmiennych

Funkcje dwóch zmiennych Funkcje dwóch zmiennych Andrzej Musielak Str Funkcje dwóch zmiennych Wstęp Funkcja rzeczywista dwóch zmiennych to funkcja, której argumentem jest para liczb rzeczywistych, a wartością liczba rzeczywista.

Bardziej szczegółowo

Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne.

Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne. Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne. Funkcja homograficzna. Definicja. Funkcja homograficzna jest to funkcja określona wzorem f() = a + b c + d, () gdzie współczynniki

Bardziej szczegółowo

ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY III A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi

ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY III A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY III A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi Rozkład materiału nauczania został opracowany na podstawie programu

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ POZIOM PODSTAWOWY Klasa 1 Klasa 1

LUBELSKA PRÓBA PRZED MATURĄ POZIOM PODSTAWOWY Klasa 1 Klasa 1 Klasa 1 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 18 stron. 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym. 3. W zadaniach

Bardziej szczegółowo

w najprostszych przypadkach, np. dla trójkątów równobocznych

w najprostszych przypadkach, np. dla trójkątów równobocznych MATEMATYKA - klasa 3 gimnazjum kryteria ocen według treści nauczania (Przyjmuje się, że jednym z warunków koniecznych uzyskania danej oceny jest spełnienie wszystkich wymagań na oceny niższe.) Dział programu

Bardziej szczegółowo

Modelowanie wybranych pojęć matematycznych. semestr letni, 2016/2017 Wykład 10 Własności funkcji cd.

Modelowanie wybranych pojęć matematycznych. semestr letni, 2016/2017 Wykład 10 Własności funkcji cd. Modelowanie wybranych pojęć matematycznych semestr letni, 206/207 Wykład 0 Własności funkcji cd. Ciągłość funkcji zastosowania Przybliżone rozwiązywanie równań Znajdziemy przybliżone rozwiązanie równania

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE VIII

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE VIII WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE VIII Uczeń na ocenę dopuszczającą: - zna znaki używane do zapisu liczb w systemie rzymskim, - umie zapisać i odczytać liczby naturalne dodatnie w systemie rzymskim

Bardziej szczegółowo

Następnie przypominamy (dla części studentów wprowadzamy) podstawowe pojęcia opisujące funkcje na poziomie rysunków i objaśnień.

Następnie przypominamy (dla części studentów wprowadzamy) podstawowe pojęcia opisujące funkcje na poziomie rysunków i objaśnień. Zadanie Należy zacząć od sprawdzenia, co studenci pamiętają ze szkoły średniej na temat funkcji jednej zmiennej. Na początek można narysować kilka krzywych na tle układu współrzędnych (funkcja gładka,

Bardziej szczegółowo

PYTANIA TEORETYCZNE Z MATEMATYKI

PYTANIA TEORETYCZNE Z MATEMATYKI Zbiory liczbowe: 1. Wymień znane Ci zbiory liczbowe. 2. Co to są liczby rzeczywiste? 3. Co to są liczby naturalne? 4. Co to są liczby całkowite? 5. Co to są liczby wymierne? 6. Co to są liczby niewymierne?

Bardziej szczegółowo

GEOMETRIA ELEMENTARNA

GEOMETRIA ELEMENTARNA Bardo, 7 11 XII A. D. 2016 I Uniwersytecki Obóz Olimpiady Matematycznej GEOMETRIA ELEMENTARNA materiały przygotował Antoni Kamiński na podstawie zbiorów zadań: Przygotowanie do olimpiad matematycznych

Bardziej szczegółowo

Funkcje liniowe i wieloliniowe w praktyce szkolnej. Opracowanie : mgr inż. Renata Rzepińska

Funkcje liniowe i wieloliniowe w praktyce szkolnej. Opracowanie : mgr inż. Renata Rzepińska Funkcje liniowe i wieloliniowe w praktyce szkolnej Opracowanie : mgr inż. Renata Rzepińska . Wprowadzenie pojęcia funkcji liniowej w nauczaniu matematyki w gimnazjum. W programie nauczania matematyki w

Bardziej szczegółowo

13. Równania różniczkowe - portrety fazowe

13. Równania różniczkowe - portrety fazowe 13. Równania różniczkowe - portrety fazowe Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie rzegorz Kosiorowski (Uniwersytet Ekonomiczny 13. wrównania Krakowie) różniczkowe - portrety fazowe 1 /

Bardziej szczegółowo

Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu

Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z obowiązkowych

Bardziej szczegółowo

1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia.

1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia. 1. Elementy logiki i algebry zbiorów 1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia. Funkcje zdaniowe. Zdania z kwantyfikatorami oraz ich zaprzeczenia.

Bardziej szczegółowo

Pracę wykonali: -Bryjak Mateusz -Chudziak Paweł -Palacz Angelika -Skorwider Dariusz

Pracę wykonali: -Bryjak Mateusz -Chudziak Paweł -Palacz Angelika -Skorwider Dariusz Pracę wykonali: -Bryjak Mateusz -Chudziak Paweł -Palacz Angelika -Skorwider Dariusz Symetria osiowa- przekształcenie płaszczyzny względem pewnej prostej, jest ona osią symetrii. Każdemu punktowi A przyporządkowujemy

Bardziej szczegółowo

GEOMETRIA PRZESTRZENNA (STEREOMETRIA)

GEOMETRIA PRZESTRZENNA (STEREOMETRIA) GEOMETRIA PRZESTRZENNA (STEREOMETRIA) WZAJEMNE POŁOŻENIE PROSTYCH W PRZESTRZENI Stereometria jest działem geometrii, którego przedmiotem badań są bryły przestrzenne oraz ich właściwości. Na początek omówimy

Bardziej szczegółowo

START. Wprowadź (v, t) S:=v*t. Wyprowadź (S) KONIEC

START. Wprowadź (v, t) S:=v*t. Wyprowadź (S) KONIEC GRUPA I Co to jest algorytm, a czym jest program komputerowy? Algorytm: uporządkowany i uściślony sposób rozwiązywania problemu, zawierający szczegółowy opis wykonywanych czynności. Program komputerowy:

Bardziej szczegółowo

Podstawa programowa przedmiotu MATEMATYKA. III etap edukacyjny (klasy I - III gimnazjum)

Podstawa programowa przedmiotu MATEMATYKA. III etap edukacyjny (klasy I - III gimnazjum) Podstawa programowa przedmiotu MATEMATYKA III etap edukacyjny (klasy I - III gimnazjum) Cele kształcenia wymagania ogólne: I. Wykorzystanie i tworzenie informacji. Uczeń interpretuje i tworzy teksty o

Bardziej szczegółowo

Efekt motyla i dziwne atraktory

Efekt motyla i dziwne atraktory O układzie Lorenza Wydział Matematyki i Informatyki Uniwersytet Mikołaja kopernika Toruń, 3 grudnia 2009 Spis treści 1 Wprowadzenie Wyjaśnienie pojęć 2 O dziwnych atraktorach 3 Wyjaśnienie pojęć Dowolny

Bardziej szczegółowo

Rozdział VII. Przekształcenia geometryczne na płaszczyźnie Przekształcenia geometryczne Symetria osiowa Symetria środkowa 328

Rozdział VII. Przekształcenia geometryczne na płaszczyźnie Przekształcenia geometryczne Symetria osiowa Symetria środkowa 328 Drogi Czytelniku 9 Oznaczenia matematyczne 11 Podstawowe wzory 15 Rozdział I. Zbiory. Działania na zbiorach 21 1. Zbiór liczb naturalnych 22 1.1. Działania w zbiorze liczb naturalnych 22 1.2. Prawa działań

Bardziej szczegółowo

WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY CZWARTEJ H. zakres rozszerzony. Wiadomości i umiejętności

WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY CZWARTEJ H. zakres rozszerzony. Wiadomości i umiejętności WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY CZWARTEJ H. zakres rozszerzony Funkcja wykładnicza i funkcja logarytmiczna. Stopień Wiadomości i umiejętności -definiować potęgę

Bardziej szczegółowo

1. Granice funkcji - wstępne definicje i obliczanie prostych granic

1. Granice funkcji - wstępne definicje i obliczanie prostych granic 1. Granice funkcji - wstępne definicje i obliczanie prostych granic Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie rzegorz Kosiorowski (Uniwersytet Ekonomiczny 1. Granice w Krakowie) funkcji -

Bardziej szczegółowo

MATEMATYKA DLA KLASY VII W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ

MATEMATYKA DLA KLASY VII W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ MATEMATYKA DLA KLASY VII W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ TEMAT 1. LICZBY I DZIAŁANIA Liczby. Rozwinięcia dziesiętne liczb wymiernych. Zaokrąglanie liczb. Szacowanie wyników. Dodawanie i odejmowanie

Bardziej szczegółowo

Kryteria oceniania osiągnięć uczniów z matematyki w kl. III gimnazjum. (Program Matematyka z plusem dla III etapu edukacyjnego)

Kryteria oceniania osiągnięć uczniów z matematyki w kl. III gimnazjum. (Program Matematyka z plusem dla III etapu edukacyjnego) Kryteria oceniania osiągnięć uczniów z matematyki w kl. III gimnazjum. (Program Matematyka z plusem dla III etapu edukacyjnego) Ocena DOPUSZCZAJĄCY DOSTATECZNY DOBRY BARDZO DOBRY CELUJĄCY Uczeń: Uczeń:

Bardziej szczegółowo

Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie:

Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie: Ciągi rekurencyjne Zadanie 1 Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie: w dwóch przypadkach: dla i, oraz dla i. Wskazówka Należy poszukiwać rozwiązania w postaci, gdzie

Bardziej szczegółowo

Obrazy rekurencyjne. Zastosowanie rekurencji w algorytmice. AUTOR: Martin Śniegoń

Obrazy rekurencyjne. Zastosowanie rekurencji w algorytmice. AUTOR: Martin Śniegoń Obrazy rekurencyjne Zastosowanie rekurencji w algorytmice AUTOR: Martin Śniegoń Zdolność procedury/funkcji do wywoływania samej siebie Podstawowa i jedna z najważniejszych technik programistycznych Umożliwia

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Rok szkolny 2018/2019

WYMAGANIA EDUKACYJNE Rok szkolny 2018/2019 WYMAGANIA EDUKACYJNE Rok szkolny 2018/2019 Przedmiot Klasa Nauczyciele uczący Poziom matematyka 4e Łukasz Jurczak rozszerzony 2. Elementy analizy matematycznej ocena dopuszczająca ocena dostateczna ocena

Bardziej szczegółowo

Zadania przygotowawcze do konkursu o tytuł NAJLEPSZEGO MATEMATYKA KLAS PIERWSZYCH I DRUGICH POWIATU BOCHEŃSKIEGO rok szk. 2017/2018.

Zadania przygotowawcze do konkursu o tytuł NAJLEPSZEGO MATEMATYKA KLAS PIERWSZYCH I DRUGICH POWIATU BOCHEŃSKIEGO rok szk. 2017/2018. Zadania przygotowawcze do konkursu o tytuł NAJLEPSZEGO MATEMATYKA KLAS PIERWSZYCH I DRUGICH POWIATU BOCHEŃSKIEGO rok szk. 017/018 19 grudnia 017 1 1 Klasy pierwsze - poziom podstawowy 1. Dane są zbiory

Bardziej szczegółowo

Geometria. Rozwiązania niektórych zadań z listy 2

Geometria. Rozwiązania niektórych zadań z listy 2 Geometria. Rozwiązania niektórych zadań z listy 2 Inne rozwiązanie zadania 2. (Wyznaczyć równanie stycznej do elipsy x 2 a 2 + y2 b 2 = 1 w dowolnym jej punkcie (x 0, y 0 ). ) Przypuśćmy, że krzywa na

Bardziej szczegółowo

Wymagania na poszczególne oceny w klasie II gimnazjum do programu nauczania MATEMATYKA NA CZASIE

Wymagania na poszczególne oceny w klasie II gimnazjum do programu nauczania MATEMATYKA NA CZASIE Wymagania na poszczególne oceny w klasie II gimnazjum do programu nauczania MATEMATYKA NA CZASIE Wymagania konieczne K dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, powinien je

Bardziej szczegółowo

KRYTERIA WYMAGAŃ Z MATEMATYKI NA POSZCZEGÓLNE OCENY

KRYTERIA WYMAGAŃ Z MATEMATYKI NA POSZCZEGÓLNE OCENY KRYTERIA WYMAGAŃ Z MATEMATYKI NA POSZCZEGÓLNE OCENY KLASA III FUNKCJE rozumie wykres jako sposób prezentacji informacji umie odczytać informacje z wykresu umie odczytać i porówna ć informacje z kilku wykresów

Bardziej szczegółowo

Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy

Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy Wariant nr (klasa I 4 godz., klasa II godz., klasa III godz.) Klasa I 7 tygodni 4 godziny = 48 godzin Lp. Tematyka zajęć

Bardziej szczegółowo

Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. 2 godz. = 76 godz.)

Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. 2 godz. = 76 godz.) Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. godz. = 76 godz.) I. Funkcja i jej własności.4godz. II. Przekształcenia wykresów funkcji...9 godz. III. Funkcja

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA II GIMNAZJUM Małgorzata Janik

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA II GIMNAZJUM Małgorzata Janik WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA II GIMNAZJUM Małgorzata Janik DOPUSZCZAJĄCY DOSTATECZNY DOBRY BARDZO DOBRY Potęgi i pierwiastki Uczeń: Zna i rozumie pojęcie potęgi o wykładniku naturalnym Umie

Bardziej szczegółowo

ROK SZKOLNY 2017/2018 WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY:

ROK SZKOLNY 2017/2018 WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY: ROK SZKOLNY 2017/2018 WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY: KLASA II GIMNAZJUM Wymagania konieczne K dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, powinien je zatem opanować

Bardziej szczegółowo

1. Potęgi. Logarytmy. Funkcja wykładnicza

1. Potęgi. Logarytmy. Funkcja wykładnicza 1. Potęgi. Logarytmy. Funkcja wykładnicza Tematyka zajęć: WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY KL. 3 POZIOM PODSTAWOWY Potęga o wykładniku rzeczywistym powtórzenie Funkcja wykładnicza i jej własności

Bardziej szczegółowo