Tradycyjny podział stanów skupienia: fazy skondensowane
|
|
- Krzysztof Nowicki
- 8 lat temu
- Przeglądów:
Transkrypt
1
2
3 Tradycyjny podział stanów skupienia: o o o stały (ciało stałe) zachowuje objętość i kształt ciekły (ciecz) zachowuje objętość, łatwo zmienia kształt gazowy (gaz) łatwo zmienia objętość i kształt lód woda (ciekła) para wodna fazy skondensowane
4 topnienie krzepnięcie parowanie skraplanie sublimacja resublimacja
5 Obecnie fizyka wyróżnia: o o fazy płynne o plazma (zjonizowany gaz ale też np. plazma neutronowa) o faza gazowa o faza nadkrytyczna o faza ciekła o izotropowa (czyli normalna ) o nadciekła o ciekłe kryształy fazy stałe o faza krystaliczna o kryształy plastyczne o kryształy condis o kwazikryształy o faza amorficzna
6
7 Jak zdefiniować kryształ? Kryształ (ciało krystaliczne) to ciało stałe, w którym atomy rozmieszczone są w 3 wymiarach w sposób periodyczny. Występuje w nim uporządkowanie dalekozasięgowe oraz symetria translacyjna co oznacza, że pewien motyw zostaje przestrzennie powielony (nieskończenie) wiele razy. brylant czyli diament (odpowiednio oszlifowany), jedna z odmian (alotropowych) węgla
8 powierzchnia stali elektrotechnicznej widoczne (monokrystaliczne) ziarna monokryształ (formalnie krystalit) krzemu
9 MONOKRYSZTAŁ - pojedynczy kryształ (lub krystalit), tzn. nie występują w nim granice międzyziarnowe, cała objętość ciała posiada identyczne uporządkowanie, choć występują w nim defekty (0, 1 i 2 wymiarowe). POLIKRYSZTAŁ ciało stałe zbudowane z b. wielu (zwykle b. małych, rzędu mikrometrów) monokryształów (zwykle krystalitów). KRYSTALIT (w sensie ZIARNO) monokryształ w skali mikro lub nano, zwykle część polikryształu. KRYSTALIT (ogólnie) monokryształ nie posiadający zewnętrznych płaskich ścian mikrostruktura polikrystalicznego spieku
10 Można wyróżnić: o o o o o kryształy jonowe kryształy kowalencyjne kryształy metaliczne kryształy molekularne kryształy o wiązaniu wodorowym
11 Kryształy jonowe (np. NaCl i inne sole) cechy fizyczne: twarde, wysoka temperatura topnienia, wiele z nich jest przezroczystych dla świata widzialnego, złe przewodniki prądu oraz ciepła wiązania jonowe - silne Na + Cl - oktaedr
12 Kryształy atomowe (kowalencyjne) (diament, tlenki metali) cechy fizyczne: zwykle twarde, wysoka temperatura topnienia, właściwości mogą być silnie anizotropowe, właściwości silnie zależą od struktury kryształu wiązania kowalencyjne - silne
13 Kryształy metaliczne (np. Cu, Fe, stale) cechy fizyczne: nieprzezroczyste, dobrze przewodzą prąd i ciepło, plastyczne wiązanie metaliczne (gaz elektronowy)
14 Kryształy cząsteczkowe (molekularne) (np. zestalone CO 2, zestalone gazy szlachetne) cechy fizyczne: niska wytrzymałość, niska temperatura topnienia słabe wiązania międzycząsteczkowe
15
16 Polimorfizm występowanie związku chemicznego w różnych odmianach (krystalograficznych). Dla pierwiastków to zjawisko określa się mianem alotropii. chłodzenie cyna biała cyna szara
17 a) diament b) grafit (pojedyncza warstwa to grafen) c) diament heksagonalny (lonsdaleit) d) fuleren C 60 e) fuleren C 540 f) fuleren C 70 g) węgiel amorficzny h) nanorurka węglowa
18 diament najtwardszy minerał izolator doskonały przewodnik ciepła przezroczysty grafit jeden z najbardziej miękkich materiałów dobry przewodnik dość słaby przewodnik ciepła nieprzezroczysty
19
20 kwadratami ale też: prostokątami i równoległobokami trójkątami równobocznymi (konieczny obrót) sześciokątami foremnymi
21 Ze względów geometrycznych podstawowymi elementami budującymi kryształy (trójwymiarowe, rzeczywiste) są równoległościany, które określamy jako komórki elementarne. Nieskończony zbiór (translacyjnie poprzesuwanych i wypełniających całą objętość) komórek elementarnych tworzy sieć przestrzenną. Sieć krystaliczna to sieć przestrzenna wypełniona atomami (lub jonami, cząsteczkami, itp.) Rozmieszczenie atomów (jonów, cząsteczek, itp.) w pojedynczej komórce elementarnej to struktura kryształu.
22 Klasyfikacja kryształów wyróżnia siedem tzw. układów krystalograficznych: regularny heksagonalny tetragonalny
23 trygonalny rombowy jednoskośny trójskośny
24 na płaszczyźnie: w przestrzeni: ABAB ABCABC
25 ABAB to struktura heksagonalna wypełnienie objętości 74,05% 12 najbliższych sąsiadów hexagonal close-packing (hcp) ABCABC to struktura regularna ściennie centrowana wypełnienie objętości też 74,05% 12 najbliższych sąsiadów cubic close-packing (ccp) face-centered cubic (fcc)
26 luka oktaedryczna luka tetraedryczna
27 prymitywna regularna regularna przestrzennie centrowana fcc body-centered cubic (bcc) liczba koordynacyjna 6 wypełnienie: 52% liczba koordynacyjna 8 wypełnienie: 68,01% liczba koordynacyjna 12
28 struktura blendy cynkowej struktura chlorku cezu struktura chlorku sodu struktura wurcytu
29 struktura fluorytu struktura rutylu struktura chlorku kadmu
30 struktura perowskitu ABX 3 struktura spinelu AB 2 X 4
31
32 Kwazikryształ to ciało stałe, w którym atomy układają się w sposób uporządkowany, jednak nie pozwalający na określenie komórki elementarnej - brak symetrii translacyjnej - występują niedozwolone dla kryształów 5-cio i wyżej niż sześciokrotne osie symetrii - posiadają zwykle niskie przewodnictwo cieplne i elektryczne kwazikryształ Ho-Mg-Zn o kształcie dwunastościanu foremnego - odkryte dość niedawno (1984)
33 obraz na podstawie badań TEM kwazikryształu stopu Al-Cu-Fe aperiodyczna mozaika Penrose a na małym zdjęciu obraz dyfrakcji elektronowej ukazujący pięciokrotną oś symetrii
34 Wyróżnia się dwie podstawowe grupy kwazikryształów: 1. w których strukturze występuje zwykłe uporządkowanie krystaliczne (periodyczne) wzdłuż jednej osi, w prostopadłych do tej osi warstwach występuje uporządkowanie quasi-periodyczne (kwazikryształy z 8, 10 i dwunastokrotną lokalną osią symetrii), 2. w których we wszystkich kierunkach uporządkowanie jest typu quasiperiodycznego (kwazikryształy ikosaedryczne). ikosaedr dwudziestościan foremny
35 Lokalna struktura kwazikryształu typu ikosaedrycznego Mg 27 Al 11 Zn 47 - zielony ikosaedr Zn 12 - czerwony dodekaedr Mg 20 - niebiesko-zielona piłka Zn 46,1 Al 12,5 - wielościan Mg 32
36
37 Ciekły kryształ (mezofaza) stan materii posiadający cechy wspólne ciał stałych (uporządkowanie dalekozasięgowe) i cieczy (płynność) przykładowy mezogen prętopodobny Otrzymywanie ciekłych kryształów: 1. metodą ogrzewania - mezofaza termotropowa 2. poprzez rozpuszczanie mezofaza liotropowa
38 Podstawowe typy ciekłych kryształów: Faza nematyczna brak uporządkowania pozycyjnego, występuje uporządkowanie kierunkowe. Faza smektyczna występuje pewien stopień uporządkowania pozycyjnego: warstwy prostopadłe do direktora, uporządkowanie kierunkowe. Faza nematyczna chiralna (cholesterolowa) skręt direktora nematycznego pomiędzy warstwami smektyczna A smektyczna C Faza smektyczna chiralna C* - łączy cechy fazy smektycznej C i fazy chiralnej
39 Faza dyskotyczna nematyczna Faza dyskotyczna kolumnowa przykładowy mezogen dyskopodobny
40
41 Ciało amorficzne (bezpostaciowe) ciało stałe, w którym nie występuje uporządkowanie dalekiego zasięgu, a układ atomów (cząsteczek, itp.) jest podobny do ich układu w cieczy. SiO 2 krystaliczne amorficzne Szkło ciało amorficzne, które można stopić przekraczając tzw. temperaturę witryfikacji Funkcja rozkładu radialnego (szansa znalezienia atomu (cząsteczki, itp.) w funkcji odległości) widok 3D kryształ faza amorficzna gaz / ciecz
42 obsydian 70 75% SiO 2, MgO, Fe 3 O 4 typowe szkło okienne 12,9% Na 2 O, 11,6% CaO, 75,5% SiO 2 faza amorficzna pomiędzy trzema ziarnami krystalicznymi
43 objętość szkło przemiana w fazę szklistą kryształ gaz τ czas relaksacji strukturalnej potrzebny na przegrupowanie cząstek do nowej struktury dla T < T g T 0 temperatura charakterystyczna materiału 1/2T m T m T g temperatura zeszklenia (witryfikacji) 2/3T m temperatura T m temperatura topnienia Przejście od fazy gazowej przez ciekłą do ciała stałego: T b temperatura wrzenia 1) z utworzeniem kryształu 2) z utworzeniem fazy amorficznej szkła przy wystarczająco szybkim procesie schładzania
44 piec stopiony materiał kropla ciekłego metalu lub stopu przełącznik np. laserowy zimne podłoże stopiony materiał np. schłodzona woda kowadło tłok źródło par materiału a) wolne chłodzenie b) szybkie chłodzenie c) szybkie chłodzenie z prasowaniem d) osadzanie z fazy gazowej ciekły stop tuba kwarcowa gaz element grzewczy zimny rotujący wałek wstążka szkła np. metalicznego bardzo szybkie chłodzenie ciekłego stopu
45 amorficzny lód otrzymany z tempem chłodzenia ok Ks -1
STRUKTURA CIAŁA STAŁEGO
STRUKTURA CIAŁA STAŁEGO Podział ciał stałych Ciała - bezpostaciowe (amorficzne) Szkła, żywice, tłuszcze, niektóre proszki. Nie wykazują żadnych regularnych płaszczyzn ograniczających, nie można w nich
MATERIA. = m i liczby całkowite. ciała stałe. - kryształy - ciała bezpostaciowe (amorficzne) - ciecze KRYSZTAŁY. Periodyczność
MATERIA ciała stałe - kryształy - ciała bezpostaciowe (amorficzne) - ciecze - gazy KRYSZTAŁY Periodyczność Kryształ (idealny) struktura zbudowana z powtarzających się w przestrzeni periodycznie identycznych
Wstęp do Optyki i Fizyki Materii Skondensowanej. Mateusz Goryca
Wstęp do Optyki i Fizyki Materii Skondensowanej Mateusz Goryca mgoryca@fuw.edu.pl Uniwersytet Warszawski 2015 Materia skondensowana OC 6 H 13 H 13 C 6 O OC 6 H 13 H 17 C 8 O H 17 C 8 O N N Cu O O H 21
Wstęp. Krystalografia geometryczna
Wstęp Przedmiot badań krystalografii. Wprowadzenie do opisu struktury kryształów. Definicja sieci Bravais go i bazy atomowej, komórki prymitywnej i elementarnej. Podstawowe typy komórek elementarnych.
STRUKTURA MATERIAŁÓW
STRUKTURA MATERIAŁÓW ELEMENTY STRUKTURY MATERIAŁÓW 1. Wiązania miedzy atomami 2. Układ atomów w przestrzeni 3. Mikrostruktura 4. Makrostruktura 1. WIĄZANIA MIĘDZY ATOMAMI Siły oddziaływania między atomami
Fizyka Ciała Stałego
Wykład III Struktura krystaliczna Fizyka Ciała Stałego Ciała stałe można podzielić na: Krystaliczne, o uporządkowanym ułożeniu atomów lub molekuł tworzącym sieć krystaliczną. Amorficzne, brak uporządkowania,
Krystalografia. Typowe struktury pierwiastków i związków chemicznych
Krystalografia Typowe struktury pierwiastków i związków chemicznych Wiązania w kryształach jonowe silne, bezkierunkowe kowalencyjne silne, kierunkowe metaliczne słabe lub silne, bezkierunkowe van der Waalsa
BUDOWA KRYSTALICZNA CIAŁ STAŁYCH. Stopień uporządkowania struktury wewnętrznej ciał stałych decyduje o ich podziale
BUDOWA KRYSTALICZNA CIAŁ STAŁYCH Stopień uporządkowania struktury wewnętrznej ciał stałych decyduje o ich podziale na: kryształy ciała o okresowym regularnym uporządkowaniu atomów, cząsteczek w całej swojej
Właściwości kryształów
Właściwości kryształów Związek pomiędzy właściwościami, strukturą, defektami struktury i wiązaniami chemicznymi Skład i struktura Skład materiału wpływa na wszystko, ale głównie na: właściwości fizyczne
Uniwersytet Śląski Instytut Chemii Zakład Krystalografii. Laboratorium z Krystalografii. 2 godz. Komórki Bravais go
Uniwersytet Śląski Instytut Chemii Zakład Krystalografii Laboratorium z Krystalografii 2 godz. Komórki Bravais go Cel ćwiczenia: kształtowanie umiejętności: przyporządkowywania komórek translacyjnych Bravais
STRUKTURA KRYSTALICZNA
PODSTAWY KRYSTALOGRAFII Struktura krystaliczna Wektory translacji sieci Komórka elementarna Komórka elementarna Wignera-Seitza Jednostkowy element struktury Sieci Bravais go 2D Sieci przestrzenne Bravais
Klasyfikacja przemian fazowych
Klasyfikacja przemian fazowych Faza- jednorodna pod względem własności część układu, oddzielona od pozostałej częsci układu powierzchnią graniczną, po której przekroczeniu własności zmieniaja się w sposób
Elementy teorii powierzchni metali
Prof. dr hab. Adam Kiejna Elementy teorii powierzchni metali Wykład dla studentów fizyki Rok akademicki 2017/18 (30 godz.) Wykład 1 Plan wykładu Struktura periodyczna kryształów, sieć odwrotna Struktura
Chemia nieorganiczna. Copyright 2000 by Harcourt, Inc. All rights reserved.
Chemia nieorganiczna 1. Układ okresowy metale i niemetale 2. Oddziaływania inter- i intramolekularne 3. Ciała stałe rodzaje sieci krystalicznych 4. Przewodnictwo ciał stałych Pierwiastki 1 1 H 3 Li 11
Budowa ciał stałych. sieć krystaliczna układy krystalograficzne sieć realna defekty wiązania w ciałach stałych
Budowa ciał stałych sieć krystaliczna układy krystalograficzne sieć realna defekty wiązania w ciałach stałych Ciała stałe to substancje o regularnej, przestrzennej budowie krystalicznej, czyli regularnym
Wykład 4: Struktura krystaliczna
Wykład 4: Struktura krystaliczna Wg Blicharskiego, Wstęp do materiałoznawstwa http://webmineral.com/ Komórka elementarna Geometria komórki Dla zdefiniowania trójwymiarowej komórki elementarnej należy podać
3. Przejścia fazowe pomiędzy trzema stanami skupienia materii:
Temat: Zmiany stanu skupienia. 1. Energia sieci krystalicznej- wielkość dzięki której można oszacować siły przyciągania w krysztale 2. Energia wiązania sieci krystalicznej- ilość energii potrzebnej do
S 2, C 2h,D 2h,D 3d,D 4h, D 6h, O h
Są tylko 32 grupy punktowe, które spełniają ten warunek, Można je pogrupować w 7 typów grup (spośród omówionych 12- tu), które spełniają powyższe własności S 2, C 2h,D 2h,D 3d,D 4h, D 6h, O h nazywają
Ciekłe kryształy. Wykład dla liceów Joanna Janik Uniwersytet Jagielloński
Ciekłe kryształy Wykład dla liceów 26.04.2006 Joanna Janik Uniwersytet Jagielloński Zmiany stanu skupienia czyli przejścia fazowe temperatura topnienia temperatura parowania ciało stałe ciecz para - gaz
Chemia nieorganiczna. Pierwiastki. niemetale Be. 27 Co. 28 Ni. 26 Fe. 29 Cu. 45 Rh. 44 Ru. 47 Ag. 46 Pd. 78 Pt. 76 Os.
Chemia nieorganiczna 1. Układ okresowy metale i niemetale 2. Oddziaływania inter- i intramolekularne 3. Ciała stałe rodzaje sieci krystalicznych 4. Przewodnictwo ciał stałych Copyright 2000 by Harcourt,
STRUKTURA MATERIAŁÓW. Opracowanie: Dr hab.inż. Joanna Hucińska
STRUKTURA MATERIAŁÓW Opracowanie: Dr hab.inż. Joanna Hucińska ELEMENTY STRUKTURY MATERIAŁÓW 1. Wiązania miedzy atomami 2. Układ atomów w przestrzeni 3. Mikrostruktura 4. Makrostruktura 1. WIĄZANIA MIĘDZY
Rozwiązanie: Zadanie 2
Podstawowe pojęcia. Definicja kryształu. Sieć przestrzenna i sieć krystaliczna. Osie krystalograficzne i jednostki osiowe. Ściana jednostkowa i stosunek osiowy. Położenie węzłów, prostych i płaszczyzn
Wykład 5. Komórka elementarna. Sieci Bravais go
Wykład 5 Komórka elementarna Sieci Bravais go Doskonały kryształ składa się z atomów jonów, cząsteczek) uporządkowanych w sieci krystalicznej opisanej przez trzy podstawowe wektory translacji a, b, c,
MATERIAŁOZNAWSTWO Wydział Mechaniczny, Mechatronika, sem. I. dr inż. Hanna Smoleńska
MATERIAŁOZNAWSTWO Wydział Mechaniczny, Mechatronika, sem. I dr inż. Hanna Smoleńska Struktura materiałów UKŁAD ATOMÓW W PRZESTRZENI CIAŁA KRYSTALICZNE Układ atomów/cząstek (a/cz) w przestrzeni jest statystyczne
Aby opisać strukturę krystaliczną, konieczne jest określenie jej części składowych: sieci przestrzennej oraz bazy atomowej.
2. Podstawy krystalografii Podczas naszych zajęć skupimy się przede wszystkim na strukturach krystalicznych. Kryształem nazywamy (def. strukturalna) substancję stałą zbudowaną z atomów, jonów lub cząsteczek
Ciekłe kryształy. - definicja - klasyfikacja - własności - zastosowania
Ciekłe kryształy - definicja - klasyfikacja - własności - zastosowania Nota biograficzna: Odkrywcą był austriacki botanik F. Reinitzer (1888), który został zaskoczony nienormalnym, dwustopniowym sposobem
S. Baran - Podstawy fizyki materii skondensowanej Struktura krystaliczna. Struktura krystaliczna
S. Baran - Podstawy fizyki materii skondensowanej Struktura krystaliczna Struktura krystaliczna Kwarc (SiO2) (źródło: Wikipedia) Piryt (FeS2) (źródło: Wikipedia) Halit/Sól kamienna (NaCl) (źródło: Wikipedia)
Fizyka Ciała Stałego. Struktura krystaliczna. Struktura amorficzna
Wykład II Struktura krystaliczna Fizyka Ciała Stałego Ciała stałe można podzielić na: Amorficzne, brak uporządkowania, np. szkła; Krystaliczne, o uporządkowanym ułożeniu atomów lub molekuł tworzącym sieć
Układ regularny. Układ regularny. Możliwe elementy symetrii: Możliwe elementy symetrii: 3 osie 3- krotne. m płaszczyzny przekątne.
Układ regularny Możliwe elementy symetrii: 3 osie 3- krotne m płaszczyzny równoległe do ścian m płaszczyzny przekątne 4 osie 4- krotne 2 osie 2- krotne Układ regularny Możliwe elementy symetrii: 3 osie
STRUKTURA KRYSZTAŁÓW
STRUKTURA KRYSZTAŁÓW Skala wielkości spotykanych w krystalografii: Średnica atomu wodoru: 10 Rozmiar komórki elementarnej: od kilku do kilkudziesięciu Å o D = 1*10 m = 1A 1 Struktura = sieć + baza atomowa
Fizyka Ciała Stałego. Struktura krystaliczna. Struktura amorficzna
Wykład II Struktura krystaliczna Fizyka Ciała Stałego Ciała stałe można podzielić na: Amorficzne, brak uporządkowania, np. szkła; Krystaliczne, o uporządkowanym ułożeniu atomów lub molekuł tworzącym sieć
Podstawy krystalochemii pierwiastki
Uniwersytet Śląski Instytut Chemii Zakład Krystalografii Laboratorium z Krystalografii Podstawy krystalochemii pierwiastki Cel ćwiczenia: określenie pełnej charakterystyki wybranych struktur pierwiastków
Symetria w fizyce materii
Symetria w fizyce materii - Przekształcenia symetrii w dwóch i trzech wymiarach - Wprowadzenie w teorię grup; grupy symetrii - Wprowadzenie w teorię reprezentacji grup - Teoria grup a mechanika kwantowa
1) Rozmiar atomu to około? Która z odpowiedzi jest nieprawidłowa? a) 0, m b) 10-8 mm c) m d) km e) m f)
1) Rozmiar atomu to około? Która z odpowiedzi jest nieprawidłowa? a) 0,0000000001 m b) 10-8 mm c) 10-10 m d) 10-12 km e) 10-15 m f) 2) Z jakich cząstek składają się dodatnio naładowane jądra atomów? (e
Wykład 4. Kryształy aperiodyczne
Wykład 4 Kryształy aperiodyczne Zgodnie z tradycyjnymi przedstawieniami podstawową cecha kryształu jest jego okresowość, która powoduje, że jedynymi możliwymi osiami symetrii w kryształach są osie obrotowe
Układy krystalograficzne
Uniwersytet Śląski Instytut Chemii Zakład Krystalografii Laboratorium z Krystalografii 2 godz. Układy krystalograficzne Cel ćwiczenia: kształtowanie umiejętności wyboru komórki elementarnej i przyporządkowywania
Wiązania chemiczne. Związek klasyfikacji ciał krystalicznych z charakterem wiązań atomowych. 5 typów wiązań
Wiązania chemiczne Związek klasyfikacji ciał krystalicznych z charakterem wiązań atomowych 5 typów wiązań wodorowe A - H - A, jonowe ( np. KCl ) molekularne (pomiędzy atomami gazów szlachetnych i małymi
Szkła. Forma i odlewy ze szkła kwarcowego wykonane w starożytnym Egipcie (około roku 2500 p.n.e.)
Szkła metaliczne Szkła cdn.gemrockauctions.com/uploads/images/275000-279999/276152/276152_1338954219.jpg American Association for the Advancement of Science Grot ze szkła wulkanicznego obsydianu (epoka
STRUKTURA IDEALNYCH KRYSZTAŁÓW
BUDOWA WEWNĘTRZNA MATERIAŁÓW METALICZNYCH Zakres tematyczny y 1 STRUKTURA IDEALNYCH KRYSZTAŁÓW 2 1 Sieć przestrzenna kryształu TRANSLACJA WĘZŁA TRANSLACJA PROSTEJ SIECIOWEJ TRANSLACJA PŁASZCZYZNY SIECIOWEJ
Technologie wytwarzania metali. Odlewanie Metalurgia proszków Otrzymywanie monokryształów Otrzymywanie materiałów superczystych Techniki próżniowe
Technologie wytwarzania metali Odlewanie Metalurgia proszków Otrzymywanie monokryształów Otrzymywanie materiałów superczystych Techniki próżniowe KRYSTALIZACJA METALI I STOPÓW Krzepnięcie - przemiana fazy
Technologie wytwarzania metali. Odlewanie Metalurgia proszków Otrzymywanie monokryształów Otrzymywanie materiałów superczystych Techniki próżniowe
Technologie wytwarzania metali Odlewanie Metalurgia proszków Otrzymywanie monokryształów Otrzymywanie materiałów superczystych Techniki próżniowe KRYSTALIZACJA METALI I STOPÓW Krzepnięcie - przemiana fazy
19/12/ Stany skupienia materii. ciało stałe ciecz gaz plazma.
http://scholaris.pl/ http://www.youtube.com/ http://wikipedia.com/ Stany skupienia materii ciało stałe ciecz gaz plazma + - e + e e - 1 Stany skupienia materii plazma gaz ciało stałe topnienie rozpuszczanie
Dr inż. Zbigniew Szklarski
Wykład : Ciało stałe Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Struktura kryształu Ciała stałe o budowie bezpostaciowej
Przemiany energii w zjawiskach cieplnych. 1/18
Przemiany energii w zjawiskach cieplnych. 1/18 Średnia energia kinetyczna cząsteczek Średnia energia kinetyczna cząsteczek to suma energii kinetycznych wszystkich cząsteczek w danej chwili podzielona przez
Dr inż. Zbigniew Szklarski
Wykład : Ciało stałe Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 19.06.018 Wydział Informatyki, Elektroniki i 1 Struktura
Nauka o Materiałach Wykład II Monokryształy Jerzy Lis
Wykład II Monokryształy Jerzy Lis Treść wykładu: 1. Wstęp stan krystaliczny 2. Budowa kryształów - krystalografia 3. Budowa kryształów rzeczywistych defekty WPROWADZENIE Stan krystaliczny jest podstawową
Elementy teorii powierzchni metali
prof. dr hab. Adam Kiejna Elementy teorii powierzchni metali Wykład 2 v.16 Sieci płaskie i struktura powierzchni 1 Typy sieci dwuwymiarowych (płaskich) Przecinając monokryształ wzdłuż jednej z płaszczyzn
Krystalografia i krystalochemia Wykład 15 Repetytorium
Krystalografia i krystalochemia Wykład 15 Repetytorium 1. Czym zajmuje się krystalografia i krystalochemia? 2. Podsumowanie wiadomości z krystalografii geometrycznej. 3. Symbolika Kreutza-Zaremby oraz
Wykład 1. Symetria Budowy Kryształów
Wykład Symetria Budowy Kryształów Ciała krystaliczne i amorficzne Każda substancja ciekła (z wyjątkiem helu) podczas oziębiania traci swoje własności ciekłe i przechodzi w ciało stałe. Jednakże proces
INŻYNIERIA MATERIAŁOWA w elektronice
Wydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej... INŻYNIERIA MATERIAŁOWA w elektronice... Dr hab. inż. JAN FELBA Profesor nadzwyczajny PWr 1 PROGRAM WYKŁADU Struktura materiałów
Czym się różni ciecz od ciała stałego?
Szkła Czym się różni ciecz od ciała stałego? gęstość Czy szkło to ciecz czy ciało stałe? Szkło powstaje w procesie chłodzenia cieczy. Czy szkło to ciecz przechłodzona? kryształ szkło ciecz przechłodzona
INŻYNIERIA NOWYCH MATERIAŁÓW
INŻYNIERIA NOWYCH MATERIAŁÓW Wykład: 15 h Seminarium 15 h Laboratorium 45 h Świat materiałów Metale Ceramika, szkło Kompozyty Polimery, elastomery Pianki Materiały naturalne Znaczenie różnych materiałów
Dr inż. Zbigniew Szklarski
Wykład : Ciało stałe Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 08.06.017 Wydział Informatyki, Elektroniki i 1 Struktura
Laboratorium inżynierii materiałowej LIM
Laboratorium inżynierii materiałowej LIM wybrane zagadnienia fizyki ciała stałego czyli skrót skróconego skrótu dr hab. inż.. Ryszard Pawlak, P prof. PŁP Fizyka Ciała Stałego I. Wstęp Związki Fizyki Ciała
Materiałoznawstwo optyczne KRYSZTAŁY
Materiałoznawstwo optyczne KRYSZTAŁY Kryształy kryształ: ciało o prawidłowej budowie wewnętrznej, fizycznie i chemicznie jednorodne, anizotropowe, mające wszystkie wektorowe własności fizyczne jednakowe
KRYSTALOGRAFIA Studia pierwszego stopnia, stacjonarne II rok
Akademia Górniczo-Hutnicza Wydział Odlewnictwa Katedra Inżynierii Stopów i Kompozytów Odlewanych Nr ćwiczenia: 1 Opracowała Temat: Cel ćwiczenia: Zakres wymaganego materiału Przebieg ćwiczenia Materiały
Sieć przestrzenna. c r. b r. a r. komórka elementarna. r r
Sieć przestrzenna c r b r r r u a r vb uvw = + + w c v a r komórka elementarna V = r r a ( b c) v Układy krystalograficzne (7) i Sieci Bravais (14) Triclinic (P) a b c, α β γ 90 ο Monoclinic (P) a b c,
ROZDZIAŁ I. Symetria budowy kryształów
ROZDZIAŁ I Symetria budowy kryształów I Ciała krystaliczne i amorficzne Każda substancja ciekła z wyjątkiem helu) podczas oziębiania traci swoje własności ciekłe i przechodzi w ciało stałe Jednakże proces
Zadania powtórkowe do egzaminu maturalnego z chemii Wiązania chemiczne, budowa cząsteczek
strona 1/11 Zadania powtórkowe do egzaminu maturalnego z chemii Wiązania chemiczne, budowa cząsteczek Monika Gałkiewicz Zad. 1 () Podaj wzory dwóch dowolnych kationów i dwóch dowolnych anionów posiadających
Wykład 14 Przejścia fazowe
Wykład 14 Przejścia fazowe Z izoterm gazu Van der Waalsa (rys.14.1) wynika, że dla T < T k izotermy zawierają obszary w których gaz Van der Waalsa zachowuje się niefizycznie. W tych niefizycznych obszarach
Woda. Najpospolitsza czy najbardziej niezwykła substancja Świata?
Woda Najpospolitsza czy najbardziej niezwykła substancja Świata? Cel wykładu Odpowiedź na pytanie zawarte w tytule A także próby odpowiedzi na pytania typu: Dlaczego woda jest mokra a lód śliski? Dlaczego
Podział ciał stałych ze względu na strukturę atomowo-cząsteczkową
Podział ciał stałych ze względu na strukturę atomowo-cząsteczkową Kryształy Atomy w krysztale ułożone są w pewien powtarzający się regularny wzór zwany siecią krystaliczną. Struktura kryształu NaCl Polikryształy
KRYSTALIZACJA METALI I STOPÓW. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego
KRYSTALIZACJA METALI I STOPÓW Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Krzepnięcie przemiana fazy ciekłej w fazę stałą Krystalizacja przemiana
WŁASNOŚCI CIAŁ STAŁYCH I CIECZY
WŁASNOŚCI CIAŁ STAŁYCH I CIECZY Polimery Sieć krystaliczna Napięcie powierzchniowe Dyfuzja 2 BUDOWA CIAŁ STAŁYCH Ciała krystaliczne (kryształy): monokryształy, polikryształy Ciała amorficzne (bezpostaciowe)
Zadanie 1. (2 pkt) Określ, na podstawie różnicy elektroujemności pierwiastków, typ wiązania w związkach: KBr i HBr.
Zadanie 1. (2 pkt) Określ, na podstawie różnicy elektroujemności pierwiastków, typ wiązania w związkach: KBr i HBr. Typ wiązania w KBr... Typ wiązania w HBr... Zadanie 2. (2 pkt) Oceń poprawność poniższych
1. Od czego i w jaki sposób zależy szybkość reakcji chemicznej?
Tematy opisowe 1. Od czego i w jaki sposób zależy szybkość reakcji chemicznej? 2. Omów pomiar potencjału na granicy faz elektroda/roztwór elektrolitu. Podaj przykład, omów skale potencjału i elektrody
Wykład IV: Polikryształy I. JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Ceramiki i Materiałów Ogniotrwałych
Wykład IV: Polikryształy I JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Ceramiki i Materiałów Ogniotrwałych Treść wykładu (część I i II): 1. Budowa polikryształów - wiadomości wstępne.
Fizyka 2. Janusz Andrzejewski
Fizyka 2 wykład 13 Janusz Andrzejewski Scaledlugości Janusz Andrzejewski 2 Scaledługości Simple molecules
Dr inż. Zbigniew Szklarski
Wykład 1: Ciało stałe Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Struktura kryształu Ciała stałe o budowie bezpostaciowej
Wewnętrzna budowa materii - zadania
Poniższe zadania rozwiąż na podstawie układu okresowego. Zadanie 1 Oceń poprawność poniższych zdań, wpisując P, gdy zdanie jest prawdziwe oraz F kiedy ono jest fałszywe. Stwierdzenie Atom potasu posiada
Opracowała: mgr inż. Ewelina Nowak
Materiały dydaktyczne na zajęcia wyrównawcze z chemii dla studentów pierwszego roku kierunku zamawianego Inżynieria Środowiska w ramach projektu Era inżyniera pewna lokata na przyszłość Opracowała: mgr
Nauka o Materiałach. Wykład IV. Polikryształy I. Jerzy Lis
Wykład IV Polikryształy I Jerzy Lis Treść wykładu I i II: 1. Budowa polikryształów - wiadomości wstępne. 2. Budowa polikryształów: jednofazowych porowatych z fazą ciekłą 3. Metody otrzymywania polikryształów
WIĄZANIA. Co sprawia, że ciała stałe istnieją i są stabilne? PRZYCIĄGANIE ODPYCHANIE
WIĄZANIA Co sprawia, że ciała stałe istnieją i są stabilne? PRZYCIĄGANIE ODPYCHANIE 1 Przyciąganie Wynika z elektrostatycznego oddziaływania między elektronami a dodatnimi jądrami atomowymi. Może to być
WŁAŚCIWOŚCI MECHANICZNE PLASTYCZNOŚĆ. Zmiany makroskopowe. Zmiany makroskopowe
WŁAŚCIWOŚCI MECHANICZNE PLASTYCZNOŚĆ Zmiany makroskopowe Zmiany makroskopowe R e = R 0.2 - umowna granica plastyczności (0.2% odkształcenia trwałego); R m - wytrzymałość na rozciąganie (plastyczne); 1
Wykład 4. Przypomnienie z poprzedniego wykładu
Wykład 4 Przejścia fazowe materii Diagram fazowy Ciepło Procesy termodynamiczne Proces kwazistatyczny Procesy odwracalne i nieodwracalne Pokazy doświadczalne W. Dominik Wydział Fizyki UW Termodynamika
WIĄZANIA. Co sprawia, że ciała stałe istnieją i są stabilne? PRZYCIĄGANIE ODPYCHANIE
WIĄZANIA Co sprawia, że ciała stałe istnieją i są stabilne? PRZYCIĄGANIE ODPYCHANIE Przyciąganie Wynika z elektrostatycznego oddziaływania między elektronami a dodatnimi jądrami atomowymi. Może to być
Stany skupienia materii
14/12/2016 Stany skupienia materii ciało stałe ciecz gaz plazma cząsteczki ciasno upakowane drgają względem stałych pozycji zdefiniowany kształt i objętość cząsteczki ciasno upakowane są wystarczająco
NIEDOSKONAŁOŚCI BUDOWY CIAŁA STAŁEGO KRYSZTAŁY RZECZYWISTE.
NIEDOSKONAŁOŚCI BUDOWY CIAŁA STAŁEGO KRYSZTAŁY RZECZYWISTE http://home.agh.edu.pl/~grzesik KRYSZTAŁY IDEALNE Kryształ idealny ciało stałe, w którym atomy, jony lub cząsteczki wykazują idealne uporządkowanie
CIEPLNE I MECHANICZNE WŁASNOŚCI CIAŁ
CIEPLNE I MECHANICZNE WŁASNOŚCI CIAŁ Ciepło i temperatura Pojemność cieplna i ciepło właściwe Ciepło przemiany Przejścia między stanami Rozszerzalność cieplna Sprężystość ciał Prawo Hooke a Mechaniczne
WYKONUJEMY POMIARY. Ocenę DOSTATECZNĄ otrzymuje uczeń, który :
WYKONUJEMY POMIARY Ocenę DOPUSZCZAJĄCĄ otrzymuje uczeń, który : wie, w jakich jednostkach mierzy się masę, długość, czas, temperaturę wie, do pomiaru jakich wielkości służy barometr, menzurka i siłomierz
Wykład 9 Wprowadzenie do krystalochemii
Wykład 9 Wprowadzenie do krystalochemii 1. Krystalografia a krystalochemia. 2. Prawa krystalochemii 3. Sieć krystaliczna i pozycje atomów 4. Bliskie i dalekie uporządkowanie. 5. Kryształ a cząsteczka.
Stany skupienia materii
Stany skupienia materii Ciała stałe - ustalony kształt i objętość - uporządkowanie dalekiego zasięgu - oddziaływania harmoniczne Ciecze -słabo ściśliwe - uporządkowanie bliskiego zasięgu -tworzą powierzchnię
DEFEKTY SIECI KRYSTALICZNEJ W kryształach rzeczywistych występuje cały szereg wad (defektów), które w istotny sposób wpływają na własności kryształu:
FIZYKA CIAŁA STAŁEGO Stany skupienia materii, typy i zasięg uporządkowań Kryształ idealny i właściwości kryształów Kryształy rzeczywiste i defekty sieci krystalicznej Ciała amorficzne, rozdaje i cechy
STRUKTURA CIAŁA STAŁEGO. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego
STRUKTURA CIAŁA STAŁEGO Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego STRUKTURA CIAŁA STAŁEGO 1. BUDOWA ATOMU 2. WIĄZANIA MIEDZY ATOMAMI 3. UKŁAD
Kinetyka zarodkowania
Kinetyka zarodkowania Wyrażenie na liczbę zarodków n r o kształcie kuli i promieniu r w jednostce objętości cieczy przy założeniu, że tworzenie się zarodków jest zdarzeniem losowym: n r Ne G kt v ( 21
Prof. nzw. dr hab. Jarosław Mizera & dr inż. Joanna Zdunek
Prof. nzw. dr hab. Jarosław Mizera & dr inż. Joanna Zdunek Krystalografia to nauka zajmująca się opisem i badaniem periodycznej budowy wewnętrznej materiałów krystalicznych oraz ich klasyfikacją. Plan
Struktura krystaliczna i amorficzna metali
Co to jest ciało amorficzne? Ciało amorficzne (bezpostaciowe) jest to ciało stałe nie wykazujące charakterystycznego dla kryształu okresowego uporządkowania atomów (cząsteczek) i wynikających z niego właściwości.
Zastosowanie teorii grup. Grupy symetrii w fizyce i chemii.
Zastosowanie teorii grup Grupy symetrii w fizyce i chemii Katarzyna Kolonko Streszczenie Usystematyzowanie grup punktowych, omówienie ich na przykładzie molekuł Przedstawienie wkładu teorii grup w badanie
Szkła specjalne Przejście szkliste i jego termodynamika Wykład 5. Ryszard J. Barczyński, 2017 Materiały edukacyjne do użytku wewnętrznego
Szkła specjalne Przejście szkliste i jego termodynamika Wykład 5 Ryszard J. Barczyński, 2017 Materiały edukacyjne do użytku wewnętrznego Czy przejście szkliste jest termodynamicznym przejściem fazowym?
Wykłady z Fizyki. Ciało Stałe
Wykłady z Fizyki 11 Zbigniew Osiak Ciało Stałe OZ ACZE IA B notka biograficzna C ciekawostka D propozycja wykonania doświadczenia H informacja dotycząca historii fizyki I adres strony internetowej K komentarz
E e l kt k r t o r n o ow o a w a s t s r t u r kt k u t ra r a at a o t m o u
Elektronowa struktura atomu Anna Pietnoczka BUDOWA ATOMU CZĄSTKA SYMBOL WYSTĘPOWANIE MASA ŁADUNEK ELEKTRYCZNY PROTON p + jądroatomowe około 1 u + 1 NEUTRON n 0 jądroatomowe około 1u Brak ELEKTRON e - powłoki
Podstawy fizyki wykład 4
D. Halliday, R. Resnick, J.Walker: Podstawy Fizyki, tom 5, PWN, Warszawa 2003. H. D. Young, R. A. Freedman, Sear s & Zemansky s University Physics with Modern Physics, Addison-Wesley Publishing Company,
S. Baran - Podstawy fizyki materii skondensowanej Wiązania chemiczne w ciałach stałych. Wiązania chemiczne w ciałach stałych
Wiązania chemiczne w ciałach stałych Wiązania chemiczne w ciałach stałych typ kowalencyjne jonowe metaliczne Van der Waalsa wodorowe siła* silne silne silne pochodzenie uwspólnienie e- (pary e-) przez
Materiałoznawstwo optyczne CERAMIKA OPTYCZNA
Materiałoznawstwo optyczne CERAMIKA OPTYCZNA Szkło optyczne i fotoniczne, A. Szwedowski, R. Romaniuk, WNT, 2009 POLIKRYSZTAŁY - ciała stałe o drobnoziarnistej strukturze, które są złożone z wielkiej liczby
Ciała stałe. Ciała krystaliczne. Ciała amorficzne. Bardzo często mamy do czynienia z ciałami polikrystalicznymi, rzadko monokryształami.
Ciała stałe Ciała krystaliczne Ciała amorficzne Bardzo często mamy do czynienia z ciałami polikrystalicznymi, rzadko monokryształami. r T = Kryształy rosną przez regularne powtarzanie się identycznych
Stany skupienia materii
Stany skupienia materii Ciała stałe Ciecze Płyny Gazy Plazma 1 Stany skupienia materii Ciała stałe - ustalony kształt i objętość - uporządkowanie dalekiego zasięgu - oddziaływania harmoniczne Ciecze -
Niezwykły Świat Krystalografii
Niezwykły Świat Krystalografii Dr Małgorzata Domagała Katedra Chemii Teoretycznej i Strukturalnej UŁ 1 Krystalografia - termin pochodzi od greckich słów κρύσταλλος krystallos lód, oraz γράφω grapho piszę
AKADEMIA GÓRNICZO- HUTNICZA WYDZIAŁ ODLEWNICTWA KATEDRA INŻYNIERII PROCESÓW ODLEWNICZYCH
ćw 4 Ćwiczenie 4: Metody termomechaniczne w inżynierii materiałowej. Dylatometria. PRZEDMIOT: NOWOCZESNE TECHNIKI BADAWCZE W INŻYNIERII MATERIAŁOWEJ Opracowała: dr hab. AKADEMIA GÓRNICZO- HUTNICZA WYDZIAŁ
Utrwalenie wiadomości. Fizyka, klasa 1 Gimnazjum im. Jana Pawła II w Sułowie
Utrwalenie wiadomości Fizyka, klasa 1 Gimnazjum im. Jana Pawła II w Sułowie Za tydzień sprawdzian Ciało fizyczne a substancja Ciało Substancja gwóźdź żelazo szklanka szkło krzesło drewno Obok podanych