Zadania statystyka semestr 6TUZ

Wielkość: px
Rozpocząć pokaz od strony:

Download "Zadania statystyka semestr 6TUZ"

Transkrypt

1 Zadania statystyka semestr 6TUZ Zad.1. W pewnym liceum, wśród uczniów 30 osobowej klasy (kaŝdy uczeń pochodzi z innej rodziny), zebrano dane na temat posiadanego rodzeństwa. Wyniki badań przedstawiono na diagramie. a. Wychowawczyni wybrała 3 osoby z tej klasy. Oblicz prawdopodobieństwo, Ŝe jedna z nich ma dwoje rodzeństwa, a dwie pozostałe nie mają rodzeństwa. Wynik zaokrąglij do części setnych. b. Oblicz średnią liczbę dzieci w jednej badanej rodzinie, odchylenie standardowe i medianę. Odp: prawdopodobieństwo wynosi: 36/1015 (~0,04); średnia: 1,9: odchylenie stand. ~0,75; mediana 2. Zad.2. Wyniki klasówki z matematyki, której średnia ocen była równa 3,5 przedstawiono w tabeli. Oblicz x oraz medianę danych. Odp: x=12; mediana 3. Oceny Liczba uczniów Zad. 3 Uczeń otrzymał pięć ocen:. Średnia arytmetyczna tych ocen jest równa 4. Oblicz i medianę tych pięciu ocen. Odp: x=3; mediana 3. Zad. 4 Średnia wieku 15 mieszkańców pewnego bloku wynosi 33 lata. Gdy do wolnego mieszkania wprowadził się nowy mieszkaniec, średnia zwiększyła się o 1 rok. Ile lat ma nowy mieszkaniec? Odp:Nowy mieszkaniec ma 49 lat.

2 Zad5. Na diagramie poniŝej przedstawiono procentowy podział miesięcznych zarobków w pewnej firmie. a. Podaj medianę tych zarobków b. Wyznacz średnią kwotę miesięcznych zarobków w tej firmie. c. Oblicz prawdopodobieństwo, Ŝe losowo wybrany pracownik tej firmy zarabia miesięcznie więcej niŝ 3000 zł. Odp: mediana 2300zł, średnia 2815zł, prawdopodobieństwo 0,23. Zad. 6. Mediana trzech liczb jest równa 4, a ich średnia arytmetyczna jest równa 5. Oblicz sumę największej i najmniejszej z tych liczb. Odp: 11. Zad. 7. Przeprowadzono badania, dotyczące liczby osób jadących w samochodach osobowych w godzinach rannych, w kierunku centrum pewnego miasta. Wyniki badań przedstawione są na digramie kołowym. a. Oblicz średnią liczbę osób jadących w samochodzie osobowym w godzinach rannych w kierunku centrum. b. Oblicz prawdopodobieństwo, Ŝe w losowo wybranym samochodzie osobowym, w godzinach rannych, w kierunku centrum, były więcej niŝ 3 osoby. c. Wiedząc, Ŝe samochodów osobowych, w których były 4 osoby, zaobserwowano o 350 więcej, niŝ samochodów w których było 5 osób, oblicz, ile wszystkich samochodów obserwowano w trakcie badań. Odp: a) 2,46; b) 0,23 c) 5000.

3 Zad. 8. ZwaŜono 150 losowo wybranych kostek masła produkowanego przez pewien zakład mleczarski. Wyniki badań przedstawiono w tabeli. Masa kostki masła [dag] Liczba kostek masła Na podstawie danych przedstawionych w tabeli oblicz średnią arytmetyczną oraz odchylenie standardowe masy kostki masła. Odp: średnia: 20dkg; odchylenie stand. Zad.9. Uczniowie napisali pracę kontrolną. 30% uczniów otrzymało piątkę, 40% otrzymało czwórkę, 8 uczniów otrzymało trójkę, a pozostali ocenę dopuszczającą. Średnia ocen wynosiła 3,9. Ilu uczniów otrzymało piątkę? Odp: 12 uczniów. Zad.10. W pewnej szkole przeprowadzono ten sam sprawdzian z matematyki w trzech klasach 1a, 1b i 1c. Na poniŝszym diagramie przedstawiono wyniki tego sprawdzianu z wyszczególnieniem liczby osób, które uzyskały poszczególne oceny. a. Ilu uczniów pisało sprawdzian w poszczególnych klasach? b. Która z ocen była wystawiana najczęściej? c. W której klasie średnia ocen ze sprawdzianu była najwyŝsza? Odp: a) 31; 32; 31 b) 5 c) 1b. Zad.11. Tabela przedstawia wyniki części teoretycznej egzaminu na prawo jazdy. Zdający uzyskał wynik pozytywny, jeŝeli popełnił co najwyŝej dwa błędy.

4 Liczba błędów Liczba zdających a. Oblicz średnią arytmetyczną liczby błędów popełnionych przez zdających ten egzamin. Wynik podaj w zaokrągleniu do całości. b. Oblicz prawdopodobieństwo, Ŝe wśród dwóch losowo wybranych zdających tylko jeden uzyskał wynik pozytywny. Wynik zapisz w postaci ułamka zwykłego nieskracalnego. Odp: a) 2 b) 63/145. Zad.12. Pewna maszyna wykonuje śruby o średnicy 14 mm. Dokonano kontroli jakości wykonywanych śrub i jej wyniki zebrano w tabeli. Średnica w mm 13,8 13, ,1 14,2 Liczba śrub Opierając się na podanych danych. a. Oblicz średnią średnicę śruby. b. Oblicz prawdopodobieństwo wyprodukowania śruby o średnicy z przedziału. c. Oblicz odchylenie standardowe średnicy śruby. Wynik podaj z dokładnością do 0,01. Odp: a) 14,008mm b) 0,78 c) Zad.13. W pewnym zakładzie pracy obliczono ile dni urlopu wykorzystali pracownicy w lutym. Wynik przedstawiono w następującym diagramie słupkowym a. Jaka była średnia liczba dni urlopu przypadających na jednego pracownika? b. Ilu pracowników liczy zakład pracy, jeśli 119 pracowników miało mniejszą liczbę dni urlopu niŝ wynosi średnia przypadająca na jednego pracownika? Odp: a) 1,6 b) 170.

5 Zad.14. W tabeli zestawiono oceny z matematyki uczniów klasy 3A na koniec semestru. Ocena Liczba ocen Średnia arytmetyczna tych ocen jest równa 3,6. Oblicz liczbę ocen bardzo dobrych (5) z matematyki wystawionych na koniec semestru w tej klasie. Odp:3. Zad.15. Oblicz medianę następujących danych: 13,2; 15; 12,225; 14; 16,8; 42,7; 22,1; 31,4; 20,6; 18,4. Odp: 17,6 Zad.16. Podaj: śednią arytmetyczną, medianę, dominantę, wariancję dla danych zebranych w tabeli: Odp: średnia = 1; dominanta D1=0 i D2=1; wariancja =22/18 (1,222 ); odchylenie standardowe = 1,11 Zad.17. Pan Jan sprzedaje cztery rodzaje parasoli, kaŝdy rodzaj w innej cenie. 40% sprzedawanych przez niego parasoli kosztuje 26zł, 30% parasoli kosztuje 30zł. Najtańszych parasoli w cenie 20 zł Pan Jan ma 5 sztuk. Pozostałe, najdroŝsze parasole kosztują po 45zł. Oblicz ile parasoli ma do sprzedania Pan Jan, jeśli średnia cena sprzedawanych przez niego parasoli wynosi 31,65zł. Wyznacz medianę i dominantę. Odp: 100 parasoli, mediana = 30, dominanta = 26 Zad.18. Tabela przedstawia wyniki uzyskane na sprawdzianie przez uczniów klasy III. Oblicz średnią arytmetyczną i kwadrat odchylenia standardowego uzyskanych ocen. Odp: średnia = 3; kwadrat odchylenia standardowego = 1,6. Zad. 19. Średnia arytmetyczna trzech liczb a, b, c jest równa 2. Wariancja tych liczb wynosi 3. Oblicz sumę kwadratów liczb a, b i c. Odp. 21

Wartość danej Liczebność

Wartość danej Liczebność ZADANIE 1 (5 PKT) Średnia wieku w pewnej grupie studentów jest równa 23 lata. Średnia wieku tych studentów i ich opiekuna jest równa 24 lata. Opiekun ma 39 lat. Oblicz, ilu studentów jest w tej grupie.

Bardziej szczegółowo

STATYSTYKA POWTÓRZENIE WIADOMOŚCI

STATYSTYKA POWTÓRZENIE WIADOMOŚCI STATYSTYKA POWTÓRZENIE WIADOMOŚCI ZADANIE Średnia arytmetyczna wszystkich liczb pierwszych należacych do przedziału, 9) A) B), C) D), ZADANIE Średnia licz,,,,9,9,, jest liczba A) B), C) D), ZADANIE Diagram

Bardziej szczegółowo

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE IV TECHNIKUM.

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE IV TECHNIKUM. ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE IV TECHNIKUM. I. Podstawowe pojęcia statystyki. 1. Sposoby prezentowania danych, interpretacja wykresów. 2. Mediana i dominanta. 3. Średnia arytmetyczna

Bardziej szczegółowo

BAZA ZADAŃ KLASA 3 Ha 2014/2015

BAZA ZADAŃ KLASA 3 Ha 2014/2015 BAZA ZADAŃ KLASA 3 Ha 2014/2015 GEOMETRIA 1 W trójkącie prostokątnym wysokość poprowadzona na przeciwprostokątną ma długość 10 cm, a promień okręgu opisanego ma długość 19 cm Oblicz pole tego trójkąta

Bardziej szczegółowo

BAZA ZADAŃ KLASA 3 Ga

BAZA ZADAŃ KLASA 3 Ga BAZA ZADAŃ KLASA 3 Ga CIĄGI LICZBOWE 1. Ile wyrazów dodatnich ma ciąg? Podaj największy z nich. 2. Które wyrazy ciągu są równe zeru? 3. Które wyrazy ciągu są mniejsze od liczby m? 4. Zbadaj, czy poniższe

Bardziej szczegółowo

2. W tabeli podano wagę i wzrost grupy uczniów z klasy VI: Piotr Tomasz Anna Marta Wojtek Michał Adam Kasia Iga

2. W tabeli podano wagę i wzrost grupy uczniów z klasy VI: Piotr Tomasz Anna Marta Wojtek Michał Adam Kasia Iga STATYSTYKA Poziom (K) lub (P) Uczeń otrzymuje ocenę dopuszczającą lub dostateczną, jeśli: oblicza średnią arytmetyczną, wyznacza medianę i dominantę oblicza średnią arytmetyczną, wyznacza medianę i dominantę

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Miejsce na naklejkę z kodem szkoły dysleksja EGZAMIN MATURALNY Z MATEMATYKI MMA-P1A1P-061 POZIOM PODSTAWOWY Czas pracy 10 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 1 stron.

Bardziej szczegółowo

Elementy statystyki opisowej, teoria prawdopodobieństwa i kombinatoryka

Elementy statystyki opisowej, teoria prawdopodobieństwa i kombinatoryka Wymagania egzaminacyjne: a) oblicza średnią arytmetyczną, średnią ważoną, medianę i odchylenie standardowe danych; interpretuje te parametry dla danych empirycznych, b) zlicza obiekty w prostych sytuacjach

Bardziej szczegółowo

Matematyka podstawowa I. Liczby rzeczywiste, zbiory

Matematyka podstawowa I. Liczby rzeczywiste, zbiory Zadania wprowadzające: Matematyka podstawowa I Liczby rzeczywiste, zbiory 1. Liczba jest równa 2. Liczba jest równa 3. Wynikiem działania jest 4. Przedstaw w postaci nieskracalnego ułamka zwykłego 5. Oblicz

Bardziej szczegółowo

ZADANIA MATURALNE LICZBY RZECZYWISTE - POZIOM PODSTAWOWY. Opracowała mgr Danuta Brzezińska

ZADANIA MATURALNE LICZBY RZECZYWISTE - POZIOM PODSTAWOWY. Opracowała mgr Danuta Brzezińska ZADANIA MATURALNE LICZBY RZECZYWISTE - POZIOM PODSTAWOWY Zad1 ( 5 pkt) 1 0 8 1 2 11 5 4 Dane są liczby x 5, y 5 2 2 1 5 a) Wyznacz liczbę, której 60% jest równe x Wynik podaj z dokładnością do 0,01 b)

Bardziej szczegółowo

PRZYKŁADOWE ZADANIA OTWARTE KONKURSOWE

PRZYKŁADOWE ZADANIA OTWARTE KONKURSOWE PRZYKŁADOWE ZADANIA OTWARTE KONKURSOWE Zadanie 1 Biuro Turystyczne Raj w przypadku rezygnacji z wycieczki nie zwraca pełnej kwoty. a) Jeśli rezygnacja z wyjazdu następuje miesiąc przed terminem wyjazdu,

Bardziej szczegółowo

Rozkład wyników ogólnopolskich

Rozkład wyników ogólnopolskich Rozkład wyników ogólnopolskich 5 4.5 4 3.5 procent uczniów 3 2.5 2 1.5 1.5 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 23 24 25 26 27 28 29 3 31 32 liczba punktów - wyniki niskie - wyniki średnie

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Miejsce na naklejkę z kodem szkoły dysleksja EGZAMIN MATURALNY Z MATEMATYKI MMA-P1A1P-062 POZIOM PODSTAWOWY Czas pracy 120 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 14

Bardziej szczegółowo

SPRAWDZIAN NR 1. ( 2, 3), a współrzędne każdego następnego punktu są liczbami o 1 większymi od współrzędnych punktu poprzedniego.

SPRAWDZIAN NR 1. ( 2, 3), a współrzędne każdego następnego punktu są liczbami o 1 większymi od współrzędnych punktu poprzedniego. SPRAWDZIAN NR 1 ARTUR ANTAS IMIĘ I NAZWISKO: KLASA: GRUPA A 1. Narysuj w układzie współrzędnych wielokąt, którego wierzchołki mają współrzędne: (2, 3), (2, 2), ( 3, 2), i nazwij otrzymany wielokąt. 2.

Bardziej szczegółowo

Skrypt 29. Statystyka. Opracowanie L2

Skrypt 29. Statystyka. Opracowanie L2 Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 29 Statystyka 1. Przypomnienie

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego Kod ucznia Data urodzenia ucznia Dzień miesiąc rok Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów ETAP SZKOLNY Rok szkolny 2015/2016 Instrukcja dla ucznia 1. Sprawdź, czy test zawiera 14 stron.

Bardziej szczegółowo

ELEMENTY STATYSTYKI 1. DANE

ELEMENTY STATYSTYKI 1. DANE ELEMENTY STATYSTYKI 1. DANE W badaniach statystycznych populacją nazywamy grupę osób, zwierząt, roślin lub przedmiotów badanych. Interesują nas przy tym pewne wybrane cechy tych populacji. Takie cechy

Bardziej szczegółowo

Rozkład materiału nauczania

Rozkład materiału nauczania Dział/l.p. Ilość godz. Typ szkoły: TECHNIKUM Zawód: TECHNIK USŁUG FRYZJERSKICH Rok szkolny 2015/2016 Przedmiot: MATEMATYKA Klasa: III 2 godz/tyg 30 = 60 godzin Rozkład materiału nauczania Temat I. LOGARYTMY

Bardziej szczegółowo

Miary statystyczne w badaniach pedagogicznych

Miary statystyczne w badaniach pedagogicznych Miary statystyczne w badaniach pedagogicznych Szeregi statystyczne Szczegółowy - gdzie materiał uporządkowany jest rosnąco lub malejąco Rozdzielczy - gdzie poszczególnym wariantom zmiennej przyporządkowane

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Miejsce na naklejkę z kodem szkoły dysleksja EGZAMIN MATURALNY Z MATEMATYKI MMA-P1A1P-052 POZIOM PODSTAWOWY Czas pracy 120 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 13

Bardziej szczegółowo

MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ

MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ Opracowała: Milena Suliga Wszystkie pliki pomocnicze wymienione w treści

Bardziej szczegółowo

Sprawdzian z matematyki na rozpoczęcie nauki w pierwszej klasie gimnazjum

Sprawdzian z matematyki na rozpoczęcie nauki w pierwszej klasie gimnazjum WYPEŁNIA UCZEŃ Kod ucznia Sprawdzian z matematyki na rozpoczęcie nauki w pierwszej klasie gimnazjum Informacje dla ucznia. Sprawdź, czy sprawdzian ma 7 stron. Ewentualny brak stron lub inne usterki zgłoś

Bardziej szczegółowo

ZADANIA MATURALNE - RACHUNEK PRAWDOPODOBIEŃSTWA, ELEMENTY STATYSTYKI OPISOWEJ POZIOM PODSTAWOWY Opracowała mgr Danuta Brzezińska

ZADANIA MATURALNE - RACHUNEK PRAWDOPODOBIEŃSTWA, ELEMENTY STATYSTYKI OPISOWEJ POZIOM PODSTAWOWY Opracowała mgr Danuta Brzezińska ZADANIA MATURALNE - RACHUNEK PRAWDOPODOBIEŃSTWA, ELEMENTY STATYSTYKI OPISOWEJ POZIOM PODSTAWOWY Opracowała mgr Danuta Brzezińska Zad. 1. (1 pkt) Ile jest wszystkich liczb naturalnych dwucyfrowych, w których

Bardziej szczegółowo

ZESTAW ZADAŃ NA OCENĘ DOPUSZCZAJĄCY Z MATEMATYKI W KLASIE IV.

ZESTAW ZADAŃ NA OCENĘ DOPUSZCZAJĄCY Z MATEMATYKI W KLASIE IV. ZESTAW ZADAŃ NA OCENĘ DOPUSZCZAJĄCY Z MATEMATYKI W KLASIE IV. I. POTĘGI. LOGARYTMY. FUNKCJA WYKŁADNICZA 1. Przedstaw liczby 16,4, w postaci potęgi liczby: 2; 4;. 2. Wykonaj działania: a) = b) 25 5 5 =

Bardziej szczegółowo

a. opisać badaną cechę; cechą X jest pomiar średnicy kulki

a. opisać badaną cechę; cechą X jest pomiar średnicy kulki Maszyna ustawiona jest tak, by produkowała kulki łożyskowe o średnicy 1 cm. Pomiar dziesięciu wylosowanych z produkcji kulek dał x = 1.1 oraz s 2 = 0.009. Czy można uznać, że maszyna nie rozregulowała

Bardziej szczegółowo

2 Ustalamy długość klasy, dzieląc rozstęp R przez liczbę klas, czyli przez 6. Klasy mają więc długość

2 Ustalamy długość klasy, dzieląc rozstęp R przez liczbę klas, czyli przez 6. Klasy mają więc długość Grupowanie i klasyfikowanie danych statystycznych Klasyfikacja danych statystycznych to procedura uporządkowania danych, polegająca na podziale zbioru wartości danych na przedziały (grupy), zwane klasami.

Bardziej szczegółowo

ANALIZA WYNIKÓW EGZAMINU GIMNAZJALNEGO w GIMNAZJUM nr 1 KWIECIEŃ 2012. WYNIKI ZESTAWU W CZĘŚCI matematycznej

ANALIZA WYNIKÓW EGZAMINU GIMNAZJALNEGO w GIMNAZJUM nr 1 KWIECIEŃ 2012. WYNIKI ZESTAWU W CZĘŚCI matematycznej ANALIZA WYNIKÓW EGZAMINU GIMNAZJALNEGO w GIMNAZJUM nr 1 KWIECIEŃ 2012 WYNIKI ZESTAWU W CZĘŚCI matematycznej Dane statystyczne o uczniach (słuchaczach) przystępujących do egzaminu gimnazjalnego Liczbę uczniów

Bardziej szczegółowo

Rozkład łatwości zadań

Rozkład łatwości zadań Klasa 3a średnia klasy: 22.52 pkt średnia szkoły: 21.93 pkt średnia ogólnopolska: 14.11 pkt Rozkład łatwości zadań 1 0.9 0.8 0.7 0.6 łatwość 0.5 0.4 0.3 0.2 0.1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Bardziej szczegółowo

Rozkład wyników ogólnopolskich

Rozkład wyników ogólnopolskich Rozkład wyników ogólnopolskich 1 9 8 7 procent uczniów 6 5 4 3 2 1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 23 24 liczba punktów - wyniki niskie - wyniki średnie - wyniki wysokie Parametry

Bardziej szczegółowo

Zadanie 2.Na III roku bankowości złożonym z 20 studentów i 10 studentek przeprowadzono test pisemny ze statystyki. Oto wyniki w obu podgrupach.

Zadanie 2.Na III roku bankowości złożonym z 20 studentów i 10 studentek przeprowadzono test pisemny ze statystyki. Oto wyniki w obu podgrupach. Zadanie 1.Wiadomo, że dominanta wagi tuczników jest umiejscowiona w przedziale [120 kg, 130 kg] i wynosi 122,5 kg. Znane są również liczebności przedziałów poprzedzającego i następnego po przedziale dominującym:

Bardziej szczegółowo

STATYSTYKA. Poziom podstawowy

STATYSTYKA. Poziom podstawowy STATYSTYKA Poziom podstawowy Zadanie (8 pkt.) Histogram obrazuje utarg stacji benzynowej w ciągu tygodnia. a) Którego dnia stacja była zamknięta? b) Którego dnia sprzedano więcej benzyny niż w czwartek?

Bardziej szczegółowo

Mariusz Kaszubowski Katedra Statystyki Wydział Zarządzania i Ekonomii Politechnika Gdańska. Statystyka Mariusz Kaszubowski

Mariusz Kaszubowski Katedra Statystyki Wydział Zarządzania i Ekonomii Politechnika Gdańska. Statystyka Mariusz Kaszubowski Mariusz Kaszubowski Katedra Statystyki Wydział Zarządzania i Ekonomii Politechnika Gdańska Zmienna losowa i jej rozkład Statystyka matematyczna Podstawowe pojęcia Zmienna losowa (skokowa, ciągła) Rozkład

Bardziej szczegółowo

Uczeń: -podaje przykłady ciągów liczbowych skończonych i nieskończonych oraz rysuje wykresy ciągów

Uczeń: -podaje przykłady ciągów liczbowych skończonych i nieskończonych oraz rysuje wykresy ciągów Wymagania edukacyjne PRZEDMIOT: Matematyka KLASA: III Th ZAKRES: zakres podstawowy Poziom wymagań Lp. Dział programu Konieczny-K Podstawowy-P Rozszerzający-R Dopełniający-D Uczeń: 1. Ciągi liczbowe. -zna

Bardziej szczegółowo

Klasa 6. Procenty. 1. Zaznacz rysunek, na którym zamalowano 50% figury. 2. Zamień na ułamki dziesiętne: a) 60% =... b) 4% =... c) 28% =...

Klasa 6. Procenty. 1. Zaznacz rysunek, na którym zamalowano 50% figury. 2. Zamień na ułamki dziesiętne: a) 60% =... b) 4% =... c) 28% =... Klasa 6. Procenty gr. A str. /5... imię i nazwisko...... klasa data. Zaznacz rysunek, na którym zamalowano 50% figury. 2. Zamień na ułamki dziesiętne: a) 60% =............................. b) 4% =...............................

Bardziej szczegółowo

ZASADY OCENIANIA Z MATEMATYKI DLA KLASY SZÓSTEJ

ZASADY OCENIANIA Z MATEMATYKI DLA KLASY SZÓSTEJ ZASADY OCENIANIA Z MATEMATYKI DLA KLASY SZÓSTEJ 1 PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI DLA KLASY VI SZKOŁY PODSTAWOWEJ Materiał przedstawia Zasady Oceniania z matematyki dla klasy VI szkoły podstawowej.

Bardziej szczegółowo

Rozkład wyników ogólnopolskich

Rozkład wyników ogólnopolskich Rozkład wyników ogólnopolskich 1 9 8 7 procent uczniów 6 5 4 3 2 1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 - wyniki niskie - wyniki średnie - wyniki wysokie liczba punktów Parametry rozkładu wyników

Bardziej szczegółowo

PRÓBNY SPRAWDZIAN SZÓSTOKLASISTY Z OPERONEM

PRÓBNY SPRAWDZIAN SZÓSTOKLASISTY Z OPERONEM PRÓBNY SPRAWDZIAN SZÓSTOKLASISTY Z OPERONEM Wprowadzenie Na podstawie rozporządzenia Ministra Edukacji Narodowej z dnia 3 kwietnia 27 roku w sprawie warunków i sposobu oceniania, klasyfikowania i promowania

Bardziej szczegółowo

ZBIÓR ZADAŃ MATURALNYCH Z MATEMATYKI

ZBIÓR ZADAŃ MATURALNYCH Z MATEMATYKI ZBIÓR ZADAŃ MATURALNYCH Z MATEMATYKI AUTORZY: Zespół w12i SPIS TREŚCI LICZBY RZECZYWISTE.2 FUNKCJE 11 CIĄGI...27 GEOMETRIA ANALITYCZNA.36 RACHUNEK PRAWDOPODOBIEŃSTWA, STATYSTYKA.44 1 LICZBY RZECZYWISTE

Bardziej szczegółowo

Szkolny Mistrz Matematyki Zestaw drugi - listopad

Szkolny Mistrz Matematyki Zestaw drugi - listopad Szkolny Mistrz Matematyki Zestaw drugi - listopad Zadanie. Oblicz, pamiętając o kolejności wykonywania działań: a) 4 ( + ) : = c) ( + ) = b) + (7 6 7) = d) 0 0 : [(6 + ) : ( )] = Zadanie. Zapisz za pomocą

Bardziej szczegółowo

Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas III w roku szkolnym 2015/2016 w Zespole Szkół Ekonomicznych w Zielonej Górze

Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas III w roku szkolnym 2015/2016 w Zespole Szkół Ekonomicznych w Zielonej Górze Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas III w roku szkolnym 2015/2016 w Zespole Szkół Ekonomicznych w Zielonej Górze II. Logarytmy obliczać logarytmy korzystając z definicji

Bardziej szczegółowo

MARATON MATEMATYCZNY-MARZEC 2015 KLASA I. Zadanie 1. Zadanie 2

MARATON MATEMATYCZNY-MARZEC 2015 KLASA I. Zadanie 1. Zadanie 2 MARATON MATEMATYCZNY-MARZEC 2015 KLASA I Obwód poniższej figury wynosi: Zredukuj wyrażenia Zadanie 2 Uprość wyrażenia, a następnie oblicz ich wartości dla: a = -1, b = 2 Wyłącz wspólny czynnik przed nawias.

Bardziej szczegółowo

Sprawdzian z matematyki na zakończenie nauki w drugiej klasie gimnazjum

Sprawdzian z matematyki na zakończenie nauki w drugiej klasie gimnazjum Wypełnia uczeń Kod ucznia Sprawdzian z matematyki na zakończenie nauki w drugiej klasie gimnazjum Informacje dla ucznia 1. Sprawdź, czy sprawdzian ma 6 stron. Ewentualny brak stron lub inne usterki zgłoś

Bardziej szczegółowo

Nauki ścisłe priorytetem społeczeństwa opartego na wiedzy Zbiór scenariuszy Mój przedmiot matematyka

Nauki ścisłe priorytetem społeczeństwa opartego na wiedzy Zbiór scenariuszy Mój przedmiot matematyka Strona 1 Wstęp Zbiór Mój przedmiot matematyka jest zestawem 132 scenariuszy przeznaczonych dla uczniów szczególnie zainteresowanych matematyką. Scenariusze mogą być wykorzystywane przez nauczycieli zarówno

Bardziej szczegółowo

m i ę d z y p r z e d m i o t o w y m a t e m a t y k a - i n f o r m a t y k a Klasa V

m i ę d z y p r z e d m i o t o w y m a t e m a t y k a - i n f o r m a t y k a Klasa V P r o j e k t m i ę d z y p r z e d m i o t o w y m a t e m a t y k a - i n f o r m a t y k a Klasa V Nie wszystkie wielkości moŝna wyrazić liczbami całkowitymi. Na początku uŝywano liczb naturalnych,

Bardziej szczegółowo

WPISUJE UCZEŃ GRUDZIEŃ Czas pracy: 90 minut PRÓBNY EGZAMIN GIMNAZJALNY Z OPERONEM CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA MATEMATYKA

WPISUJE UCZEŃ GRUDZIEŃ Czas pracy: 90 minut PRÓBNY EGZAMIN GIMNAZJALNY Z OPERONEM CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA MATEMATYKA WPISUJE UCZEŃ KOD UCZNIA PESEL PRÓBNY EGZAMIN GIMNAZJALNY Z OPERONEM CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA MATEMATYKA Instrukcja dla ucznia 1. Sprawdź, czy zestaw egzaminacyjny zawiera 7 stron (zadania 1..).

Bardziej szczegółowo

Analiza wyników egzaminu maturalnego z matematyki na poziomowe podstawowym

Analiza wyników egzaminu maturalnego z matematyki na poziomowe podstawowym Analiza wyników egzaminu maturalnego z matematyki na poziomowe podstawowym Do egzaminu maturalnego w II Liceum Ogólnokształcącego im. Mikołaja Kopernika w Cieszynie z matematyki na poziomie podstawowym

Bardziej szczegółowo

POMIAR DYDAKTYCZNY Z MATEMATYKI

POMIAR DYDAKTYCZNY Z MATEMATYKI POMIAR DYDAKTYCZNY Z MATEMATYKI DZIAŁANIA NA UŁAMKACH ZWYKŁYCH KLASA VI OPRACOWAŁ NAUCZYCIEL MATEMATYKI AGNIESZKA SZCZUCHNIAK CEL OGÓLNY: Umiejętność wykonywania działań na ułamkach zwykłych CELE OPERACYJNE:

Bardziej szczegółowo

ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI

ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI Zadanie 51. ( pkt) Rozwiąż równanie 3 x = 1. 1 x Zadanie 5. ( pkt) x+ 3y = 5 Rozwiąż układ równań. x y = 3 Zadanie 53. ( pkt) Rozwiąż nierówność x + 6x 7 0. ZNI OTWRTE KRÓTKIEJ OPOWIEZI Zadanie 54. ( pkt)

Bardziej szczegółowo

Rozkład wyników ogólnopolskich

Rozkład wyników ogólnopolskich Rozkład wyników ogólnopolskich 1 9 8 7 procent uczniów 6 5 4 3 2 1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 23 24 - wyniki niskie - wyniki średnie - wyniki wysokie liczba punktów Parametry

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZĘCIA EGZAMINU! Miejsce na naklejkę MMA-P1_1P-092 EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MAJ ROK 2009 Czas pracy 120 minut Instrukcja

Bardziej szczegółowo

Analiza wyników egzaminu gimnazjalnego 2013 r. Test matematyczno-przyrodniczy (matematyka) Test GM-M1-132

Analiza wyników egzaminu gimnazjalnego 2013 r. Test matematyczno-przyrodniczy (matematyka) Test GM-M1-132 Analiza wyników egzaminu gimnazjalnego 2013 r. Test matematyczno-przyrodniczy (matematyka) Test GM-M1-132 Zestaw zadań z zakresu matematyki posłużył w dniu 24 kwietnia 2013 roku do sprawdzenia u uczniów

Bardziej szczegółowo

Rozkład wyników ogólnopolskich

Rozkład wyników ogólnopolskich Rozkład wyników ogólnopolskich 1 9 8 7 procent uczniów 6 5 4 3 2 1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 liczba punktów - wyniki niskie - wyniki średnie - wyniki wysokie Parametry rozkładu wyników

Bardziej szczegółowo

a)dane są wartości zmiennej losowej: 2, 4, 2, 1, 1, 3, 2, 1. Obliczyć wartość średnią i wariancję.

a)dane są wartości zmiennej losowej: 2, 4, 2, 1, 1, 3, 2, 1. Obliczyć wartość średnią i wariancję. Zad Rozkład zmiennej losowej dyskretnej : a)dane są wartości zmiennej losowej: 2, 4, 2,,, 3, 2,. Obliczyć wartość średnią i wariancję. b)oceny z pracy klasowej w tabeli: Ocena 2 3 4 5 6 Liczba uczniów

Bardziej szczegółowo

Przedmiotowe Ocenianie Z Matematyki Liceum Ogólnokształcące obowiązuje w roku szkolnym 2016 / 2017

Przedmiotowe Ocenianie Z Matematyki Liceum Ogólnokształcące obowiązuje w roku szkolnym 2016 / 2017 Przedmiotowe Ocenianie Z Matematyki Liceum Ogólnokształcące obowiązuje w roku szkolnym 2016 / 2017 1. Rok szkolny dzieli się na dwa semestry. Każdy semestr kończy się klasyfikacją. 2. Na początku roku

Bardziej szczegółowo

Rozkład wyników ogólnopolskich

Rozkład wyników ogólnopolskich Rozkład wyników ogólnopolskich 1 9 8 7 procent uczniów 6 5 4 3 2 1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 23 - wyniki niskie - wyniki średnie - wyniki wysokie liczba punktów Parametry rozkładu

Bardziej szczegółowo

wybierz właściwą odpowiedź i zamaluj kratkę z odpowiednimi literami, np. gdy wybierasz odpowiedź FP:

wybierz właściwą odpowiedź i zamaluj kratkę z odpowiednimi literami, np. gdy wybierasz odpowiedź FP: WPISUJE UCZEŃ KOD UCZNIA PESEL PRÓBNY EGZAMIN GIMNAZJALNY Z OPERONEM CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA MATEMATYKA Instrukcja dla ucznia 1. Sprawdź, czy zestaw egzaminacyjny zawiera 7 stron (zadania 1. 2.).

Bardziej szczegółowo

Rozkład wyników ogólnopolskich

Rozkład wyników ogólnopolskich Rozkład wyników ogólnopolskich 1 9 8 7 procent uczniów 6 5 4 3 2 1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 23 24 25 26 27 - wyniki niskie - wyniki średnie - wyniki wysokie liczba punktów

Bardziej szczegółowo

Próbny egzamin w trzeciej klasie gimnazjum część matematyczno-przyrodnicza Luty 2016 Matematyka

Próbny egzamin w trzeciej klasie gimnazjum część matematyczno-przyrodnicza Luty 2016 Matematyka Wypełnia uczeń PESEL Kod ucznia Próbny egzamin w trzeciej klasie gimnazjum część matematyczno-przyrodnicza Luty 2016 Matematyka Informacje dla ucznia 1. Sprawdź, czy zestaw egzaminacyjny zawiera 10 stron.

Bardziej szczegółowo

PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI

PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Zestaw P3 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla

Bardziej szczegółowo

Analiza wyników egzaminu maturalnego z matematyki 2014/2015. Poziom podstawowy

Analiza wyników egzaminu maturalnego z matematyki 2014/2015. Poziom podstawowy Analiza wyników egzaminu maturalnego z matematyki 2014/2015 Poziom podstawowy Analiza wyników egzaminu maturalnego z matematyki na poziomie podstawowym. Do egzaminu maturalnego w Technikum Zawodowym w

Bardziej szczegółowo

Rozkład łatwości zadań

Rozkład łatwości zadań Klasa 1b średnia klasy: 11.00 pkt średnia szkoły: 13.55 pkt średnia ogólnopolska: 10.93 pkt Rozkład łatwości zadań 1 0.9 0.8 0.7 0.6 łatwość 0.5 0.4 0.3 0.2 0.1 0 1 2 3 4 5 6 7 8 9 10 11 12 Numer zadania

Bardziej szczegółowo

Rozkład łatwości zadań

Rozkład łatwości zadań Klasa 1a średnia klasy: 17.13 pkt średnia szkoły: 17.36 pkt średnia ogólnopolska: 10.93 pkt Rozkład łatwości zadań 1 0.9 0.8 0.7 0.6 łatwość 0.5 0.4 0.3 0.2 0.1 0 1 2 3 4 5 6 7 8 9 10 11 12 Numer zadania

Bardziej szczegółowo

Rozkład wyników ogólnopolskich

Rozkład wyników ogólnopolskich Rozkład wyników ogólnopolskich 1 9 8 7 procent uczniów 6 5 4 3 2 1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 23 liczba punktów - wyniki niskie - wyniki średnie - wyniki wysokie Parametry rozkładu

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA Zadanie 0.1 Zmienna losowa X ma rozkład określony funkcją prawdopodobieństwa: x k 0 4 p k 1/3 1/6 1/ obliczyć EX, D X. (odp. 4/3;

Bardziej szczegółowo

Temat 18: Statystyka i prawdopodobieństwo w naszym życiu.

Temat 18: Statystyka i prawdopodobieństwo w naszym życiu. Temat 8: Statystyka i prawdopodobieństwo w naszym życiu. Jakie są miary statystyczne? Średnia arytmetyczna. Średnia arytmetyczna dwóch liczb a i b to połowa ich sumy Średnia arytmetyczna trzech liczb a,

Bardziej szczegółowo

Rozkład materiału nauczania

Rozkład materiału nauczania Dział/l.p. Ilość godz. Typ szkoły: TECHNIKUM Zawód: TECHNIK USŁUG FRYZJERSKICH Rok szkolny 2016/2017 Przedmiot: MATEMATYKA Klasa: IV 67 godzin numer programu T5/O/5/12 Rozkład materiału nauczania Temat

Bardziej szczegółowo

Temat: Statystyka i prawdopodobieństwo w naszym życiu.

Temat: Statystyka i prawdopodobieństwo w naszym życiu. Dla nauczyciela Spotkanie 9 Temat: Statystyka i prawdopodobieństwo w naszym życiu. Na zajęcia potrzebne będą pomoce tzn. kostki do gry, talia kart, monety lub inne. Przy omawianiu doświadczeń losowych

Bardziej szczegółowo

ZBIÓR PRZYKŁADOWYCH ZADAŃ Z MATEMATYKI POZIOM PODSTAWOWY ZADANIA ZAMKNIĘTE

ZBIÓR PRZYKŁADOWYCH ZADAŃ Z MATEMATYKI POZIOM PODSTAWOWY ZADANIA ZAMKNIĘTE ZBIÓR PRZYKŁADOWYCH ZADAŃ Z MATEMATYKI POZIOM PODSTAWOWY ZADANIA ZAMKNIĘTE Zad.1. (1p) Liczba 3 30 9 90 jest równa: A. 3 210 B. 3 300 C. 9 120 D. 27 2700 Zad.2. (1p) Liczba 3 8 3 3 9 2 jest równa: A. 3

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z NOWĄ ERĄ

PRÓBNY EGZAMIN MATURALNY Z NOWĄ ERĄ WPISUJE ZDAJĄCY KOD IMIĘ I NAZWISKO * * nieobowiązkowe PRÓBNY EGZAMIN MATURALNY Z NOWĄ ERĄ matematyka-poziom PODSTAWOWY dysleksja Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 22

Bardziej szczegółowo

Maraton Matematyczny zadania dla klasy I wrzesień 2014

Maraton Matematyczny zadania dla klasy I wrzesień 2014 ZADANIE Wykonaj działanie - 4 : ( -2 ) ( -8 )= -5* (-3) +46= 2-(-4)+ 25= (43 6 3 7+6+) (-2) = Maraton Matematyczny zadania dla klasy I wrzesień 204 ZADANIE 2 Podaj przybliżenia ułamków: 6,3456; 0,28065;

Bardziej szczegółowo

ZAGADANIENIA NA EGZAMIN USTNY Z MATEMATYKI

ZAGADANIENIA NA EGZAMIN USTNY Z MATEMATYKI ZAGADANIENIA NA EGZAMIN USTNY Z MATEMATYKI SEMESTR I ZESTAW. Podaj liczbę przeciwną i odwrotną do liczby 2 2. Jak zmieniła się cena wyrobu po podwyżce o 20%, a następnie po obniżeniu otrzymanej ceny o

Bardziej szczegółowo

NAJWIEKSZY INTERNETOWY ZBIÓR ZADAŃ Z MATEMATYKI ZADANIE 1 oczka. ZADANIE 2 iloczynu oczek równego 12.

NAJWIEKSZY INTERNETOWY ZBIÓR ZADAŃ Z MATEMATYKI ZADANIE 1 oczka. ZADANIE 2 iloczynu oczek równego 12. IMIE I NAZWISKO ZADANIE 1 Rzucamy sześcienna kostka do gry. Jakie jest prawdopodobieństwo, że wypadna co najmniej dwa oczka. ZADANIE 2 Rzucamy trzy razy symetryczna sześcienna kostka do gry. Oblicz prawdopodobieństwo

Bardziej szczegółowo

Zaprojektuj arkusz kalkulacyjny, który dla wszystkich osób zatrudnionych w firmie obliczy:

Zaprojektuj arkusz kalkulacyjny, który dla wszystkich osób zatrudnionych w firmie obliczy: Excel Ćwiczenia Zagadnienie 1 W małej firmie pracuje 10 osób (nazwiska i imiona możesz sobie wymyślić). Każda z nich posiada swoją stawkę godzinową (płacę brutto za 1 godzinę pracy w firmie) oraz ilość

Bardziej szczegółowo

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2016/2017 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2016/2017 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 016/017 CZĘŚĆ. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M7 KWIECIEŃ 017 Zadanie 1. (0 1) II. Wykorzystywanie i interpretowanie reprezentacji.

Bardziej szczegółowo

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM.

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM. ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM. I Geometria analityczna 1. Równanie prostej w postaci ogólnej i kierunkowej powtórzenie 2. Wzajemne położenie dwóch prostych powtórzenie

Bardziej szczegółowo

SCENARIUSZ ZAJĘĆ SZKOLNEGO KOŁA NAUKOWEGO Z PRZEDMIOTU MATEMATYKA PROWADZONEGO W RAMACH PROJEKTU AKADEMIA UCZNIOWSKA

SCENARIUSZ ZAJĘĆ SZKOLNEGO KOŁA NAUKOWEGO Z PRZEDMIOTU MATEMATYKA PROWADZONEGO W RAMACH PROJEKTU AKADEMIA UCZNIOWSKA SCENARIUSZ ZAJĘĆ SZKOLNEGO KOŁA NAUKOWEGO Z PRZEDMIOTU MATEMATYKA PROWADZONEGO W RAMACH PROJEKTU AKADEMIA UCZNIOWSKA Temat lekcji Co lepsze strategia czy przypadek? Gra dydaktyczna. Na podstawie pracy

Bardziej szczegółowo

Liczby i działania str. 1/6

Liczby i działania str. 1/6 Liczby i działania str. 1/6 1. Rysunek, na którym zacieniowano 4 figury, to rysunek: 2. Odwrotnością liczby 1 1 jest: 6 B. 6 C. 1 1 D. 1 1 3. Odwrotnością liczby 2 7 jest: 2 7 B. 3 1 2 C. 7 2 D. 2 7 4.

Bardziej szczegółowo

Przedmiotowy system oceniania ILO im. M. Kopernika w Krośnie Technologia Informacyjna i Informatyka.

Przedmiotowy system oceniania ILO im. M. Kopernika w Krośnie Technologia Informacyjna i Informatyka. Przedmiotowy system oceniania ILO im. M. Kopernika w Krośnie Technologia Informacyjna i Informatyka. ZałoŜenia ogólne: 1. Uczniowie otrzymują oceny za posiadane indywidualne umiejętności praktyczne z przedmiotu.

Bardziej szczegółowo

Rozkład wyników ogólnopolskich

Rozkład wyników ogólnopolskich Rozkład wyników ogólnopolskich 5 4.5 4 3.5 procent uczniów 3 2.5 2 1.5 1.5 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 23 24 25 26 27 28 29 3 liczba punktów - wyniki niskie - wyniki średnie

Bardziej szczegółowo

Rozkład wyników ogólnopolskich

Rozkład wyników ogólnopolskich Rozkład wyników ogólnopolskich 5 4.5 4 3.5 procent uczniów 3 2.5 2 1.5 1.5 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 23 24 25 26 27 28 29 3 31 32 33 liczba punktów - wyniki niskie - wyniki

Bardziej szczegółowo

ANALIZA WYNIKÓW SPRAWDZIANU SZÓSTOKLASISTY KWIECIEŃ 2012 W ROKU SZKOLNYM 2011 / 2012.

ANALIZA WYNIKÓW SPRAWDZIANU SZÓSTOKLASISTY KWIECIEŃ 2012 W ROKU SZKOLNYM 2011 / 2012. ANALIZA WYNIKÓW SPRAWDZIANU SZÓSTOKLASISTY KWIECIEŃ 2012 W ROKU SZKOLNYM 2011 / 2012. Standardowy zestaw zadań egzaminacyjnych (S-1-122) w naszej szkole rozwiązywało 69 uczniów, jeden uczeń rozwiązywał

Bardziej szczegółowo

MATeMAtyka 3 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych

MATeMAtyka 3 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych MATeMAtyka 3 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy Klasa 3 Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające

Bardziej szczegółowo

Rozkład wyników ogólnopolskich

Rozkład wyników ogólnopolskich Rozkład wyników ogólnopolskich 5 4.5 4 3.5 procent uczniów 3 2.5 2 1.5 1.5 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 23 24 25 26 27 28 29 3 31 32 33 liczba punktów - wyniki niskie - wyniki

Bardziej szczegółowo

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE I ZASADNICZEJ SZKOŁY ZAWODOWEJ.

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE I ZASADNICZEJ SZKOŁY ZAWODOWEJ. ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE I ZASADNICZEJ SZKOŁY ZAWODOWEJ. I. Liczby rzeczywiste oś liczbowa i przedziały liczbowe. 1. Definicja liczb: naturalnych całkowitych wymiernych niewymiernych

Bardziej szczegółowo

Rozkłady statystyk z próby

Rozkłady statystyk z próby Rozkłady statystyk z próby Rozkłady statystyk z próby Przypuśćmy, że wykonujemy serię doświadczeń polegających na 4 krotnym rzucie symetryczną kostką do gry, obserwując liczbę wyrzuconych oczek Nr kolejny

Bardziej szczegółowo

Zadania obejmujące materiał z działów liczby i funkcje do egzaminu rocznego

Zadania obejmujące materiał z działów liczby i funkcje do egzaminu rocznego Liczby Zadania obejmujące materiał z działów liczby i funkcje do egzaminu rocznego Zad.1 Znajdź liczbę odwrotną do liczby nieskracalnego. : ( Wynik podaj w postaci ułamka ) ( ). Zad. 2 Zapisz w postaci

Bardziej szczegółowo

EGZAMIN GIMNAZJALNY 2015 W SZKOŁACH DLA DOROSŁYCH W WOJEWÓDZTWIE ŚLĄSKIM. sesja zimowa

EGZAMIN GIMNAZJALNY 2015 W SZKOŁACH DLA DOROSŁYCH W WOJEWÓDZTWIE ŚLĄSKIM. sesja zimowa EGZAMIN GIMNAZJALNY 2015 W SZKOŁACH DLA DOROSŁYCH W WOJEWÓDZTWIE ŚLĄSKIM sesja zimowa Jaworzno 2015 SPIS TREŚCI 1. WPROWADZENIE 3 2. WYNIKI SŁUCHACZY GIMNAZJÓW DLA DOROSŁYCH ROZWIĄZUJĄCYCH STANDARDOWE

Bardziej szczegółowo

Wyniki egzaminu gimnazjalnego 2014/2015 część humanistyczna język polski

Wyniki egzaminu gimnazjalnego 2014/2015 część humanistyczna język polski Wyniki egzaminu gimnazjalnego 2014/2015 część humanistyczna język polski Gimnazjum w Pietrowicach Wielkich X 2015 Opracowała Wyniki egzaminu gimnazjalnego `2015 część humanistyczna j. polski 90 85 80 75

Bardziej szczegółowo

SPRAWDZIAN Z MATEMATYKI NA ROZPOCZĘCIE NAUKI W DRUGIEJ KLASIE GIMNAZJUM

SPRAWDZIAN Z MATEMATYKI NA ROZPOCZĘCIE NAUKI W DRUGIEJ KLASIE GIMNAZJUM WYPEŁNIA UCZEŃ Kod ucznia SPRAWDZIAN Z MATEMATYKI NA ROZPOCZĘCIE NAUKI W DRUGIEJ KLASIE GIMNAZJUM Informacje dla ucznia 1. Sprawdź, czy sprawdzian ma 6 stron. Ewentualny brak stron lub inne usterki zgłoś

Bardziej szczegółowo

KURS PRAWDOPODOBIEŃSTWO

KURS PRAWDOPODOBIEŃSTWO KURS PRAWDOPODOBIEŃSTWO Lekcja 6 Ciągłe zmienne losowe ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 Zmienna losowa ciągła jest

Bardziej szczegółowo

Rozkład wyników ogólnopolskich

Rozkład wyników ogólnopolskich Rozkład wyników ogólnopolskich 1 9 8 7 procent uczniów 6 5 4 3 2 1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 23 24 25 26 - wyniki niskie - wyniki średnie - wyniki wysokie liczba punktów Parametry

Bardziej szczegółowo

I. FUNKCJA WYKŁADNICZA I LOGARYTMY 1. POTĘGI Zad.1. Zapisz za pomocą potęgi o podanej podstawie:

I. FUNKCJA WYKŁADNICZA I LOGARYTMY 1. POTĘGI Zad.1. Zapisz za pomocą potęgi o podanej podstawie: Strona 1 z 9 I. FUNKCJA WYKŁADNICZA I LOGARYTMY 1. POTĘGI Zapisz za pomocą potęgi o podanej podstawie: 5 4 ( 27) ( ) a), podstawa : ( ) b) 6 ( 9) c), podstawa: (5) d) Oblicz: a) 1 6 4 2 1 1 1 2 (0,25)

Bardziej szczegółowo

EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2011/2012. CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA Matematyka WOJEWÓDZTWO KUJAWSKO-POMORSKIE

EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2011/2012. CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA Matematyka WOJEWÓDZTWO KUJAWSKO-POMORSKIE Okręgowa Komisja Egzaminacyjna w Gdańsku EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2011/2012 CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA Matematyka WOJEWÓDZTWO KUJAWSKO-POMORSKIE Osiągnięcia gimnazjalistów z zakresu matematyki

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA Z PRZEDMIOTU MATEMATYKA V LICEUM OGÓLNOKSZTAŁCĄCE IM. KLAUDYNY POTOCKIEJ W POZNANIU

PRZEDMIOTOWY SYSTEM OCENIANIA Z PRZEDMIOTU MATEMATYKA V LICEUM OGÓLNOKSZTAŁCĄCE IM. KLAUDYNY POTOCKIEJ W POZNANIU PRZEDMIOTOWY SYSTEM OCENIANIA Z PRZEDMIOTU MATEMATYKA V LICEUM OGÓLNOKSZTAŁCĄCE IM. KLAUDYNY POTOCKIEJ W POZNANIU Każdy uczeń ma prawo zdobywać wiedzę na lekcjach matematyki, rozwijać ją i utrwalać samodzielną

Bardziej szczegółowo

KURS STATYSTYKA. Lekcja 2 Przedziały ufności i estymacja przedziałowa ZADANIE DOMOWE. www.etrapez.pl Strona 1

KURS STATYSTYKA. Lekcja 2 Przedziały ufności i estymacja przedziałowa ZADANIE DOMOWE. www.etrapez.pl Strona 1 KUR TATYTYKA Lekcja Przedziały ufności i estymacja przedziałowa ZADANIE DOMOWE www.etrapez.pl trona 1 Część 1: TET Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 We wnioskowaniu statystycznym

Bardziej szczegółowo

PRÓBNY SPRAWDZIAN 2008

PRÓBNY SPRAWDZIAN 2008 PRÓBNY SPRAWDZIAN 2008 SZKOŁA PODSTAWOWA NR 7 W CZELADZI ANALIZA WYNIKÓW SPIS TREŚCI I. Informacje o wynikach próbnego sprawdzianu w Szkole Podstawowej nr 7 w Czeladzi 1. Informacje wstępne... 3 2. Standardowy

Bardziej szczegółowo

ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY II A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi

ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY II A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY II A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi Rozkład materiału nauczania został opracowany na podstawie programu

Bardziej szczegółowo

Analiza wyników sprawdzianu szóstoklasisty 2015 j.polski i matematyka

Analiza wyników sprawdzianu szóstoklasisty 2015 j.polski i matematyka Analiza wyników sprawdzianu szóstoklasisty 2015 j.polski i matematyka Sprawdzian został przeprowadzony 1 kwietnia 2015 r. Składał się z dwóch części. Obie części były przeprowadzone w formie pisemnej.

Bardziej szczegółowo

EGZAMIN MATURALNY W ROKU SZKOLNYM 2014/2015

EGZAMIN MATURALNY W ROKU SZKOLNYM 2014/2015 EGZAMIN MATURALNY W ROKU SZKOLNYM 0/0 FORMUŁA OD 0 ( NOWA MATURA ) MATEMATYKA POZIOM PODSTAWOWY ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ MMA-P CZERWIEC 0 Egzamin maturalny z matematyki nowa formuła Klucz

Bardziej szczegółowo

Ćwiczenia 1-2 Analiza rozkładu empirycznego

Ćwiczenia 1-2 Analiza rozkładu empirycznego Ćwiczenia 1-2 Zadanie 1. Z kolokwium z ekonometrii studenci otrzymali następujące oceny: 5 osób dostało piątkę, 20 os. dostało czwórkę, 10 os. trójkę, a 3 osoby nie zaliczyły tego kolokwium. Należy w oparciu

Bardziej szczegółowo