Pozyskiwanie wiedzy z danych

Wielkość: px
Rozpocząć pokaz od strony:

Download "Pozyskiwanie wiedzy z danych"

Transkrypt

1 Pozyskiwanie wiedzy z danych dr Agnieszka Goroncy Wydział Matematyki i Informatyki UMK PROJEKT WSPÓŁFINANSOWANY ZE ŚRODKÓW UNII EUROPEJSKIEJ W RAMACH EUROPEJSKIEGO FUNDUSZU SPOŁECZNEGO Pozyskiwanie wiedzy z danych 1

2 Materiały do pracy 1 gemini/rns/pwd.html 2 Libre Office : 3 Ankieta do wypełnienia 4 Tworzenie własnych ankiet Pozyskiwanie wiedzy z danych 2

3 Dane Typy danych: numeryczny (liczbowy): np. 14, 0, 1, 1,5, tekstowy (łancuchowy): np. tak, często, nie lubię, data, np Poziomy pomiaru: ilościowy - opisuje m.in. wydatki (201, 14, 21, 4), dochód (2000, 3600, 15000), wiek (14, 16, 35), wzrost(1,22; 1,62; 1,86), porządkowy - opisuje m.in. wykształcenie (podstawowe, średnie, wyższe), numer klasy (1, 2, 3), ocenę z klasówki (1, 2, 3, 4, 5, 6), nominalny - opisuje m.in. płeć (kobieta, mężczyzna lub 0, 1), rodzaj wykształcenia (humanistyczne, matematyczne, przyrodnicze). Pozyskiwanie wiedzy z danych 3

4 Tabelaryczna prezentacja rozkładu zmiennej Plik babyboom.ods zawiera informacje dotyczące 44 dzieci urodzonych w ciągu jednego 24-godzinnego okresu w szpitalu w Brisbane, Australia (na podstawie danych babyboom z pakietu Using R, środowisko R): godzina na zegarze płeć waga w gramach minuty urodzenia po północy Pozyskiwanie wiedzy z danych 4

5 Tabelaryczna prezentacja rozkładu zmiennej Plik babyboom.ods zawiera informacje dotyczące 44 dzieci urodzonych w ciągu jednego 24-godzinnego okresu w szpitalu w Brisbane, Australia (na podstawie danych babyboom z pakietu Using R, środowisko R): godzina na zegarze płeć waga w gramach minuty urodzenia po północy Szereg szczegółowy Pozyskiwanie wiedzy z danych 4

6 Tabelaryczna prezentacja rozkładu zmiennej Plik babyboom.ods zawiera informacje dotyczące 44 dzieci urodzonych w ciągu jednego 24-godzinnego okresu w szpitalu w Brisbane, Australia (na podstawie danych babyboom z pakietu Using R, środowisko R): godzina na zegarze płeć waga w gramach minuty urodzenia po północy Szereg szczegółowy zmienna godzina przyjmuje następujące wartości: Pozyskiwanie wiedzy z danych 4

7 Tabelaryczna prezentacja rozkładu zmiennej Plik babyboom.ods zawiera informacje dotyczące 44 dzieci urodzonych w ciągu jednego 24-godzinnego okresu w szpitalu w Brisbane, Australia (na podstawie danych babyboom z pakietu Using R, środowisko R): godzina na zegarze płeć waga w gramach minuty urodzenia po północy Szereg szczegółowy zmienna godzina przyjmuje następujące wartości: 5, 104, 118, 155, 257, 405, 407,..., 2327, 2355 Pozyskiwanie wiedzy z danych 4

8 Tabelaryczna prezentacja rozkładu zmiennej Plik babyboom.ods zawiera informacje dotyczące 44 dzieci urodzonych w ciągu jednego 24-godzinnego okresu w szpitalu w Brisbane, Australia (na podstawie danych babyboom z pakietu Using R, środowisko R): godzina na zegarze płeć waga w gramach minuty urodzenia po północy Szereg szczegółowy zmienna godzina przyjmuje następujące wartości: 5, 104, 118, 155, 257, 405, 407,..., 2327, 2355 Pozyskiwanie wiedzy z danych 4

9 Szeregi, c.d. rozdzielczy Pozyskiwanie wiedzy z danych 5

10 Szeregi, c.d. rozdzielczy punktowy Pozyskiwanie wiedzy z danych 5

11 Szeregi, c.d. rozdzielczy punktowy zmienną płeć można pogrupować następująco: Pozyskiwanie wiedzy z danych 5

12 Szeregi, c.d. rozdzielczy punktowy zmienną płeć można pogrupować następująco: płeć dziewczynka chłopiec ilość (n i, i=1,2) Pozyskiwanie wiedzy z danych 5

13 Szeregi, c.d. rozdzielczy punktowy zmienną płeć można pogrupować następująco: przedziałowy płeć dziewczynka chłopiec ilość (n i, i=1,2) Pozyskiwanie wiedzy z danych 5

14 Szeregi, c.d. rozdzielczy punktowy zmienną płeć można pogrupować następująco: płeć dziewczynka chłopiec ilość (n i, i=1,2) przedziałowy zmienną waga można pogrupować następująco: Pozyskiwanie wiedzy z danych 5

15 Szeregi, c.d. rozdzielczy punktowy zmienną płeć można pogrupować następująco: płeć dziewczynka chłopiec ilość (n i, i=1,2) przedziałowy zmienną waga można pogrupować następująco: waga (1744.5, ] (2147.5, ] (2550.5, ] ilość (n i,i=1,...,3) waga (2953.5, ] (3356.5, 3759,5] (3759.5, ] ilość (n i,i=4,...,6) Pozyskiwanie wiedzy z danych 5

16 Szeregi, c.d. rozdzielczy punktowy zmienną płeć można pogrupować następująco: płeć dziewczynka chłopiec ilość (n i, i=1,2) przedziałowy zmienną waga można pogrupować następująco: waga (1744.5, ] (2147.5, ] (2550.5, ] ilość (n i,i=1,...,3) waga (2953.5, ] (3356.5, 3759,5] (3759.5, ] ilość (n i,i=4,...,6) liczba klas: k=6 ( n), n = n n 6 = 44, min=1745, max=4162, długości klas=403, środki przedziałów: x 0 1 = 1946,..., x 0 6 = Pozyskiwanie wiedzy z danych 5

17 Statystyki porządkowe x 1,..., x n - wartości pewnej zmiennej, x 1:n,..., x n:n - wartości po uporządkowaniu, czyli statystyki porządkowe (pozycyjne) x 1:n to minimum, zaś x n:n to maksimum Przykład: Wagi pięciu 14-letnich dziewcząt wynoszą (w kg): 40, 52, 48, 60, 52. Pozyskiwanie wiedzy z danych 6

18 Statystyki porządkowe x 1,..., x n - wartości pewnej zmiennej, x 1:n,..., x n:n - wartości po uporządkowaniu, czyli statystyki porządkowe (pozycyjne) x 1:n to minimum, zaś x n:n to maksimum Przykład: Wagi pięciu 14-letnich dziewcząt wynoszą (w kg): 40, 52, 48, 60, 52. x Mamy więc n = 5 oraz: 1:5 x 2:5 x 3:5 x 4:5 x 5: Pozyskiwanie wiedzy z danych 6

19 Podstawowe statystyki opisowe Miary: Pozyskiwanie wiedzy z danych 7

20 Podstawowe statystyki opisowe Miary: położenia (tendencji centralnej) średnia arytmetyczna kwantyle dominanta (moda) Pozyskiwanie wiedzy z danych 7

21 Podstawowe statystyki opisowe Miary: położenia (tendencji centralnej) średnia arytmetyczna kwantyle dominanta (moda) rozproszenia: wariancja, odchylenie standardowe Pozyskiwanie wiedzy z danych 7

22 Podstawowe statystyki opisowe Miary: położenia (tendencji centralnej) średnia arytmetyczna kwantyle dominanta (moda) rozproszenia: wariancja, odchylenie standardowe asymetrii: współczynnik skośności Pozyskiwanie wiedzy z danych 7

23 Podstawowe statystyki opisowe Miary: położenia (tendencji centralnej) średnia arytmetyczna kwantyle dominanta (moda) rozproszenia: wariancja, odchylenie standardowe asymetrii: współczynnik skośności koncentracji: kurtoza Pozyskiwanie wiedzy z danych 7

24 Miary położenia Średnia arytmetyczna: x n = 1 (x1 + x xn 1 + xn) n x n = 1 n (n1 x1 + n2 x n k 1 x k 1 + n k x k ) x n = 1 n (n1 x n 2 x n k 1 x 0 k 1 + n k x 0 k ) - szereg szczegółowy, - szereg punktowy, - szereg przedziałowy. waga (1744.5, ] (2147.5, ] (2550.5, ] środki klas (xi 0 ) ilość (n i) waga (2953.5, ] (3356.5, 3759,5] (3759.5, ] środki klas (xi 0 ) ilość (n i) Pozyskiwanie wiedzy z danych 8

25 Miary położenia Średnia arytmetyczna: x n = 1 (x1 + x xn 1 + xn) n x n = 1 n (n1 x1 + n2 x n k 1 x k 1 + n k x k ) x n = 1 n (n1 x n 2 x n k 1 x 0 k 1 + n k x 0 k ) - szereg szczegółowy, - szereg punktowy, - szereg przedziałowy. waga (1744.5, ] (2147.5, ] (2550.5, ] środki klas (xi 0 ) ilość (n i) waga (2953.5, ] (3356.5, 3759,5] (3759.5, ] środki klas (xi 0 ) ilość (n i) x 44 = 1 44 ( ) 3292, 4 Pozyskiwanie wiedzy z danych 8

26 Miary położenia Kwantyle rzędu p (0, 1) Pozyskiwanie wiedzy z danych 9

27 Miary położenia Kwantyle rzędu p (0, 1) Przykład: Kwartyle Pozyskiwanie wiedzy z danych 9

28 Miary położenia: kwartyle Pozyskiwanie wiedzy z danych 10

29 Miary położenia: percentyle Przykład: Siatki centylowe Pozyskiwanie wiedzy z danych 11

30 Miary położenia Mediana: Med = x n+1 2 :n n nieparzyste x n/2:n +x n/2+1:n 2 n parzyste Pozyskiwanie wiedzy z danych 12

31 Miary położenia Mediana: Med = x n+1 2 :n n nieparzyste x n/2:n +x n/2+1:n 2 n parzyste Przykład: a) Wagi losowo wybranych 15-letnich chłopców kształtują się następująco: 52, 61, 65, 55, 54 (kg). Oblicz medianę. Pozyskiwanie wiedzy z danych 12

32 Miary położenia Mediana: Med = x n+1 2 :n n nieparzyste x n/2:n +x n/2+1:n 2 n parzyste Przykład: a) Wagi losowo wybranych 15-letnich chłopców kształtują się następująco: 52, 61, 65, 55, 54 (kg). Oblicz medianę. n = 5 - nieparzyste, statystyki pozycyjne: 52, 54, 55, 61, 66. Med = x 3:5 = 55. Pozyskiwanie wiedzy z danych 12

33 Miary położenia Mediana: Med = x n+1 2 :n n nieparzyste x n/2:n +x n/2+1:n 2 n parzyste Przykład: a) Wagi losowo wybranych 15-letnich chłopców kształtują się następująco: 52, 61, 65, 55, 54 (kg). Oblicz medianę. n = 5 - nieparzyste, statystyki pozycyjne: 52, 54, 55, 61, 66. Med = x 3:5 = 55. b) Wzrost losowo wybranych czterech 16-letnich chłopców wynosi: 180, 176, 177, 175 (cm). Oblicz medianę. Pozyskiwanie wiedzy z danych 12

34 Miary położenia Mediana: Med = x n+1 2 :n n nieparzyste x n/2:n +x n/2+1:n 2 n parzyste Przykład: a) Wagi losowo wybranych 15-letnich chłopców kształtują się następująco: 52, 61, 65, 55, 54 (kg). Oblicz medianę. n = 5 - nieparzyste, statystyki pozycyjne: 52, 54, 55, 61, 66. Med = x 3:5 = 55. b) Wzrost losowo wybranych czterech 16-letnich chłopców wynosi: 180, 176, 177, 175 (cm). Oblicz medianę. n = 4 - parzyste, statystyki pozycyjne: 175, 176, 177, 180. Med = 1 2 (x 2:4 + x 3:4 ) = 1 2 ( ) = 176, 5 Pozyskiwanie wiedzy z danych 12

35 Miary położenia Dominanta (moda) - w przypadku szeregu szczegółowego lub punktowego dominanta jest najczęstszym wariantem badanej cechy (odpowiada mu największa liczebność). Przykład: Jaka jest dominanta wagi noworodków na podstawie danych z pliku babyboom.ods? Pozyskiwanie wiedzy z danych 13

36 Miary rozproszenia Wariancja s 2 = 1 n 1 [(x1 xn)2 + (x 2 x n) (x n x n) 2 ] s 2 = 1 n 1 [n1 (x1 xn) n k (x k x n) 2 ] s 2 = 1 n 1 [n1 (x 1 0 x n) n k (xk 0 x n) 2 ] Odchylenie standardowe: s = s 2. - szereg szczegółowy, - szereg punktowy, - szereg przedziałowy. Przykład: waga (1744.5, ] (2147.5, ] (2550.5, ] środki klas (xi 0 ) ilość (n i) waga (2953.5, ] (3356.5, 3759,5] (3759.5, ] środki klas (xi 0 ) ilość (n i) Pozyskiwanie wiedzy z danych 14

37 Miary rozproszenia Wariancja s 2 = 1 n 1 [(x1 xn)2 + (x 2 x n) (x n x n) 2 ] s 2 = 1 n 1 [n1 (x1 xn) n k (x k x n) 2 ] s 2 = 1 n 1 [n1 (x 1 0 x n) n k (xk 0 x n) 2 ] Odchylenie standardowe: s = s 2. - szereg szczegółowy, - szereg punktowy, - szereg przedziałowy. Przykład: waga (1744.5, ] (2147.5, ] (2550.5, ] środki klas (xi 0 ) ilość (n i) waga (2953.5, ] (3356.5, 3759,5] (3759.5, ] środki klas (xi 0 ) ilość (n i) s = 1 44 (2 ( , 4) ( , 4) 2 ) 521 Pozyskiwanie wiedzy z danych 14

38 Miara asymetrii Skośność (sk) jest miarą asymetrii. Jeżeli sk > 0, to rozkład jest prawostronnie skośny (dane skupiają się na lewo ) - często mediana jest mniejsza niż średnia, sk < 0, to rozkład jest lewostronnie skośny (dane skupiają się na prawo ) - często mediana jest wyższa niż średnia, sk = 0, to rozkład jest symetryczny. Pozyskiwanie wiedzy z danych 15

39 Miara koncentracji (skupienia) - kurtoza K Jeżeli K < 0 - dane są mało skoncentrowane wokół średniej, K > 0 - dane są bardzo skoncentrowane wokół średniej, K = 0 - dane są normalnie skoncentrowane wokół średniej. Pozyskiwanie wiedzy z danych 16

40 Po co to? :-) Motywacje Próba a populacja Wnioskowanie statystyczne Pozyskiwanie wiedzy z danych 17

Miary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej

Miary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej Miary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej cechy. Średnia arytmetyczna suma wartości zmiennej wszystkich

Bardziej szczegółowo

W1. Wprowadzenie. Statystyka opisowa

W1. Wprowadzenie. Statystyka opisowa W1. Wprowadzenie. Statystyka opisowa dr hab. Jerzy Nakielski Zakład Biofizyki i Morfogenezy Roślin Plan wykładu: 1. O co chodzi w statystyce 2. Etapy badania statystycznego 3. Zmienna losowa, rozkład

Bardziej szczegółowo

Parametry statystyczne

Parametry statystyczne I. MIARY POŁOŻENIA charakteryzują średni lub typowy poziom wartości cechy, wokół nich skupiają się wszystkie pozostałe wartości analizowanej cechy. I.1. Średnia arytmetyczna x = x 1 + x + + x n n = 1 n

Bardziej szczegółowo

Wykład 1. Podstawowe pojęcia Metody opisowe w analizie rozkładu cechy

Wykład 1. Podstawowe pojęcia Metody opisowe w analizie rozkładu cechy Wykład Podstawowe pojęcia Metody opisowe w analizie rozkładu cechy Zbiorowość statystyczna - zbiór elementów lub wyników jakiegoś procesu powiązanych ze sobą logicznie (tzn. posiadających wspólne cechy

Bardziej szczegółowo

Plan wykładu. Statystyka opisowa. Statystyka matematyczna. Dane statystyczne miary położenia miary rozproszenia miary asymetrii

Plan wykładu. Statystyka opisowa. Statystyka matematyczna. Dane statystyczne miary położenia miary rozproszenia miary asymetrii Plan wykładu Statystyka opisowa Dane statystyczne miary położenia miary rozproszenia miary asymetrii Statystyka matematyczna Podstawy estymacji Testowanie hipotez statystycznych Żródła Korzystałam z ksiażek:

Bardziej szczegółowo

Agata Boratyńska. WYKŁAD 1. Wstępna analiza danych, charakterystyki opisowe. Indeksy statystyczne.

Agata Boratyńska. WYKŁAD 1. Wstępna analiza danych, charakterystyki opisowe. Indeksy statystyczne. 1 Agata Boratyńska WYKŁAD 1. Wstępna analiza danych, charakterystyki opisowe. Indeksy statystyczne. Agata Boratyńska Wykłady ze statystyki 2 Literatura J. Koronacki i J. Mielniczuk Statystyka WNT 2004

Bardziej szczegółowo

STATYSTYKA IV SEMESTR ALK (PwZ) STATYSTYKA OPISOWA RODZAJE CECH W POPULACJACH I SKALE POMIAROWE

STATYSTYKA IV SEMESTR ALK (PwZ) STATYSTYKA OPISOWA RODZAJE CECH W POPULACJACH I SKALE POMIAROWE STATYSTYKA IV SEMESTR ALK (PwZ) STATYSTYKA OPISOWA RODZAJE CECH W POPULACJACH I SKALE POMIAROWE CECHY mogą być: jakościowe nieuporządkowane - skala nominalna płeć, rasa, kolor oczu, narodowość, marka samochodu,

Bardziej szczegółowo

-> Średnia arytmetyczna (5) (4) ->Kwartyl dolny, mediana, kwartyl górny, moda - analogicznie jak

-> Średnia arytmetyczna (5) (4) ->Kwartyl dolny, mediana, kwartyl górny, moda - analogicznie jak Wzory dla szeregu szczegółowego: Wzory dla szeregu rozdzielczego punktowego: ->Średnia arytmetyczna ważona -> Średnia arytmetyczna (5) ->Średnia harmoniczna (1) ->Średnia harmoniczna (6) (2) ->Średnia

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela Wykład 3: Analiza struktury zbiorowości statystycznej. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.

Statystyka w pracy badawczej nauczyciela Wykład 3: Analiza struktury zbiorowości statystycznej. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin. Statystyka w pracy badawczej nauczyciela Wykład 3: Analiza struktury zbiorowości statystycznej dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Zadania analityczne (1) Analiza przewiduje badanie podobieństw

Bardziej szczegółowo

Statystyczne metody analizy danych

Statystyczne metody analizy danych Statystyczne metody analizy danych Statystyka opisowa Wykład I-III Agnieszka Nowak - Brzezińska Definicje Statystyka (ang.statistics) - to nauka zajmująca się zbieraniem, prezentowaniem i analizowaniem

Bardziej szczegółowo

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 STATYSTYKA Rafał Kucharski Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 Statystyka zbiór przetworzonych i zsyntetyzowanych danych liczbowych, nauka o ilościowych metodach

Bardziej szczegółowo

STATYSTYKA OPISOWA Przykłady problemów statystycznych: - badanie opinii publicznej na temat preferencji wyborczych;

STATYSTYKA OPISOWA Przykłady problemów statystycznych: - badanie opinii publicznej na temat preferencji wyborczych; STATYSTYKA OPISOWA Przykłady problemów statystycznych: - badanie opinii publicznej na temat preferencji wyborczych; - badanie skuteczności nowego leku; - badanie stopnia zanieczyszczenia gleb metalami

Bardziej szczegółowo

Statystyka opisowa. Literatura STATYSTYKA OPISOWA. Wprowadzenie. Wprowadzenie. Wprowadzenie. Plan. Tomasz Łukaszewski

Statystyka opisowa. Literatura STATYSTYKA OPISOWA. Wprowadzenie. Wprowadzenie. Wprowadzenie. Plan. Tomasz Łukaszewski STATYSTYKA OPISOWA Literatura A. Aczel, Statystyka w Zarządzaniu, PWN, 2000 A. Obecny, Statystyka opisowa w Excelu dla szkół. Ćwiczenia praktyczne, Helion, 2002. A. Obecny, Statystyka matematyczna w Excelu

Bardziej szczegółowo

Opisowa analiza struktury zjawisk statystycznych

Opisowa analiza struktury zjawisk statystycznych Statystyka Opisowa z Demografią oraz Biostatystyka Opisowa analiza struktury zjawisk statystycznych Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2

Bardziej szczegółowo

Wykład 5. Opis struktury zbiorowości. 1. Miary asymetrii.

Wykład 5. Opis struktury zbiorowości. 1. Miary asymetrii. Wykład 5. Opis struktury zbiorowości 1. Miary asymetrii. 2. Miary koncentracji. Przykład Zbadano stawkę godzinową (w zł) pracowników dwóch branŝ, otrzymując następujące charakterysty ki liczbowe: Stawka

Bardziej szczegółowo

Podstawowe funkcje statystyki: informacyjna, analityczna, prognostyczna.

Podstawowe funkcje statystyki: informacyjna, analityczna, prognostyczna. Podstawy Podstawowe funkcje statystyki: informacyjna, analityczna, prognostyczna. Funkcja informacyjna umożliwia pełny i obiektywny obraz badanych zjawisk Funkcja analityczna umożliwia określenie czynników

Bardziej szczegółowo

Statystyka i opracowanie danych W5: Wprowadzenie do statystycznej analizy danych. Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl

Statystyka i opracowanie danych W5: Wprowadzenie do statystycznej analizy danych. Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Statystyka i opracowanie danych W5: Wprowadzenie do statystycznej analizy danych Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Wprowadzenie Podstawowe cele analizy zbiorów danych Uogólniony opis poszczególnych

Bardziej szczegółowo

Wykład 3. Metody opisu danych (statystyki opisowe, tabele liczności, wykresy ramkowe i histogramy)

Wykład 3. Metody opisu danych (statystyki opisowe, tabele liczności, wykresy ramkowe i histogramy) Wykład 3. Metody opisu danych (statystyki opisowe, tabele liczności, wykresy ramkowe i histogramy) Co na dzisiejszym wykładzie: definicje, sposoby wyznaczania i interpretacja STATYSTYK OPISOWYCH prezentacja

Bardziej szczegółowo

Ćwiczenia 1-2 Analiza rozkładu empirycznego

Ćwiczenia 1-2 Analiza rozkładu empirycznego Ćwiczenia 1-2 Zadanie 1. Z kolokwium z ekonometrii studenci otrzymali następujące oceny: 5 osób dostało piątkę, 20 os. dostało czwórkę, 10 os. trójkę, a 3 osoby nie zaliczyły tego kolokwium. Należy w oparciu

Bardziej szczegółowo

1. Opis tabelaryczny. 2. Graficzna prezentacja wyników. Do technik statystyki opisowej można zaliczyć:

1. Opis tabelaryczny. 2. Graficzna prezentacja wyników. Do technik statystyki opisowej można zaliczyć: Wprowadzenie Statystyka opisowa to dział statystyki zajmujący się metodami opisu danych statystycznych (np. środowiskowych) uzyskanych podczas badania statystycznego (np. badań terenowych, laboratoryjnych).

Bardziej szczegółowo

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI ROZKŁAD EMPIRYCZNY

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI ROZKŁAD EMPIRYCZNY WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI ROZKŁAD EMPIRYCZNY Liczebności i częstości Liczebność liczba osób/respondentów/badanych, którzy udzielili tej konkretnej odpowiedzi. Podawana w osobach. Częstość odsetek,

Bardziej szczegółowo

Statystyka i analiza danych Wstępne opracowanie danych Statystyka opisowa. Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.pl

Statystyka i analiza danych Wstępne opracowanie danych Statystyka opisowa. Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.pl Statystyka i analiza danych Wstępne opracowanie danych Statystyka opisowa Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.pl Wprowadzenie Podstawowe cele analizy zbiorów danych Uogólniony opis poszczególnych

Bardziej szczegółowo

Pomiary urodzeń według płci noworodka i województwa.podział na miasto i wieś.

Pomiary urodzeń według płci noworodka i województwa.podział na miasto i wieś. Pomiary urodzeń według płci noworodka i województwa.podział na miasto i wieś. Województwo Urodzenia według płci noworodka i województwa. ; Rok 2008; POLSKA Ogółem Miasta Wieś Pozamałżeńskie- Miasta Pozamałżeńskie-

Bardziej szczegółowo

Matematyka z el. statystyki, # 1 /Geodezja i kartografia II/

Matematyka z el. statystyki, # 1 /Geodezja i kartografia II/ Matematyka z el. statystyki, # 1 /Geodezja i kartografia II/ Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Akademicka 15, p.211a bud. Agro II, e-mail: zdzislaw.otachel@up.lublin.pl

Bardziej szczegółowo

STATYSTYKA wykłady. L.Gruszczyński Elementy statystyki dla socjologów Dr. Pactwa pon. i wtorek 09:30 11:00 (pok. 217) I. (08.X)

STATYSTYKA wykłady. L.Gruszczyński Elementy statystyki dla socjologów Dr. Pactwa pon. i wtorek 09:30 11:00 (pok. 217) I. (08.X) STATYSTYKA wykłady L.Gruszczyński Elementy statystyki dla socjologów Dr. Pactwa pon. i wtorek 09:30 11:00 (pok. 17) I. (08.X) 1. Statystyka jest to nauka zajmująca się metodami ilościowymi badania prawidłowości

Bardziej szczegółowo

1. szereg wyliczający (szczegółowy) - wyniki są uporządkowane wyłącznie według wartości badanej cechy, np. od najmniejszej do największej

1. szereg wyliczający (szczegółowy) - wyniki są uporządkowane wyłącznie według wartości badanej cechy, np. od najmniejszej do największej 1 Statystyka opisowa Statystyka opisowa zajmuje się porządkowaniem danych i wstępnym ich opracowaniem. Szereg statystyczny - to zbiór wyników obserwacji jednostek według pewnej cechy 1. szereg wyliczający

Bardziej szczegółowo

Porównaj płace pracowników obu zakładów, dokonując kompleksowej analizy struktury. Zastanów się, w którym zakładzie jest korzystniej pracować?

Porównaj płace pracowników obu zakładów, dokonując kompleksowej analizy struktury. Zastanów się, w którym zakładzie jest korzystniej pracować? 1 Zadanie 1.1 W dwóch zakładach produkcyjnych Złomex I i Złomex II, należących do tego samego przedsiębiorstwa Złomowanie na zawołanie w ostatnim miesiącu następująco kształtowały się wynagrodzenia pracowników.

Bardziej szczegółowo

Wydział Nauki o Zdrowiu. Zakład Profilaktyki Zagrożeń Środowiskowych i Alergologii Marta Zalewska

Wydział Nauki o Zdrowiu. Zakład Profilaktyki Zagrożeń Środowiskowych i Alergologii Marta Zalewska Podstawy Biostatystyki Wydział Nauki o Zdrowiu Zakład Profilaktyki Zagrożeń Środowiskowych i Alergologii Marta Zalewska Treść wykładu W1-W Statystyka opisowa. Podstawowe pojęcia statystyki. Prezentacja

Bardziej szczegółowo

Analiza statystyczna w naukach przyrodniczych

Analiza statystyczna w naukach przyrodniczych Analiza statystyczna w naukach przyrodniczych Po co statystyka? Człowiek otoczony jest różnymi zjawiskami i próbuje je poznać, dowiedzieć się w jaki sposób funkcjonują, jakie relacje między nimi zachodzą.

Bardziej szczegółowo

Graficzna prezentacja danych statystycznych

Graficzna prezentacja danych statystycznych Szkolenie dla pracowników Urzędu Statystycznego nt. Wybrane metody statystyczne w analizach makroekonomicznych Katowice, 12 i 26 czerwca 2014 r. Dopasowanie narzędzia do typu zmiennej Dobór narzędzia do

Bardziej szczegółowo

MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ

MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ Opracowała: Milena Suliga Wszystkie pliki pomocnicze wymienione w treści

Bardziej szczegółowo

Zakład Ubezpieczeń Społecznych Departament Statystyki i Prognoz Aktuarialnych

Zakład Ubezpieczeń Społecznych Departament Statystyki i Prognoz Aktuarialnych Zakład Ubezpieczeń Społecznych Departament Statystyki i Prognoz Aktuarialnych Struktura wysokości emerytur i rent wypłacanych przez ZUS po waloryzacji w marcu 2014 roku. Warszawa 2014 Opracowała: Ewa Karczewicz

Bardziej szczegółowo

Estymacja parametrów rozkładu cechy

Estymacja parametrów rozkładu cechy Estymacja parametrów rozkładu cechy Estymujemy parametr θ rozkładu cechy X Próba: X 1, X 2,..., X n Estymator punktowy jest funkcją próby ˆθ = ˆθX 1, X 2,..., X n przybliżającą wartość parametru θ Przedział

Bardziej szczegółowo

4.2. Statystyczne opracowanie zebranego materiału

4.2. Statystyczne opracowanie zebranego materiału 4.2. Statystyczne opracowanie zebranego materiału Zebrany i pogrupowany materiał badawczy należy poddać analizie statystycznej w celu dokonania pełnej i szczegółowej charakterystyki interesujących badacza

Bardziej szczegółowo

Opis przedmiotu: Probabilistyka I

Opis przedmiotu: Probabilistyka I Opis : Probabilistyka I Kod Nazwa Wersja TR.SIK303 Probabilistyka I 2012/13 A. Usytuowanie w systemie studiów Poziom Kształcenia Stopień Rodzaj Kierunek studiów Profil studiów Specjalność Jednostka prowadząca

Bardziej szczegółowo

XXXI MARATON WARSZAWSKI Warszawa, 27.09.2009

XXXI MARATON WARSZAWSKI Warszawa, 27.09.2009 XXXI MARATON WARSZAWSKI Warszawa, 27.09.2009 Alex.Celinski@gmail.com Rozkład wyników Przedziały 30-minutowe Lp. Przedział Liczebność Częstość czasowy Liczebność Częstość skumulowana skumulowana 1 2:00-2:30

Bardziej szczegółowo

KARTA KURSU. (do zastosowania w roku ak. 2015/16) Kod Punktacja ECTS* 4

KARTA KURSU. (do zastosowania w roku ak. 2015/16) Kod Punktacja ECTS* 4 KARTA KURSU (do zastosowania w roku ak. 2015/16) Nazwa Statystyka 1 Nazwa w j. ang. Statistics 1 Kod Punktacja ECTS* 4 Koordynator Dr hab. Tadeusz Sozański (koordynator, wykłady) Dr Paweł Walawender (ćwiczenia)

Bardziej szczegółowo

Zakład Ubezpieczeń Społecznych Departament Statystyki i Prognoz Aktuarialnych

Zakład Ubezpieczeń Społecznych Departament Statystyki i Prognoz Aktuarialnych Zakład Ubezpieczeń Społecznych Departament Statystyki i Prognoz Aktuarialnych Struktura wysokości emerytur i rent wypłacanych przez ZUS po waloryzacji w marcu 2015 roku. Warszawa 2015 Opracowała: Ewa Karczewicz

Bardziej szczegółowo

Zawartość. Zawartość

Zawartość. Zawartość Opr. dr inż. Grzegorz Biesok. Wer. 2.20 2011 Zawartość Zawartość 1. Tworzenie szeregu rozdzielczego przedziałowego (klasowego)... 3 2. Podstawowy opis struktury... 3 3. Opis rozkładu jednej cechy szereg

Bardziej szczegółowo

Typy zmiennych. Zmienne i rekordy. Rodzaje zmiennych. Graficzne reprezentacje danych Statystyki opisowe

Typy zmiennych. Zmienne i rekordy. Rodzaje zmiennych. Graficzne reprezentacje danych Statystyki opisowe Typy zmiennych Graficzne reprezentacje danych Statystyki opisowe Jakościowe charakterystyka przyjmuje kilka możliwych wartości, które definiują klasy Porządkowe: odpowiedzi na pytania w ankiecie ; nigdy,

Bardziej szczegółowo

Inteligentna analiza danych

Inteligentna analiza danych Numer indeksu 150946 Michał Moroz Imię i nazwisko Numer indeksu 150875 Grzegorz Graczyk Imię i nazwisko kierunek: Informatyka rok akademicki: 2010/2011 Inteligentna analiza danych Ćwiczenie I Wskaźniki

Bardziej szczegółowo

Wykład 3: Statystyki opisowe - miary położenia, miary zmienności, miary asymetrii

Wykład 3: Statystyki opisowe - miary położenia, miary zmienności, miary asymetrii Wykład 3: Statystyki opisowe - miary położenia, miary zmienności, miary asymetrii Wprowadzenie W przypadku danych liczbowych do ich charakterystyki można wykorzystać tak zwane STATYSTYKI OPISOWE. Za pomocą

Bardziej szczegółowo

Wykład 4: Statystyki opisowe (część 1)

Wykład 4: Statystyki opisowe (część 1) Wykład 4: Statystyki opisowe (część 1) Wprowadzenie W przypadku danych mających charakter liczbowy do ich charakterystyki można wykorzystać tak zwane STATYSTYKI OPISOWE. Za pomocą statystyk opisowych można

Bardziej szczegółowo

Podstawy obsługi SPSS

Podstawy obsługi SPSS Podstawy obsługi SPSS Interfejs programu SPSS Deklarowanie zmiennych Wprowadzanie danych Zapisywanie i wczytywanie zbioru danych Operacje na zmiennych Podstawowe obliczenia statystyczne (rozkład częstości,

Bardziej szczegółowo

Elementy statystyki opisowej, podstawowe pojęcia statystyki matematycznej

Elementy statystyki opisowej, podstawowe pojęcia statystyki matematycznej Elementy statystyki opisowej, podstawowe pojęcia statystyki matematycznej Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com) Prezentacja materiału statystycznego Szeroko rozumiane modelowanie i prognozowanie jest zwykle kluczowym celem analizy danych. Aby zbudować model wyjaśniający relacje pomiędzy różnymi aspektami rozważanego

Bardziej szczegółowo

Zakład Ubezpieczeń Społecznych Departament Statystyki i Prognoz Aktuarialnych

Zakład Ubezpieczeń Społecznych Departament Statystyki i Prognoz Aktuarialnych Zakład Ubezpieczeń Społecznych Departament Statystyki i Prognoz Aktuarialnych Struktura wysokości emerytur i rent wypłacanych przez ZUS po waloryzacji w marcu 2012 roku. Warszawa 2012 I. Badana populacja

Bardziej szczegółowo

O ŚREDNIEJ STATYSTYCZNEJ

O ŚREDNIEJ STATYSTYCZNEJ O ŚREDNIEJ STATYSTYCZNEJ Ryszard Zieliński XII Międzynarodowe Warsztaty dla Młodych Matematyków Rachunek Prawdopodobieństwa i Statystyka Kraków, 20 26 IX 2009 r. WYNIKI OBSERWACJI X 1, X 2,..., X n WYNIKI

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 1 i 2

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 1 i 2 STATYSTYKA I DOŚWIADCZALNICTWO Wykład 1 i 2 Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW Słowo statystyka pochodzi od łacińskiego słowa status, które oznacza

Bardziej szczegółowo

Statystyka matematyczna i ekonometria

Statystyka matematyczna i ekonometria Statystyka matematyczna i ekonometria prof. dr hab. inż. Jacek Mercik B4 pok. 55 jacek.mercik@pwr.wroc.pl (tylko z konta studenckiego z serwera PWr) Konsultacje, kontakt itp. Strona WWW Elementy wykładu.

Bardziej szczegółowo

Zakład Ubezpieczeń Społecznych Departament Statystyki i Prognoz Aktuarialnych

Zakład Ubezpieczeń Społecznych Departament Statystyki i Prognoz Aktuarialnych Zakład Ubezpieczeń Społecznych Departament Statystyki i Prognoz Aktuarialnych Struktura wysokości emerytur i rent wypłacanych przez ZUS po waloryzacji i podwyższeniu świadczeń najniższych w marcu 2017

Bardziej szczegółowo

Wykład 10 Estymacja przedziałowa - przedziały ufności dla średn

Wykład 10 Estymacja przedziałowa - przedziały ufności dla średn Wykład 10 Estymacja przedziałowa - przedziały ufności dla średniej Wrocław, 21 grudnia 2016r Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja 10.1 Przedziałem

Bardziej szczegółowo

O ŚREDNIEJ ARYTMETYCZNEJ I MEDIANIE

O ŚREDNIEJ ARYTMETYCZNEJ I MEDIANIE Ryszard Zieliński, IMPAN Warszawa O ŚREDNIEJ ARYTMETYCZNEJ I MEDIANIE XXXIX Ogólnopolska Konferencja Zastosowań Matematyki Zakopane-Kościelisko 7-14 września 2010 r Model statystyczny pomiaru: wynik pomiaru

Bardziej szczegółowo

Wprowadzenie 2010-10-20

Wprowadzenie 2010-10-20 PODSTAWY STATYSTYKI Dr hab. inż. Piotr Konieczka piotr.konieczka@pg.gda.pl 1 Wprowadzenie Wynik analityczny to efekt przeprowadzonego pomiaru(ów). Pomiar to zatem narzędzie wykorzystywane w celu uzyskania

Bardziej szczegółowo

Statystyka to nauka o metodach badań (liczbowo wyrażalnych) własności zbiorowości. Próba. Próba Populacja. Próba

Statystyka to nauka o metodach badań (liczbowo wyrażalnych) własności zbiorowości. Próba. Próba Populacja. Próba Statystyka Opisowa Wstępna analiza danych Rodzaje prezentacji danych Miary tendencji centralnej Miary zmienności (zróżnicowania) Miara asymetrii (skośności) Miara spłaszczenia Statystyka to nauka o metodach

Bardziej szczegółowo

Zadanie 2.Na III roku bankowości złożonym z 20 studentów i 10 studentek przeprowadzono test pisemny ze statystyki. Oto wyniki w obu podgrupach.

Zadanie 2.Na III roku bankowości złożonym z 20 studentów i 10 studentek przeprowadzono test pisemny ze statystyki. Oto wyniki w obu podgrupach. Zadanie 1.Wiadomo, że dominanta wagi tuczników jest umiejscowiona w przedziale [120 kg, 130 kg] i wynosi 122,5 kg. Znane są również liczebności przedziałów poprzedzającego i następnego po przedziale dominującym:

Bardziej szczegółowo

Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x 1, x 2,...}, to mówimy, że jest to zmienna dyskretna.

Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x 1, x 2,...}, to mówimy, że jest to zmienna dyskretna. Wykład 4 Rozkłady i ich dystrybuanty Dwa typy zmiennych losowych Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x, x 2,...}, to mówimy, że jest to zmienna dyskretna.

Bardziej szczegółowo

2.Wstępna analiza danych c.d.- wykład z 5.03.2006 Populacja i próba

2.Wstępna analiza danych c.d.- wykład z 5.03.2006 Populacja i próba 2.Wstępna analiza danych c.d.- wykład z 5.03.2006 Populacja i próba Populacja- zbiorowość skończona lub nieskończona, w stosunku do której mają być formułowane wnioski. Próba- skończony podzbiór populacji

Bardziej szczegółowo

KURS PRAWDOPODOBIEŃSTWO

KURS PRAWDOPODOBIEŃSTWO KURS PRAWDOPODOBIEŃSTWO Lekcja 6 Ciągłe zmienne losowe ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 Zmienna losowa ciągła jest

Bardziej szczegółowo

Statystyczne metody analizy danych. Agnieszka Nowak - Brzezińska

Statystyczne metody analizy danych. Agnieszka Nowak - Brzezińska Statystyczne metody analizy danych Agnieszka Nowak - Brzezińska SZEREGI STATYSTYCZNE SZEREGI STATYSTYCZNE odpowiednio usystematyzowany i uporządkowany surowy materiał statystyczny. Szeregi statystyczne

Bardziej szczegółowo

KURS STATYSTYKA. Lekcja 2 Przedziały ufności i estymacja przedziałowa ZADANIE DOMOWE. www.etrapez.pl Strona 1

KURS STATYSTYKA. Lekcja 2 Przedziały ufności i estymacja przedziałowa ZADANIE DOMOWE. www.etrapez.pl Strona 1 KUR TATYTYKA Lekcja Przedziały ufności i estymacja przedziałowa ZADANIE DOMOWE www.etrapez.pl trona 1 Część 1: TET Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 We wnioskowaniu statystycznym

Bardziej szczegółowo

Krakowska Akademia im. Andrzeja Frycza Modrzewskiego. Karta przedmiotu. obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2013/2014

Krakowska Akademia im. Andrzeja Frycza Modrzewskiego. Karta przedmiotu. obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2013/2014 Krakowska Akademia im. Andrzeja Frycza Modrzewskiego Karta przedmiotu obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2013/2014 WydziałPrawa, Administracji i Stosunków Miedzynarodowych

Bardziej szczegółowo

Statystyczna analiza danych

Statystyczna analiza danych Statytyka. v.0.9 egz mgr inf nietacj Statytyczna analiza danych Statytyka opiowa Szereg zczegółowy proty monotoniczny ciąg danych i ) n uzykanych np. w trakcie pomiaru lub za pomocą ankiety. Przykłady

Bardziej szczegółowo

Analiza Danych. Jerzy Stefanowski. Wykład dla kierunku Informatyka (1wsze spotkanie) Poznań, 2006/7

Analiza Danych. Jerzy Stefanowski. Wykład dla kierunku Informatyka (1wsze spotkanie) Poznań, 2006/7 Analiza Danych Jerzy Stefanowski Instytut Informatyki Politechniki Poznańskiej Tel. 6652933 CW - 8 Wykład dla kierunku Informatyka (1wsze spotkanie) Poznań, 2006/7 Wykład nr 1 Wprowadzenie do Analizy Danych

Bardziej szczegółowo

Rozkłady statystyk z próby

Rozkłady statystyk z próby Rozkłady statystyk z próby Rozkłady statystyk z próby Przypuśćmy, że wykonujemy serię doświadczeń polegających na 4 krotnym rzucie symetryczną kostką do gry, obserwując liczbę wyrzuconych oczek Nr kolejny

Bardziej szczegółowo

Rozkład normalny. Marcin Zajenkowski. Marcin Zajenkowski () Rozkład normalny 1 / 26

Rozkład normalny. Marcin Zajenkowski. Marcin Zajenkowski () Rozkład normalny 1 / 26 Rozkład normalny Marcin Zajenkowski Marcin Zajenkowski () Rozkład normalny 1 / 26 Rozkład normalny Krzywa normalna, krzywa Gaussa, rozkład normalny Rozkłady liczebności wielu pomiarów fizycznych, biologicznych

Bardziej szczegółowo

Statystyka matematyczna

Statystyka matematyczna Statystyka matematyczna Aleksandra Ki±lak-Malinowska akis@uwm.edu.pl http://wmii.uwm.edu.pl/ akis/ Czym zajmuje si statystyka? Statystyka zajmuje si opisywaniem i analiz zjawisk masowych otaczaj cej czªowieka

Bardziej szczegółowo

Statystyczna analiza danych

Statystyczna analiza danych Statystyczna analiza danych Marek Ptak 21 października 2013 Marek Ptak Statystyka 21 października 2013 1 / 70 Część I Wstęp Marek Ptak Statystyka 21 października 2013 2 / 70 LITERATURA A. Łomnicki, Wprowadzenie

Bardziej szczegółowo

Wprowadzenie do zagadnień statystycznych

Wprowadzenie do zagadnień statystycznych Wprowadzenie do zagadnień statystycznych Jednym z podstawowych celów nauki jest wyjaśnianie i przewidywanie wyników obserwacji zdarzeń i relacji przyczynowych, jakie między nimi zachodzą. Pomocna w tych

Bardziej szczegółowo

Rozkład normalny Parametry rozkładu zmiennej losowej Zmienne losowe wielowymiarowe

Rozkład normalny Parametry rozkładu zmiennej losowej Zmienne losowe wielowymiarowe Statystyka i opracowanie danych W4 Rozkład normalny Parametry rozkładu zmiennej losowej Zmienne losowe wielowymiarowe Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Rozkład normalny wykres funkcji gęstości

Bardziej szczegółowo

Zakład Ubezpieczeń Społecznych Departament Statystyki i Prognoz Aktuarialnych

Zakład Ubezpieczeń Społecznych Departament Statystyki i Prognoz Aktuarialnych Zakład Ubezpieczeń Społecznych Departament Statystyki i Prognoz Aktuarialnych Struktura wysokości emerytur i rent wypłacanych przez ZUS po waloryzacji w marcu 2016 roku. Warszawa 2016 Opracowała: Ewa Karczewicz

Bardziej szczegółowo

Państwowa Wyższa Szkoła Zawodowa w Suwałkach SYLLABUS na rok akademicki 2014/2015

Państwowa Wyższa Szkoła Zawodowa w Suwałkach SYLLABUS na rok akademicki 2014/2015 Tryb studiów Stacjonarne Nazwa kierunku studiów Finanse i Rachunkowość Poziom studiów Stopień pierwszy Rok studiów/ semestr II/ Specjalność Państwowa Wyższa Szkoła Zawodowa w Suwałkach SYLLABUS na rok

Bardziej szczegółowo

Estymacja przedziałowa - przedziały ufności dla średnich. Wrocław, 5 grudnia 2014

Estymacja przedziałowa - przedziały ufności dla średnich. Wrocław, 5 grudnia 2014 Estymacja przedziałowa - przedziały ufności dla średnich Wrocław, 5 grudnia 2014 Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja Przedziałem ufności dla paramertu

Bardziej szczegółowo

INFORMATYKA W SELEKCJI

INFORMATYKA W SELEKCJI INFORMATYKA W SELEKCJI INFORMATYKA W SELEKCJI - zagadnienia 1. Dane w pracy hodowlanej praca z dużym zbiorem danych (Excel) 2. Podstawy pracy z relacyjną bazą danych w programie MS Access 3. Systemy statystyczne

Bardziej szczegółowo

Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski

Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski Zadanie 1 Eksploracja (EXAMINE) Informacja o analizowanych danych Obserwacje Uwzględnione Wykluczone Ogółem

Bardziej szczegółowo

Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski

Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Książka jest nowoczesnym podręcznikiem przeznaczonym dla studentów uczelni i wydziałów ekonomicznych. Wykład podzielono na cztery części. W pierwszej

Bardziej szczegółowo

Importowanie danych do SPSS Eksportowanie rezultatów do formatu MS Word... 22

Importowanie danych do SPSS Eksportowanie rezultatów do formatu MS Word... 22 Spis treści Przedmowa do wydania pierwszego.... 11 Przedmowa do wydania drugiego.... 15 Wykaz symboli.... 17 Litery alfabetu greckiego wykorzystywane w podręczniku.... 17 Symbole wykorzystywane w zagadnieniach

Bardziej szczegółowo

Matematyka 2. dr inż. Rajmund Stasiewicz

Matematyka 2. dr inż. Rajmund Stasiewicz Matematyka 2 dr inż. Rajmund Stasiewicz Skala ocen Punkty Ocena 0 50 2,0 51 60 3,0 61 70 3,5 71 80 4,0 81 90 4,5 91-5,0 Zwolnienie z egzaminu Ocena z egzaminu liczba punktów z ćwiczeń - 5 Warunki zaliczenia

Bardziej szczegółowo

SPIS TEŚCI CZĘŚĆ I RACHUNEK PRAWDOPODOBIEŃSTWA

SPIS TEŚCI CZĘŚĆ I RACHUNEK PRAWDOPODOBIEŃSTWA SPIS TEŚCI PRZEDMOWA...13 CZĘŚĆ I RACHUNEK PRAWDOPODOBIEŃSTWA 1. ZDARZENIA LOSOWE I PRAWDOPODOBIEŃSTWO...17 1.1. UWAGI WSTĘPNE... 17 1.2. ZDARZENIA LOSOWE... 17 1.3. RELACJE MIĘDZY ZDARZENIAMI... 18 1.4.

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela

Statystyka w pracy badawczej nauczyciela Statystyka w pracy badawczej nauczyciela Wykład 1: Terminologia badań statystycznych dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka (1) Statystyka to nauka zajmująca się zbieraniem, badaniem

Bardziej szczegółowo

laboratoria 24 zaliczenie z oceną

laboratoria 24 zaliczenie z oceną Wydział: Psychologia Nazwa kierunku kształcenia: Psychologia Rodzaj przedmiotu: podstawowy Opiekun: dr Andrzej Tarłowski Poziom studiów (I lub II stopnia): Jednolite magisterskie Tryb studiów: Niestacjonarne

Bardziej szczegółowo

Podstawowe pojęcia statystyczne

Podstawowe pojęcia statystyczne Podstawowe pojęcia statystyczne Istnieją trzy rodzaje kłamstwa: przepowiadanie pogody, statystyka i komunikat dyplomatyczny Jean Rigaux Co to jest statystyka? Nauka o metodach ilościowych badania zjawisk

Bardziej szczegółowo

Statystyczne metody analizy danych

Statystyczne metody analizy danych Statystyczne metody analizy danych Statystyka opisowa Wykład I-III Agnieszka Nowak - Brzezioska Podstawowe pojęcia STATYSTYKA - nauka traktująca o metodach ilościowych badania prawidłowości zjawisk (procesów)

Bardziej szczegółowo

Badania marketingowe 2016_12. Krzysztof Cybulski Katedra Marketingu Wydział Zarządzania Uniwersytet Warszawski

Badania marketingowe 2016_12. Krzysztof Cybulski Katedra Marketingu Wydział Zarządzania Uniwersytet Warszawski Badania marketingowe 2016_12 Krzysztof Cybulski Katedra Marketingu Wydział Zarządzania Uniwersytet Warszawski Ramowy program konwersatorium 1. Formułowanie oraz wyjaśnianie tematyki badań 2. Identyfikacja

Bardziej szczegółowo

SCENARIUSZ LEKCJI. TEMAT LEKCJI: Zastosowanie średnich w statystyce i matematyce. Podstawowe pojęcia statystyczne. Streszczenie.

SCENARIUSZ LEKCJI. TEMAT LEKCJI: Zastosowanie średnich w statystyce i matematyce. Podstawowe pojęcia statystyczne. Streszczenie. SCENARIUSZ LEKCJI OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH Autorzy scenariusza:

Bardziej szczegółowo

x x 0.5. x Przykłady do zadania 4.1 :

x x 0.5. x Przykłady do zadania 4.1 : Rachunek prawdopodobieństwa MAP5 Wydział Elektroniki, rok akad. /, sem. letni Wykładowca: dr hab. A. Jurlewicz Przykłady do listy 4: Wartość oczekiwana, wariancja, mediana, kwartyle rozkładu prawdopodobieństwa.

Bardziej szczegółowo

Statystyka opisowa SYLABUS A. Informacje ogólne

Statystyka opisowa SYLABUS A. Informacje ogólne Statystyka opisowa SYLABUS A. Informacje ogólne Elementy składowe sylabusu Nazwa jednostki prowadzącej kierunek Nazwa kierunku studiów Poziom kształcenia Profil studiów Forma studiów Kod Język Rodzaj Rok

Bardziej szczegółowo

Spis treści 3 SPIS TREŚCI

Spis treści 3 SPIS TREŚCI Spis treści 3 SPIS TREŚCI PRZEDMOWA... 1. WNIOSKOWANIE STATYSTYCZNE JAKO DYSCYPLINA MATEMATYCZNA... Metody statystyczne w analizie i prognozowaniu zjawisk ekonomicznych... Badania statystyczne podstawowe

Bardziej szczegółowo

Lean Six Sigma Black Belt

Lean Six Sigma Black Belt 14.X.2011 Porządek wykładu Grupowanie i prezentacja danych Analiza struktury Analiza współzależności Rozkłady prawdopodobieństwa Literatura - Kot, S. (2007), Statystyka podręcznik dla studiów ekonomicznych,

Bardziej szczegółowo

Krakowska Akademia im. Andrzeja Frycza Modrzewskiego. Karta przedmiotu. obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2012/2013

Krakowska Akademia im. Andrzeja Frycza Modrzewskiego. Karta przedmiotu. obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2012/2013 Krakowska Akademia im. Andrzeja Frycza Modrzewskiego Karta przedmiotu obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 01/01 Wydział Prawa, Administracji i Stosunków Miedzynarodowych Kierunek

Bardziej szczegółowo

WYŻSZA SZKOŁA MENEDŻERSKA W WARSZAWIE WYDZIAŁ ZARZĄDZANIA W CIECHANOWIE KARTA PRZEDMIOTU - SYLABUS

WYŻSZA SZKOŁA MENEDŻERSKA W WARSZAWIE WYDZIAŁ ZARZĄDZANIA W CIECHANOWIE KARTA PRZEDMIOTU - SYLABUS WYŻSZA SZKOŁA MENEDŻERSKA W WARSZAWIE WYDZIAŁ ZARZĄDZANIA W CIECHANOWIE KARTA PRZEDMIOTU - SYLABUS Nazwa przedmiotu: Statystyka opisowa Profil 1 : ogólnoakademicki Cel przedmiotu: Zapoznanie studentów

Bardziej szczegółowo

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

zbieranie porządkowanie i prezentacja (tabele, wykresy) analiza interpretacja (wnioskowanie statystyczne)

zbieranie porządkowanie i prezentacja (tabele, wykresy) analiza interpretacja (wnioskowanie statystyczne) STATYSTYKA zbieranie porządkowanie i prezentacja (tabele, wykresy) analiza interpretacja (wnioskowanie statystyczne) DANYCH STATYSTYKA MATEMATYCZNA analiza i interpretacja danych przy wykorzystaniu metod

Bardziej szczegółowo

Często spotykany jest również asymetryczny rozkład gamma (Г), opisany za pomocą parametru skali θ i parametru kształtu k:

Często spotykany jest również asymetryczny rozkład gamma (Г), opisany za pomocą parametru skali θ i parametru kształtu k: Statystyczne opracowanie danych pomiarowych W praktyce pomiarowej często spotykamy się z pomiarami wielokrotnymi, gdy podczas pomiaru błędy pomiarowe (szumy miernika, czynniki zewnętrzne) są na tyle duże,

Bardziej szczegółowo

metoda momentów, Wartość oczekiwana (pierwszy moment) dla zmiennej o rozkładzie γ(α, λ) to E(X) = αλ, drugi moment (wariancja) to

metoda momentów, Wartość oczekiwana (pierwszy moment) dla zmiennej o rozkładzie γ(α, λ) to E(X) = αλ, drugi moment (wariancja) to 3.1 Wprowadzenie do estymacji Ile mamy czerwonych krwinek w krwi? Ile karpi żyje w odrze? Ile ton trzody chlewnej będzie wyprodukowane w przyszłym roku? Ile białych samochodów jeździ ulicami Warszawy?

Bardziej szczegółowo

Zajęcia 1. Statystyki opisowe

Zajęcia 1. Statystyki opisowe Zajęcia 1. Statystyki opisowe 1. Znajdź dane dotyczące liczby mieszkańców w polskich województwach. Dla tych danych oblicz: a) Średnią, b) Medianę, c) Dominantę, d) Wariancję, e) Odchylenie standardowe,

Bardziej szczegółowo

Satysfakcja z życia rodziców dzieci niepełnosprawnych intelektualnie

Satysfakcja z życia rodziców dzieci niepełnosprawnych intelektualnie Satysfakcja z życia rodziców dzieci niepełnosprawnych intelektualnie Zadanie Zbadano satysfakcję z życia w skali 1 do 10 w dwóch grupach rodziców: a) Rodzice dzieci zdrowych oraz b) Rodzice dzieci z niepełnosprawnością

Bardziej szczegółowo

Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r

Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r Statystyka matematyczna Testowanie hipotez i estymacja parametrów Wrocław, 18.03.2016r Plan wykładu: 1. Testowanie hipotez 2. Etapy testowania hipotez 3. Błędy 4. Testowanie wielokrotne 5. Estymacja parametrów

Bardziej szczegółowo

Podstawy statystyki dla psychologów. Podręcznik akademicki. Wydanie drugie poprawione. Wiesław Szymczak

Podstawy statystyki dla psychologów. Podręcznik akademicki. Wydanie drugie poprawione. Wiesław Szymczak Podstawy statystyki dla psychologów. Podręcznik akademicki. Wydanie drugie poprawione. Wiesław Szymczak Autor prezentuje spójny obraz najczęściej stosowanych metod statystycznych, dodatkowo omawiając takie

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO. Wykład 2

STATYSTYKA I DOŚWIADCZALNICTWO. Wykład 2 STATYSTYKA I DOŚWIADCZALNICTWO Wykład Parametry przedziałowe rozkładów ciągłych określane na podstawie próby (przedziały ufności) Przedział ufności dla średniej s X t( α;n 1),X + t( α;n 1) n s n t (α;

Bardziej szczegółowo