CZY WSZYSTKO MOŻNA POLICZYĆNA KOMPUTERZE

Wielkość: px
Rozpocząć pokaz od strony:

Download "CZY WSZYSTKO MOŻNA POLICZYĆNA KOMPUTERZE"

Transkrypt

1

2 CZY WSZYSTKO MOŻNA POLICZYĆNA KOMPUTERZE WSTĘP DO ZŁOŻONOŚCI OBLICZENIOWEJ Maciej M. Sysło Uniwersytet Wrocławski Uniwersytet UMK w Toruniu informatyka + 2

3 Algorytm, algorytmika Algorytm opis rozwiązania krok po kroku postawionego problemu lub sposobu osiągnięcia jakiegoś celu Pierwszy algorytm algorytm Euklidesa 300 p.n.e algorytm od Muhammad ibn Musa al-chorezmi IX w. Algorytmika dziedzina zajmująca się algorytmami i ich własnościami informatyka + 3

4 Algorytmy a informatyka Informatyka jedna z definicji: dziedzina wiedzy i działalności zajmująca się algorytmami Donald E. Knuth: Ralf Gomory (IBM): Mówi się często, że człowiek dotąd nie zrozumie czegoś, zanim nie nauczy tego kogoś innego. W rzeczywistości, człowiek nie zrozumie czegoś (algorytmu) naprawdę, zanim nie zdoła nauczyć tego komputera. Najlepszym sposobem przyspieszania komputerów jest obarczanie ich mniejszą liczbą działań (szybszymi algorytmami) informatyka + 4

5 Czy wszystko można policzyć na komputerze Plan: Superkomputery, superkomputery a algorytmy Przykłady trudnych problemów szukanie trasy objazdu podnoszenie do potęgi badanie złożoności liczb porządkowanie (?) Problemy, które mają efektywne algorytmy problemy przeszukiwania zbioru problemy wyszukiwania w zbiorach nieuporządkowanych i uporządkowanych schemat Hornera porządkowanie Znaczenie zasady dziel i zwyciężaj Problemy trudne, ponownie informatyka + 5

6 IBM początki dużych komputerów informatyka + 6

7 IBM początki dużych komputerów Nie będą potrzebne duże komputery, najwyżej 5, Thomas J. Watson, IBM, 1948 informatyka + 7

8 Rozwój elektroniki informatyka + 8

9 Rozwój elektroniki informatyka + 9

10 Jednostki szybkości komputerów FLOPS (FLoting point Operations Per Second) liczba operacji zmiennopozycyjnych (+/, *, / na liczbach rzeczywistych) na sekundę KFlops (kilo flops) 10 3 MFlops (mega flops) 10 6 GFlops (giga flops) 10 9 TFlops (tera flops) PFlops (peta flops) EFlops (exa flops) ZFlops (zetta flops) YFlops (yotta flops) Zakładamy, że dysponujemy komputerem o mocy 1 PFlops, op/sek informatyka + 10

11 Superkomputery, 1 początki Superkomputer najszybszy komputer w danej chwili Colossus, kops Z3, OPS (oper/sek.) informatyka + 11

12 Superkomputery, 2 ostatnie lata Seymour Cray ( ) Cray-1 (1976) 250 MFlops Earth Simulator (2002) 35 TFlops IBM Blue Gine/L; TFlops TFlops informatyka + 12

13 Superkomputery, 3 stan z st. Jaguar Cray XT PFlops procesory Opteron AMD macierz procesorów 2 nd. Roadrunner IBM PFlops 136 th. Galera, TASK, Gdańsk 50 TFlops Byłby 1 st. w 2003 roku informatyka + 13

14 Superkomputery, 4 stan z 2010 Najszybszy procesor PC Rozproszone komputery Intel Core i7 980XE GFlops GIMPS (najw. l. pierwsze) 44 TFlops Google 300 TFlops (proteiny) 3.8 PFlops Przyszłość (przewidywania): 2010: 1 EFlops (10 18 ) Cray (?) 2019: 1 EFlops (10 18 ) 2030: 1 ZFlops (10 21 ) przewidywanie pogody na 2 tygodnie informatyka + 14

15 Superkomputery i algorytmy Algorytmy o różnej złożoności, dla danych o różnych rozmiarach wykonywane na superkomputerze o mocy 1 PFlops (10 15 ). Algorytmy w dwóch ostatnich wierszach: odpowiadają rzeczywistym problemom zwiększenie mocy komputerów niewiele pomoże cała nadzieja w szybkich algorytmach Algorytmy wielomianowe (5 pierwszych wierszy) i niewielomianowe. informatyka + 15

16 Superkomputery i algorytmy Algorytmy o różnej złożoności, dla danych o różnych rozmiarach wykonywane na superkomputerze o mocy 1 PFlops (10 15 ). Algorytmy w dwóch ostatnich wierszach: odpowiadają rzeczywistym problemom zwiększenie mocy komputerów niewiele pomoże cała nadzieja w szybkich algorytmach Algorytmy wielomianowe (5 pierwszych wierszy) i niewielomianowe. informatyka + 16

17 Problemy trudne, 1 najkrótsza trasa premiera Problem: Znajdź najkrótszą trasę dla Premiera przez wszystkie miasta wojewódzkie. Rozwiązanie: Premier zaczyna w Stolicy a inne miasta może odwiedzać w dowolnej kolejności. Tych możliwości jest: 15*14*13*12*11* *2*1 = 15! (15 silnia) W 1990 roku było: 48*47*46* *2*1 = 48! (48 silnia) informatyka + 17

18 Problemy trudne, 1 najkrótsza trasa premiera Wartości funkcji n! Rosną BARDZO SZYBKO Prezydent Stanów Zjednoczonych ma problem ze znalezieniem najkrótszej trasy objazdu Stanów. Na superkomputerze o mocy 1 PFlops ile trwa obliczanie n! 15! = /10 15 sek. = ok sek. 48! = 1, *10 61 /10 15 = 3*10 38 lat 25! = /10 15 sek. = sek. = = dni = 491 lat informatyka + 18

19 Problemy trudne, 1 najkrótsza trasa premiera Trudno sprawdzić, jak dobre jest to rozwiązanie w stosunku do najlepszego, bo go nie znamy. Zły wybór Algorytmy przybliżone szukania rozwiązań: 1.Metoda zachłanna najbliższy sąsiad mogą być bardzo złe 2.Meta-heurystyki: algorytmy genetyczne krzyżowanie i mutowanie rozwiązań algorytmy mrówkowe modelowanie feromonów informatyka + 19

20 Problemy trudne, 2 liczby pierwsze Problemy dotyczące liczb pierwszych: 1.Dana jest liczba n czy n jest liczbą pierwszą (złożoną)? Istnieją teoretycznie efektywne algorytmy, ale gdy n złożona, to nie dają rozkładu na czynniki Istnieją szybkie algorytmy probabilistyczne odpowiedź jest poprawna z prawdopodobieństwem np. 1 1/ Dana jest liczba n rozłóż n na czynniki Nie jest znana szybka metoda dobrze dla kryptografii: Klucze RSA: (n, e) publiczny, (n, d) prywatny. n jest znane, i wiadomo, że n = p*q, p, q pierwsze informatyka + 20

21 Szyfr RSA Nadawca Alicja Klucz publiczny: n, e Ciekawa Ewa Odbiorca Bogdan Klucz prywatny: n, d Tekst jawny M Algorytm szyfrujący P=M e mod n Tekst zaszyfrowany P Liczby: n = p*q, p, q duże liczby pierwsze e względnie pierwsza z (p 1)(q 1) d. spełnia e*d = 1 mod (p 1)(q 1) Algorytm deszyfrujący M=P d mod n Tekst jawny M Bezpieczeństwo szyfru RSA nawet najmocniejszy komputer nie jest w stanie znaleźć d, znając n i e, gdy nie zna rozkładu n = p*q Działania (przy szyfrowaniu): Podnoszenie dużych liczb do dużych potęg i branie reszty z dzielenia (mod) informatyka + 21

22 Problemy trudne, 2 liczby pierwsze Problemy dotyczące liczb pierwszych: 3.Dana jest liczba n znajdź wszystkie liczby pierwsze mniejsze od n sito Eratosthenesa raczej ciekawostka, mało praktyczna 4.Poszukiwanie największych liczb pierwszych Największa znana liczba pierwsza (liczba Mersenne a): Zawiera: cyfr. Zajmuje 3461 stron. Serwis internetowy: Great Internet Mersenne Prime Search (GIMPS) moc 44 TFlops informatyka + 22

23 Problemy trudne, 3 podnoszenie do potęgi Kryptografia: Szyfr RSA bazuje na podnoszeniu do dużej potęgi dużych liczb, np Jak można szybko obliczać takie potęgi? Algorytm szkolny: x n = x*x*x* * x n 1 mnożeń Obliczenie małej potęgi: x trwałoby: 3*10 8 lat informatyka + 23

24 Problemy trudne, 4 porządkowanie Problem porządkowania (sortowania) Dane: Liczba naturalna n i ciąg n liczb x 1, x 2,..., x n Wynik: Uporządkowanie tego ciągu liczb od najmniejszej do największej Przestrzeń możliwych rozwiązań: n! możliwych permutacji Ale znamy algorytmy wykonujące: n 2 lub n log n porównań informatyka + 24

25 Proste problemy i ich efektywne algorytmy Problemy, które są bardzo często rozwiązywane przez komputery, więc potrzebne są szybkie algorytmy: 1.Poszukiwanie elementów w zbiorze uporządkowanym 2.Znajdowanie najmniejszego/największego elementu 3.Znajdowanie drugiego największego elementu w zbiorze 4.Jednoczesne znajdowanie minimum i maksimum 5.Porządkowanie elementów 6.Obliczanie wartości wielomianu Schemat Hornera informatyka + 25

26 Poszukiwanie elementu w zbiorze Problem poszukiwania elementu w zbiorze specyfikacja Dane: Zbiór elementów w postaci ciągu n liczb x 1, x 2,..., x n. Wyróżniony element y Wynik: Jeśli y należy do tego zbioru, to podaj jego miejsce (indeks) w ciągu, a w przeciwnym razie sygnalizuj brak takiego elementu w zbiorze wstaw y do ciągu Dwa przypadki: Nieuporządkowany ciąg liczb x 1, x 2,..., x n Uporządkowany ciąg liczb x 1, x 2,..., x n Nasz cel: Jakie są korzyści z uporządkowania? Jak utrzymywać porządek wśród informacji? informatyka + 26

27 Poszukiwanie elementu w zbiorze przykład Przeszukiwanie książki telefonicznej Poszukiwanie numeru telefonu danej osoby Dane: Nazwiska, adresy, numery telefonów książka telefoniczna. Ciąg danych x 1, x 2,..., x n kartki książki z danymi o numerach Wyróżniony element y nazwisko osoby, której numeru szukamy Wynik: Jeśli osoba y ma numer telefony w książce, to podaj na której stronie, a w przeciwnym razie sygnalizuj brak danych o y Poszukiwanie osoby o danym numerze telefonu Dane: Książka telefoniczna. Ciąg danych x 1, x 2,..., x n kartki książki z danymi o numerach Wyróżniony element y numer telefonu osoby, której szukamy Wynik: Jeśli istnieje osoba z numerem telefonu y, to podaj jej nazwisko, a w przeciwnym razie sygnalizuj brak takiej osoby informatyka + 27

28 Poszukiwanie elementu w zbiorze przykład Przeszukiwanie książki telefonicznej Poszukiwanie numeru telefonu danej osoby Dane: Nazwiska, adresy, numery telefonów książka telefoniczna. Ciąg danych x 1, x 2,..., x n kartki książki z danymi o numerach Wyróżniony element y nazwisko osoby, której numeru szukamy Wynik: Jeśli osoba y ma numer telefony w książce, to podaj na której stronie, a w przeciwnym razie sygnalizuj brak danych o y Poszukiwanie osoby o danym numerze telefonu Książka telefoniczna uporządkowana alfabetycznie nazwiskami Dane: Książka telefoniczna. Ciąg danych x 1, x 2,..., x n kartki książki z danymi o numerach Wyróżniony element y numer telefonu osoby, której szukamy Wynik: Jeśli istnieje osoba z numerem telefonu y, to podaj jej nazwisko, a w przeciwnym razie sygnalizuj brak takiej osoby Książka telefoniczna nieuporządkowana alfabetycznie numerami informatyka + 28

29 Poszukiwania w zbiorze nieuporządkowanym Algorytm Poszukiwanie liniowe Krok 1. Dla i = 1, 2,..., n, jeśli x i = y, to przejdź do kroku 3. Krok 2. Komunikat: W ciągu danych nie ma elementu równego y. Zakończ algorytm: wynik: 1 Krok 3. Element równy y znajduje się na miejscu i w ciągu danych. Zakończ algorytm: wynik: i begin i:=1; while (x[i]<>y) and (i<n) do i:=i+1; if x[i]=y then PrzeszukiwanieLiniowe:=i else PrzeszukiwanieLiniowe:=-1 end Przykład: Dane: ciąg: 2, 5, 1, 4, 10, 7. y = 1 Wynik: i = 3 Pewna niedogodność sprawdzanie, czy koniec ciągu. informatyka + 29

30 Poszukiwania w zbiorze nieuporządkowanym z wartownikiem Algorytm Poszukiwanie liniowe z wartownikiem Takie same kroki algorytmu inna implementacja, czyli komputerowa realizacja: na końcu ciągu: begin i:=1; x[n+1]:=y; x 1 x 2 x 3 x 4 x n while x[i]<>y do i:=i+1; if i<=n then PrzeszukiwanieLinioweWartownik:=i else PrzeszukiwanieLinioweWartownik:=-1 end x n+1 wstawiamy wartownika pilnuje końca ciągu Nie ma sprawdzania, czy koniec ciągu informatyka + 30

31 Poszukiwanie w zbiorze uporządkowanym Zabawa w zgadywanie liczby Zgadywana liczba: 17 w przedziale [1 : 20] Metoda: połowienia przedziału Kolejne kroki: strzałka wskazuje wybór; kolor czerwony ciąg do przeszukania: informatyka + 31

32 Poszukiwanie w zbiorze uporządkowanym Zabawa w zgadywanie liczby Zgadywana liczba: 17 w przedziale [1 : 20] Metoda: połowienia przedziału Kolejne kroki: strzałka wskazuje wybór; kolor czerwony ciąg do przeszukania: 5 porównań zamiast 20!!! informatyka + 32

33 Poszukiwanie przez połowienie Złożoność (1) Liczba kroków w algorytmie połowienia: Ile razy należy przepołowić ciąg o danej długości, aby znaleźć element lub miejsce dla niego? Przykład dla n = 1200 Kolejne długości ciągu: 1200, 600, 300, 150, 75, 38, 19, 10, 5, 3, 2, 1 11 razy dzielono ciąg o długości 1200, by pozostał 1 element Liczba porównań w algorytmach poszukiwania dla n = 1200: przez połowienie 11 liniowy 1200 Porównaj, jaka jest potęga uporządkowania!!! informatyka + 33

34 Dla n = 1200 liczba porównań w algorytmie połowienia wyniosła 11 Pytania: Poszukiwanie przez połowienie złożoność (2) Jak liczba porównań zależy od n? Jak dobry jest to algorytm? Liczba porównań dla różnych n: n liczba porównań ok.log 2 n Algorytm poszukiwania przez połowienie jest optymalny, czyli najszybciej przeszukuje zbiory uporządkowane. Funkcja logarytm, bardzo ważna w algorytmice logarytm to anagram od algorytm informatyka + 34

35 Poszukiwanie interpolacyjne function PrzeszukiwanieBinarne(x:tablicax; k,l:integer; y:integer):integer; {Przeszukiwanie binarne ciagu x[k..l] w poszukiwaniu elementu y.} var Lewy,Prawy,Srodek:integer; begin Lewy:=k; Prawy:=l; while Lewy<=Prawy do begin Srodek:=(Lewy+Prawy) div 2; if x[srodek]=y then begin PrzeszukiwanieBinarne:=Srodek; exit end; {element y nalezy do przeszukiwanego ciagu} if x[srodek]<y then Lewy:=Srodek+1 else Prawy:=Srodek-1 end; PrzeszukiwanieBinarne:=-1 end Srodek = lewy + (prawy lewy)/2 Srodek = lewy + (y x[lewy])(prawy lewy)/(x[prawy] x[lewy]) Przeciętny czas interpolacyjnego umieszczania wynosi ok. log log n informatyka + 35

36 Suwaki logarytmiczne Na wyposażeniu każdego inżyniera do 1972 roku Skala 30 cm Skala 150 cm Skala 12 m informatyka + 36

37 Znajdowanie elementu w zbiorze Znajdź w zbiorze element o pewnych własnościach: najwyższego ucznia w swojej klasie metoda spaghetti jak zmieni się Twój algorytm, jeśli chciałbyś znaleźć w klasie najniższego ucznia znajdź w swojej klasie ucznia, któremu droga do szkoły zabiera najwięcej czasu znajdź najstarszego (lub najmłodszego) ucznia w swojej szkole znajdź największą kartę w potasowanej talii kart znajdź najlepszego tenisistę w swojej klasie nie ma remisów znajdź najlepszego gracza w warcaby w swojej klasie możliwe są remisy Podstawowa operacja porównanie: dwóch liczb lub kombinacji liczb (data, karty): czy x < y? dwóch zawodników: rozegranie meczu informatyka + 37

38 Znajdowanie elementu w zbiorze Różnica między dwoma problemami: Czy zbiór zawiera y? Dane: Ciąg n liczb x 1, x 2,..., x n Wyróżniony element y Wynik: Czy w ciągu jest element y? Przeszukujemy ciąg aż znajdziemy y, Przeglądamy cały ciąg, by stwierdzić, że nie zawiera y. Znajdź w zbiorze element o pewnych własnościach Dane: Ciąg n liczb x 1, x 2,..., x n Wynik: Najmniejsza wśród liczb x 1, x 2,..., x n Trzeba przejrzeć cały ciąg. Zakładamy, że ciąg nie jest uporządkowany. Uporządkowanie ciągu ułatwia. informatyka + 38

39 Specyfikacja problemu Specyfikacja problemu dokładne opisanie problemu Problem Min Znajdowanie najmniejszego elementu w zbiorze Dane: Liczba naturalna n i zbiór n liczb dany w ciągu x 1, x 2,..., x n Wynik: Najmniejsza wśród liczb x 1, x 2,..., x n oznaczmy ją min Metoda rozwiązania: przeszukiwanie liniowe od lewej do prawej Algorytm Min Znajdowanie najmniejszego elementu w zbiorze Krok 1. Przyjmij za min pierwszy element w zbiorze (w ciągu), czyli przypisz min := x 1. imin := 1 Krok 2. Dla kolejnych elementów x i, gdzie i = 2, 3,..., n, jeśli min > x i, to przypisz min := x i. imin := i Algorytm Max prosta modyfikacja: zamiana > na < Wyznaczanie imin indeksu elementu o wartości min informatyka + 39

40 Pracochłonność algorytmu Min Porównanie podstawowa operacja w algorytmie Min. Pracochłonność (złożoność obliczeniowa) algorytmu liczba podstawowych operacji wykonywanych przez algorytm. Pytanie: Ile porównań wykonuje algorytm Min? Odpowiedź: o jedno mniej niż jest elementów, czyli n 1 Pytania: Czy można szybciej? Czy istnieje szybszy algorytm znajdowania min? A może metoda pucharowa wyłaniania zwycięzcy w turnieju jest szybsza? informatyka + 40

41 Wyłanianie najlepszego zawodnika w turnieju czyli inny sposób znajdowania max (lub min) Porównania mecze Tome k Ośmiu zawodników: 7 meczy n zawodników: n 1 meczy a więc nie jest szybsza Bartek Tomek Jednak jest szybciej. Gdy liczmy równolegle Bartek Witek Tomek Tolek Bartek Romek Bolek Witek Tomek Zenek Tolek Felek informatyka + 41

42 A może mamy algorytm najlepszy? Podsumowanie: Mamy dwa algorytmy znajdowania min lub max: przeszukiwanie liniowe rozegranie turnieju które na zbiorze n elementów wykonują n 1 porównań Może nie ma szybszego algorytmu? TAK! Hugo Steinhaus tak to uzasadnił: Jeśli Tomek jest zwycięzcą turnieju, w którym startuje n zawodników, to każdy inny spośród n 1 zawodników musiał przegrać przynajmniej raz, a zatem rozegrano przynajmniej n 1 meczy. Zatem każdy algorytm musi wykonać przynajmniej n 1 porównań, czyli nasze algorytmy są najszybsze są optymalne. informatyka + 42

43 A jak znaleźć drugiego najlepszego zawodnika w turnieju? Czy jest nim Bartek? Bo przegrał z Tomkiem? Tomek Ale Bartek nie grał z drugą połową! Bartek Tomek Tylko dwa dodatkowe mecze! Bartek Witek Tomek Tolek Bartek Romek Bolek Witek Tomek Zenek Tolek Felek informatyka + 43

44 Jednoczesne znajdowanie min i max Obserwacja: jeśli x y, to x kandydatem na min, a y kandydatem na max Algorytm dziel i zwyciężaj : Krok 1. Podział na kandydatów na min i kandydatów na max Kandydaci na max Porównania parami Kandydaci na min 3 3? ? ? ? ? 5 2 max = 8 min = 1 Krok 2. Znajdź min i max Liczba porównań: algorytm naiwny: n 1 (min) + n 2 (max) = 2n 3 algorytm dziel i zwyciężaj: n/2(podział)+ (n/2 1)(min) + (n/2 1)(max) ok. 3n/2 2 jest to algorytm optymalny informatyka + 44

45 Problem porządkowania (sortowania) Problem porządkowania (sortowania) Dane: Liczba naturalna n i ciąg n liczb x 1, x 2,..., x n Wynik: Uporządkowanie tego ciągu liczb od najmniejszej do największej Algorytm: porządkowanie przez wybór Selection Sort Idea: najmniejszy wśród nieuporządkowanych daj na początek Krok 1. Dla i = 1, 2,..., n 1 wykonaj kroki 2 i 3, a następnie zakończ algorytm Krok 2. Znajdź k takie, że x k jest najmniejszym elementem w ciągu x i,..., x n Krok 3. Zamień miejscami elementy x i oraz x k informatyka + 45

46 Złożoność porządkowania przez wybór Liczba zamian elementów w kolejnych krokach: = n 1 Liczba porównań w kolejnych krokach: Przykład n = 6 (n 1) + (n 2) + (n 3) =? = n 5 = n 1 Pole prostokąta: 5 x 6 Suma = pole czarnych diamentów: 5 x 6 informatyka Ogólnie suma: (n 1) x n 2 Liczby trójkątne

47 Sortowanie przez scalanie scalanie Scalanie z dwóch uporządkowanych ciągów utwórz jeden uporządkowany Algorytm scalania. Scal. Dane: dwa ciągi uporządkowane Wynik: scalony ciąg uporządkowany Krok: do tworzonego ciągu pobieraj najmniejszy element z czoła scalanych ciągów Scalanie Scalane ciągi Scalony ciąg informatyka + 47

48 Sortowanie przez scalanie scalanie Scalane ciągi Scalone ciągi, w innym miejscu informatyka + 48

49 Sortowanie przez scalanie opis Metoda dziel i zwyciężaj Algorytm porządkowania przez scalanie MergeSort(l,p,x) Dane: Ciąg liczb x l, x l+1,, x p Wynik: Uporządkowanie tego ciągu liczb od najmniejszej do największej. Krok 1. Jeśli l < p, to przyjmij s:=(l+p) div 2 i wykonaj trzy następne kroki. { s w połowie ciągu} Krok 2. MergeSort(l,s,x) sortowanie pierwszej połowy ciągu Krok 3. MergeSort(s+1,p,x) sortowanie drugiej połowy ciągu Krok 4. Zastosuj algorytm Scal do ciągów (x l,, x s ) i (x s+1,, x p ) i wynik umieść w ciągu (x l,, x p ). informatyka + 49

50 Sortowanie przez scalanie opis Metoda dziel i zwyciężaj Rekurencyjne wywołania na podciągach Algorytm porządkowania przez scalanie MergeSort(l,p,x) Dane: Ciąg liczb x l, x l+1,, x p Wynik: Uporządkowanie tego ciągu liczb od najmniejszej do największej. Krok 1. Jeśli l < p, to przyjmij s:=(l+p) div 2 i wykonaj trzy następne kroki. { s w połowie ciągu} Krok 2. MergeSort(l,s,x) sortowanie pierwszej połowy ciągu Krok 3. MergeSort(s+1,p,x) sortowanie drugiej połowy ciągu Krok 4. Zastosuj algorytm Scal do ciągów (x l,, x s ) i (x s+1,, x p ) i wynik umieść w ciągu (x l,, x p ). informatyka + 50

51 Sortowanie przez scalanie DEMO dziel 2 dziel dziel 0 dziel 2 1 scal 9 dziel scal scal 5 9 scal scal informatyka + 51

52 Sortowanie przez scalanie DEMO Posortowana jest już pierwsza połowa ciągu i w trakcie sortowania drugiej połowy, scalane są dwa podciągi z pierwszej części drugiej połowy, uporządkowane wcześniej rekurencyjnie tą samą metodą Posortowana pierwsza połowa ciągu Scalane ciągi Wynik scalania dodatkowym miejscu informatyka + 52

53 Proste problemy i ich efektywne algorytmy 1. Poszukiwanie elementów w zbiorze: nieuporządkowanym n porównań optymalny uporządkowanym n log n optymalny 2. Znajdowanie najmniejszego/największego elementu n 1 porównań optymalny 3. Znajdowanie pierwszego i drugiego największego elementu w zbiorze n + log 2 n 2 optymalny 4. Jednoczesne znajdowanie minimum i maksimum 3n/2 2 optymalny 5. Porządkowanie elementów n 2 przez wybór; n log n przez scalanie optymalny 6. Schemat Hornera n mnożeń i n dodawań optymalny informatyka + 53

54 Problemy trudne, 2 liczby pierwsze, ponownie Problemy dotyczące liczb pierwszych: 1.Dana jest liczba n czy n jest liczbą pierwszą (złożoną)? 2.Dana jest liczba n rozłóż n na czynniki Algorytm kolejnego dzielenia: i : = 2; while i*i <= n do begin if n mod i = 0 then return 1 {n dzieli się przez i} i := i + 1 end; return 0 {n jest liczbą pierwszą} Złożoność: n 1/2 mnożeń (*) i dzieleń (mod) Szyfr RSA jest bezpieczny! Wniosek: jeśli liczba jest np , to złożoność to trwałoby lata nawet na Cray informatyka + 54

55 Problemy trudne, 3 podnoszenie do potęgi, again Kryptografia: Chcemy obliczać: Algorytm szkolny: x n = x*x*x* * x n 1 mnożeń Obliczenie małej potęgi: x *10 8 lat Algorytm rekurencyjny, korzysta ze spostrzeżenia: jeśli m jest parzyste, to x m = (x m/2 ) 2 jeśli m jest nieparzyste, to x m = (x m 1 )x (m 1 staje się parzyste). Przykład: m = 22 x 22 = (x 11 ) 2 = ((x 10 ) x) 2 = ((x 5 ) 2 x) 2 = (((x 4 )x) 2 x) 2 = (((x 2 ) 2 x) 2 x) 2 = x 22 Kolejne mnożenia: x 2, x 4 = (x 2 ) 2, x 5 = (x 4 )x, x 10 = (x 5 ) 2, x 10 x = x 11, (x 11 ) 2 = x 22 Liczba mnożeń: 6 zamiast 21 informatyka + 55

56 Podnoszenie do potęgi łatwy problem Potega(x,n) { x n } if n=1 then Potega:=x else if n parzyste then Potega:=Potega (x,n/2)^2 {x n = (x n/2 ) 2 } else Potega:=Potega (x,n 1)*x {x n = (x n 1 )x} Złożoność (liczba mnożeń): liczba bitów w rozwinięciu n podnoszenie do kwadratu ok. log 2 n plus liczba jedynek w rozwinięciu n mnożenie przez x nie więcej niż log 2 n Razem: nie więcej niż 2*log 2 n Długość rozwinięcia binarnego liczb: A zatem, obliczenie x algorytmem rekurencyjnym to ok. 200 mnożeń informatyka + 56

57 Konkluzja Najlepszym sposobem przyspieszania komputerów jest obarczanie ich mniejszą liczbą działań (szybszymi algorytmami) [Ralf Gomory, IBM] 57

58 Pokrewne zajęcia w Projekcie Informatyka + Wykład+Warsztaty (Wszechnica Poranna): Wprowadzenie do algorytmiki i programowania wyszukiwanie i porządkowanie informacji Proste rachunki wykonywane za pomocą komputera. Techniki algorytmiczne przybliżone (heurystyczne) i dokładne. Wykłady (Wszechnica Popołudniowa): Czy wszystko można policzyć na komputerze? Porządek wśród informacji kluczem do szybkiego wyszukiwania. Dlaczego możemy się czuć bezpieczni w sieci, czyli o szyfrowaniu informacji. Znajdowanie najkrótszych dróg, najniższych drzew, najlepszych małżeństw informatyka + 58

59 Pokrewne zajęcia w Projekcie Informatyka + Kursy (24 godz.) Wszechnica na Kołach: Algorytmy poszukiwania i porządkowania. Elementy języka programowania Różnorodne algorytmy obliczeń i ich komputerowe realizacje Grafy, algorytmy grafowe i ich komputerowe realizacje Kursy (24 godz.) Kuźnia Informatycznych Talentów KIT dla Orłów: Przegląd podstawowych algorytmów Struktury danych i ich wykorzystanie Zaawansowane algorytmy Tendencje Wykłady Algorytmy w Internecie, K. Diks Czy P = NP, czyli jak wygrać milion dolarów w Sudoku, J. Grytczuk Między przeszłością a przyszłość informatyki, M.M Sysło informatyka + 59

60

CZY WSZYSTKO MOŻNA POLICZYĆ NA KOMPUTERZE

CZY WSZYSTKO MOŻNA POLICZYĆ NA KOMPUTERZE CZY WSZYSTKO MOŻNA POLICZYĆ NA KOMPUTERZE WSTĘP DO ZŁOŻONOŚCI OBLICZENIOWEJ Maciej M. Sysło Uniwersytet Wrocławski Uniwersytet UMK w Toruniu syslo@ii.uni.wroc.pl informatyka + 2 Algorytm, algorytmika Algorytm

Bardziej szczegółowo

WYSZUKIWANIE I PORZĄDKOWANIE INFORMACJI

WYSZUKIWANIE I PORZĄDKOWANIE INFORMACJI WYSZUKIWANIE I PORZĄDKOWANIE INFORMACJI WPROWADZENIE DO ALGORYTMIKI Maciej M. Sysło Uniwersytet Wrocławski Uniwersytet UMK w Toruniu syslo@ii.uni.wroc.pl informatyka + 2 Algorytm, algorytmika Algorytm

Bardziej szczegółowo

Czy wszystko można policzyć na komputerze

Czy wszystko można policzyć na komputerze Czy wszystko można policzyć na komputerze Maciej M. Sysło Uniwersytet Wrocławski, UMK w Toruniu syslo@ii.uni.wroc.pl, syslo@mat.uni.torun.pl http://mmsyslo.pl/ < 220 > Informatyka + Wszechnica Popołudniowa

Bardziej szczegółowo

Wszechnica Popołudniowa: Algorytmika i programowanie Czy wszystko można policzyć na komputerze. Maciej M Sysło

Wszechnica Popołudniowa: Algorytmika i programowanie Czy wszystko można policzyć na komputerze. Maciej M Sysło Wszechnica Popołudniowa: Algorytmika i programowanie Czy wszystko można policzyć na komputerze Maciej M Sysło Czy wszystko można policzyć na komputerze Rodzaj zajęć: Wszechnica Popołudniowa Tytuł: Czy

Bardziej szczegółowo

Komputery, obliczenia, algorytmy Tianhe-2 (MilkyWay-2), system Kylin Linux, 33862.7 Tflops, 17808.00 kw

Komputery, obliczenia, algorytmy Tianhe-2 (MilkyWay-2), system Kylin Linux, 33862.7 Tflops, 17808.00 kw Komputery, obliczenia, algorytmy Tianhe-2 (MilkyWay-2), system Kylin Linux, 33862.7 Tflops, 17808.00 kw Michał Rad 08.10.2015 Co i po co będziemy robić Cele zajęć informatycznych: Alfabetyzacja komputerowa

Bardziej szczegółowo

Wybrane wymagania dla informatyki w gimnazjum i liceum z podstawy programowej

Wybrane wymagania dla informatyki w gimnazjum i liceum z podstawy programowej Wybrane wymagania dla informatyki w gimnazjum i liceum z podstawy programowej Spis treści Autor: Marcin Orchel Algorytmika...2 Algorytmika w gimnazjum...2 Algorytmika w liceum...2 Język programowania w

Bardziej szczegółowo

Programowanie w VB Proste algorytmy sortowania

Programowanie w VB Proste algorytmy sortowania Programowanie w VB Proste algorytmy sortowania Sortowanie bąbelkowe Algorytm sortowania bąbelkowego polega na porównywaniu par elementów leżących obok siebie i, jeśli jest to potrzebne, zmienianiu ich

Bardziej szczegółowo

Luty 2001 Algorytmy (7) 2000/2001 s-rg@siwy.il.pw.edu.pl

Luty 2001 Algorytmy (7) 2000/2001 s-rg@siwy.il.pw.edu.pl System dziesiętny 7 * 10 4 + 3 * 10 3 + 0 * 10 2 + 5 *10 1 + 1 * 10 0 = 73051 Liczba 10 w tym zapisie nazywa się podstawą systemu liczenia. Jeśli liczba 73051 byłaby zapisana w systemie ósemkowym, co powinniśmy

Bardziej szczegółowo

Znajdowanie największego i najmniejszego elementu w zbiorze n liczb całkowitych

Znajdowanie największego i najmniejszego elementu w zbiorze n liczb całkowitych 1/12 Opracowała Kozłowska Ewa ekozbelferek@poczta.onet.pl nauczyciel przedmiotów informatycznych Zespół Szkół Technicznych Mielec, ul. Jagiellończyka 3 Znajdowanie największego i najmniejszego elementu

Bardziej szczegółowo

PoniŜej znajdują się pytania z egzaminów zawodowych teoretycznych. Jest to materiał poglądowy.

PoniŜej znajdują się pytania z egzaminów zawodowych teoretycznych. Jest to materiał poglądowy. PoniŜej znajdują się pytania z egzaminów zawodowych teoretycznych. Jest to materiał poglądowy. 1. Instrukcję case t of... w przedstawionym fragmencie programu moŝna zastąpić: var t : integer; write( Podaj

Bardziej szczegółowo

RÓŻNORODNE ALGORYTMY OBLICZEŃ I ICH KOMPUTEROWE REALIZACJE

RÓŻNORODNE ALGORYTMY OBLICZEŃ I ICH KOMPUTEROWE REALIZACJE RÓŻNORODNE ALGORYTMY OBLICZEŃ I ICH KOMPUTEROWE REALIZACJE Maciej M. Sysło Uniwersytet Wrocławski Uniwersytet UMK w Toruniu syslo@ii.uni.wroc.pl informatyka + 2 Algorytm, algorytmika Algorytm opis rozwiązania

Bardziej szczegółowo

Dlaczego możemy czuć się bezpieczni w sieci czyli o szyfrowaniu informacji

Dlaczego możemy czuć się bezpieczni w sieci czyli o szyfrowaniu informacji Dlaczego możemy czuć się bezpieczni w sieci czyli o szyfrowaniu informacji Maciej M. Sysło Uniwersytet Wrocławski Uniwersytet UMK w Toruniu syslo@ii.uni.wroc.pl informatyka + 2 Plan Szyfrowanie (kryptologia):

Bardziej szczegółowo

INFORMATYKA KLUCZ DO ZROZUMIENIA KARIERY DOBROBYTU

INFORMATYKA KLUCZ DO ZROZUMIENIA KARIERY DOBROBYTU INFORMATYKA KLUCZ DO ZROZUMIENIA KARIERY DOBROBYTU Maciej M. Sysło Uniwersytet Wrocławski Uniwersytet UMK w Toruniu syslo@ii.uni.wroc.pl http://mmsyslo.pl/ informatyka + 1 Źródło tytułu wykładu W 1971

Bardziej szczegółowo

Rozkład materiału do nauczania informatyki w liceum ogólnokształcącym Wersja I

Rozkład materiału do nauczania informatyki w liceum ogólnokształcącym Wersja I Zespół TI Instytut Informatyki Uniwersytet Wrocławski ti@ii.uni.wroc.pl http://www.wsip.com.pl/serwisy/ti/ Rozkład materiału do nauczania informatyki w liceum ogólnokształcącym Wersja I Rozkład zgodny

Bardziej szczegółowo

Podstawy systemów kryptograficznych z kluczem jawnym RSA

Podstawy systemów kryptograficznych z kluczem jawnym RSA Podstawy systemów kryptograficznych z kluczem jawnym RSA RSA nazwa pochodząca od nazwisk twórców systemu (Rivest, Shamir, Adleman) Systemów z kluczem jawnym można używać do szyfrowania operacji przesyłanych

Bardziej szczegółowo

Wszechnica Informatyczna: Algorytmika i programowanie Algorytmy poszukiwania i porządkowania. Elementy języka programowania.

Wszechnica Informatyczna: Algorytmika i programowanie Algorytmy poszukiwania i porządkowania. Elementy języka programowania. Wszechnica Informatyczna: Algorytmika i programowanie Algorytmy poszukiwania i porządkowania. Elementy języka programowania Maciej M Sysło Algorytmy poszukiwania i porządkowania. Elementy języka programowania

Bardziej szczegółowo

Wymagania edukacyjne i sposoby sprawdzania edukacyjnych osiągnięć uczniów z informatyki - klasy II zakres rozszerzony

Wymagania edukacyjne i sposoby sprawdzania edukacyjnych osiągnięć uczniów z informatyki - klasy II zakres rozszerzony Wymagania edukacyjne i sposoby sprawdzania edukacyjnych osiągnięć uczniów z informatyki - klasy II zakres rozszerzony I. Cele kształcenia wymagania ogólne 1. Bezpieczne posługiwanie się komputerem i jego

Bardziej szczegółowo

Rozkład materiału do nauczania informatyki w liceum ogólnokształcącym Wersja II

Rozkład materiału do nauczania informatyki w liceum ogólnokształcącym Wersja II Zespół TI Instytut Informatyki Uniwersytet Wrocławski ti@ii.uni.wroc.pl http://www.wsip.com.pl/serwisy/ti/ Rozkład materiału do nauczania informatyki w liceum ogólnokształcącym Wersja II Rozkład wymagający

Bardziej szczegółowo

Roman Mocek Zabrze 01.09.2007 Opracowanie zbiorcze ze źródeł Scholaris i CKE

Roman Mocek Zabrze 01.09.2007 Opracowanie zbiorcze ze źródeł Scholaris i CKE Różnice między podstawą programową z przedmiotu Technologia informacyjna", a standardami wymagań będącymi podstawą przeprowadzania egzaminu maturalnego z przedmiotu Informatyka" I.WIADOMOŚCI I ROZUMIENIE

Bardziej szczegółowo

prowadzący dr ADRIAN HORZYK /~horzyk e-mail: horzyk@agh tel.: 012-617 Konsultacje paw. D-13/325

prowadzący dr ADRIAN HORZYK /~horzyk e-mail: horzyk@agh tel.: 012-617 Konsultacje paw. D-13/325 PODSTAWY INFORMATYKI WYKŁAD 8. prowadzący dr ADRIAN HORZYK http://home home.agh.edu.pl/~ /~horzyk e-mail: horzyk@agh agh.edu.pl tel.: 012-617 617-4319 Konsultacje paw. D-13/325 DRZEWA Drzewa to rodzaj

Bardziej szczegółowo

1. Algorytmika. WPROWADZENIE DO ALGORYTMIKI Wprowadzenie do algorytmów. Pojęcie algorytmu.

1. Algorytmika. WPROWADZENIE DO ALGORYTMIKI Wprowadzenie do algorytmów. Pojęcie algorytmu. Wymagania edukacyjne z informatyki poziom rozszerzony w klasie 2 Społecznego Liceum Ogólnokształcącego Splot im. Jana Karskiego w Nowym Sączu 1. Algorytmika TREŚCI NAUCZANIA WPROWADZENIE DO ALGORYTMIKI

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE

WYMAGANIA EDUKACYJNE GIMNAZJUM NR 2 W RYCZOWIE WYMAGANIA EDUKACYJNE niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z INFORMATYKI w klasie II gimnazjum str. 1 1. Algorytmika i programowanie

Bardziej szczegółowo

Popularyzacja matematyki (dyskretnej) poprzez informatykę (komputykę)

Popularyzacja matematyki (dyskretnej) poprzez informatykę (komputykę) Paweł Perekietka V Liceum Ogólnokształcące im. Klaudyny Potockiej w Poznaniu Popularyzacja matematyki (dyskretnej) poprzez informatykę (komputykę) Nauczyciel informatyki nauczycielem matematyki... Plan

Bardziej szczegółowo

Algorytmy przeszukiwania

Algorytmy przeszukiwania Algorytmy przeszukiwania Przeszukiwanie liniowe Algorytm stosowany do poszukiwania elementu w zbiorze, o którym nic nie wiemy. Aby mieć pewność, że nie pominęliśmy żadnego elementu zbioru przeszukujemy

Bardziej szczegółowo

Wojna morska algorytmy przeszukiwania

Wojna morska algorytmy przeszukiwania Temat 6 Wojna morska algorytmy przeszukiwania Streszczenie Wyszukiwanie informacji w wielkich zbiorach danych wymagają często użycia komputerów. Wymaga to ciągłego doskonalenia szybkich i efektywnych metod

Bardziej szczegółowo

Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski

Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski : idea Indeksowanie: Drzewo decyzyjne, przeszukiwania binarnego: F = {5, 7, 10, 12, 13, 15, 17, 30, 34, 35, 37, 40, 45, 50, 60} 30 12 40 7 15 35 50 Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski

Bardziej szczegółowo

Wymagania edukacyjne i sposoby sprawdzania edukacyjnych osiągnięć uczniów z informatyki - klasy II zakres rozszerzony

Wymagania edukacyjne i sposoby sprawdzania edukacyjnych osiągnięć uczniów z informatyki - klasy II zakres rozszerzony Wymagania edukacyjne i sposoby sprawdzania edukacyjnych osiągnięć uczniów z informatyki - klasy II zakres rozszerzony I. Cele kształcenia wymagania ogólne 1. Bezpieczne posługiwanie się komputerem i jego

Bardziej szczegółowo

EGZAMIN MATURALNY Z INFORMATYKI

EGZAMIN MATURALNY Z INFORMATYKI ARKUSZ ZAWIERA INORMACJE RAWNIE CHRONIONE DO MOMENTU ROZOCZĘCIA EGZAMINU! Miejsce na naklejkę MIN-R1_1-082 EGZAMIN MATURALNY Z INORMATYKI MAJ ROK 2008 OZIOM ROZSZERZONY CZĘŚĆ I Czas pracy 90 minut Instrukcja

Bardziej szczegółowo

Grażyna Koba, Poradnik metodyczny. Informatyka dla gimnazjum Program nauczania wymagania na oceny PRZEDMIOTOWY SYSTEM OCENIANIA KLASA II

Grażyna Koba, Poradnik metodyczny. Informatyka dla gimnazjum Program nauczania wymagania na oceny PRZEDMIOTOWY SYSTEM OCENIANIA KLASA II W rozporządzeniu MEN 1 określono, że Ocenianie osiągnięć edukacyjnych ucznia polega na rozpoznawaniu przez nauczycieli poziomu i postępów w opanowaniu przez ucznia wiadomości i umiejętności w stosunku

Bardziej szczegółowo

Kompletna dokumentacja kontenera C++ vector w - http://www.cplusplus.com/reference/stl/vector/

Kompletna dokumentacja kontenera C++ vector w - http://www.cplusplus.com/reference/stl/vector/ STL, czyli o co tyle hałasu W świecie programowania C++, hasło STL pojawia się nieustannie i zawsze jest o nim głośno... często początkujące osoby, które nie znają STL-a pytają się co to jest i czemu go

Bardziej szczegółowo

Podstawy Programowania 1 Sortowanie tablic jednowymiarowych. Plan. Sortowanie. Sortowanie Rodzaje sortowania. Notatki. Notatki. Notatki.

Podstawy Programowania 1 Sortowanie tablic jednowymiarowych. Plan. Sortowanie. Sortowanie Rodzaje sortowania. Notatki. Notatki. Notatki. Podstawy Programowania 1 Sortowanie tablic jednowymiarowych Arkadiusz Chrobot Zakład Informatyki 12 listopada 20 1 / 35 Plan Sortowanie Wartość minimalna i maksymalna w posortowanej tablicy Zakończenie

Bardziej szczegółowo

Przeszłość i Przyszłość Informatyki

Przeszłość i Przyszłość Informatyki Przeszłość i Przyszłość Informatyki Maciej M. Sysło Uniwersytet Wrocławski syslo@ii.uni.wroc.pl Łączą nas ludzie nie maszyny Plan Nie rozstrzygnę : Kto jest ojcem komputerów: Który komputer był pierwszy:

Bardziej szczegółowo

Algorytmy sortujące 1

Algorytmy sortujące 1 Algorytmy sortujące 1 Sortowanie Jeden z najczęściej występujących, rozwiązywanych i stosowanych problemów. Ułożyć elementy listy (przyjmujemy: tablicy) w rosnącym porządku Sortowanie może być oparte na

Bardziej szczegółowo

Informatyka kwantowa. Zaproszenie do fizyki. Zakład Optyki Nieliniowej. wykład z cyklu. Ryszard Tanaś. mailto:tanas@kielich.amu.edu.

Informatyka kwantowa. Zaproszenie do fizyki. Zakład Optyki Nieliniowej. wykład z cyklu. Ryszard Tanaś. mailto:tanas@kielich.amu.edu. Zakład Optyki Nieliniowej http://zon8.physd.amu.edu.pl 1/35 Informatyka kwantowa wykład z cyklu Zaproszenie do fizyki Ryszard Tanaś Umultowska 85, 61-614 Poznań mailto:tanas@kielich.amu.edu.pl Spis treści

Bardziej szczegółowo

LICZBY PIERWSZE. 14 marzec 2007. Jeśli matematyka jest królową nauk, to królową matematyki jest teoria liczb. C.F.

LICZBY PIERWSZE. 14 marzec 2007. Jeśli matematyka jest królową nauk, to królową matematyki jest teoria liczb. C.F. Jeśli matematyka jest królową nauk, to królową matematyki jest teoria liczb. C.F. Gauss (1777-1855) 14 marzec 2007 Zasadnicze twierdzenie teorii liczb Zasadnicze twierdzenie teorii liczb Ile jest liczb

Bardziej szczegółowo

Odkrywanie algorytmów kwantowych za pomocą programowania genetycznego

Odkrywanie algorytmów kwantowych za pomocą programowania genetycznego Odkrywanie algorytmów kwantowych za pomocą programowania genetycznego Piotr Rybak Koło naukowe fizyków Migacz, Uniwersytet Wrocławski Piotr Rybak (Migacz UWr) Odkrywanie algorytmów kwantowych 1 / 17 Spis

Bardziej szczegółowo

EGZAMIN MATURALNY OD ROKU SZKOLNEGO

EGZAMIN MATURALNY OD ROKU SZKOLNEGO EGZAMIN MATURALNY OD ROKU SZKOLNEGO 2014/2015 INFORMATYKA POZIOM ROZSZERZONY ROZWIĄZANIA ZADAŃŃ I SCHEMATY PUNKTOWANIA (A1, A2, A3, A4, A6, A7) GRUDZIEŃ 2013 Zadanie 1. Test (0 5) Wymagania ogólne I. [

Bardziej szczegółowo

Algorytmy komputerowe. dr inŝ. Jarosław Forenc

Algorytmy komputerowe. dr inŝ. Jarosław Forenc Rok akademicki 2009/2010, Wykład nr 8 2/24 Plan wykładu nr 8 Informatyka 1 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr II, studia niestacjonarne I stopnia Rok akademicki 2009/2010

Bardziej szczegółowo

1. Znajdowanie miejsca zerowego funkcji metodą bisekcji.

1. Znajdowanie miejsca zerowego funkcji metodą bisekcji. 1. Znajdowanie miejsca zerowego funkcji metodą bisekcji. Matematyczna funkcja f ma być określona w programie w oddzielnej funkcji języka C (tak, aby moŝna było łatwo ją zmieniać). Przykładowa funkcja to:

Bardziej szczegółowo

KODY SYMBOLI. Kod Shannona-Fano. Algorytm S-F. Przykład S-F

KODY SYMBOLI. Kod Shannona-Fano. Algorytm S-F. Przykład S-F KODY SYMBOLI Kod Shannona-Fano KODOWANIE DANYCH, A.Przelaskowski Metoda S-F Kod Huffmana Adaptacyjne drzewo Huffmana Problemy implementacji Kod Golomba Podsumowanie Kod drzewa binarnego Na wejściu rozkład:

Bardziej szczegółowo

Szkoły ponadgimnazjalne, PODSTAWA PROGRAMOWA. Cele kształcenia wymagania ogólne

Szkoły ponadgimnazjalne, PODSTAWA PROGRAMOWA. Cele kształcenia wymagania ogólne Strona1 Podstawa programowa kształcenia ogólnego dla gimnazjów i szkół ponadgimnazjalnych, (str. 185 191 i 254) Załącznik nr 4 do: rozporządzenia Ministra Edukacji Narodowej z dnia 23 grudnia 2008 r. w

Bardziej szczegółowo

ZADANIA MATURALNE - ANALIZA MATEMATYCZNA - POZIOM ROZSZERZONY Opracowała - mgr Danuta Brzezińska. 2 3x. 2. Sformułuj odpowiedź.

ZADANIA MATURALNE - ANALIZA MATEMATYCZNA - POZIOM ROZSZERZONY Opracowała - mgr Danuta Brzezińska. 2 3x. 2. Sformułuj odpowiedź. ZADANIA MATURALNE - ANALIZA MATEMATYCZNA - POZIOM ROZSZERZONY Opracowała - mgr Danuta Brzezińska Zad.1. (5 pkt) Sprawdź, czy funkcja określona wzorem x( x 1)( x ) x 3x dla x 1 i x dla x 1 f ( x) 1 3 dla

Bardziej szczegółowo

Nowa podstawa programowa IV etap edukacyjny szkoła ponadgimnazjalna

Nowa podstawa programowa IV etap edukacyjny szkoła ponadgimnazjalna Nowa podstawa programowa IV etap edukacyjny szkoła ponadgimnazjalna Fragmenty rozporządzenia MEN z dnia 23 grudnia 2008 r. w sprawie podstawy programowej (...) w poszczególnych typach szkół, opublikowanego

Bardziej szczegółowo

Algorytmy i. Wykład 5: Drzewa. Dr inż. Paweł Kasprowski

Algorytmy i. Wykład 5: Drzewa. Dr inż. Paweł Kasprowski Algorytmy i struktury danych Wykład 5: Drzewa Dr inż. Paweł Kasprowski pawel@kasprowski.pl Drzewa Struktury przechowywania danych podobne do list ale z innymi zasadami wskazywania następników Szczególny

Bardziej szczegółowo

Wszechnica Poranna: Algorytmika i programowanie Wprowadzenie do algorytmiki i programowania Ð wyszukiwanie i porządkowanie informacji

Wszechnica Poranna: Algorytmika i programowanie Wprowadzenie do algorytmiki i programowania Ð wyszukiwanie i porządkowanie informacji Wszechnica Poranna: Algorytmika i programowanie Wprowadzenie do algorytmiki i programowania Ð wyszukiwanie i porządkowanie informacji Maciej M Sysło Człowiek Ð najlepsza inwestycja Rodzaj zajęć: Wszechnica

Bardziej szczegółowo

Obliczenia Wysokiej Wydajności

Obliczenia Wysokiej Wydajności Obliczenia wysokiej wydajności 1 Wydajność obliczeń Wydajność jest (obok poprawności, niezawodności, bezpieczeństwa, ergonomiczności i łatwości stosowania i pielęgnacji) jedną z najważniejszych charakterystyk

Bardziej szczegółowo

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale Zestaw nr 1 Poziom Rozszerzony Zad.1. (1p) Liczby oraz, są jednocześnie ujemne wtedy i tylko wtedy, gdy A. B. C. D. Zad.2. (1p) Funkcja przyjmuje wartości większe od funkcji dokładnie w przedziale. Wtedy

Bardziej szczegółowo

Kiwi pytania gimnazjalne

Kiwi pytania gimnazjalne Kiwi pytania gimnazjalne 1. Bajt Jedno słowo to 2 bajty. Ile słów mieści się w kilobajcie? 1000 1024 512 500 2. Bluetooth Bluetooth to: technologia bezprzewodowej komunikacji krótkiego zasięgu wykorzystująca

Bardziej szczegółowo

EGZAMIN MATURALNY Z INFORMATYKI

EGZAMIN MATURALNY Z INFORMATYKI Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MIN 2015 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę EGZAMIN MATURALNY Z INFORMATYKI POZIOM ROZSZERZONY CZĘŚĆ I DATA: 19

Bardziej szczegółowo

kształcenia pozaszkolnego WMiI Uni Wrocław, WMiI UMK Toruń

kształcenia pozaszkolnego WMiI Uni Wrocław, WMiI UMK Toruń Aktywizacja uczniów w ramach kształcenia pozaszkolnego Maciej jm. Sysłoł WMiI Uni Wrocław, WMiI UMK Toruń Plan Cele Projektu Czym chcemy przyciągnąć uczniów i nauczycieli Zakres zajęć w Projekcie Formy

Bardziej szczegółowo

Gimnazjum w Tęgoborzy - Algorytmika Strona 1 z 22 mgr Zofia Czech

Gimnazjum w Tęgoborzy - Algorytmika Strona 1 z 22 mgr Zofia Czech ALGORYMY Algorytm to przepis; zestawienie kolejnych kroków prowadzących do wykonania określonego zadania; to uporządkowany sposób postępowania przy rozwiązywaniu zadania, problemu, z uwzględnieniem opisu

Bardziej szczegółowo

PROBLEMY NIEROZSTRZYGALNE

PROBLEMY NIEROZSTRZYGALNE PROBLEMY NIEROZSTRZYGALNE Zestaw 1: T Przykład - problem domina T Czy podanym zestawem kafelków można pokryć dowolny płaski obszar zachowując odpowiedniość kolorów na styku kafelków? (dysponujemy nieograniczoną

Bardziej szczegółowo

Przeszłość i przyszłość informatyki

Przeszłość i przyszłość informatyki Przeszłość i przyszłość informatyki Rodzaj zajęć: Wszechnica Popołudniowa Tytuł: Przeszłość i przyszłość informatyki Autor: prof. dr hab. Maciej M Sysło Redaktor merytoryczny: prof. dr hab. Maciej M Sysło

Bardziej szczegółowo

Wstęp do programowania

Wstęp do programowania Wstęp do programowania Podstawowe konstrukcje programistyczne Paweł Daniluk Wydział Fizyki Jesień 2013 P. Daniluk (Wydział Fizyki) WP w. II Jesień 2013 1 / 34 Przypomnienie Programowanie imperatywne Program

Bardziej szczegółowo

Co to jest algorytm? przepis prowadzący do rozwiązania zadania, problemu,

Co to jest algorytm? przepis prowadzący do rozwiązania zadania, problemu, wprowadzenie Co to jest algorytm? przepis prowadzący do rozwiązania zadania, problemu, w przepisie tym podaje się opis czynności, które trzeba wykonać, oraz dane, dla których algorytm będzie określony.

Bardziej szczegółowo

Wykład 6. Drzewa poszukiwań binarnych (BST)

Wykład 6. Drzewa poszukiwań binarnych (BST) Wykład 6 Drzewa poszukiwań binarnych (BST) 1 O czym będziemy mówić Definicja Operacje na drzewach BST: Search Minimum, Maximum Predecessor, Successor Insert, Delete Struktura losowo budowanych drzew BST

Bardziej szczegółowo

KLASA 1 i 2. Rozdział I

KLASA 1 i 2. Rozdział I KLASA 1 i 2 Rozdział I - zna przepisy i regulaminy obowiązujące w pracowni komputerowej, - zna cele nauczania informatyki, w tym procedury egzaminu maturalnego, - zna systemy zapisu liczb oraz działania

Bardziej szczegółowo

Wszechnica Poranna: Algorytmika i programowanie Proste rachunki wykonywane za pomocą komputera. Maciej M Sysło

Wszechnica Poranna: Algorytmika i programowanie Proste rachunki wykonywane za pomocą komputera. Maciej M Sysło Wszechnica Poranna: Algorytmika i programowanie Proste rachunki wykonywane za pomocą komputera Maciej M Sysło Proste rachunki wykonywane za pomocą komputera Rodzaj zajęć: Wszechnica Poranna Tytuł: Proste

Bardziej szczegółowo

SQL SERVER 2012 i nie tylko:

SQL SERVER 2012 i nie tylko: SQL SERVER 2012 i nie tylko: Wstęp do planów zapytań Cezary Ołtuszyk coltuszyk.wordpress.com Kilka słów o mnie Starszy Administrator Baz Danych w firmie BEST S.A. (Bazy danych > 1TB) Konsultant z zakresu

Bardziej szczegółowo

2012-01-16 PLAN WYKŁADU BAZY DANYCH INDEKSY - DEFINICJE. Indeksy jednopoziomowe Indeksy wielopoziomowe Indeksy z użyciem B-drzew i B + -drzew

2012-01-16 PLAN WYKŁADU BAZY DANYCH INDEKSY - DEFINICJE. Indeksy jednopoziomowe Indeksy wielopoziomowe Indeksy z użyciem B-drzew i B + -drzew 0-0-6 PLAN WYKŁADU Indeksy jednopoziomowe Indeksy wielopoziomowe Indeksy z użyciem B-drzew i B + -drzew BAZY DANYCH Wykład 9 dr inż. Agnieszka Bołtuć INDEKSY - DEFINICJE Indeksy to pomocnicze struktury

Bardziej szczegółowo

Metody numeryczne. materiały do wykładu dla studentów. 7. Całkowanie numeryczne

Metody numeryczne. materiały do wykładu dla studentów. 7. Całkowanie numeryczne Metody numeryczne materiały do wykładu dla studentów 7. Całkowanie numeryczne 7.1. Całkowanie numeryczne 7.2. Metoda trapezów 7.3. Metoda Simpsona 7.4. Metoda 3/8 Newtona 7.5. Ogólna postać wzorów kwadratur

Bardziej szczegółowo

Runda 5: zmiana planszy: < < i 6 rzutów.

Runda 5: zmiana planszy: < < i 6 rzutów. 1. Gry dotyczące systemu dziesiętnego Pomoce: kostka dziesięciościenna i/albo karty z cyframi. KaŜdy rywalizuje z kaŝdym. KaŜdy gracz rysuje planszę: Prowadzący rzuca dziesięciościenną kostką albo losuje

Bardziej szczegółowo

EGZAMIN MATURALNY Z INFORMATYKI

EGZAMIN MATURALNY Z INFORMATYKI Miejsce na naklejkę z kodem szkoły dysleksja MIN-R1A1P-052 EGZAMIN MATURALNY Z INFORMATYKI POZIOM ROZSZERZONY Czas pracy 90 minut ARKUSZ I MAJ ROK 2005 Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny

Bardziej szczegółowo

----------------------------------------------------------------------------------------------------------------------------

---------------------------------------------------------------------------------------------------------------------------- Strona1 Napisz program, który czyta zdanie, a następnie wypisuje po kolei długości kolejnych jego wyrazów. Zakładamy, że zdanie zawiera litery alfabetu łacińskiego i spacje (po jednej pomiędzy dwoma dowolnymi

Bardziej szczegółowo

Wykład VII. Kryptografia Kierunek Informatyka - semestr V. dr inż. Janusz Słupik. Gliwice, 2014. Wydział Matematyki Stosowanej Politechniki Śląskiej

Wykład VII. Kryptografia Kierunek Informatyka - semestr V. dr inż. Janusz Słupik. Gliwice, 2014. Wydział Matematyki Stosowanej Politechniki Śląskiej Wykład VII Kierunek Informatyka - semestr V Wydział Matematyki Stosowanej Politechniki Śląskiej Gliwice, 2014 c Copyright 2014 Janusz Słupik Problem pakowania plecaka System kryptograficzny Merklego-Hellmana

Bardziej szczegółowo

Program nauczania informatyki w gimnazjum Informatyka dla Ciebie. Modyfikacja programu klasy w cyklu 2 godzinnym

Program nauczania informatyki w gimnazjum Informatyka dla Ciebie. Modyfikacja programu klasy w cyklu 2 godzinnym Modyfikacja programu klasy 2 nym Cele modyfikacji Celem modyfikacji jest poszerzenie zakresu wiedzy zawartej w podstawie programowej które pomoże uczniom uzmysłowić sobie treści etyczne związane z pracą

Bardziej szczegółowo

SPRAWDZIAN UMIEJĘTNOŚCI MATEMATYCZNYCH

SPRAWDZIAN UMIEJĘTNOŚCI MATEMATYCZNYCH SPRAWDZIAN UMIEJĘTNOŚCI MATEMATYCZNYCH PO KLASIE 3 SZKOŁY PODSTAWOWEJ Autor: Grażyna Wójcicka Konsultacje: Weronika Janiszewska, Joanna Zagórska, Maria Zaorska, Tomasz Zaorski imię i nazwisko 1 Zapisz

Bardziej szczegółowo

Informatyka wspomaga przedmioty ścisłe w szkole

Informatyka wspomaga przedmioty ścisłe w szkole Informatyka wspomaga przedmioty ścisłe w szkole Prezentuje : Dorota Roman - Jurdzińska W arkuszu I na obu poziomach występują dwa zadania związane z algorytmiką: Arkusz I bez komputera analiza algorytmów,

Bardziej szczegółowo

Temat 8. Zrobić to szybciej Sieci sortujące

Temat 8. Zrobić to szybciej Sieci sortujące Temat 8 Zrobić to szybciej Sieci sortujące Streszczenie Istnieje granica szybkości z jaką komputer może rozwiązywać konkretny problem. Czasem sposobem na zmianę tego stanu rzeczy jest równoległe użycie

Bardziej szczegółowo

EGZAMIN MATURALNY 2011 INFORMATYKA

EGZAMIN MATURALNY 2011 INFORMATYKA Centralna Komisja Egzaminacyjna w Warszawie EGZAMIN MATURALNY 2011 INFORMATYKA POZIOM ROZSZERZONY MAJ 2011 2 Zadanie 1. a) (0 1) Egzamin maturalny z informatyki poziom rozszerzony CZĘŚĆ I Obszar standardów

Bardziej szczegółowo

Przeszukiwanie z nawrotami. Wykład 8. Przeszukiwanie z nawrotami. J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 238 / 279

Przeszukiwanie z nawrotami. Wykład 8. Przeszukiwanie z nawrotami. J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 238 / 279 Wykład 8 J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 238 / 279 sformułowanie problemu przegląd drzewa poszukiwań przykłady problemów wybrane narzędzia programistyczne J. Cichoń, P. Kobylański

Bardziej szczegółowo

Obliczenia na stosie. Wykład 9. Obliczenia na stosie. J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 266 / 303

Obliczenia na stosie. Wykład 9. Obliczenia na stosie. J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 266 / 303 Wykład 9 J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 266 / 303 stos i operacje na stosie odwrotna notacja polska języki oparte na ONP przykłady programów J. Cichoń, P. Kobylański Wstęp

Bardziej szczegółowo

Parametry systemów klucza publicznego

Parametry systemów klucza publicznego Parametry systemów klucza publicznego Andrzej Chmielowiec Instytut Podstawowych Problemów Techniki Polskiej Akademii Nauk 24 marca 2010 Algorytmy klucza publicznego Zastosowania algorytmów klucza publicznego

Bardziej szczegółowo

Zastosowania arytmetyki modularnej. Zastosowania arytmetyki modularnej

Zastosowania arytmetyki modularnej. Zastosowania arytmetyki modularnej Obliczenia w systemach resztowych [Song Y. Yan] Przykład: obliczanie z = x + y = 123684 + 413456 na komputerze przyjmującym słowa o długości 100 Obliczamy kongruencje: x 33 (mod 99), y 32 (mod 99), x 8

Bardziej szczegółowo

Podstawy programowania 2. Temat: Drzewa binarne. Przygotował: mgr inż. Tomasz Michno

Podstawy programowania 2. Temat: Drzewa binarne. Przygotował: mgr inż. Tomasz Michno Instrukcja laboratoryjna 5 Podstawy programowania 2 Temat: Drzewa binarne Przygotował: mgr inż. Tomasz Michno 1 Wstęp teoretyczny Drzewa są jedną z częściej wykorzystywanych struktur danych. Reprezentują

Bardziej szczegółowo

Matematyka od zaraz zatrudnię

Matematyka od zaraz zatrudnię Uniwersytet Jagielloński Gdzie jest matematyka? Soczewka, 26-28 listopada 2010 Kolorowanie grafów Dobre kolorowanie wierzchołków grafu, to nadanie im kolorów w taki sposób, że każde dwa wierzchołki połaczone

Bardziej szczegółowo

Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy

Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy Wariant nr (klasa I 4 godz., klasa II godz., klasa III godz.) Klasa I 7 tygodni 4 godziny = 48 godzin Lp. Tematyka zajęć

Bardziej szczegółowo

Algorytm. a programowanie -

Algorytm. a programowanie - Algorytm a programowanie - Program komputerowy: Program komputerowy można rozumieć jako: kod źródłowy - program komputerowy zapisany w pewnym języku programowania, zestaw poszczególnych instrukcji, plik

Bardziej szczegółowo

PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ

PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ L.p. 1. Liczby rzeczywiste 2. Wyrażenia algebraiczne bada, czy wynik obliczeń jest liczbą

Bardziej szczegółowo

ĆWICZENIE NR 1 WPROWADZENIE DO INFORMATYKI

ĆWICZENIE NR 1 WPROWADZENIE DO INFORMATYKI J.NAWROCKI, M. ANTCZAK, H. ĆWIEK, W. FROHMBERG, A. HOFFA, M. KIERZYNKA, S.WĄSIK ĆWICZENIE NR 1 WPROWADZENIE DO INFORMATYKI ZAD. 1. Narysowad graf nieskierowany. Zmodyfikowad go w taki sposób, aby stał

Bardziej szczegółowo

Rozkład materiału do zajęć z informatyki. realizowanych według podręcznika

Rozkład materiału do zajęć z informatyki. realizowanych według podręcznika Rozkład materiału do zajęć z informatyki realizowanych według podręcznika E. Gurbiel, G. Hardt-Olejniczak, E. Kołczyk, H. Krupicka, M.M. Sysło Informatyka, nowe wydanie z 007 roku Poniżej przedstawiamy

Bardziej szczegółowo

Fakultet Informatyczny Algorytmy i ProgramowanIe (API)

Fakultet Informatyczny Algorytmy i ProgramowanIe (API) Fakultet Informatyczny Algorytmy i ProgramowanIe (API) Program autorski fakultetu informatycznego dla uczniów gimnazjum do realizacji na zajęcia pozalekcyjne z komputerem w klasach II Autor: mgr Rafał

Bardziej szczegółowo

EGZAMIN MATURALNY Z INFORMATYKI

EGZAMIN MATURALNY Z INFORMATYKI ARKUSZ ZAWIERA INORMACJE RAWNIE CHRONIONE DO MOMENTU ROZOCZĘCIA EGZAMINU! Miejsce na naklejkę EGZAMIN MATURALNY Z INORMATYKI MIN-R1_1-092 MAJ ROK 2009 OZIOM ROZSZERZONY CZĘŚĆ I Czas pracy 90 minut Instrukcja

Bardziej szczegółowo

KORPORACYJNE SYSTEMY ZARZĄDZANIA INFORMACJĄ

KORPORACYJNE SYSTEMY ZARZĄDZANIA INFORMACJĄ KORPORACYJNE SYSTEMY ZARZĄDZANIA INFORMACJĄ Wykład 3 Katedra Inżynierii Komputerowej Jakub Romanowski jakub.romanowski@kik.pcz.pl POBIERANIE DANYCH C/AL Poniższe funkcje używane są do operacji pobierania

Bardziej szczegółowo

Wykład I: Kodowanie liczb w systemach binarnych. Studia Podyplomowe INFORMATYKA Podstawy Informatyki

Wykład I: Kodowanie liczb w systemach binarnych. Studia Podyplomowe INFORMATYKA Podstawy Informatyki Studia Podyplomowe INFORMATYKA Podstawy Informatyki Wykład I: Kodowanie liczb w systemach binarnych 1 Część 1 Dlaczego system binarny? 2 I. Dlaczego system binarny? Pojęcie bitu Bit jednostka informacji

Bardziej szczegółowo

Plan wynikowy. Klasa III Technik pojazdów samochodowych/ Technik urządzeń i systemów energetyki odnawialnej. Kształcenie ogólne w zakresie podstawowym

Plan wynikowy. Klasa III Technik pojazdów samochodowych/ Technik urządzeń i systemów energetyki odnawialnej. Kształcenie ogólne w zakresie podstawowym Oznaczenia: wymagania konieczne, P wymagania podstawowe, R wymagania rozszerzające, D wymagania dopełniające, W wymagania wykraczające. Plan wynikowy lasa III Technik pojazdów samochodowych/ Technik urządzeń

Bardziej szczegółowo

Test, dzień pierwszy, grupa młodsza

Test, dzień pierwszy, grupa młodsza Test, dzień pierwszy, grupa młodsza 1. Na połowinkach 60 procent wszystkich uczniów to dziewczyny. Impreza jest kiepska, bo tylko 40 procent wszystkich uczniów chce się tańczyć. Sytuacja poprawia sie odrobinę,

Bardziej szczegółowo

Algorytmy i struktury danych.

Algorytmy i struktury danych. Algorytmy i struktury danych. Wykład 4 Krzysztof M. Ocetkiewicz Krzysztof.Ocetkiewicz@eti.pg.gda.pl Katedra Algorytmów i Modelowania Systemów, WETI, PG Problem plecakowy mamy plecak o określonej pojemności

Bardziej szczegółowo

Lista zadań nr 15 TERMIN ODDANIA ROZWIĄZANYCH ZADAŃ 9 marca 2015

Lista zadań nr 15 TERMIN ODDANIA ROZWIĄZANYCH ZADAŃ 9 marca 2015 Lista zadań nr 5 TERMIN ODDANIA ROZWIĄZANYCH ZADAŃ 9 marca 05 Liczby rzeczywiste a) planuję i wykonuję obliczenia na liczbach rzeczywistych; w szczególności obliczam pierwiastki, w tym pierwiastki nieparzystego

Bardziej szczegółowo

Wszechnica Informatyczna: Algorytmika i programowanie Różnorodne algorytmy obliczeń i ich komputerowe realizacje. Maciej M Sysło

Wszechnica Informatyczna: Algorytmika i programowanie Różnorodne algorytmy obliczeń i ich komputerowe realizacje. Maciej M Sysło Wszechnica Informatyczna: Algorytmika i programowanie Różnorodne algorytmy obliczeń i ich komputerowe realizacje Maciej M Sysło Różnorodne algorytmy obliczeń i ich komputerowe realizacje Rodzaj zajęć:

Bardziej szczegółowo

PROPOZYCJA PLANU WYNIKOWEGOREALIZACJI PROGRAMU NAUCZANIA Matematyka przyjemna i pożyteczna W DRUGIEJ KLASIE SZKOŁY PONADGIMNAZJALNEJ

PROPOZYCJA PLANU WYNIKOWEGOREALIZACJI PROGRAMU NAUCZANIA Matematyka przyjemna i pożyteczna W DRUGIEJ KLASIE SZKOŁY PONADGIMNAZJALNEJ OOZYCJA LANU WYNIKOWEGOEALIZACJI OGAMU NAUCZANIA Matematyka przyjemna i pożyteczna W DUGIEJ KLASIE SZKOŁY ONADGIMNAZJALNEJ ZAKES OZSZEZONY DZIAŁ I: CIĄGI Tematyka jednostki lekcyjnej lub Liczba oziomy

Bardziej szczegółowo

Akademickie Mistrzostwa Polski w Programowaniu Zespołowym

Akademickie Mistrzostwa Polski w Programowaniu Zespołowym Akademickie Mistrzostwa Polski w Programowaniu Zespołowym Prezentacja rozwiązań zadań 30 października 2011 c h k f e j i a b d g Czy się zatrzyma? Autor zadania: Jakub Łącki Zgłoszenia: 104 z 914 (11%)

Bardziej szczegółowo

Rekurencja (rekursja)

Rekurencja (rekursja) Rekurencja (rekursja) Rekurencja wywołanie funkcji przez nią samą wewnątrz ciała funkcji. Rekurencja może być pośrednia funkcja jest wywoływana przez inną funkcję, wywołaną (pośrednio lub bezpośrednio)

Bardziej szczegółowo

Podstawowe struktury danych

Podstawowe struktury danych Podstawowe struktury danych 1) Listy Lista to skończony ciąg elementów: q=[x 1, x 2,..., x n ]. Skrajne elementy x 1 i x n nazywamy końcami listy, a wielkość q = n długością (rozmiarem) listy. Szczególnym

Bardziej szczegółowo

Metody przeszukiwania

Metody przeszukiwania Metody przeszukiwania Co to jest przeszukiwanie Przeszukiwanie polega na odnajdywaniu rozwiązania w dyskretnej przestrzeni rozwiązao. Zwykle przeszukiwanie polega na znalezieniu określonego rozwiązania

Bardziej szczegółowo

Modelowanie procesów współbieżnych

Modelowanie procesów współbieżnych Modelowanie procesów współbieżnych dr inż. Maciej Piotrowicz Katedra Mikroelektroniki i Technik Informatycznych PŁ piotrowi@dmcs.p.lodz.pl http://fiona.dmcs.pl/~piotrowi -> Modelowanie... Literatura M.

Bardziej szczegółowo

Spis treści. I. Skuteczne. Od autora... Obliczenia inżynierskie i naukowe... Ostrzeżenia...XVII

Spis treści. I. Skuteczne. Od autora... Obliczenia inżynierskie i naukowe... Ostrzeżenia...XVII Spis treści Od autora..................................................... Obliczenia inżynierskie i naukowe.................................. X XII Ostrzeżenia...................................................XVII

Bardziej szczegółowo

Wydajność systemów a organizacja pamięci, czyli dlaczego jednak nie jest aż tak źle. Krzysztof Banaś, Obliczenia wysokiej wydajności.

Wydajność systemów a organizacja pamięci, czyli dlaczego jednak nie jest aż tak źle. Krzysztof Banaś, Obliczenia wysokiej wydajności. Wydajność systemów a organizacja pamięci, czyli dlaczego jednak nie jest aż tak źle Krzysztof Banaś, Obliczenia wysokiej wydajności. 1 Organizacja pamięci Organizacja pamięci współczesnych systemów komputerowych

Bardziej szczegółowo

INFORMATYKA POZIOM ROZSZERZONY

INFORMATYKA POZIOM ROZSZERZONY EGZAMIN MATURALNY W ROKU SZKOLNYM 2013/2014 INFORMATYKA POZIOM ROZSZERZONY ROZWIĄZANIA ZADAŃ I SCHEMAT PUNKTOWANIA MAJ 2014 2 Egzamin maturalny z informatyki Część I Zadanie 1. a) (0-2) 2 p. za podanie

Bardziej szczegółowo