Matematyka ubezpieczeń maj atkowych i osobowych (MUMIO) Ryszard Szekli

Wielkość: px
Rozpocząć pokaz od strony:

Download "Matematyka ubezpieczeń maj atkowych i osobowych (MUMIO) Ryszard Szekli"

Transkrypt

1 Matematyka ubezpieczeń maj atkowych i osobowych (MUMIO) Ryszard Szekli Skrypt do wykładu - Uniwersytet Wrocławski -212/213

2 2

3 Spis treści 1 Wprowadzenie 11 2 Rozkłady wielkości portfela Rozkład wielkości portfela w modelu prostym Rozkłady w modelu złożonym Własności ogólne Zmienne losowe liczące ilość szkód Złożony rozkład dwumianowy Złożony rozkład Poissona Złożony rozkład ujemny dwumianowy Wzory rekurencyjne Panjera Aproksymacje Aproksymacja rozkładem dwumianowym i Poissona Aproksymacja rozkładem normalnym Aproksymacja rozkładów złożonych rozkładem normalnym Aproksymacja Edgewortha rozkładów złożonych Aproksymacja przesuniȩtym rozkładem Gamma Aproksymacja niejednorodnego modelu prostego Poissonowskim modelem złożonym Składki Składka netto Składka z ustalonym poziomem bezpieczeństwa Składki oparte o funkcję użyteczności Reasekuracja, podział ryzyka Wycena kontraktu stop-loss Własności kontraktu stop-loss Wpływ inflacji na kontrakt stop-loss

4 4 SPIS TREŚCI 3.5 Reasekuracja w portfelu złożonym Stochastyczne porównywanie ryzyk Miary ryzyka Modelowanie zależności przez funkcje copula Modele bayesowskie Model portfela niejednorodnego Model liniowy Bühlmanna (Bayesian credibility) Składka wiarogodności: metoda wariancji Estymatory najwiȩkszej wiarogodności (NW) dla modeli bayesowskich Porównanie modeli bayesowskich Prawdopodobieństwo ruiny: czas dyskretny Proces ryzyka jako błądzenie losoweprawdopodobieństwo ruiny Współczynnik dopasowania Prawdopodobieństwo ruiny - lekkie ogony Prawdopodobieństwo ruiny - model autoregresyjny Reasekuracja a prawdopodobieństwo ruiny *Prawdopodobieństwo ruiny: czas ciągły Proces zgłoszeń - teoria odnowy Prawdopodobieństwo ruiny: proces zgłoszeń Poissona Prawdopodobieństwo ruiny dla rozkładów fazowych Prawdopodobieństwo ruiny dla rozkładów ciȩżkoogonowych Techniki statystyczne dla rozkładów ci agłych Dopasowanie rozkładu do danych Dystrybuanta empiryczna Wykres kwantylowy (Q-Q plot) Średnia funkcja nadwyżki Rozkład Pareto *Rozkłady typu Pareto Rozkłady z ciȩżkimi ogonami Klasy podwykładnicze Dodatek Funkcje specjalne Parametry i funkcje rozkładów Estymacja momentów Rozkłady dyskretne Rozkład dwumianowy Bin(n, p) Rozkład Poissona P oi(λ)

5 SPIS TREŚCI Rozkład ujemny dwumianowy Bin (r, p) Rozkłady ci agłe Rozkład normalny Rozkład odwrotny normalny IG(µ, σ 2 ) Rozkład logarytmiczno-normalny LN(µ, σ) Rozkład wykładniczy Exp(λ) Rozkład Gamma Gamma(α, β) Rozkład Weibulla W ei(r, c) Rozkład Pareto P ar(α, c) Literatura 184

6 6 SPIS TREŚCI

7 Wstȩp Skrypt jest przeznaczony dla studentów kierunku matematyka na Wydziale Matematyki i Informatyki UWr. Udział w kursie MUMIO wymaga wcześniejszego zaliczenia kursu rachunku prawdopodobieństwa A lub B. Dla wygody wiele używanych faktów znajduje się w Dodatku. Rozdziały oznaczone * wymagaj a znajomości bardziej zaawansowanych narzȩdzi rachunku prawdopodobieństwa spoza kursu rachunku prawdopodobieństwa A. Kursyw a podana jest terminologia angielska. Kurs zawiera matematyczne podstawy i klasyczne metody używane w zawodzie aktuariusza. Specjalistą w zakresie oszacowania ryzyka jest aktuariusz. Miejscem pracy aktuariusza mogą być wszystkie instytucje finansowe, w których zarządza się ryzykiem. W Polsce istnieje duże zapotrzebowanie na aktuariuszy, ze względu na ich małą liczbę. Aktuariusz to specjalista ubezpieczeniowy, który oszacowuje za pomocą metod matematyki aktuarialnej, wysokość składki, świadczeń, odszkodowań, rezerw ubezpieczeniowych. Aktuariusze w oparciu o dane historyczne, regulacje prawne i prognozy dokonują kalkulacji prawdopodobieństw zdarzeń losowych. Oszacowują również ryzyko powstania szkód majątkowych. Aktuariusz przypisuje finansową wartość przyszłym zdarzeniom. Korzenie zawodu aktuariusza sięgają przełomu XVII i XVIII w. i były powiązane przede wszystkim z rozwojem ubezpieczeń na życie, ale głównego znaczenia profesja ta nabrała dopiero w XIX w. Matematykę aktuarialną zapoczątkowały pod koniec XVII w. prace angielskiego astronoma E. Halleya dotyczące wymieralności w wybranej populacji, a w 1948 r. w Londynie powstał Instytut Aktuariuszy - pierwsza placówka naukowa prowadząca prace z zakresu matematyki aktuarialnej. W Polsce za początek zawodu aktuariusza można uznać rok 192, w którym działalność rozpoczął Polski Instytut Aktuariuszy. Środowisko aktuariuszy w 1991 r. powołało Polskie Stowarzyszenie Aktuariuszy. Zadaniem Stowarzyszenia jest wspieranie tej grupy zawodowej, a także uczestnictwo w pracach legislacyjnych w zakresie ubezpieczeń. Stowarzyszenie jest członkiem Międzynarodowego Stowarzyszenia Aktuariuszy. Sektor towarzystw ubezpieczeniowych, zarówno na życie jak i majątkowo-osobowych, nie może funkcjonować bez aktuariuszy, którzy w większości właśnie tam pracują. Zgodnie z 7

8 8 SPIS TREŚCI art. 159 ust. 1 ustawy z 22 maja 23 r. o działalności ubezpieczeniowej (Dz. U. Nr 124, poz. 1151) do zadań aktuariusza w Polsce należy: - ustalanie wartości rezerw techniczno-ubezpieczeniowych, - kontrolowanie aktywów stanowiących pokrycie rezerw techniczno-ubezpieczeniowych, - wyliczanie marginesu wypłacalności, - sporządzanie rocznego raportu o stanie portfela ubezpieczeń, - ustalanie wartości składników zaliczanych do środków własnych. Aktuariusze mogą pracować we wszystkich instytucjach finansowych zarządzających ryzykiem. Mogą pracować w firmach konsultingowych, udzielając porad w zakresie podejmowania decyzji finansowych. W szczególności pomagają zaprojektować programy emerytalne, a w trakcie ich działania wyceniają ich aktywa i zobowiązania. Aktuariusze mogą również oszacowywać koszt różnego rodzaju ryzyk w działalności przedsiębiorstw. Mogą pracować również w instytucjach państwowych związanych np. z systemem ubezpieczeń społecznych czy zdrowotnych. Ponadto aktuariusze mogą znaleźć zatrudnienie wszędzie tam, gdzie konieczne jest rozwiązywanie problemów finansowych i statystycznych - banki i firmy inwestycyjne, duże korporacje, związki zawodowe. Zgodnie z art. 161 ust. 1 ustawy o działalności ubezpieczeniowej, aktuariuszem może zostać osoba fizyczna, która: - ukończyła studia wyższe, - przez okres co najmniej 2 lat wykonywała czynności z zakresu matematyki ubezpieczeniowej, finansowej i statystyki, pod kierunkiem aktuariusza, - złożyła z pozytywnym wynikiem egzamin aktuarialny, - posiada pełną zdolność do czynności prawnych, - korzysta z pełni praw publicznych, - nie była prawomocnie skazana za umyślne przestępstwo przeciwko wiarygodności dokumentów, przestępstwo przeciwko mieniu lub za przestępstwo skarbowe. Jednym z powyższych wymogów dla uzyskania licencji aktuariusza jest zdanie egzaminu aktuarialnego. Zgodnie z rozporządzeniem Ministra Finansów z 2 listopada 23 r. w sprawie zakresu obowiązujących tematów egzaminów aktuarialnych oraz trybu przeprowadzania tych egzaminów (Dz. U. Nr 211, poz. 254) zakres tego egzaminu obejmuje cztery działy: - matematykę finansową, - matematykę ubezpieczeń na życie, - matematykę pozostałych ubezpieczeń osobowych i majątkowych, - prawdopodobieństwo i statystykę. Egzaminy są organizowane co najmniej 2 razy w roku kalendarzowym. Każda część egzaminu składa się z 1 pytań. Każde pytanie oceniane jest według następującej skali:

9 SPIS TREŚCI 9 - dobra odpowiedź: 3 punkty, - błędna odpowiedź: -2 punkty, - brak odpowiedzi: punktów. Egzamin uważa się za zaliczony po uzyskaniu 13 punktów z jednej części. Zaliczenie wszystkich działów nie może trwać dłużej niż 2 lata. Aktuariuszem najczęściej mogą zostać osoby w wykształceniem matematycznym lub ekonomicznym. Jednym z głównych zadań w działalności firm ubezpieczeniowych jest dbałość o wypłacalność. Na firmy ubezpieczeniowe nałożone jest wiele wymogów zapewniających bezpieczeństwo działalności ubezpieczeniowej. Działalność ubezpieczeniowa ze względu na swoje społeczne i gospodarcze znaczenie została poddana nadzorowi wyspecjalizowanego organu administracji państwowej. Wypłacalność to zdolność firmy do spłaty zobowiązań w terminie. Jest podstawowym kryterium oceny kondycji finansowej zakładu ubezpieczeń. Jeden z podstawowych wymogów działalności ubezpieczeniowej dotyczy marginesu wypłacalności. Margines wypłacalności jest to określona przepisami prawa wielkość środków własnych zakładu ubezpieczeń, która ma na celu zapewnienie wypłacalności i nie może być niższa od minimalnej wysokości kapitału gwarancyjnego. Wymogi dotyczące marginesu wypłacalności dla zakładów ubezpieczeń zostały wprowadzone w 1973 roku. Wraz z rozwojem rynku ubezpieczeniowego, pojawieniem się nowych produktów oraz ryzyk istniejące wymogi przestały w pełni odzwierciedlać wszystkie ryzyka, na które były narażone firmy ubezpieczeniowe. Dotyczyło to głównie ryzyk finansowych np. ryzyka zmiany stóp procentowych. Pomimo spełniania istniejących wymogów wypłacalności przez firmy ubezpieczeniowe, kondycja finansowa tych firm pogarszała się. Obowiązujące wymogi wypłacalności nie spełniały już oczekiwań związanych z zapewnieniem bezpieczeństwa działalności ubezpieczeniowej. Nie bez znaczenia był również fakt coraz większego skupienia działalności ubezpieczeniowej wokół międzynarodowych grup kapitałowych. Pierwszym krokiem w kierunku poprawienia systemu badania wypłacalności było wprowadzenie Solvency I. W prawie polskim Solvency I zwiększyło wysokość minimalnego kapitału gwarancyjnego dla spółek akcyjnych z grupy I (ubezpieczenia na życie) z 8 tys. euro do 3 mln euro, dla działu II (ubezpieczenia majątkowe) grup 1-9 oraz z 3 tys. euro i 2 tys. euro do 2 mln euro. Wprowadzono również coroczną indeksację minimalnego kapitału gwarancyjnego. Zmieniająca się rzeczywistość finansowa i gospodarcza wymusiła debatę nad zmianami w nowym systemie wypłacalności zakładów ubezpieczeń. Wykonano szereg analiz ryzyk działalności ubezpieczeniowej, analiz bankructw, analiz istniejących modeli wypłacalności wdrożonych w innych krajach. Wynikiem tych działań miało być powstanie nowego systemu badania wypłacalności Solvency II. Został on zapoczątkowany w 21 roku przez Komisje Europejską w ramach Komitetu Europejskiego. U podstaw dyskusji nad koniecznością wprowadzenia Solvency II leży szereg niedoskonałości w istniejących regulacjach dotyczących wypłacalności. Spośród nich należy tu chociażby wymienić metody bazujące na składce, które nie uwzględniają istotnych ryzyk; brak

10 1 SPIS TREŚCI uwzględnienia kompletnych form transferu ryzyka, brak uwzględnienia zależności pomiędzy aktywami i pasywami oraz zakresem prowadzonej działalności. Nowo powstający system Solvency II ma być uniwersalny i ma objąć wszystkie firmy ubezpieczeniowe prowadzące działalność na terenie UE. Jest on wzorowany na Bazylei II, która określa zasady wypłacalności dla banków. Nowy system oceny wypłacalności zgodny z Solvency II ma być dopasowany do rzeczywistych ryzyk, na jakie narażony jest zakład ubezpieczeń. W przypadku instytucji ubezpieczeniowej potencjalne ryzyka są specyficzne dla typów zawieranych umów ubezpieczenia w zakresie ubezpieczeń na życie lub ubezpieczeń majątkowych. Umiejętność skutecznej identyfikacji, oceny i monitorowania ryzyk może uchronić przed znacznymi stratami. Kluczową rolę odgrywają tu przyjęte metodologie zarządzania ryzykiem, służące eliminacji ich negatywnego wpływu na wyniki finansowe. Ryzyka, na które jest narażony zakład ubezpieczeń można podzielić na ryzyka aktuarialne związane z przyszłymi wynikami technicznymi zależnymi od czynników losowych częstości, intensywności szkód, kosztów operacyjnych, zmian w składzie portfela wypowiedzeń bądź konwersji umów ubezpieczenia oraz ryzyka finansowe ryzyka, na które jest narażona każda instytucja finansowa, (np. bank), do tej grupy zaliczają się ryzyka takie jak: ryzyko zmian stopy procentowej, ryzyko kredytowe, ryzyko rynkowe, ryzyko walutowe. Większa uwaga nadzoru ubezpieczeniowego ma skupić się na kontroli sposobów zarządzania ryzykiem przez firmy ubezpieczeniowe, jak również na poprawności przyjętych w tym zakresie założeń. Idea Solvency II polega na ściślejszym uzależnieniu wysokości kapitału od wielkości ryzyka podejmowanego przed firmy ubezpieczeniowe. Ujednoliceniu mają być poddane sposoby raportowania firm ubezpieczeniowych w różnych krajach. Solvency II ma mieć o wiele większy zakres od Solvency I, ma uwzględnić, bowiem wpływ nowych tendencji z zakresu metodologii zarządzania ryzykiem w ubezpieczeniach, szeroko pojętej inżynierii finansowej oraz standardów sprawozdawczości zgodnych z wymogami IASB (International Accounting Standard Board). Pierwszorzędnymi zamierzeniami projektu jest znalezienie wymogu marginesu wypłacalności oraz osiągnięcie większej synchronizacji w ustalaniu poziomu rezerw technicznych. Dużą rolę techniczną w ramach Solvency II odgrywają miary ryzyka takie jak VaR, TVaR, CVaR itp. oraz kopuły (copulas), które będą omówione w obecnym skrypcie.

11 Rozdział 1 Wprowadzenie Zawód aktuariusza jest jednym z najstarszych w świecie finansów. Historia tego zawodu rozpoczyna sie w połowie dziewietnastego wieku wraz z ubezpieczeniami na życie i aż do lat sześćdziesiatych dwudziestego wieku matematyczne metody aktuariusza zwiazane były z wycena kontraktów ubezpieczeniowych, tworzeniem tablic przeżycia na podstawie danych statystycznych oraz z wyliczniem rezerw pienieżnych firmy. W latach sześćdziesiatych rozpoczeto stosowanie matematycznych metod do stworzenia teorii ryzyka na użytek ubezpieczeń majatkowych i osobowych. Punktem wyjścia był standardowy złożony proces Poissona, którego pomysł pochodzi od Filipa Lundberga z 193 roku, a który matematycznie został opracowany przez Haralda Cramera w latach trzydziestych. Do lat dziewiećdziesi atych był on rozwijany na różne sposoby. Proces Poissona został zastapiony przez proces odnowy oraz przez proces Coxa, nastepnie użyto procesów Markowa kawałkami deterministycznych, wreszcie wprowadzono losowe otoczenie pozwalajace na modelowanie losowych zmian w intensywności zgłoszeń szkód i wielkości szkód. Pojawia sie wiele ksiażek z teorii ryzyka, na prykład Bowers et al., Buhlman, Daykin, Pentakainen i Pesonen, Embrechts, Kluppelberg i Mikosch, Gerber, Panjer i Willmot, Rolski et al., Assmussen. Jednym z najbardziej matematycznie interesujacych zagadnień w teorii ryzyka jest zagadnienie ruiny, gdzie czasy pierwszego przekroczenia wysokiego poziomu rezerwy kapitałowej sa w centrum uwagi. Stare i nowe rezultaty na tym polu moga być wytłumaczone przez teorie martyngałów i użyte do pokazania nierówności Lundberga dla bardzo ogólnych modeli dowodzac, iż dla małych szkód prawdopodobieństwo ruiny daży do zera wykładniczo szybko wraz z rezerwa poczatkow a. Specjalna teoria pojawia sie dla szkód potencjalnie dużych. Warunkowe twierdzenia graniczne pozwalaja zrozumieć trajektorie prowadzace do ruiny. Interesujacy rozkwit metod matematycznych w latach dziewiećdziesi atych dokonał sie głównie z dwóch przyczyn: wzrostu szkód zwiazanych z katastrofami oraz z gwałtownego rozwoju rynków finansowych. Wielkie katastrofy i szkody lat siedemdziesiatych i osiemdziesiatych spowodowały przekroczenia rezerw na rynku ubezpieczeń pierwotnych i wtórnych. Szybko rosnacy rynek finansowy w tym czasie poszukiwał nowych możliwości inwestycyjnych również w zakresie przyjmowania zakładów w zakresie naturalnych katastrof takich jak trzesienia ziemi i huragany. Czestość wystepowania i rozmiary wielkich szkód stworzyły potrzebe wprowadzenia 11

12 12 ROZDZIAŁ 1. WPROWADZENIE wyszukanych modeli statystycznych do badania procesu szkód. Teoria wartości ekstremalnych dostarcza niezbednych matematycznych narzedzi do wprowadzenia nowych metod. Pojawiaja sie ksiażki w zakresie teorii wartości ekstremalnych w kontekście problematyki ubezpieczeniowej, na przykład Embrechts et al., Reiss and Thomas. W latach osiemdziesiatych banki inwestycyjne dostrzegaja, iż zabezpieczanie sie przed ryzykiem finansowym nie jest wystarczajace ze wzgledu na dodatkowe ryzyka rynkowe. Tak zwany traktat z Bazylei z roku 1988 z poprawkami z lat , wprowadza tradycyjne metody ubezpieczeniowe budowania rezerw do sfery ryzyka bankowego. Rezerwy musza być tworzone na pokrycie tzw. earning at risk, to znaczy różnicy miedzy wartościa średnia a kwantylem jednoprocentowym rozkładu zysku/straty (profit/loss). Wyznaczenie tak małego kwantyla wymaga bardzo specjalnych metod statystycznych. Metody aktuarialne stosowane sa również do modelowania ryzyka kredytowego. Portfele kredytowe sa porównywalne z portfelami ryzyk ubezpieczeniowych. Przyszły rozwój metod ubezpieczeniowych zwiazany jest z powstawaniem złożonych rynków ubezpieczeniowych, firmy ubezpieczeniowe oczekuja elastycznych rozwiazań zapewniajacych pomoc w całościowym podejściu do zarzadzania ryzykiem. Całkiem naturalnie na tym tle wprowadzane sa metody pochodzace z teorii stochastycznej optymalizacji. Wiele zmiennych kontrolnych takich jak wielkość reasekuracji, dywidendy, inwestycje sa badane łacznie w sposób dynamiczny prowadzac do równań Hamiltona- Jakobiego-Bellmana, rozwiazywanych numerycznie. Po tym krótkim nakreśleniu historii rozwoju metod matematycznych w ubezpieczeniach wracamy do podstawowego modelu. Pomyślmy o konkretnej sytuacji. Przegl adaj ac wszystkie polisy ubezpieczeniowe, zakupione w jednej firmie ubezpieczeniowej, które ubezpieczaj a skutki pożaru mieszkań w pewnej dzielnicy dużego miasta, najprawdopodobniej natkniemy siȩ na porównywaln a wartość ubezpieczanych dóbr oraz możemy przyj ać, iż szanse na pożar w poszczególnych budynkach s a podobne. Taki zbiór polis tworzy jednorodny portfel ubezpieczeniowy. Wiȩkszość firm ubezpieczeniowych używa tego rodzaju portfeli jako podstawowych cegiełek swej działalności. Cegiełki takie, odpowiednio ułożone, tworz a wiȩksze bloki działalności takie jak ubezpieczenia od ognia, ubezpieczenia ruchu drogowego, ubezpieczenia przed kradzieżami, ubezpieczenia maj atkowe itd. Blok ubezpieczeń od ognia zawiera wtedy wiele portfeli różni acych siȩ rodzajami ryzyka, na przykład dla: wolno stoj acych domów, domów szeregowych, budynków wielomieszkaniowych, sklepów, marketów itd., które wymagaj a osobnego określenia ryzyka ubezpieczeniowego dla każdego rodzaju i wyliczenia innej składki ubezpieczeniowej, choćby z tego tylko powodu, iż rozmiar szkody w poszczególnych portfelach może być nieporównywalny. W dalszym ci agu skupiać bȩdziemy nasz a uwagȩ na analizie pojedynczych portfeli, które składać siȩ bȩd a z wielu elementów natury losowej lub deterministycznej. Podstawowym parametrem portfela jest czasokres w którym ubezpieczone ryzyka mog a generować szkody. Zwykle dane odnosz ace siȩ do danego portfela obejmuj a okres jedengo roku. Kluczowym parametrem jest rezerwa pocz atkowa (kapitał pocz atkowy), wyznaczany na pocz atku czasokresu w celu pokrycia kosztów wynikaj acych ze zgłoszonych szkód w portfelu. Same zgłoszenia wyznaczone s a przez chwile zgłoszeń T 1 < T 2 < T 3 <..., przy czym wygodnie jest przyj ać iż T = < T 1. Liczbȩ zgłoszeń do chwili t > definiujemy przez N(t) = max{n : T n t}.

13 13 Każde zgłoszenie zwi azane jest z wielkości a zgłaszanej szkody oznaczanej przez X n, dla n tego zgłoszenia. Przy tych oznaczeniach całkowita wartość szkód zgłoszonych do chwili t równa siȩ S(t) = N(t) X i. (Przyjmujemy S(t) =, gdy N(t) = ). Oznaczmy przez H(t) wartość składek zebranych w portfelu do chwili t. Zwykle przyjmujemy, że H(t) = ct, dla pewnej stałej wartości c >. Wtedy rezerwa kapitału w portfelu, przy założeniu, że kapitał pocz atkowy wynosi u, wyraża siȩ wzorem R(t) = u + H(t) S(t). Zakładaj ac, że momenty zgłoszeń oraz wielkości szkód s a zmiennymi losowymi, możemy interpretować kolekcjȩ zmiennych (R(t), t > ) jako proces stochastyczny. (Jest to tak zwany proces ryzyka). Badanie procesu ryzyka jest centralnym zagadnieniem tak zwanej teorii ryzyka, która z kolei stanowi niew atpliwie j adro matematyki ubezpieczeniowej poświȩconej ubezpieczeniom majatkowym i osobowym. Nakreślimy teraz bliżej zestawy założeń przyjmowanych o zmiennych losowych tego modelu, które umożliwiaj a dokładniejsz a analizȩ portfeli. Rozpoczniemy od podania detali dotycz acych ci agu zgłoszeń. O zmiennych losowych T 1, T 2,...można przyj ać wiele różnych założeń. W pewnych szczególnych przypadkach użytecznym i odpowiednim założeniem jest to, iż ci ag ten tworzy proces odnowy, tzn. ci ag zmiennych losowych odstȩpów miȩdzy zgłoszeniami W i = T i T i 1, i = 1, 2,..., jest ci agiem niezależnych zmiennych losowych o jednakowych rozkładach. Taki proces zgłoszeń jest elementem składowym modelu Sparre Andersena, który bȩdzie opisany detalicznie później. Klasycznym przykładem procesu odnowy jest proces Poissona, w którym odstȩpy miȩdzy zgłoszeniami maj a rozkład wykładniczy. Ponieważ rozkład wykładniczy jako jedyny ma własność braku pamiȩci, proces Poissona ma wiele strukturalnych własności odróżniaj acych go od innych procesów. (Własność braku pamiȩci rozkładu wykładniczego jest zdefiniowana przez równość P (W > x + y W > y) = P (W > x), dla x, y > lub równoważnie P (W > x + y) = P (W > x)p (W > y)). Na przykład, dla procesu Poissona P (N(t) = k) = e λt (λt) k k!, k =, 1,..., gdzie < λ = (EW ) 1, przy tym, EN(t) = λt = V arn(t). Ponadto liczby zgłoszeń w rozł acznych przedziałach czasowych w procesie Poissona tworz a kolekcjȩ niezależnych zmiennych losowych. W praktyce aktuarialnej zauważono już dawno, iż stosunek wartości oczekiwanej do wariancji w procesach zgłoszeń (N(t), t > ) bardzo czȩsto nie jest równy jeden (tak jest w procesie Poissona). Można to wytłumaczyć tym, że indywidualne szkody w portfelu s a zgłaszane zgodnie z procesem Poissona o pewnej wartości średniej, lecz wartość średnia ilości indywidualnych zgłoszeń może być różna dla każdej z polis w portfelu. Takie założenie prowadzi do procesu zgłoszeń dla którego P (N(t) = k) = e λt (λt) k k! df (λ), gdzie F jest pewn a dystrybuant a określaj ac a rozkład parametru λ w zbiorze możliwych wartości w danym portfelu (zakładamy zawsze, że λ > ). Wygodnie jest przyj ać, że istnieje zmienna losowa Λ określajaca losow a wartość parametru λ, spełniaj aca P (Λ λ) = F (λ). Zakładamy przy tym, że Λ jest zmienn a losow a niezależn a od indywidualnych procesów Poissona. Proces (N(t), t > ) spełniaj acy te założenia jest tak zwanym mieszanym Procesem Poissona. Szczególny przypadek, gdy Λ ma rozkład gamma, odpowiada tak zwanemu procesowi Polya. Inna użyteczna klasa procesów zgłoszeń jest wyznaczona zwi azkiem rekurencyjnym postaci

14 14 ROZDZIAŁ 1. WPROWADZENIE P (N(t) = k) = (a + b k )P (N(t) = k 1),dla k = 1, 2,... oraz pewnych stałych a, b (być może zależnych jedynie od t). Rozkład geometryczny, dwumianowy i Poissona znajduj a siȩ w tej klasie, przy odpowiedniej specyfikacji stałych a, b. Dla takich procesów Panjer pokazał użyteczn a rekurencjȩ pozwalaj ac a wyznaczyć rozkład całkowitej wartości szkód w portfelu. Wspomniana wcześniej własność procesu Poissona, iż liczby zgłoszeń w rozł acznych przedziałach czasowych tworz a kolekcjȩ niezależnych zmiennych losowych stanowi punkt wyjścia do teorii procesów o niezależnych przyrostach. Procesy zgłoszeń posiadaj ace tȩ własność s a procesami, dla których P (N(t) = k) = i= e λt (λt) i, gdzie p i oznacza i! p i k i krotny splot funkcji prawdopodobieństwa (p k, k =, 1,...). Oznacza to, że liczbȩ zgłoszeń można zapisać w postaci N(t) = K(t) Y i, gdzie (K(t), t > ) jest Procesem Poissona niezależnym od ci agu zmiennych (Y i, i = 1, 2,...), które s a z kolei wzajemnie niezależne o jednakowym rozkładzie (p k, k =, 1,...) Takie procesy s a złożonymi procesami Poissona. Podstawowym założeniem o wielkościach zgłaszanych szkód w portfelu jest to, iż tworz a one ci ag X 1, X 2,... niezależnych zmiennych losowych o jednakowych rozkładach. W zasadzie każda dystrybuanta skoncentrowana na [, ) może być użyta do określenia rozkładu wielkości szkód, jednakże czȩsto odróżnia siȩ dystrubuanty o lekkich i cieżkich ogonach. Dystrybuanty o lekkich ogonach s a asymptotycznie równoważne rozkładowi wykładniczemu. Dystrybuanty o ciȩzkich ogonach służ a do modelowania szkód, które mog a osi agać wartości relatywnie bardzo duże z istotnymi prawdopodobieństwami (tak jak siȩ zdarza w przypadku portfeli ubezpieczeń od pożarów). Typowym rozkładem ciȩżkoogonowym używanym w praktyce jest rozkład Pareto. Łatwo wyobrazić sobie sytuacje, w których proces zgłoszeń (N(t), t > ) i ci ag wielkości zgłaszanych szkód (X n, n = 1, 2,...) s a zależne, jak na przykład w przypadku szkód wynikaj acych z wypadków drogowych, kiedy to intensywność zgłoszeń jak również rozmiar szkód zależ a od warunków drogowych zwi azanych z por a roku. Obliczenie rozkładu całkowitej wartości szkód jest w tym przypadku możliwe jedynie w bardzo specjalnych przypadkach. Dlatego przyjmuje siȩ bardzo często, że (N(t), t > ) oraz (X n, n = 1, 2,...) s a niezależne. Nawet przy tym założeniu wyliczenie rozkładu S(t) nie jest łatwym zadaniem. Podstawowym wzorem w tym przypadku jest P (S(t) x) = i= P (N(t) = i)fx i(x), gdzie F X (x) = P (X 1 x). Jak widzimy potrzebne s a sploty FX i, dla których proste wzory s a znane jedynie w nielicznych przypadkach. Z tego powodu musimy zdać siȩ czȩsto na aproksymacje. W przypadku, gdy liczba zgłoszeń jest duża a rozkłady maj a skończone wariancje można bȩdzie zastosować Centralne Twierdzenie Graniczne (CTG) i wtedy x ES(t) P (S(t) x) Φ( ). Aproksymacja tego rodzaju jest bardzo niedokładna, gdy (V ars(t)) 1/2 tylko niewielka ilość szkód wyznacza wartość całego portfela (tak jak w przypadku szkód o ciȩżkich ogonach). Wyznaczenie dobrych aproksymacji w takich przypadkach jest bardzo trudne. Użyliśmy oznaczenia H(t) dla oznaczenia wielkości składek zebranych w portfelu do chwili t. Zwykle składki pobierane s a raz do roku od indywidualnych posiadaczy polis, jednakże wygodniej jest założyc, iż napływ składek odbywa siȩ jednorodnie w ciagu całego roku. Wy- k

15 15 znaczenie wielkości H(t) jest jedn a z niewielu rzeczy na jakie może wpłyn ać ubezpieczaj acy i musi być dokonane w taki sposób, aby pokryć zobowi azania w portfelu wynikaj ace ze zgłaszanych szkód. Z drugiej strony zawyżanie wysokości składek jest ograniczane konkurencj a na rynku ubezpieczeń. Najbardziej popularn a form a składki jest H(t) = (1 + θ)en(t)ex, dla pewnej stałej θ odzwierciedlajacej narzut gwarantuj acy bezpieczeństwo działania (safety loading). Taki sposób naliczania składki nie odzwieciedla losowej zmienności portfela, dlatego alternatywnie używa siȩ wzorów uwzglȩdniaj acych wariancje składowych zmiennych losowych. Jeszcze innym aspektem w trakcie naliczania składek jest fakt, że nie wszyscy indywidualni posiadacze polis w danym portfelu powinni płacić składki w tej samej wysokości oraz składki powinny zależeć od historii indywidualnej polisy. Rezerwa kapitału R(t) = u + H(t) S(t) przybiera szczególnie prost a postać, gdy przyjmiemy iż parametr czasu przebiega zbiór liczb naturalnych. Oznaczaj ac wtedy przez H n składki zebrane w n jednostkach czasu oraz przez S n sumaryczne szkody zgłoszone w n jednostkach czasu otrzymujemy rezerwȩ w n tej chwili R n = u + H n S n (przyjmujemy S =, H = ). Przy dodatkowym założeniu, że przyrosty H n H n 1 oraz S n S n 1 s a wzajemnie niezależne dla n = 2, 3,..., otrzymujemy ci ag (R n, n =, 1, 2,...) zwany bł adzeniem losowym (random walk). Ogólnie trajektorie przebiegu w czasie wartości R(t) obrazuj a zachowanie siȩ losowego procesu, w którym trend dodatni reprezentuje H(t),a trend ujemny S(t). Przedmiotem intensywnych badań teoretycznych jest tak zwane prawdopodobieństwo ruiny w procesie (R(t), t > ). Jesli przez τ = inf{t > : R(t) < } oznaczymy pierwsz a chwilȩ, gdy rezerwa przyjmie wartość ujemn a (tak zwana chwila ruiny), to prawdopodobieństwem ruiny jest ψ(u) = P (τ < ). W przypadku, gdy wielkości szkód maj a rozkład lekkoogonowy, można podać aproksymacje i ograniczenia na ψ(u) (bȩd a to wzory oparte o funkcjȩ wykładnicz a). W przypadku ciȩżkich ogonów aproksymacje istniej a dla tak zwanych rozkładów podwykładniczych (subexponential). Ostatnim zagadnieniem omówionym w tym wprowadzeniu bȩdzie reasekuracja. Reasekuracja jest podstawow a aktywności a ubezpieczycieli. Firmy ubezpieczeniowe podpisuj a kontrakty reasekuracyjne w celu zmniejszenia szansy na odpowiedzialność za szkody tak duże, że mogłyby zagrozić wypłacalności firmy. Taka sytuacja może nast apić na przykład w sytuacji, gdy zgłoszone zostan a szkody o nadzwyczaj dużej wielkości lub gdy ilość zgłoszeń skumuluje siȩ tworz ac nadzwyczaj duże skupiska lub gdy nastapi a nadzwyczajne zmiany w trakcie zbierania składek (niespodziewana inflacja, nagły wzrost kosztów działania itp.). Reasekuracja zwiȩksza możliwości firmy ubezpieczeniowej i jej elastyczność pozwalaj ac na oferowanie szerszego zakresu usług ubezpieczeniowych. Wiȩkszość ze stosowanych kontraktów reasekuracyjnych mieści siȩ w nastȩpuj acym zbiorze możliwości. Niech Z(t) = S(t) D(t) oznacza czȩść szkód podlegaj acych reasekuracji, gdzie D(t) oznacza wielkość własnej odpowiedzialności firmy (deductible). Oczywiście, firma ubezpieczeniowa za przekazanie odpowiedzialności za Z(t) musi czȩść zebranych składek przekazać firmie reasekuracyjnej. Ta z kolei może post apić podobnie rozpoczynaj ac cały łańcuch reasekuracyjny. Reasekuracja proporcjonalna odpowiada sytuacji, gdy Z(t) = as(t), dla pewnej stałej a (, 1). Reasekuracja excess-loss wynika z zasady Z(t) = N(t) (X i d) +, gdzie d jest dodatnim poziomem retencji oraz x + = max(, x). Oznacza to, iż do reasekuracji przekazywane s a sumaryczne nadwyżki indywidualnych szkód ponad poziom retencji d.

16 16 ROZDZIAŁ 1. WPROWADZENIE Taki kontrakt, przy dużej ilości zgłoszeń prowadzi do dużych kosztów administracyjnych. Reasekuracja stop-loss wyznaczona jest przez Z(t) = (S(t) D) +, dla poziomu retencji D wyznaczonego dla całego portfela. Taka reasekuracja zabezpiecza przed nadzwyczaj duż a ilości a niewielkich szkód. Istniej a liczne inne sposby reasekuracji oraz ich kombinacje, jednakże ze wzgladu na ich złożoność nie s a powszechnie akceptowane.

17 Rozdział 2 Rozkłady wielkości portfela Portfelem nazywamy zbiór ryzyk X = {X 1,..., X N } określonego typu, które są zmiennymi losowymi. Podstawow a wielkości a zwi azan a z portfelem jest wielkość portfela, czyli suma zmiennych losowych składaj acych siȩ na portfel S N = X X N. Mówimy o modelu prostym, gdy N jest ustaloną liczbą. Gdy S = X X N, gdzie N jest zmienn a losow a całkowitoliczbow a, to mówimy o modelu złożonym. Podstawowym założeniem jest to, że zmienne losowe (X i ) 1 i N s a niezależne oraz N jest niezależne od (X i ) i Rozkład wielkości portfela w modelu prostym Dla prostoty przyjmijmy najpierw N = 2 oraz X 1 = X, X 2 = Y, wtedy S := S 2 = X + Y gdzie X, Y s a niezależnymi indywidualnymi szkodami. Przyjmijmy na chwilȩ założenie, że X, Y przyjmuj a jedynie wartości ze zbioru liczb naturalnych N = {, 1,...} z prawdopodobieństwami P (X = i) = f X (i), P (Y = i) = f Y (i), i N. Przyjmujemy f X (s) = f Y (s) = dla s / N. Stosuj ac wzór na prawdopodobieństwo całkowite, dla s R otrzymujemy F S (s) = P (S s) = P (X + Y s Y = i)p (Y = i) = P (X s i Y = i)p (Y = i). i= Korzystaj ac z niezależności X i Y otrzymujemy F S (s) = F X (s i)f Y (i) (2.1.1) i= oraz f S (s) = f X (s i)f Y (i). (2.1.2) 17

18 18 ROZDZIAŁ 2. ROZKŁADY WIELKOŚCI PORTFELA Zauważmy, że wartości f S (s) mogą być dodatnie jedynie dla s N, dla s spoza zbioru N są równe. Tak samo możemy argumentować w celu otrzymania wzorów w przypadku, gdy zmienne losowe przyjmują wartości w dowolnym przeliczalnym zbiorze kratowym {d i : i Z}, gdzie d > (zmienne losowe o rozkładach kratowych). Ustawiając dopuszczalne wartości zmiennych w ciąg, załóżmy, że X, Y przyjmują przeliczaln a ilość wartości y 1, y 2,..., ze zbioru {d i : i Z} z dodatnimi prawdopodobieństwami f X (y i ) i f Y (y i ), odpowiednio. Otrzymujemy wtedy dla s R oraz F S (s) = F X (s y i )f Y (y i ) (2.1.3) f S (s) = f X (s y i )f Y (y i ). (2.1.4) Mówimy, że dystrybuanta F S jest splotem F X i F Y i oznaczamy F S (s) = F X F Y (s). Podobnie dla funkcji prawdopodobieństwa oznaczamy f S (s) = f X f Y (s) jeśli zachodzi (2.1.4). Wygodnie jest wprowadzić oznaczenia na potęgi splotowe. fx 2 = f X f X oraz fx n = f (n 1) X f X, dla n 1. Dla n =, fx (s) = I {}(s), FX (s) = I [, )(s). Dla zmiennych X, Y typu absolutnie ci agłego, czyli dla dystrybuant postaci F X (s) = s f X(x)dx, F Y (s) = s f Y (x)dx, dla s R można zastosować analogiczne rozumowanie używając ogólnych prawdopodobieństw warunkowych. Można też zastosować inne metody. Metoda I. Przejście graniczne. Niech dla n 1, Y (n) będzie zmienną losową przyjmującą wartości w zbiorze { 1 2 i : i Z}, zdefiniowaną przez Y (n) = n i Z i 2 I n { i 2 n Y < i+1 2 n }. Funkcja prawdopodobieństwa tej zmiennej jest określona przez P (Y (n) = i 2 ) = F n Y ( i+1 2 ) F n Y ( i 2 ). n Stosując (2.1.3) otrzymujemy F X+Y (n)(s) = i Z = = F X (s i 2 n )f Y (n)( i 2 n ) i Z i Z F X (s i 2 n )(F Y ( i n ) F Y ( i 2 n )) F X (s i 2 n )f Y (ξ i,n ) 1 2 n, dla pewnych ξ i,n [ i 2, i+1 n 2 ) wybranych na podstawie twierdzenia o wartości średniej. Przechodząc w ostatniej równości z n, z lewej strony mamy F X+Y (n)(s) n F X+Y (s), n bo zbieżność zmiennych losowych (prawie wszędzie) pociąga zbieżność dystrybuant (tutaj dystrybuanta graniczna jest ciągła). Z prawej strony ostatniej równości mamy sumę aproksymacyjną całki Riemanna, więc otrzymujemy w granicy

19 2.1. ROZKŁAD WIELKOŚCI PORTFELA W MODELU PROSTYM 19 F S (s) = oraz różniczkując f S (s) = F X (s y)f Y (y)dy = F X F Y (s) (2.1.5) f X (s y)f Y (y)dy = f X f Y (s). (2.1.6) Metoda II. Wartość oczekiwana. Dla pary zmiennych losowych X, Y o rozkładach absolutnie ciągłych możemy użyć następującego lematu (który natychmiast można uogólnić na większą liczbę zmiennych). Lemat Niech X, Y będą zmiennymi losowymi o łącznej dystrybuancie wtedy F (X,Y ) (x, y) = P (X x, Y y) = E(ψ(X, Y )) = gdzie ψ : R 2 R jest dowolną mierzalną funkcją. x y f (X,Y ) (x, y)dydx, ψ(x, y)f (X,Y ) (x, y)dydx, Dowód. Dla ψ(x, y) = I (,x] (,y] (x, y), teza wynika natychmiast z równości E(I (,x] (,y] (X, Y )) = P (X x, Y y) i z założenia lematu. Ponieważ dowolna funkcja ψ może być przybliżona kombinacjami liniowymi indykatorów takiej postaci, teza jest natychmiastowa. Przyjmując teraz ψ(x, y) = I {x+y s} (x, y) otrzymujemy z powyższego lematu P (X + Y s) = = I {x+y s} (x, y)f (X,Y ) (x, y)dydx I {x+y s} (x, y)f X (x)f Y (y)dxdy, gdzie ostatnia równość wynika z niezależności zmiennych X, Y. Ponieważ I {x+y s} (x, y) = I {x s y} (x) otrzymujemy (2.1.5). Przykład Niech X ma gȩstość f X (x) = 1 2 I (,2)(x) oraz niezależnie, Y ma gȩstość f Y (x) = 1 3 I (,3)(x). Wtedy ze wzoru (2.1.5) 1 dla s 5 1 (5 s)2 12 dla 3 s < 5 F S (s) = s 1 3 dla 2 s < 3. s 2 12 dla s < 2 dla s <

20 2 ROZDZIAŁ 2. ROZKŁADY WIELKOŚCI PORTFELA Rzeczywiście, mamy dla < x < 2, F X (x) = x f X(u)du =.5 x du =.5x, a st ad dla x F X (x) =.5x dla < x < 2. 1 dla x 2 Dla s < 2 dostajemy F S (s) = s 1 2 (s y)1 3 dy = 1 12 s2. Dla 2 s < 3 mamy: jeżeli s y > 2 (czyli < y < s 2), to F X (s y) = 1. Jeżeli < s y < 2 (czyli s 2 < y < s), to F X (s y) = 1 2 (s y), st ad F S (s) = = 1 3 s 2 s 2 = s s 3 I (,3)(y)dy + dy + s s 2 Dla 3 s < 5, podobnie jak wyżej, F S (s) = = = s 2 s 2 s 2 = 1 s (s y)1 3 dy 1 2 (s y)1 3 I (,3)(y)dy I (,3)(y)dy dy + 1 (s y) 2 3 I (,3) (s 2,s)(y)dy dy (s y) s dy (5 s)2. 12 I (s 2,s) (y) 1 1 (s y) 2 3 I (,3)(y)dy Ten sam wynik otrzymamy licząc wielkości odpowiednich pól na rysunku przedstawiającym łączną gęstość (tak jak na wykładzie). Niech X będzie zmienną o rozkładzie mieszanym, tzn. F X (s) = αfx d (s)+(1 α)f X c (s), dla pewnego α (, 1), gdzie FX d jest częścią dyskretną dystrybuanty F X, a FX c jest częścią absolutnie ciagłą dystrybuanty F X. Niech Y będzie zmienną o rozkładzie mieszanym, tzn. F Y (s) = βfy d (s) + (1 β)f Y c (s), dla pewnego β (, 1), gdzie F Y d (s) = i P (Y = y i )I [yi, )(s) jest częścią dyskretną dystrybuanty F Y, a FY c (s) = s f Y c (y)dy jest częścią absolutnie ciagłą dystrybuanty F Y. Wygodnie jest wprowadzić ogólne oznaczenie na splot dystrybuant następująco, F X F Y (s) = F X (s y)df Y (y),

Matematyka ubezpieczeń maj atkowych i osobowych (MUMIO)

Matematyka ubezpieczeń maj atkowych i osobowych (MUMIO) Matematyka ubezpieczeń maj atkowych i osobowych (MUMIO) Ryszard Szekli WYKŁAD (Uniwersytet Wrocławski -2012/2013) 2 Rozdział 1 Rozkłady wielkości portfela Portfel: X = {X 1,..., X N } zmienne niezależne

Bardziej szczegółowo

Zadanie 1. Zmienne losowe X 1, X 2 są niezależne i mają taki sam rozkład z atomami:

Zadanie 1. Zmienne losowe X 1, X 2 są niezależne i mają taki sam rozkład z atomami: Zadanie 1. Zmienne losowe X 1, X 2 są niezależne i mają taki sam rozkład z atomami: Pr(X 1 = 0) = 6/10, Pr(X 1 = 1) = 1/10, i gęstością: f(x) = 3/10 na przedziale (0, 1). Wobec tego Pr(X 1 + X 2 5/3) wynosi:

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych 1.10.2012 r.

Matematyka ubezpieczeń majątkowych 1.10.2012 r. Zadanie. W pewnej populacji każde ryzyko charakteryzuje się trzema parametrami q, b oraz v, o następującym znaczeniu: parametr q to prawdopodobieństwo, że do szkody dojdzie (może zajść co najwyżej jedna

Bardziej szczegółowo

Rok akademicki: 2013/2014 Kod: AMA-2-311-MN-s Punkty ECTS: 6. Kierunek: Matematyka Specjalność: Matematyka w naukach technicznych i przyrodniczych

Rok akademicki: 2013/2014 Kod: AMA-2-311-MN-s Punkty ECTS: 6. Kierunek: Matematyka Specjalność: Matematyka w naukach technicznych i przyrodniczych Nazwa modułu: teoria ryzyka Rok akademicki: 2013/2014 Kod: AMA-2-311-MN-s Punkty ECTS: 6 Wydział: Matematyki Stosowanej Kierunek: Matematyka Specjalność: Matematyka w naukach technicznych i przyrodniczych

Bardziej szczegółowo

Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe.

Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Rachunek prawdopodobieństwa MAP3040 WPPT FT, rok akad. 2010/11, sem. zimowy Wykładowca: dr hab. Agnieszka Jurlewicz Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Warunkowa wartość oczekiwana.

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych 6.04.2009 r.

Matematyka ubezpieczeń majątkowych 6.04.2009 r. Matematyka ubezpieczeń majątkowych 6.04.009 r. Zadanie. Niech N oznacza liczbę szkód zaszłych w ciągu roku z pewnego ubezpieczenia z czego: M to liczba szkód zgłoszonych przed końcem tego roku K to liczba

Bardziej szczegółowo

Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów.

Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów. Rachunek prawdopodobieństwa MAP1181 Wydział PPT, MS, rok akad. 213/14, sem. zimowy Wykładowca: dr hab. Agnieszka Jurlewicz Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów.

Bardziej szczegółowo

Przegląd ważniejszych rozkładów

Przegląd ważniejszych rozkładów Przegląd ważniejszych rozkładów Rozkład dwupunktowy P (X = x) = { p dla x = a, 1 p dla x = b, to zmienna losowa X ma rozkład dwupunktowy z parametrem p (0 < p < 1). Rozkład ten pojawia się przy opisie

Bardziej szczegółowo

LIV Egzamin dla Aktuariuszy z 4 października 2010 r. Część III

LIV Egzamin dla Aktuariuszy z 4 października 2010 r. Część III Komisja Egzaminacyjna dla Aktuariuszy LIV Egzamin dla Aktuariuszy z 4 października 2010 r. Część III Matematyka ubezpieczeń majątkowych Imię i nazwisko osoby egzaminowanej:. Czas egzaminu: 100 minut Komisja

Bardziej szczegółowo

TEORIA RYZYKA. Ryszard Szekli

TEORIA RYZYKA. Ryszard Szekli TEORIA RYZYKA Ryszard Szekli Skrypt do wykładu - Uniwersytet Wrocławski -22/23 2 Spis treści Wprowadzenie 5 3 Prawdopodobieństwo ruiny: czas dyskretny 3. Proces ryzyka jako błądzenie losoweprawdopodobieństwo

Bardziej szczegółowo

Proces Poissona. Proces {N(t), t 0} nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t.

Proces Poissona. Proces {N(t), t 0} nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t. Procesy stochastyczne WYKŁAD 5 Proces Poissona. Proces {N(t), t } nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t. Proces zliczający musi

Bardziej szczegółowo

III. ZMIENNE LOSOWE JEDNOWYMIAROWE

III. ZMIENNE LOSOWE JEDNOWYMIAROWE III. ZMIENNE LOSOWE JEDNOWYMIAROWE.. Zmienna losowa i pojęcie rozkładu prawdopodobieństwa W dotychczas rozpatrywanych przykładach każdemu zdarzeniu była przyporządkowana odpowiednia wartość liczbowa. Ta

Bardziej szczegółowo

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej 7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej Definicja 1 n-elementowa losowa próba prosta nazywamy ciag n niezależnych zmiennych losowych o jednakowych rozkładach

Bardziej szczegółowo

R ozkład norm alny Bardzo często używany do modelowania symetrycznych rozkładów zmiennych losowych ciągłych

R ozkład norm alny Bardzo często używany do modelowania symetrycznych rozkładów zmiennych losowych ciągłych R ozkład norm alny Bardzo często używany do modelowania symetrycznych rozkładów zmiennych losowych ciągłych Przykłady: Błąd pomiarowy Wzrost, wydajność Temperatura ciała Zawartość różnych składników we

Bardziej szczegółowo

Zadania o numerze 4 z zestawów licencjat 2014.

Zadania o numerze 4 z zestawów licencjat 2014. Zadania o numerze 4 z zestawów licencjat 2014. W nawiasie przy zadaniu jego występowanie w numerze zestawu Spis treści (Z1, Z22, Z43) Definicja granicy ciągu. Obliczyć granicę:... 3 Definicja granicy ciągu...

Bardziej szczegółowo

Z Wikipedii, wolnej encyklopedii.

Z Wikipedii, wolnej encyklopedii. Rozkład normalny Rozkład normalny jest niezwykle ważnym rozkładem prawdopodobieństwa w wielu dziedzinach. Nazywa się go także rozkładem Gaussa, w szczególności w fizyce i inżynierii. W zasadzie jest to

Bardziej szczegółowo

1. Ubezpieczenia życiowe

1. Ubezpieczenia życiowe 1. Ubezpieczenia życiowe Przy ubezpieczeniach życiowych mamy do czynienia z jednorazową wypłatą sumy ubezpieczenia. Moment jej wypłaty i wielkość wypłaty może być funkcją zmiennej losowej T a więc czas

Bardziej szczegółowo

ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 1 Wprowadzajacy

ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 1 Wprowadzajacy Wst ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 1 Wprowadzajacy 1 Matematyka aktuarialna 1. matematyka w ubezpieczeniach, 2. dok ladniej, matematyka ubezpieczeń na życie, 3. czasami szerzej,

Bardziej szczegółowo

Rachunek prawdopodobieństwa - Teoria - Przypomnienie.. A i B są niezależne, gdy P(A B) = P(A)P(B). P(A B i )P(B i )

Rachunek prawdopodobieństwa - Teoria - Przypomnienie.. A i B są niezależne, gdy P(A B) = P(A)P(B). P(A B i )P(B i ) Rachunek prawdopodobieństwa - Teoria - Przypomnienie Podstawy Definicja 1. Schemat klasyczny - wszystkie zdarzenia elementarne są równo prawdopodobne, licząc prawdopodobieństwo liczymy stosunek liczby

Bardziej szczegółowo

Matematyka finansowa 26.05.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r. Część I

Matematyka finansowa 26.05.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r. Część I Komisja Egzaminacyjna dla Aktuariuszy LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Przyjmijmy

Bardziej szczegółowo

4. Ubezpieczenie Życiowe

4. Ubezpieczenie Życiowe 4. Ubezpieczenie Życiowe Składka ubezpieczeniowa musi brać pod uwagę następujące czynniki: 1. Kwotę wypłaconą przy śmierci ubezpieczonego oraz jej wartość aktualną. 2. Rozkład czasu do śmierci ubezpieczonego

Bardziej szczegółowo

ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH

ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH 1 ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH WFAiS UJ, Informatyka Stosowana II stopień studiów 2 Wnioskowanie statystyczne dla zmiennych numerycznych Porównywanie dwóch średnich Boot-strapping Analiza

Bardziej szczegółowo

ODRZUCANIE WYNIKÓW POJEDYNCZYCH POMIARÓW

ODRZUCANIE WYNIKÓW POJEDYNCZYCH POMIARÓW ODRZUCANIE WYNIKÓW OJEDYNCZYCH OMIARÓW W praktyce pomiarowej zdarzają się sytuacje gdy jeden z pomiarów odstaje od pozostałych. Jeżeli wykorzystamy fakt, że wyniki pomiarów są zmienną losową opisywaną

Bardziej szczegółowo

Instytut Matematyczny Uniwersytet Wrocławski. Zakres egzaminu magisterskiego. Wybrane rozdziały anazlizy i topologii 1 i 2

Instytut Matematyczny Uniwersytet Wrocławski. Zakres egzaminu magisterskiego. Wybrane rozdziały anazlizy i topologii 1 i 2 Instytut Matematyczny Uniwersytet Wrocławski Zakres egzaminu magisterskiego Wybrane rozdziały anazlizy i topologii 1 i 2 Pojęcia, fakty: Definicje i pojęcia: metryka, iloczyn skalarny, norma supremum,

Bardziej szczegółowo

istocie dziedzina zajmująca się poszukiwaniem zależności na podstawie prowadzenia doświadczeń jest o wiele starsza: tak na przykład matematycy

istocie dziedzina zajmująca się poszukiwaniem zależności na podstawie prowadzenia doświadczeń jest o wiele starsza: tak na przykład matematycy MODEL REGRESJI LINIOWEJ. METODA NAJMNIEJSZYCH KWADRATÓW Analiza regresji zajmuje się badaniem zależności pomiędzy interesującymi nas wielkościami (zmiennymi), mające na celu konstrukcję modelu, który dobrze

Bardziej szczegółowo

Matematyka finansowa 04.04.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r. Część I

Matematyka finansowa 04.04.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r. Część I Komisja Egzaminacyjna dla Aktuariuszy LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

ROZPORZĄDZENIE MINISTRA FINANSÓW 1) z dnia 2 listopada 2010 r.

ROZPORZĄDZENIE MINISTRA FINANSÓW 1) z dnia 2 listopada 2010 r. 1409 ROZPORZĄDZENIE MINISTRA FINANSÓW 1) z dnia 2 listopada 2010 r. w sprawie zakresu informacji zawartych w rocznym raporcie o stanie portfela ubezpieczeń i reasekuracji zakładu ubezpieczeń Na podstawie

Bardziej szczegółowo

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

Rozkłady zmiennych losowych

Rozkłady zmiennych losowych Rozkłady zmiennych losowych Wprowadzenie Badamy pewną zbiorowość czyli populację pod względem występowania jakiejś cechy. Pobieramy próbę i na podstawie tej próby wyznaczamy pewne charakterystyki. Jeśli

Bardziej szczegółowo

Warszawa, dnia 30 grudnia 2015 r. Poz. 2321 ROZPORZĄDZENIE MINISTRA FINANSÓW 1) z dnia 23 grudnia 2015 r.

Warszawa, dnia 30 grudnia 2015 r. Poz. 2321 ROZPORZĄDZENIE MINISTRA FINANSÓW 1) z dnia 23 grudnia 2015 r. DZIENNIK USTAW RZECZYPOSPOLITEJ POLSKIEJ Warszawa, dnia 30 grudnia 2015 r. Poz. 2321 ROZPORZĄDZENIE MINISTRA FINANSÓW 1) z dnia 23 grudnia 2015 r. w sprawie szczegółowego sposobu obliczania podstawowego

Bardziej szczegółowo

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com Analiza korelacji i regresji KORELACJA zależność liniowa Obserwujemy parę cech ilościowych (X,Y). Doświadczenie jest tak pomyślane, aby obserwowane pary cech X i Y (tzn i ta para x i i y i dla różnych

Bardziej szczegółowo

K wartość kapitału zaangażowanego w proces produkcji, w tys. jp.

K wartość kapitału zaangażowanego w proces produkcji, w tys. jp. Sprawdzian 2. Zadanie 1. Za pomocą KMNK oszacowano następującą funkcję produkcji: Gdzie: P wartość produkcji, w tys. jp (jednostek pieniężnych) K wartość kapitału zaangażowanego w proces produkcji, w tys.

Bardziej szczegółowo

Inwestycje finansowe. Wycena obligacji. Stopa zwrotu z akcji. Ryzyko.

Inwestycje finansowe. Wycena obligacji. Stopa zwrotu z akcji. Ryzyko. Inwestycje finansowe Wycena obligacji. Stopa zwrotu z akcji. yzyko. Inwestycje finansowe Instrumenty rynku pieniężnego (np. bony skarbowe). Instrumenty rynku walutowego. Obligacje. Akcje. Instrumenty pochodne.

Bardziej szczegółowo

Immunizacja ryzyka stopy procentowej ubezpieczycieli życiowych

Immunizacja ryzyka stopy procentowej ubezpieczycieli życiowych Immunizacja ryzyka stopy procentowej ubezpieczycieli życiowych Elżbieta Krajewska Instytut Matematyki Politechnika Łódzka Elżbieta Krajewska Immunizacja ubezpieczycieli życiowych 1/22 Plan prezentacji

Bardziej szczegółowo

LXX Egzamin dla Aktuariuszy z 23 marca 2015 r.

LXX Egzamin dla Aktuariuszy z 23 marca 2015 r. Komisja Egzaminacyjna dla Aktuariuszy LXX Egzamin dla Aktuariuszy z 23 marca 2015 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,

Bardziej szczegółowo

System bonus-malus z mechanizmem korekty składki

System bonus-malus z mechanizmem korekty składki System bonus-malus z mechanizmem korekty składki mgr Kamil Gala Ubezpieczeniowy Fundusz Gwarancyjny dr hab. Wojciech Bijak, prof. SGH Ubezpieczeniowy Fundusz Gwarancyjny, Szkoła Główna Handlowa Zagadnienia

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący

Bardziej szczegółowo

ROZPORZĄDZENIE MINISTRA FINANSÓW 1) z dnia 28 listopada 2003 r.

ROZPORZĄDZENIE MINISTRA FINANSÓW 1) z dnia 28 listopada 2003 r. Dz.U.03.211.2060 ROZPORZĄDZENIE MINISTRA FINANSÓW 1) z dnia 28 listopada 2003 r. w sprawie sposobu wyliczenia wysokości marginesu wypłacalności oraz minimalnej wysokości kapitału gwarancyjnego dla działów

Bardziej szczegółowo

ANALIZA STATYSTYCZNA WYNIKÓW BADAŃ

ANALIZA STATYSTYCZNA WYNIKÓW BADAŃ ANALIZA STATYSTYCZNA WYNIKÓW BADAŃ Dopasowanie rozkładów Dopasowanie rozkładów- ogólny cel Porównanie średnich dwóch zmiennych 2 zmienne posiadają rozkład normalny -> test parametryczny (t- studenta) 2

Bardziej szczegółowo

STATYSTYKA wykład 5-6

STATYSTYKA wykład 5-6 TATYTYKA wykład 5-6 Twierdzenia graniczne Rozkłady statystyk z próby Wanda Olech Twierdzenia graniczne Jeżeli rozpatrujemy ciąg zmiennych losowych {X ; X ;...; X n }, to zdarza się, że ich rozkłady przy

Bardziej szczegółowo

Inne kryteria tworzenia portfela. Inne kryteria tworzenia portfela. Poziom bezpieczeństwa. Analiza i Zarządzanie Portfelem cz. 3. Dr Katarzyna Kuziak

Inne kryteria tworzenia portfela. Inne kryteria tworzenia portfela. Poziom bezpieczeństwa. Analiza i Zarządzanie Portfelem cz. 3. Dr Katarzyna Kuziak Inne kryteria tworzenia portfela Analiza i Zarządzanie Portfelem cz. 3 Dr Katarzyna Kuziak. Minimalizacja ryzyka przy zadanym dochodzie Portfel efektywny w rozumieniu Markowitza odchylenie standardowe

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA Zadanie 0.1 Zmienna losowa X ma rozkład określony funkcją prawdopodobieństwa: x k 0 4 p k 1/3 1/6 1/ obliczyć EX, D X. (odp. 4/3;

Bardziej szczegółowo

Spis treści. Ze świata biznesu... 13. Przedmowa do wydania polskiego... 15. Wstęp... 19

Spis treści. Ze świata biznesu... 13. Przedmowa do wydania polskiego... 15. Wstęp... 19 Spis treści Ze świata biznesu............................................................ 13 Przedmowa do wydania polskiego.............................................. 15 Wstęp.......................................................................

Bardziej szczegółowo

EGZAMIN MAGISTERSKI, czerwiec 2014 Matematyka w ekonomii i ubezpieczeniach

EGZAMIN MAGISTERSKI, czerwiec 2014 Matematyka w ekonomii i ubezpieczeniach Matematyka w ekonomii i ubezpieczeniach Sprawdź, czy wektor x 0 = (0,5,,0,0) jest rozwiązaniem dopuszczalnym zagadnienia programowania liniowego: Zminimalizować 3x 1 +x +x 3 +4x 4 +6x 5, przy ograniczeniach

Bardziej szczegółowo

Metody niedyskontowe. Metody dyskontowe

Metody niedyskontowe. Metody dyskontowe Metody oceny projektów inwestycyjnych TEORIA DECYZJE DŁUGOOKRESOWE Budżetowanie kapitałów to proces, który ma za zadanie określenie potrzeb inwestycyjnych przedsiębiorstwa. Jest to proces identyfikacji

Bardziej szczegółowo

KURS DORADCY FINANSOWEGO

KURS DORADCY FINANSOWEGO KURS DORADCY FINANSOWEGO Przykładowy program szkolenia I. Wprowadzenie do planowania finansowego 1. Rola doradcy finansowego Definicja i cechy doradcy finansowego Oczekiwania klienta Obszary umiejętności

Bardziej szczegółowo

KADD Metoda najmniejszych kwadratów funkcje nieliniowe

KADD Metoda najmniejszych kwadratów funkcje nieliniowe Metoda najmn. kwadr. - funkcje nieliniowe Metoda najmniejszych kwadratów Funkcje nieliniowe Procedura z redukcją kroku iteracji Przykłady zastosowań Dopasowanie funkcji wykładniczej Dopasowanie funkcji

Bardziej szczegółowo

Plan wynikowy. Klasa III Technik pojazdów samochodowych/ Technik urządzeń i systemów energetyki odnawialnej. Kształcenie ogólne w zakresie podstawowym

Plan wynikowy. Klasa III Technik pojazdów samochodowych/ Technik urządzeń i systemów energetyki odnawialnej. Kształcenie ogólne w zakresie podstawowym Oznaczenia: wymagania konieczne, P wymagania podstawowe, R wymagania rozszerzające, D wymagania dopełniające, W wymagania wykraczające. Plan wynikowy lasa III Technik pojazdów samochodowych/ Technik urządzeń

Bardziej szczegółowo

Metody oceny ryzyka operacyjnego

Metody oceny ryzyka operacyjnego Instytut Matematyki i Informatyki Wrocław, 10 VII 2009 Bazylejski Komitet Nadzoru Bankowego Umowa Kapitałowa - 1988 Opracowanie najlepszych praktyk rynkowych w zakresie zarządzania ryzykiem Nowa Umowa

Bardziej szczegółowo

RACHUNEK PRAWDOPODOBIEŃSTWA A.

RACHUNEK PRAWDOPODOBIEŃSTWA A. RACHUNEK PRAWDOPODOBIEŃSTWA A. Semestr letni 2014. Poniedziałki 12:15-15:00, sala HS. Wykładowca: Ryszard Szekli, pok. 514, konsultacje: poniedziałki 10-12, terminy egzaminów: I termin 18.06.2014, (ŚRODA)

Bardziej szczegółowo

Proces Poissona. Wykład 4. 4.1 Proces zliczajacy

Proces Poissona. Wykład 4. 4.1 Proces zliczajacy Wykład 4 roces oissona 4.1 roces zliczajacy roces stochastyczny {N t ;t } nazywamy zliczaj acym, gdy N t jest równe całkowitej ilości zdarzeń które zdarzyły się do momentu t. rzekładami procesów zliczajacychn

Bardziej szczegółowo

Audit&Consulting services Katarzyna Kędziora. Wielowymiarowość zasad rachunkowości finansowej zakładów ubezpieczeń

Audit&Consulting services Katarzyna Kędziora. Wielowymiarowość zasad rachunkowości finansowej zakładów ubezpieczeń Wielowymiarowość zasad rachunkowości finansowej zakładów www.acservices.pl Warszawa, 24.10.2013r. Agenda 1. Źródła przepisów prawa (PSR, MSSF, UE, podatki, Solvency II) 2. Przykłady różnic w ewidencji

Bardziej szczegółowo

Metody numeryczne. materiały do wykładu dla studentów

Metody numeryczne. materiały do wykładu dla studentów Metody numeryczne materiały do wykładu dla studentów 4. Wartości własne i wektory własne 4.1. Podstawowe definicje, własności i twierdzenia 4.2. Lokalizacja wartości własnych 4.3. Metoda potęgowa znajdowania

Bardziej szczegółowo

Analiza przeżycia. Wprowadzenie

Analiza przeżycia. Wprowadzenie Wprowadzenie Przedmiotem badania analizy przeżycia jest czas jaki upływa od początku obserwacji do wystąpienia określonego zdarzenia, które jednoznacznie kończy obserwację na danej jednostce. Analiza przeżycia

Bardziej szczegółowo

Maria Romanowska UDOWODNIJ, ŻE... PRZYKŁADOWE ZADANIA MATURALNE Z MATEMATYKI

Maria Romanowska UDOWODNIJ, ŻE... PRZYKŁADOWE ZADANIA MATURALNE Z MATEMATYKI Maria Romanowska UDOWODNIJ, ŻE... PRZYKŁADOWE ZADANIA MATURALNE Z MATEMATYKI Matematyka dla liceum ogólnokształcącego i technikum w zakresie podstawowym i rozszerzonym Z E S Z Y T M E T O D Y C Z N Y Miejski

Bardziej szczegółowo

4 Kilka klas procesów

4 Kilka klas procesów Marek Beśka, Całka Stochastyczna, wykład 4 48 4 Kilka klas procesów 4.1 Procesy rosnące i przestrzenie V,, loc Jak poprzednio niech (Ω, F, F, P ) będzie zupełną bazą stochastyczną. Definicja 4.1 Proces

Bardziej szczegółowo

Matematyka finansowa 03.10.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVIII Egzamin dla Aktuariuszy z 3 października 2011 r.

Matematyka finansowa 03.10.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVIII Egzamin dla Aktuariuszy z 3 października 2011 r. Komisja Egzaminacyjna dla Aktuariuszy LVIII Egzamin dla Aktuariuszy z 3 października 2011 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut

Bardziej szczegółowo

Komisja Egzaminacyjna dla Aktuariuszy LXX Egzamin dla Aktuariuszy z 23 marca 2015 r. Część I Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy LXX Egzamin dla Aktuariuszy z 23 marca 2015 r. Część I Matematyka finansowa Komisja Egzaminacyjna dla Aktuariuszy LXX Egzamin dla Aktuariuszy z 23 marca 2015 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Rozważmy

Bardziej szczegółowo

1 Funkcja użyteczności

1 Funkcja użyteczności 1 Funkcja użyteczności Funkcja użyteczności to funkcja, której wartościami są wartości użyteczności (satysfakcji, komfortu psychicznego). Można mówić o użyteczności różnych zjawisk. Użyteczność pieniądza

Bardziej szczegółowo

1 Zmienne losowe wielowymiarowe.

1 Zmienne losowe wielowymiarowe. 1 Zmienne losowe wielowymiarowe. 1.1 Definicja i przykłady. Definicja1.1. Wektorem losowym n-wymiarowym(zmienna losowa n-wymiarowa )nazywamywektorn-wymiarowy,któregoskładowymisązmiennelosowex i dlai=1,,...,n,

Bardziej szczegółowo

KARTA PRZEDMIOTU. 1. NAZWA PRZEDMIOTU: Ubezpieczenia majątkowe 2. KIERUNEK: MATEMATYKA. 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: III/6

KARTA PRZEDMIOTU. 1. NAZWA PRZEDMIOTU: Ubezpieczenia majątkowe 2. KIERUNEK: MATEMATYKA. 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: III/6 KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Ubezpieczenia majątkowe 2. KIERUNEK: MATEMATYKA 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: III/6 5. LICZBA PUNKTÓW ECTS: 5 6. LICZBA GODZIN: 30 / 30 7.

Bardziej szczegółowo

Statystyczna analiza danych

Statystyczna analiza danych Statystyczna analiza danych Marek Ptak 21 października 2013 Marek Ptak Statystyka 21 października 2013 1 / 70 Część I Wstęp Marek Ptak Statystyka 21 października 2013 2 / 70 LITERATURA A. Łomnicki, Wprowadzenie

Bardziej szczegółowo

Krzysztof Piontek MODELOWANIE I PROGNOZOWANIE ZMIENNOŚCI INSTRUMENTÓW FINANSOWYCH

Krzysztof Piontek MODELOWANIE I PROGNOZOWANIE ZMIENNOŚCI INSTRUMENTÓW FINANSOWYCH Akademia Ekonomiczna im. Oskara Langego we Wrocławiu Wydział Zarządzania i Informatyki Krzysztof Piontek MODELOWANIE I PROGNOZOWANIE ZMIENNOŚCI INSTRUMENTÓW FINANSOWYCH rozprawa doktorska Promotor: prof.

Bardziej szczegółowo

LXIII Egzamin dla Aktuariuszy z 25 marca 2013 r.

LXIII Egzamin dla Aktuariuszy z 25 marca 2013 r. Komisja Egzaminacyjna dla Aktuariuszy LXIII Egzamin dla Aktuariuszy z 25 marca 2013 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,

Bardziej szczegółowo

Zarządzanie portfelem kredytowym w banku w warunkach kryzysu. Dr Agnieszka Scianowska Akademia Humanistyczno-Ekonomiczna w Łodzi

Zarządzanie portfelem kredytowym w banku w warunkach kryzysu. Dr Agnieszka Scianowska Akademia Humanistyczno-Ekonomiczna w Łodzi Zarządzanie portfelem kredytowym w banku w warunkach kryzysu Dr Agnieszka Scianowska Akademia Humanistyczno-Ekonomiczna w Łodzi Założenia Umowy Kapitałowej Przyjętej w 1988r.(Bazylea I) podstawowym wyznacznikiem

Bardziej szczegółowo

Matematyka finansowa 15.06.2015 r. Komisja Egzaminacyjna dla Aktuariuszy. LXXI Egzamin dla Aktuariuszy z 15 czerwca 2015 r.

Matematyka finansowa 15.06.2015 r. Komisja Egzaminacyjna dla Aktuariuszy. LXXI Egzamin dla Aktuariuszy z 15 czerwca 2015 r. Komisja Egzaminacyjna dla Aktuariuszy LXXI Egzamin dla Aktuariuszy z 1 czerwca 201 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Pracownik

Bardziej szczegółowo

Dobre wyniki w trudnych czasach

Dobre wyniki w trudnych czasach Warszawa, 10 marca 2009 roku Wyniki finansowe Grupy PZU w 2008 roku Dobre wyniki w trudnych czasach W 2008 roku Grupa PZU zebrała 21.515,4 mln złotych z tytułu składek ubezpieczeniowych, osiągając zysk

Bardziej szczegółowo

ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 5 Kalkulacja sk ladki netto I

ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 5 Kalkulacja sk ladki netto I Wst ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 5 Kalkulacja sk ladki netto I 1 Kodeks cywilny Tytu l XXVII, Umowa ubezpieczenia Dzia l I. Przepisy ogólne Dzia l II. Ubezpieczenia majatkowe

Bardziej szczegółowo

LIV Egzamin dla Aktuariuszy z 4 października 2010 r.

LIV Egzamin dla Aktuariuszy z 4 października 2010 r. Komisja Egzaminacyjna dla Aktuariuszy LIV Egzamin dla Aktuariuszy z 4 października 2010 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:...klucz odpowiedzi... Czas egzaminu:

Bardziej szczegółowo

Aleksander Adamowski (s1869) zmienn ą losow ą T o rozkładzie wykładniczym o średniej 5 minut.

Aleksander Adamowski (s1869) zmienn ą losow ą T o rozkładzie wykładniczym o średniej 5 minut. Zadanie Statystyczna Analiza Danych - Zadania 6 Aleksander Adamowski (s869) W pewnym biurze czas losowo wybranej rozmowy telefonicznej jest zmienn ą losow ą T o rozkładzie wykładniczym o średniej 5 minut.

Bardziej szczegółowo

Analiza matematyczna - 14. Analiza zmiennych dyskretnych: ciągi i szeregi liczbowe

Analiza matematyczna - 14. Analiza zmiennych dyskretnych: ciągi i szeregi liczbowe Analiza matematyczna - 4. Analiza zmiennych dyskretnych: ciągi i szeregi liczbowe Wstęp: zmienne ciągłe i zmienne dyskretne Podczas dotychczasowych wykładów rozważaliśmy przede wszystkim zależności funkcyjne

Bardziej szczegółowo

Zarządzanie ryzykiem. Opracował: Dr inŝ. Tomasz Zieliński

Zarządzanie ryzykiem. Opracował: Dr inŝ. Tomasz Zieliński Zarządzanie ryzykiem Opracował: Dr inŝ. Tomasz Zieliński I. OGÓLNE INFORMACJE O PRZEDMIOCIE Cel przedmiotu: Celem przedmiotu jest zaprezentowanie studentom podstawowych pojęć z zakresu ryzyka w działalności

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna wykład 1: Indukcja i zależności rekurencyjne Gniewomir Sarbicki Literatura Kenneth A. Ross, Charles R. B. Wright Matematyka Dyskretna PWN 005 J. Jaworski, Z. Palka, J. Szymański Matematyka

Bardziej szczegółowo

Matematyka finansowa 08.01.2007 r. Komisja Egzaminacyjna dla Aktuariuszy. XLI Egzamin dla Aktuariuszy z 8 stycznia 2007 r. Część I

Matematyka finansowa 08.01.2007 r. Komisja Egzaminacyjna dla Aktuariuszy. XLI Egzamin dla Aktuariuszy z 8 stycznia 2007 r. Część I Komisja Egzaminacyjna dla Aktuariuszy XLI Egzamin dla Aktuariuszy z 8 stycznia 2007 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 00 minut . Ile

Bardziej szczegółowo

1. Oblicz prawdopodobieństwo zdarzenia, że noworodek wybrany z populacji, w której śmiertelnością rządzi prawo Gompertza

1. Oblicz prawdopodobieństwo zdarzenia, że noworodek wybrany z populacji, w której śmiertelnością rządzi prawo Gompertza 1. Oblicz prawdopodobieństwo zdarzenia, że noworodek wybrany z populacji, w której śmiertelnością rządzi prawo Gompertza x µ x = 06e. dożyje wieku największej śmiertelności (tzn. takiego wieku, w którym

Bardziej szczegółowo

Papiery wartościowe o stałym dochodzie

Papiery wartościowe o stałym dochodzie Papiery wartościowe o stałym dochodzie Inwestycje i teoria portfela Strona 1 z 42 1. Wartość pieniądza w czasie Złotówka dzisiaj (którą mamy w ręku) jest więcej warta niż (przyrzeczona) złotówka w przyszłości,

Bardziej szczegółowo

Zastosowanie Excela w matematyce

Zastosowanie Excela w matematyce Zastosowanie Excela w matematyce Komputer w dzisiejszych czasach zajmuje bardzo znamienne miejsce. Trudno sobie wyobrazić jakąkolwiek firmę czy instytucję działającą bez tego urządzenia. W szkołach pierwsze

Bardziej szczegółowo

Analiza inwestycji i zarządzanie portfelem SPIS TREŚCI

Analiza inwestycji i zarządzanie portfelem SPIS TREŚCI Analiza inwestycji i zarządzanie portfelem Frank K. Reilly, Keith C. Brown SPIS TREŚCI TOM I Przedmowa do wydania polskiego Przedmowa do wydania amerykańskiego O autorach Ramy książki CZĘŚĆ I. INWESTYCJE

Bardziej szczegółowo

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16 Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III ZAKRES ROZSZERZONY (90 godz.) , x

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III ZAKRES ROZSZERZONY (90 godz.) , x WYMAGANIA EDUACYJNE Z MATEMATYI LASA III ZARES ROZSZERZONY (90 godz.) Oznaczenia: wymagania konieczne (dopuszczający); P wymagania podstawowe (dostateczny); R wymagania rozszerzające (dobry); D wymagania

Bardziej szczegółowo

Algorytmy i bazy danych (wykład obowiązkowy dla wszystkich)

Algorytmy i bazy danych (wykład obowiązkowy dla wszystkich) MATEMATYKA I EKONOMIA PROGRAM STUDIÓW DLA II STOPNIA Data: 2010-11-07 Opracowali: Krzysztof Rykaczewski Paweł Umiński Streszczenie: Poniższe opracowanie przedstawia projekt planu studiów II stopnia na

Bardziej szczegółowo

Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1.

Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1. tel. 44 683 1 55 tel. kom. 64 566 811 e-mail: biuro@wszechwiedza.pl Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: gdzie: y t X t y t = 1 X 1

Bardziej szczegółowo

Wstęp do analitycznych i numerycznych metod wyceny opcji

Wstęp do analitycznych i numerycznych metod wyceny opcji Wstęp do analitycznych i numerycznych metod wyceny opcji Jan Palczewski Wydział Matematyki, Informatyki i Mechaniki Uniwersytet Warszawski Warszawa, 16 maja 2008 Jan Palczewski Wycena opcji Warszawa, 2008

Bardziej szczegółowo

LXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r.

LXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r. Komisja Egzaminacyjna dla Aktuariuszy LXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,

Bardziej szczegółowo

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Politechnika Poznańska Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Joanna Józefowska POZNAŃ 2010/11 Spis treści Rozdział 1. Metoda programowania dynamicznego........... 5

Bardziej szczegółowo

Matematyka zajęcia fakultatywne (Wyspa inżynierów) Dodatkowe w ramach projektu UE

Matematyka zajęcia fakultatywne (Wyspa inżynierów) Dodatkowe w ramach projektu UE PROGRAM ZAJĘĆ FAKULTATYWNYCH Z MATEMATYKI DLA STUDENTÓW I ROKU SYLABUS Nazwa uczelni: Wyższa Szkoła Przedsiębiorczości i Administracji w Lublinie ul. Bursaki 12, 20-150 Lublin Kierunek Rok studiów Informatyka

Bardziej szczegółowo

SPRAWOZDANIE Z ADEKWATNOŚCI KAPITAŁOWEJ DOMU MAKLERSKIEGO PRICEWATERHOUSECOOPERS SECURITIES SPÓŁKA AKCYJNA

SPRAWOZDANIE Z ADEKWATNOŚCI KAPITAŁOWEJ DOMU MAKLERSKIEGO PRICEWATERHOUSECOOPERS SECURITIES SPÓŁKA AKCYJNA SPRAWOZDANIE Z ADEKWATNOŚCI KAPITAŁOWEJ DOMU MAKLERSKIEGO PRICEWATERHOUSECOOPERS SECURITIES SPÓŁKA AKCYJNA ZA OKRES OD 1 STYCZNIA 2012 r. DO 31 GRUDNIA 2012 r. PricewaterhouseCoopers Securities S.A., Al.

Bardziej szczegółowo

INFORMACJE PODLEGAJĄCE UPOWSZECHNIENIU, W TYM INFORMACJE W ZAKRESIE ADEKWATNOŚCI KAPITAŁOWEJ EFIX DOM MALERSKI S.A. WSTĘP

INFORMACJE PODLEGAJĄCE UPOWSZECHNIENIU, W TYM INFORMACJE W ZAKRESIE ADEKWATNOŚCI KAPITAŁOWEJ EFIX DOM MALERSKI S.A. WSTĘP INFORMACJE PODLEGAJĄCE UPOWSZECHNIENIU, W TYM INFORMACJE W ZAKRESIE ADEKWATNOŚCI KAPITAŁOWEJ EFIX DOM MALERSKI S.A. WEDŁUG STANU NA DZIEŃ 31 GRUDNIA 2011 ROKU I. WSTĘP 1. EFIX DOM MAKLERSKI S.A., z siedzibą

Bardziej szczegółowo

Metody numeryczne. materiały do wykładu dla studentów. 7. Całkowanie numeryczne

Metody numeryczne. materiały do wykładu dla studentów. 7. Całkowanie numeryczne Metody numeryczne materiały do wykładu dla studentów 7. Całkowanie numeryczne 7.1. Całkowanie numeryczne 7.2. Metoda trapezów 7.3. Metoda Simpsona 7.4. Metoda 3/8 Newtona 7.5. Ogólna postać wzorów kwadratur

Bardziej szczegółowo

Rozdział 4. Ciągi nieskończone. 4.1 Ciągi nieskończone

Rozdział 4. Ciągi nieskończone. 4.1 Ciągi nieskończone Rozdział 4 Ciągi nieskończone W rozdziale tym wprowadzimy pojęcie granicy ciągu. Dalej rozszerzymy to pojęcie na przypadek dowolnych funkcji. Jak zauważyliśmy we wstępie jest to najważniejsze pojęcie analizy

Bardziej szczegółowo

Matematyka finansowa w pakiecie Matlab

Matematyka finansowa w pakiecie Matlab Matematyka finansowa w pakiecie Matlab Wykład 5. Wycena opcji modele dyskretne Bartosz Ziemkiewicz Wydział Matematyki i Informatyki UMK Kurs letni dla studentów studiów zamawianych na kierunku Matematyka

Bardziej szczegółowo

Matematyka finansowa 20.06.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVII Egzamin dla Aktuariuszy z 20 czerwca 2011 r.

Matematyka finansowa 20.06.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVII Egzamin dla Aktuariuszy z 20 czerwca 2011 r. Komisja Egzaminacyjna dla Aktuariuszy LVII Egzamin dla Aktuariuszy z 20 czerwca 2011 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

Zadanie 1. Liczba szkód w każdym z trzech kolejnych lat dla pewnego ubezpieczonego ma rozkład równomierny:

Zadanie 1. Liczba szkód w każdym z trzech kolejnych lat dla pewnego ubezpieczonego ma rozkład równomierny: Matematyka ubezpieczeń majątkowych 5.2.2008 r. Zadanie. Liczba szkód w każdym z trzech kolejnych lat dla pewnego ubezpieczonego ma rozkład równomierny: Pr ( N = k) = 0 dla k = 0,, K, 9. Liczby szkód w

Bardziej szczegółowo

Testy nieparametryczne

Testy nieparametryczne Testy nieparametryczne Testy nieparametryczne możemy stosować, gdy nie są spełnione założenia wymagane dla testów parametrycznych. Stosujemy je również, gdy dane można uporządkować według określonych kryteriów

Bardziej szczegółowo

Państwowa Wyższa Szkoła Zawodowa w Nowym Sączu. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2011/2012

Państwowa Wyższa Szkoła Zawodowa w Nowym Sączu. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2011/2012 Państwowa Wyższa Szkoła Zawodowa w Nowym Sączu Karta Instytut Pedagogiczny obowiązuje studentów rozpoczynających studia w roku akademickim 011/01 Kierunek studiów: Matematyka Profil: Ogólnoakademicki Forma

Bardziej szczegółowo

Wycena papierów wartościowych - instrumenty pochodne

Wycena papierów wartościowych - instrumenty pochodne Matematyka finansowa - 8 Wycena papierów wartościowych - instrumenty pochodne W ujęciu probabilistycznym cena akcji w momencie t jest zmienną losową P t o pewnym (zwykle nieznanym) rozkładzie prawdopodobieństwa,

Bardziej szczegółowo

Matematyka finansowa 11.10.2004 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXIII Egzamin dla Aktuariuszy - 11 października 2004 r.

Matematyka finansowa 11.10.2004 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXIII Egzamin dla Aktuariuszy - 11 października 2004 r. Komisja Egzaminacyjna dla Aktuariuszy XXXIII Egzamin dla Aktuariuszy - 11 października 2004 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... WERSJA TESTU Czas egzaminu: 100 minut

Bardziej szczegółowo