Matematyka ubezpieczeń maj atkowych i osobowych (MUMIO) Ryszard Szekli

Wielkość: px
Rozpocząć pokaz od strony:

Download "Matematyka ubezpieczeń maj atkowych i osobowych (MUMIO) Ryszard Szekli"

Transkrypt

1 Matematyka ubezpieczeń maj atkowych i osobowych (MUMIO) Ryszard Szekli Skrypt do wykładu - Uniwersytet Wrocławski -212/213

2 2

3 Spis treści 1 Wprowadzenie 11 2 Rozkłady wielkości portfela Rozkład wielkości portfela w modelu prostym Rozkłady w modelu złożonym Własności ogólne Zmienne losowe liczące ilość szkód Złożony rozkład dwumianowy Złożony rozkład Poissona Złożony rozkład ujemny dwumianowy Wzory rekurencyjne Panjera Aproksymacje Aproksymacja rozkładem dwumianowym i Poissona Aproksymacja rozkładem normalnym Aproksymacja rozkładów złożonych rozkładem normalnym Aproksymacja Edgewortha rozkładów złożonych Aproksymacja przesuniȩtym rozkładem Gamma Aproksymacja niejednorodnego modelu prostego Poissonowskim modelem złożonym Składki Składka netto Składka z ustalonym poziomem bezpieczeństwa Składki oparte o funkcję użyteczności Reasekuracja, podział ryzyka Wycena kontraktu stop-loss Własności kontraktu stop-loss Wpływ inflacji na kontrakt stop-loss

4 4 SPIS TREŚCI 3.5 Reasekuracja w portfelu złożonym Stochastyczne porównywanie ryzyk Miary ryzyka Modelowanie zależności przez funkcje copula Modele bayesowskie Model portfela niejednorodnego Model liniowy Bühlmanna (Bayesian credibility) Składka wiarogodności: metoda wariancji Estymatory najwiȩkszej wiarogodności (NW) dla modeli bayesowskich Porównanie modeli bayesowskich Prawdopodobieństwo ruiny: czas dyskretny Proces ryzyka jako błądzenie losoweprawdopodobieństwo ruiny Współczynnik dopasowania Prawdopodobieństwo ruiny - lekkie ogony Prawdopodobieństwo ruiny - model autoregresyjny Reasekuracja a prawdopodobieństwo ruiny *Prawdopodobieństwo ruiny: czas ciągły Proces zgłoszeń - teoria odnowy Prawdopodobieństwo ruiny: proces zgłoszeń Poissona Prawdopodobieństwo ruiny dla rozkładów fazowych Prawdopodobieństwo ruiny dla rozkładów ciȩżkoogonowych Techniki statystyczne dla rozkładów ci agłych Dopasowanie rozkładu do danych Dystrybuanta empiryczna Wykres kwantylowy (Q-Q plot) Średnia funkcja nadwyżki Rozkład Pareto *Rozkłady typu Pareto Rozkłady z ciȩżkimi ogonami Klasy podwykładnicze Dodatek Funkcje specjalne Parametry i funkcje rozkładów Estymacja momentów Rozkłady dyskretne Rozkład dwumianowy Bin(n, p) Rozkład Poissona P oi(λ)

5 SPIS TREŚCI Rozkład ujemny dwumianowy Bin (r, p) Rozkłady ci agłe Rozkład normalny Rozkład odwrotny normalny IG(µ, σ 2 ) Rozkład logarytmiczno-normalny LN(µ, σ) Rozkład wykładniczy Exp(λ) Rozkład Gamma Gamma(α, β) Rozkład Weibulla W ei(r, c) Rozkład Pareto P ar(α, c) Literatura 184

6 6 SPIS TREŚCI

7 Wstȩp Skrypt jest przeznaczony dla studentów kierunku matematyka na Wydziale Matematyki i Informatyki UWr. Udział w kursie MUMIO wymaga wcześniejszego zaliczenia kursu rachunku prawdopodobieństwa A lub B. Dla wygody wiele używanych faktów znajduje się w Dodatku. Rozdziały oznaczone * wymagaj a znajomości bardziej zaawansowanych narzȩdzi rachunku prawdopodobieństwa spoza kursu rachunku prawdopodobieństwa A. Kursyw a podana jest terminologia angielska. Kurs zawiera matematyczne podstawy i klasyczne metody używane w zawodzie aktuariusza. Specjalistą w zakresie oszacowania ryzyka jest aktuariusz. Miejscem pracy aktuariusza mogą być wszystkie instytucje finansowe, w których zarządza się ryzykiem. W Polsce istnieje duże zapotrzebowanie na aktuariuszy, ze względu na ich małą liczbę. Aktuariusz to specjalista ubezpieczeniowy, który oszacowuje za pomocą metod matematyki aktuarialnej, wysokość składki, świadczeń, odszkodowań, rezerw ubezpieczeniowych. Aktuariusze w oparciu o dane historyczne, regulacje prawne i prognozy dokonują kalkulacji prawdopodobieństw zdarzeń losowych. Oszacowują również ryzyko powstania szkód majątkowych. Aktuariusz przypisuje finansową wartość przyszłym zdarzeniom. Korzenie zawodu aktuariusza sięgają przełomu XVII i XVIII w. i były powiązane przede wszystkim z rozwojem ubezpieczeń na życie, ale głównego znaczenia profesja ta nabrała dopiero w XIX w. Matematykę aktuarialną zapoczątkowały pod koniec XVII w. prace angielskiego astronoma E. Halleya dotyczące wymieralności w wybranej populacji, a w 1948 r. w Londynie powstał Instytut Aktuariuszy - pierwsza placówka naukowa prowadząca prace z zakresu matematyki aktuarialnej. W Polsce za początek zawodu aktuariusza można uznać rok 192, w którym działalność rozpoczął Polski Instytut Aktuariuszy. Środowisko aktuariuszy w 1991 r. powołało Polskie Stowarzyszenie Aktuariuszy. Zadaniem Stowarzyszenia jest wspieranie tej grupy zawodowej, a także uczestnictwo w pracach legislacyjnych w zakresie ubezpieczeń. Stowarzyszenie jest członkiem Międzynarodowego Stowarzyszenia Aktuariuszy. Sektor towarzystw ubezpieczeniowych, zarówno na życie jak i majątkowo-osobowych, nie może funkcjonować bez aktuariuszy, którzy w większości właśnie tam pracują. Zgodnie z 7

8 8 SPIS TREŚCI art. 159 ust. 1 ustawy z 22 maja 23 r. o działalności ubezpieczeniowej (Dz. U. Nr 124, poz. 1151) do zadań aktuariusza w Polsce należy: - ustalanie wartości rezerw techniczno-ubezpieczeniowych, - kontrolowanie aktywów stanowiących pokrycie rezerw techniczno-ubezpieczeniowych, - wyliczanie marginesu wypłacalności, - sporządzanie rocznego raportu o stanie portfela ubezpieczeń, - ustalanie wartości składników zaliczanych do środków własnych. Aktuariusze mogą pracować we wszystkich instytucjach finansowych zarządzających ryzykiem. Mogą pracować w firmach konsultingowych, udzielając porad w zakresie podejmowania decyzji finansowych. W szczególności pomagają zaprojektować programy emerytalne, a w trakcie ich działania wyceniają ich aktywa i zobowiązania. Aktuariusze mogą również oszacowywać koszt różnego rodzaju ryzyk w działalności przedsiębiorstw. Mogą pracować również w instytucjach państwowych związanych np. z systemem ubezpieczeń społecznych czy zdrowotnych. Ponadto aktuariusze mogą znaleźć zatrudnienie wszędzie tam, gdzie konieczne jest rozwiązywanie problemów finansowych i statystycznych - banki i firmy inwestycyjne, duże korporacje, związki zawodowe. Zgodnie z art. 161 ust. 1 ustawy o działalności ubezpieczeniowej, aktuariuszem może zostać osoba fizyczna, która: - ukończyła studia wyższe, - przez okres co najmniej 2 lat wykonywała czynności z zakresu matematyki ubezpieczeniowej, finansowej i statystyki, pod kierunkiem aktuariusza, - złożyła z pozytywnym wynikiem egzamin aktuarialny, - posiada pełną zdolność do czynności prawnych, - korzysta z pełni praw publicznych, - nie była prawomocnie skazana za umyślne przestępstwo przeciwko wiarygodności dokumentów, przestępstwo przeciwko mieniu lub za przestępstwo skarbowe. Jednym z powyższych wymogów dla uzyskania licencji aktuariusza jest zdanie egzaminu aktuarialnego. Zgodnie z rozporządzeniem Ministra Finansów z 2 listopada 23 r. w sprawie zakresu obowiązujących tematów egzaminów aktuarialnych oraz trybu przeprowadzania tych egzaminów (Dz. U. Nr 211, poz. 254) zakres tego egzaminu obejmuje cztery działy: - matematykę finansową, - matematykę ubezpieczeń na życie, - matematykę pozostałych ubezpieczeń osobowych i majątkowych, - prawdopodobieństwo i statystykę. Egzaminy są organizowane co najmniej 2 razy w roku kalendarzowym. Każda część egzaminu składa się z 1 pytań. Każde pytanie oceniane jest według następującej skali:

9 SPIS TREŚCI 9 - dobra odpowiedź: 3 punkty, - błędna odpowiedź: -2 punkty, - brak odpowiedzi: punktów. Egzamin uważa się za zaliczony po uzyskaniu 13 punktów z jednej części. Zaliczenie wszystkich działów nie może trwać dłużej niż 2 lata. Aktuariuszem najczęściej mogą zostać osoby w wykształceniem matematycznym lub ekonomicznym. Jednym z głównych zadań w działalności firm ubezpieczeniowych jest dbałość o wypłacalność. Na firmy ubezpieczeniowe nałożone jest wiele wymogów zapewniających bezpieczeństwo działalności ubezpieczeniowej. Działalność ubezpieczeniowa ze względu na swoje społeczne i gospodarcze znaczenie została poddana nadzorowi wyspecjalizowanego organu administracji państwowej. Wypłacalność to zdolność firmy do spłaty zobowiązań w terminie. Jest podstawowym kryterium oceny kondycji finansowej zakładu ubezpieczeń. Jeden z podstawowych wymogów działalności ubezpieczeniowej dotyczy marginesu wypłacalności. Margines wypłacalności jest to określona przepisami prawa wielkość środków własnych zakładu ubezpieczeń, która ma na celu zapewnienie wypłacalności i nie może być niższa od minimalnej wysokości kapitału gwarancyjnego. Wymogi dotyczące marginesu wypłacalności dla zakładów ubezpieczeń zostały wprowadzone w 1973 roku. Wraz z rozwojem rynku ubezpieczeniowego, pojawieniem się nowych produktów oraz ryzyk istniejące wymogi przestały w pełni odzwierciedlać wszystkie ryzyka, na które były narażone firmy ubezpieczeniowe. Dotyczyło to głównie ryzyk finansowych np. ryzyka zmiany stóp procentowych. Pomimo spełniania istniejących wymogów wypłacalności przez firmy ubezpieczeniowe, kondycja finansowa tych firm pogarszała się. Obowiązujące wymogi wypłacalności nie spełniały już oczekiwań związanych z zapewnieniem bezpieczeństwa działalności ubezpieczeniowej. Nie bez znaczenia był również fakt coraz większego skupienia działalności ubezpieczeniowej wokół międzynarodowych grup kapitałowych. Pierwszym krokiem w kierunku poprawienia systemu badania wypłacalności było wprowadzenie Solvency I. W prawie polskim Solvency I zwiększyło wysokość minimalnego kapitału gwarancyjnego dla spółek akcyjnych z grupy I (ubezpieczenia na życie) z 8 tys. euro do 3 mln euro, dla działu II (ubezpieczenia majątkowe) grup 1-9 oraz z 3 tys. euro i 2 tys. euro do 2 mln euro. Wprowadzono również coroczną indeksację minimalnego kapitału gwarancyjnego. Zmieniająca się rzeczywistość finansowa i gospodarcza wymusiła debatę nad zmianami w nowym systemie wypłacalności zakładów ubezpieczeń. Wykonano szereg analiz ryzyk działalności ubezpieczeniowej, analiz bankructw, analiz istniejących modeli wypłacalności wdrożonych w innych krajach. Wynikiem tych działań miało być powstanie nowego systemu badania wypłacalności Solvency II. Został on zapoczątkowany w 21 roku przez Komisje Europejską w ramach Komitetu Europejskiego. U podstaw dyskusji nad koniecznością wprowadzenia Solvency II leży szereg niedoskonałości w istniejących regulacjach dotyczących wypłacalności. Spośród nich należy tu chociażby wymienić metody bazujące na składce, które nie uwzględniają istotnych ryzyk; brak

10 1 SPIS TREŚCI uwzględnienia kompletnych form transferu ryzyka, brak uwzględnienia zależności pomiędzy aktywami i pasywami oraz zakresem prowadzonej działalności. Nowo powstający system Solvency II ma być uniwersalny i ma objąć wszystkie firmy ubezpieczeniowe prowadzące działalność na terenie UE. Jest on wzorowany na Bazylei II, która określa zasady wypłacalności dla banków. Nowy system oceny wypłacalności zgodny z Solvency II ma być dopasowany do rzeczywistych ryzyk, na jakie narażony jest zakład ubezpieczeń. W przypadku instytucji ubezpieczeniowej potencjalne ryzyka są specyficzne dla typów zawieranych umów ubezpieczenia w zakresie ubezpieczeń na życie lub ubezpieczeń majątkowych. Umiejętność skutecznej identyfikacji, oceny i monitorowania ryzyk może uchronić przed znacznymi stratami. Kluczową rolę odgrywają tu przyjęte metodologie zarządzania ryzykiem, służące eliminacji ich negatywnego wpływu na wyniki finansowe. Ryzyka, na które jest narażony zakład ubezpieczeń można podzielić na ryzyka aktuarialne związane z przyszłymi wynikami technicznymi zależnymi od czynników losowych częstości, intensywności szkód, kosztów operacyjnych, zmian w składzie portfela wypowiedzeń bądź konwersji umów ubezpieczenia oraz ryzyka finansowe ryzyka, na które jest narażona każda instytucja finansowa, (np. bank), do tej grupy zaliczają się ryzyka takie jak: ryzyko zmian stopy procentowej, ryzyko kredytowe, ryzyko rynkowe, ryzyko walutowe. Większa uwaga nadzoru ubezpieczeniowego ma skupić się na kontroli sposobów zarządzania ryzykiem przez firmy ubezpieczeniowe, jak również na poprawności przyjętych w tym zakresie założeń. Idea Solvency II polega na ściślejszym uzależnieniu wysokości kapitału od wielkości ryzyka podejmowanego przed firmy ubezpieczeniowe. Ujednoliceniu mają być poddane sposoby raportowania firm ubezpieczeniowych w różnych krajach. Solvency II ma mieć o wiele większy zakres od Solvency I, ma uwzględnić, bowiem wpływ nowych tendencji z zakresu metodologii zarządzania ryzykiem w ubezpieczeniach, szeroko pojętej inżynierii finansowej oraz standardów sprawozdawczości zgodnych z wymogami IASB (International Accounting Standard Board). Pierwszorzędnymi zamierzeniami projektu jest znalezienie wymogu marginesu wypłacalności oraz osiągnięcie większej synchronizacji w ustalaniu poziomu rezerw technicznych. Dużą rolę techniczną w ramach Solvency II odgrywają miary ryzyka takie jak VaR, TVaR, CVaR itp. oraz kopuły (copulas), które będą omówione w obecnym skrypcie.

11 Rozdział 1 Wprowadzenie Zawód aktuariusza jest jednym z najstarszych w świecie finansów. Historia tego zawodu rozpoczyna sie w połowie dziewietnastego wieku wraz z ubezpieczeniami na życie i aż do lat sześćdziesiatych dwudziestego wieku matematyczne metody aktuariusza zwiazane były z wycena kontraktów ubezpieczeniowych, tworzeniem tablic przeżycia na podstawie danych statystycznych oraz z wyliczniem rezerw pienieżnych firmy. W latach sześćdziesiatych rozpoczeto stosowanie matematycznych metod do stworzenia teorii ryzyka na użytek ubezpieczeń majatkowych i osobowych. Punktem wyjścia był standardowy złożony proces Poissona, którego pomysł pochodzi od Filipa Lundberga z 193 roku, a który matematycznie został opracowany przez Haralda Cramera w latach trzydziestych. Do lat dziewiećdziesi atych był on rozwijany na różne sposoby. Proces Poissona został zastapiony przez proces odnowy oraz przez proces Coxa, nastepnie użyto procesów Markowa kawałkami deterministycznych, wreszcie wprowadzono losowe otoczenie pozwalajace na modelowanie losowych zmian w intensywności zgłoszeń szkód i wielkości szkód. Pojawia sie wiele ksiażek z teorii ryzyka, na prykład Bowers et al., Buhlman, Daykin, Pentakainen i Pesonen, Embrechts, Kluppelberg i Mikosch, Gerber, Panjer i Willmot, Rolski et al., Assmussen. Jednym z najbardziej matematycznie interesujacych zagadnień w teorii ryzyka jest zagadnienie ruiny, gdzie czasy pierwszego przekroczenia wysokiego poziomu rezerwy kapitałowej sa w centrum uwagi. Stare i nowe rezultaty na tym polu moga być wytłumaczone przez teorie martyngałów i użyte do pokazania nierówności Lundberga dla bardzo ogólnych modeli dowodzac, iż dla małych szkód prawdopodobieństwo ruiny daży do zera wykładniczo szybko wraz z rezerwa poczatkow a. Specjalna teoria pojawia sie dla szkód potencjalnie dużych. Warunkowe twierdzenia graniczne pozwalaja zrozumieć trajektorie prowadzace do ruiny. Interesujacy rozkwit metod matematycznych w latach dziewiećdziesi atych dokonał sie głównie z dwóch przyczyn: wzrostu szkód zwiazanych z katastrofami oraz z gwałtownego rozwoju rynków finansowych. Wielkie katastrofy i szkody lat siedemdziesiatych i osiemdziesiatych spowodowały przekroczenia rezerw na rynku ubezpieczeń pierwotnych i wtórnych. Szybko rosnacy rynek finansowy w tym czasie poszukiwał nowych możliwości inwestycyjnych również w zakresie przyjmowania zakładów w zakresie naturalnych katastrof takich jak trzesienia ziemi i huragany. Czestość wystepowania i rozmiary wielkich szkód stworzyły potrzebe wprowadzenia 11

12 12 ROZDZIAŁ 1. WPROWADZENIE wyszukanych modeli statystycznych do badania procesu szkód. Teoria wartości ekstremalnych dostarcza niezbednych matematycznych narzedzi do wprowadzenia nowych metod. Pojawiaja sie ksiażki w zakresie teorii wartości ekstremalnych w kontekście problematyki ubezpieczeniowej, na przykład Embrechts et al., Reiss and Thomas. W latach osiemdziesiatych banki inwestycyjne dostrzegaja, iż zabezpieczanie sie przed ryzykiem finansowym nie jest wystarczajace ze wzgledu na dodatkowe ryzyka rynkowe. Tak zwany traktat z Bazylei z roku 1988 z poprawkami z lat , wprowadza tradycyjne metody ubezpieczeniowe budowania rezerw do sfery ryzyka bankowego. Rezerwy musza być tworzone na pokrycie tzw. earning at risk, to znaczy różnicy miedzy wartościa średnia a kwantylem jednoprocentowym rozkładu zysku/straty (profit/loss). Wyznaczenie tak małego kwantyla wymaga bardzo specjalnych metod statystycznych. Metody aktuarialne stosowane sa również do modelowania ryzyka kredytowego. Portfele kredytowe sa porównywalne z portfelami ryzyk ubezpieczeniowych. Przyszły rozwój metod ubezpieczeniowych zwiazany jest z powstawaniem złożonych rynków ubezpieczeniowych, firmy ubezpieczeniowe oczekuja elastycznych rozwiazań zapewniajacych pomoc w całościowym podejściu do zarzadzania ryzykiem. Całkiem naturalnie na tym tle wprowadzane sa metody pochodzace z teorii stochastycznej optymalizacji. Wiele zmiennych kontrolnych takich jak wielkość reasekuracji, dywidendy, inwestycje sa badane łacznie w sposób dynamiczny prowadzac do równań Hamiltona- Jakobiego-Bellmana, rozwiazywanych numerycznie. Po tym krótkim nakreśleniu historii rozwoju metod matematycznych w ubezpieczeniach wracamy do podstawowego modelu. Pomyślmy o konkretnej sytuacji. Przegl adaj ac wszystkie polisy ubezpieczeniowe, zakupione w jednej firmie ubezpieczeniowej, które ubezpieczaj a skutki pożaru mieszkań w pewnej dzielnicy dużego miasta, najprawdopodobniej natkniemy siȩ na porównywaln a wartość ubezpieczanych dóbr oraz możemy przyj ać, iż szanse na pożar w poszczególnych budynkach s a podobne. Taki zbiór polis tworzy jednorodny portfel ubezpieczeniowy. Wiȩkszość firm ubezpieczeniowych używa tego rodzaju portfeli jako podstawowych cegiełek swej działalności. Cegiełki takie, odpowiednio ułożone, tworz a wiȩksze bloki działalności takie jak ubezpieczenia od ognia, ubezpieczenia ruchu drogowego, ubezpieczenia przed kradzieżami, ubezpieczenia maj atkowe itd. Blok ubezpieczeń od ognia zawiera wtedy wiele portfeli różni acych siȩ rodzajami ryzyka, na przykład dla: wolno stoj acych domów, domów szeregowych, budynków wielomieszkaniowych, sklepów, marketów itd., które wymagaj a osobnego określenia ryzyka ubezpieczeniowego dla każdego rodzaju i wyliczenia innej składki ubezpieczeniowej, choćby z tego tylko powodu, iż rozmiar szkody w poszczególnych portfelach może być nieporównywalny. W dalszym ci agu skupiać bȩdziemy nasz a uwagȩ na analizie pojedynczych portfeli, które składać siȩ bȩd a z wielu elementów natury losowej lub deterministycznej. Podstawowym parametrem portfela jest czasokres w którym ubezpieczone ryzyka mog a generować szkody. Zwykle dane odnosz ace siȩ do danego portfela obejmuj a okres jedengo roku. Kluczowym parametrem jest rezerwa pocz atkowa (kapitał pocz atkowy), wyznaczany na pocz atku czasokresu w celu pokrycia kosztów wynikaj acych ze zgłoszonych szkód w portfelu. Same zgłoszenia wyznaczone s a przez chwile zgłoszeń T 1 < T 2 < T 3 <..., przy czym wygodnie jest przyj ać iż T = < T 1. Liczbȩ zgłoszeń do chwili t > definiujemy przez N(t) = max{n : T n t}.

13 13 Każde zgłoszenie zwi azane jest z wielkości a zgłaszanej szkody oznaczanej przez X n, dla n tego zgłoszenia. Przy tych oznaczeniach całkowita wartość szkód zgłoszonych do chwili t równa siȩ S(t) = N(t) X i. (Przyjmujemy S(t) =, gdy N(t) = ). Oznaczmy przez H(t) wartość składek zebranych w portfelu do chwili t. Zwykle przyjmujemy, że H(t) = ct, dla pewnej stałej wartości c >. Wtedy rezerwa kapitału w portfelu, przy założeniu, że kapitał pocz atkowy wynosi u, wyraża siȩ wzorem R(t) = u + H(t) S(t). Zakładaj ac, że momenty zgłoszeń oraz wielkości szkód s a zmiennymi losowymi, możemy interpretować kolekcjȩ zmiennych (R(t), t > ) jako proces stochastyczny. (Jest to tak zwany proces ryzyka). Badanie procesu ryzyka jest centralnym zagadnieniem tak zwanej teorii ryzyka, która z kolei stanowi niew atpliwie j adro matematyki ubezpieczeniowej poświȩconej ubezpieczeniom majatkowym i osobowym. Nakreślimy teraz bliżej zestawy założeń przyjmowanych o zmiennych losowych tego modelu, które umożliwiaj a dokładniejsz a analizȩ portfeli. Rozpoczniemy od podania detali dotycz acych ci agu zgłoszeń. O zmiennych losowych T 1, T 2,...można przyj ać wiele różnych założeń. W pewnych szczególnych przypadkach użytecznym i odpowiednim założeniem jest to, iż ci ag ten tworzy proces odnowy, tzn. ci ag zmiennych losowych odstȩpów miȩdzy zgłoszeniami W i = T i T i 1, i = 1, 2,..., jest ci agiem niezależnych zmiennych losowych o jednakowych rozkładach. Taki proces zgłoszeń jest elementem składowym modelu Sparre Andersena, który bȩdzie opisany detalicznie później. Klasycznym przykładem procesu odnowy jest proces Poissona, w którym odstȩpy miȩdzy zgłoszeniami maj a rozkład wykładniczy. Ponieważ rozkład wykładniczy jako jedyny ma własność braku pamiȩci, proces Poissona ma wiele strukturalnych własności odróżniaj acych go od innych procesów. (Własność braku pamiȩci rozkładu wykładniczego jest zdefiniowana przez równość P (W > x + y W > y) = P (W > x), dla x, y > lub równoważnie P (W > x + y) = P (W > x)p (W > y)). Na przykład, dla procesu Poissona P (N(t) = k) = e λt (λt) k k!, k =, 1,..., gdzie < λ = (EW ) 1, przy tym, EN(t) = λt = V arn(t). Ponadto liczby zgłoszeń w rozł acznych przedziałach czasowych w procesie Poissona tworz a kolekcjȩ niezależnych zmiennych losowych. W praktyce aktuarialnej zauważono już dawno, iż stosunek wartości oczekiwanej do wariancji w procesach zgłoszeń (N(t), t > ) bardzo czȩsto nie jest równy jeden (tak jest w procesie Poissona). Można to wytłumaczyć tym, że indywidualne szkody w portfelu s a zgłaszane zgodnie z procesem Poissona o pewnej wartości średniej, lecz wartość średnia ilości indywidualnych zgłoszeń może być różna dla każdej z polis w portfelu. Takie założenie prowadzi do procesu zgłoszeń dla którego P (N(t) = k) = e λt (λt) k k! df (λ), gdzie F jest pewn a dystrybuant a określaj ac a rozkład parametru λ w zbiorze możliwych wartości w danym portfelu (zakładamy zawsze, że λ > ). Wygodnie jest przyj ać, że istnieje zmienna losowa Λ określajaca losow a wartość parametru λ, spełniaj aca P (Λ λ) = F (λ). Zakładamy przy tym, że Λ jest zmienn a losow a niezależn a od indywidualnych procesów Poissona. Proces (N(t), t > ) spełniaj acy te założenia jest tak zwanym mieszanym Procesem Poissona. Szczególny przypadek, gdy Λ ma rozkład gamma, odpowiada tak zwanemu procesowi Polya. Inna użyteczna klasa procesów zgłoszeń jest wyznaczona zwi azkiem rekurencyjnym postaci

14 14 ROZDZIAŁ 1. WPROWADZENIE P (N(t) = k) = (a + b k )P (N(t) = k 1),dla k = 1, 2,... oraz pewnych stałych a, b (być może zależnych jedynie od t). Rozkład geometryczny, dwumianowy i Poissona znajduj a siȩ w tej klasie, przy odpowiedniej specyfikacji stałych a, b. Dla takich procesów Panjer pokazał użyteczn a rekurencjȩ pozwalaj ac a wyznaczyć rozkład całkowitej wartości szkód w portfelu. Wspomniana wcześniej własność procesu Poissona, iż liczby zgłoszeń w rozł acznych przedziałach czasowych tworz a kolekcjȩ niezależnych zmiennych losowych stanowi punkt wyjścia do teorii procesów o niezależnych przyrostach. Procesy zgłoszeń posiadaj ace tȩ własność s a procesami, dla których P (N(t) = k) = i= e λt (λt) i, gdzie p i oznacza i! p i k i krotny splot funkcji prawdopodobieństwa (p k, k =, 1,...). Oznacza to, że liczbȩ zgłoszeń można zapisać w postaci N(t) = K(t) Y i, gdzie (K(t), t > ) jest Procesem Poissona niezależnym od ci agu zmiennych (Y i, i = 1, 2,...), które s a z kolei wzajemnie niezależne o jednakowym rozkładzie (p k, k =, 1,...) Takie procesy s a złożonymi procesami Poissona. Podstawowym założeniem o wielkościach zgłaszanych szkód w portfelu jest to, iż tworz a one ci ag X 1, X 2,... niezależnych zmiennych losowych o jednakowych rozkładach. W zasadzie każda dystrybuanta skoncentrowana na [, ) może być użyta do określenia rozkładu wielkości szkód, jednakże czȩsto odróżnia siȩ dystrubuanty o lekkich i cieżkich ogonach. Dystrybuanty o lekkich ogonach s a asymptotycznie równoważne rozkładowi wykładniczemu. Dystrybuanty o ciȩzkich ogonach służ a do modelowania szkód, które mog a osi agać wartości relatywnie bardzo duże z istotnymi prawdopodobieństwami (tak jak siȩ zdarza w przypadku portfeli ubezpieczeń od pożarów). Typowym rozkładem ciȩżkoogonowym używanym w praktyce jest rozkład Pareto. Łatwo wyobrazić sobie sytuacje, w których proces zgłoszeń (N(t), t > ) i ci ag wielkości zgłaszanych szkód (X n, n = 1, 2,...) s a zależne, jak na przykład w przypadku szkód wynikaj acych z wypadków drogowych, kiedy to intensywność zgłoszeń jak również rozmiar szkód zależ a od warunków drogowych zwi azanych z por a roku. Obliczenie rozkładu całkowitej wartości szkód jest w tym przypadku możliwe jedynie w bardzo specjalnych przypadkach. Dlatego przyjmuje siȩ bardzo często, że (N(t), t > ) oraz (X n, n = 1, 2,...) s a niezależne. Nawet przy tym założeniu wyliczenie rozkładu S(t) nie jest łatwym zadaniem. Podstawowym wzorem w tym przypadku jest P (S(t) x) = i= P (N(t) = i)fx i(x), gdzie F X (x) = P (X 1 x). Jak widzimy potrzebne s a sploty FX i, dla których proste wzory s a znane jedynie w nielicznych przypadkach. Z tego powodu musimy zdać siȩ czȩsto na aproksymacje. W przypadku, gdy liczba zgłoszeń jest duża a rozkłady maj a skończone wariancje można bȩdzie zastosować Centralne Twierdzenie Graniczne (CTG) i wtedy x ES(t) P (S(t) x) Φ( ). Aproksymacja tego rodzaju jest bardzo niedokładna, gdy (V ars(t)) 1/2 tylko niewielka ilość szkód wyznacza wartość całego portfela (tak jak w przypadku szkód o ciȩżkich ogonach). Wyznaczenie dobrych aproksymacji w takich przypadkach jest bardzo trudne. Użyliśmy oznaczenia H(t) dla oznaczenia wielkości składek zebranych w portfelu do chwili t. Zwykle składki pobierane s a raz do roku od indywidualnych posiadaczy polis, jednakże wygodniej jest założyc, iż napływ składek odbywa siȩ jednorodnie w ciagu całego roku. Wy- k

15 15 znaczenie wielkości H(t) jest jedn a z niewielu rzeczy na jakie może wpłyn ać ubezpieczaj acy i musi być dokonane w taki sposób, aby pokryć zobowi azania w portfelu wynikaj ace ze zgłaszanych szkód. Z drugiej strony zawyżanie wysokości składek jest ograniczane konkurencj a na rynku ubezpieczeń. Najbardziej popularn a form a składki jest H(t) = (1 + θ)en(t)ex, dla pewnej stałej θ odzwierciedlajacej narzut gwarantuj acy bezpieczeństwo działania (safety loading). Taki sposób naliczania składki nie odzwieciedla losowej zmienności portfela, dlatego alternatywnie używa siȩ wzorów uwzglȩdniaj acych wariancje składowych zmiennych losowych. Jeszcze innym aspektem w trakcie naliczania składek jest fakt, że nie wszyscy indywidualni posiadacze polis w danym portfelu powinni płacić składki w tej samej wysokości oraz składki powinny zależeć od historii indywidualnej polisy. Rezerwa kapitału R(t) = u + H(t) S(t) przybiera szczególnie prost a postać, gdy przyjmiemy iż parametr czasu przebiega zbiór liczb naturalnych. Oznaczaj ac wtedy przez H n składki zebrane w n jednostkach czasu oraz przez S n sumaryczne szkody zgłoszone w n jednostkach czasu otrzymujemy rezerwȩ w n tej chwili R n = u + H n S n (przyjmujemy S =, H = ). Przy dodatkowym założeniu, że przyrosty H n H n 1 oraz S n S n 1 s a wzajemnie niezależne dla n = 2, 3,..., otrzymujemy ci ag (R n, n =, 1, 2,...) zwany bł adzeniem losowym (random walk). Ogólnie trajektorie przebiegu w czasie wartości R(t) obrazuj a zachowanie siȩ losowego procesu, w którym trend dodatni reprezentuje H(t),a trend ujemny S(t). Przedmiotem intensywnych badań teoretycznych jest tak zwane prawdopodobieństwo ruiny w procesie (R(t), t > ). Jesli przez τ = inf{t > : R(t) < } oznaczymy pierwsz a chwilȩ, gdy rezerwa przyjmie wartość ujemn a (tak zwana chwila ruiny), to prawdopodobieństwem ruiny jest ψ(u) = P (τ < ). W przypadku, gdy wielkości szkód maj a rozkład lekkoogonowy, można podać aproksymacje i ograniczenia na ψ(u) (bȩd a to wzory oparte o funkcjȩ wykładnicz a). W przypadku ciȩżkich ogonów aproksymacje istniej a dla tak zwanych rozkładów podwykładniczych (subexponential). Ostatnim zagadnieniem omówionym w tym wprowadzeniu bȩdzie reasekuracja. Reasekuracja jest podstawow a aktywności a ubezpieczycieli. Firmy ubezpieczeniowe podpisuj a kontrakty reasekuracyjne w celu zmniejszenia szansy na odpowiedzialność za szkody tak duże, że mogłyby zagrozić wypłacalności firmy. Taka sytuacja może nast apić na przykład w sytuacji, gdy zgłoszone zostan a szkody o nadzwyczaj dużej wielkości lub gdy ilość zgłoszeń skumuluje siȩ tworz ac nadzwyczaj duże skupiska lub gdy nastapi a nadzwyczajne zmiany w trakcie zbierania składek (niespodziewana inflacja, nagły wzrost kosztów działania itp.). Reasekuracja zwiȩksza możliwości firmy ubezpieczeniowej i jej elastyczność pozwalaj ac na oferowanie szerszego zakresu usług ubezpieczeniowych. Wiȩkszość ze stosowanych kontraktów reasekuracyjnych mieści siȩ w nastȩpuj acym zbiorze możliwości. Niech Z(t) = S(t) D(t) oznacza czȩść szkód podlegaj acych reasekuracji, gdzie D(t) oznacza wielkość własnej odpowiedzialności firmy (deductible). Oczywiście, firma ubezpieczeniowa za przekazanie odpowiedzialności za Z(t) musi czȩść zebranych składek przekazać firmie reasekuracyjnej. Ta z kolei może post apić podobnie rozpoczynaj ac cały łańcuch reasekuracyjny. Reasekuracja proporcjonalna odpowiada sytuacji, gdy Z(t) = as(t), dla pewnej stałej a (, 1). Reasekuracja excess-loss wynika z zasady Z(t) = N(t) (X i d) +, gdzie d jest dodatnim poziomem retencji oraz x + = max(, x). Oznacza to, iż do reasekuracji przekazywane s a sumaryczne nadwyżki indywidualnych szkód ponad poziom retencji d.

16 16 ROZDZIAŁ 1. WPROWADZENIE Taki kontrakt, przy dużej ilości zgłoszeń prowadzi do dużych kosztów administracyjnych. Reasekuracja stop-loss wyznaczona jest przez Z(t) = (S(t) D) +, dla poziomu retencji D wyznaczonego dla całego portfela. Taka reasekuracja zabezpiecza przed nadzwyczaj duż a ilości a niewielkich szkód. Istniej a liczne inne sposby reasekuracji oraz ich kombinacje, jednakże ze wzgladu na ich złożoność nie s a powszechnie akceptowane.

17 Rozdział 2 Rozkłady wielkości portfela Portfelem nazywamy zbiór ryzyk X = {X 1,..., X N } określonego typu, które są zmiennymi losowymi. Podstawow a wielkości a zwi azan a z portfelem jest wielkość portfela, czyli suma zmiennych losowych składaj acych siȩ na portfel S N = X X N. Mówimy o modelu prostym, gdy N jest ustaloną liczbą. Gdy S = X X N, gdzie N jest zmienn a losow a całkowitoliczbow a, to mówimy o modelu złożonym. Podstawowym założeniem jest to, że zmienne losowe (X i ) 1 i N s a niezależne oraz N jest niezależne od (X i ) i Rozkład wielkości portfela w modelu prostym Dla prostoty przyjmijmy najpierw N = 2 oraz X 1 = X, X 2 = Y, wtedy S := S 2 = X + Y gdzie X, Y s a niezależnymi indywidualnymi szkodami. Przyjmijmy na chwilȩ założenie, że X, Y przyjmuj a jedynie wartości ze zbioru liczb naturalnych N = {, 1,...} z prawdopodobieństwami P (X = i) = f X (i), P (Y = i) = f Y (i), i N. Przyjmujemy f X (s) = f Y (s) = dla s / N. Stosuj ac wzór na prawdopodobieństwo całkowite, dla s R otrzymujemy F S (s) = P (S s) = P (X + Y s Y = i)p (Y = i) = P (X s i Y = i)p (Y = i). i= Korzystaj ac z niezależności X i Y otrzymujemy F S (s) = F X (s i)f Y (i) (2.1.1) i= oraz f S (s) = f X (s i)f Y (i). (2.1.2) 17

18 18 ROZDZIAŁ 2. ROZKŁADY WIELKOŚCI PORTFELA Zauważmy, że wartości f S (s) mogą być dodatnie jedynie dla s N, dla s spoza zbioru N są równe. Tak samo możemy argumentować w celu otrzymania wzorów w przypadku, gdy zmienne losowe przyjmują wartości w dowolnym przeliczalnym zbiorze kratowym {d i : i Z}, gdzie d > (zmienne losowe o rozkładach kratowych). Ustawiając dopuszczalne wartości zmiennych w ciąg, załóżmy, że X, Y przyjmują przeliczaln a ilość wartości y 1, y 2,..., ze zbioru {d i : i Z} z dodatnimi prawdopodobieństwami f X (y i ) i f Y (y i ), odpowiednio. Otrzymujemy wtedy dla s R oraz F S (s) = F X (s y i )f Y (y i ) (2.1.3) f S (s) = f X (s y i )f Y (y i ). (2.1.4) Mówimy, że dystrybuanta F S jest splotem F X i F Y i oznaczamy F S (s) = F X F Y (s). Podobnie dla funkcji prawdopodobieństwa oznaczamy f S (s) = f X f Y (s) jeśli zachodzi (2.1.4). Wygodnie jest wprowadzić oznaczenia na potęgi splotowe. fx 2 = f X f X oraz fx n = f (n 1) X f X, dla n 1. Dla n =, fx (s) = I {}(s), FX (s) = I [, )(s). Dla zmiennych X, Y typu absolutnie ci agłego, czyli dla dystrybuant postaci F X (s) = s f X(x)dx, F Y (s) = s f Y (x)dx, dla s R można zastosować analogiczne rozumowanie używając ogólnych prawdopodobieństw warunkowych. Można też zastosować inne metody. Metoda I. Przejście graniczne. Niech dla n 1, Y (n) będzie zmienną losową przyjmującą wartości w zbiorze { 1 2 i : i Z}, zdefiniowaną przez Y (n) = n i Z i 2 I n { i 2 n Y < i+1 2 n }. Funkcja prawdopodobieństwa tej zmiennej jest określona przez P (Y (n) = i 2 ) = F n Y ( i+1 2 ) F n Y ( i 2 ). n Stosując (2.1.3) otrzymujemy F X+Y (n)(s) = i Z = = F X (s i 2 n )f Y (n)( i 2 n ) i Z i Z F X (s i 2 n )(F Y ( i n ) F Y ( i 2 n )) F X (s i 2 n )f Y (ξ i,n ) 1 2 n, dla pewnych ξ i,n [ i 2, i+1 n 2 ) wybranych na podstawie twierdzenia o wartości średniej. Przechodząc w ostatniej równości z n, z lewej strony mamy F X+Y (n)(s) n F X+Y (s), n bo zbieżność zmiennych losowych (prawie wszędzie) pociąga zbieżność dystrybuant (tutaj dystrybuanta graniczna jest ciągła). Z prawej strony ostatniej równości mamy sumę aproksymacyjną całki Riemanna, więc otrzymujemy w granicy

19 2.1. ROZKŁAD WIELKOŚCI PORTFELA W MODELU PROSTYM 19 F S (s) = oraz różniczkując f S (s) = F X (s y)f Y (y)dy = F X F Y (s) (2.1.5) f X (s y)f Y (y)dy = f X f Y (s). (2.1.6) Metoda II. Wartość oczekiwana. Dla pary zmiennych losowych X, Y o rozkładach absolutnie ciągłych możemy użyć następującego lematu (który natychmiast można uogólnić na większą liczbę zmiennych). Lemat Niech X, Y będą zmiennymi losowymi o łącznej dystrybuancie wtedy F (X,Y ) (x, y) = P (X x, Y y) = E(ψ(X, Y )) = gdzie ψ : R 2 R jest dowolną mierzalną funkcją. x y f (X,Y ) (x, y)dydx, ψ(x, y)f (X,Y ) (x, y)dydx, Dowód. Dla ψ(x, y) = I (,x] (,y] (x, y), teza wynika natychmiast z równości E(I (,x] (,y] (X, Y )) = P (X x, Y y) i z założenia lematu. Ponieważ dowolna funkcja ψ może być przybliżona kombinacjami liniowymi indykatorów takiej postaci, teza jest natychmiastowa. Przyjmując teraz ψ(x, y) = I {x+y s} (x, y) otrzymujemy z powyższego lematu P (X + Y s) = = I {x+y s} (x, y)f (X,Y ) (x, y)dydx I {x+y s} (x, y)f X (x)f Y (y)dxdy, gdzie ostatnia równość wynika z niezależności zmiennych X, Y. Ponieważ I {x+y s} (x, y) = I {x s y} (x) otrzymujemy (2.1.5). Przykład Niech X ma gȩstość f X (x) = 1 2 I (,2)(x) oraz niezależnie, Y ma gȩstość f Y (x) = 1 3 I (,3)(x). Wtedy ze wzoru (2.1.5) 1 dla s 5 1 (5 s)2 12 dla 3 s < 5 F S (s) = s 1 3 dla 2 s < 3. s 2 12 dla s < 2 dla s <

20 2 ROZDZIAŁ 2. ROZKŁADY WIELKOŚCI PORTFELA Rzeczywiście, mamy dla < x < 2, F X (x) = x f X(u)du =.5 x du =.5x, a st ad dla x F X (x) =.5x dla < x < 2. 1 dla x 2 Dla s < 2 dostajemy F S (s) = s 1 2 (s y)1 3 dy = 1 12 s2. Dla 2 s < 3 mamy: jeżeli s y > 2 (czyli < y < s 2), to F X (s y) = 1. Jeżeli < s y < 2 (czyli s 2 < y < s), to F X (s y) = 1 2 (s y), st ad F S (s) = = 1 3 s 2 s 2 = s s 3 I (,3)(y)dy + dy + s s 2 Dla 3 s < 5, podobnie jak wyżej, F S (s) = = = s 2 s 2 s 2 = 1 s (s y)1 3 dy 1 2 (s y)1 3 I (,3)(y)dy I (,3)(y)dy dy + 1 (s y) 2 3 I (,3) (s 2,s)(y)dy dy (s y) s dy (5 s)2. 12 I (s 2,s) (y) 1 1 (s y) 2 3 I (,3)(y)dy Ten sam wynik otrzymamy licząc wielkości odpowiednich pól na rysunku przedstawiającym łączną gęstość (tak jak na wykładzie). Niech X będzie zmienną o rozkładzie mieszanym, tzn. F X (s) = αfx d (s)+(1 α)f X c (s), dla pewnego α (, 1), gdzie FX d jest częścią dyskretną dystrybuanty F X, a FX c jest częścią absolutnie ciagłą dystrybuanty F X. Niech Y będzie zmienną o rozkładzie mieszanym, tzn. F Y (s) = βfy d (s) + (1 β)f Y c (s), dla pewnego β (, 1), gdzie F Y d (s) = i P (Y = y i )I [yi, )(s) jest częścią dyskretną dystrybuanty F Y, a FY c (s) = s f Y c (y)dy jest częścią absolutnie ciagłą dystrybuanty F Y. Wygodnie jest wprowadzić ogólne oznaczenie na splot dystrybuant następująco, F X F Y (s) = F X (s y)df Y (y),

Matematyka ubezpieczeń maj atkowych i osobowych

Matematyka ubezpieczeń maj atkowych i osobowych Matematyka ubezpieczeń maj atkowych i osobowych Ryszard Szekli Skrypt do wykładu - Uniwersytet Wrocławski -216/217 wersja skrócona 2 Spis treści 1 Wprowadzenie 11 2 Rozkłady wielkości portfela 17 2.1 Rozkład

Bardziej szczegółowo

Matematyka ubezpieczeń maj atkowych i osobowych (MUMIO)

Matematyka ubezpieczeń maj atkowych i osobowych (MUMIO) Matematyka ubezpieczeń maj atkowych i osobowych (MUMIO) Ryszard Szekli WYKŁAD (Uniwersytet Wrocławski -2012/2013) 2 Rozdział 1 Rozkłady wielkości portfela Portfel: X = {X 1,..., X N } zmienne niezależne

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r.

Matematyka ubezpieczeń majątkowych r. Zadanie. W pewnej populacji kierowców każdego jej członka charakteryzują trzy zmienne: K liczba przejeżdżanych kilometrów (w tysiącach rocznie) NP liczba szkód w ciągu roku, w których kierowca jest stroną

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych 1.10.2012 r.

Matematyka ubezpieczeń majątkowych 1.10.2012 r. Zadanie. W pewnej populacji każde ryzyko charakteryzuje się trzema parametrami q, b oraz v, o następującym znaczeniu: parametr q to prawdopodobieństwo, że do szkody dojdzie (może zajść co najwyżej jedna

Bardziej szczegółowo

Zadanie 1. Zmienne losowe X 1, X 2 są niezależne i mają taki sam rozkład z atomami:

Zadanie 1. Zmienne losowe X 1, X 2 są niezależne i mają taki sam rozkład z atomami: Zadanie 1. Zmienne losowe X 1, X 2 są niezależne i mają taki sam rozkład z atomami: Pr(X 1 = 0) = 6/10, Pr(X 1 = 1) = 1/10, i gęstością: f(x) = 3/10 na przedziale (0, 1). Wobec tego Pr(X 1 + X 2 5/3) wynosi:

Bardziej szczegółowo

Rok akademicki: 2013/2014 Kod: AMA-2-311-MN-s Punkty ECTS: 6. Kierunek: Matematyka Specjalność: Matematyka w naukach technicznych i przyrodniczych

Rok akademicki: 2013/2014 Kod: AMA-2-311-MN-s Punkty ECTS: 6. Kierunek: Matematyka Specjalność: Matematyka w naukach technicznych i przyrodniczych Nazwa modułu: teoria ryzyka Rok akademicki: 2013/2014 Kod: AMA-2-311-MN-s Punkty ECTS: 6 Wydział: Matematyki Stosowanej Kierunek: Matematyka Specjalność: Matematyka w naukach technicznych i przyrodniczych

Bardziej szczegółowo

Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe.

Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Rachunek prawdopodobieństwa MAP3040 WPPT FT, rok akad. 2010/11, sem. zimowy Wykładowca: dr hab. Agnieszka Jurlewicz Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Warunkowa wartość oczekiwana.

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych 6.04.2009 r.

Matematyka ubezpieczeń majątkowych 6.04.2009 r. Matematyka ubezpieczeń majątkowych 6.04.009 r. Zadanie. Niech N oznacza liczbę szkód zaszłych w ciągu roku z pewnego ubezpieczenia z czego: M to liczba szkód zgłoszonych przed końcem tego roku K to liczba

Bardziej szczegółowo

Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów.

Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów. Rachunek prawdopodobieństwa MAP1181 Wydział PPT, MS, rok akad. 213/14, sem. zimowy Wykładowca: dr hab. Agnieszka Jurlewicz Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów.

Bardziej szczegółowo

Zadanie 1. są niezależne i mają rozkład z atomami: ( ),

Zadanie 1. są niezależne i mają rozkład z atomami: ( ), Zadanie. Zmienne losowe są niezależne i mają rozkład z atomami: ( ) ( ) i gęstością: ( ) na przedziale ( ). Wobec tego ( ) wynosi: (A) 0.2295 (B) 0.2403 (C) 0.2457 (D) 0.25 (E) 0.269 Zadanie 2. Niech:

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład VII: Rozkład i jego charakterystyki 22 listopada 2016 Uprzednio wprowadzone pojęcia i ich własności Definicja zmiennej losowej Zmienna losowa na przestrzeni probabilistycznej (Ω, F, P) to funkcja

Bardziej szczegółowo

Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe

Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe Nierówność Czebyszewa Niech X będzie zmienną losową o skończonej wariancji V ar(x). Wtedy wartość oczekiwana E(X) też jest skończona i

Bardziej szczegółowo

Weryfikacja hipotez statystycznych

Weryfikacja hipotez statystycznych Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta

Bardziej szczegółowo

Przegląd ważniejszych rozkładów

Przegląd ważniejszych rozkładów Przegląd ważniejszych rozkładów Rozkład dwupunktowy P (X = x) = { p dla x = a, 1 p dla x = b, to zmienna losowa X ma rozkład dwupunktowy z parametrem p (0 < p < 1). Rozkład ten pojawia się przy opisie

Bardziej szczegółowo

Funkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k.

Funkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k. Funkcje wymierne Jerzy Rutkowski Teoria Przypomnijmy, że przez R[x] oznaczamy zbiór wszystkich wielomianów zmiennej x i o współczynnikach rzeczywistych Definicja Funkcją wymierną jednej zmiennej nazywamy

Bardziej szczegółowo

Rozkłady statystyk z próby

Rozkłady statystyk z próby Rozkłady statystyk z próby Rozkłady statystyk z próby Przypuśćmy, że wykonujemy serię doświadczeń polegających na 4 krotnym rzucie symetryczną kostką do gry, obserwując liczbę wyrzuconych oczek Nr kolejny

Bardziej szczegółowo

Ważne rozkłady i twierdzenia c.d.

Ważne rozkłady i twierdzenia c.d. Ważne rozkłady i twierdzenia c.d. Funkcja charakterystyczna rozkładu Wielowymiarowy rozkład normalny Elipsa kowariacji Sploty rozkładów Rozkłady jednostajne Sploty z rozkładem normalnym Pobieranie próby

Bardziej szczegółowo

Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład

Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład Rozdział 1 Wektory losowe 1.1 Wektor losowy i jego rozkład Definicja 1 Wektor X = (X 1,..., X n ), którego każda współrzędna jest zmienną losową, nazywamy n-wymiarowym wektorem losowym (krótko wektorem

Bardziej szczegółowo

LIV Egzamin dla Aktuariuszy z 4 października 2010 r. Część III

LIV Egzamin dla Aktuariuszy z 4 października 2010 r. Część III Komisja Egzaminacyjna dla Aktuariuszy LIV Egzamin dla Aktuariuszy z 4 października 2010 r. Część III Matematyka ubezpieczeń majątkowych Imię i nazwisko osoby egzaminowanej:. Czas egzaminu: 100 minut Komisja

Bardziej szczegółowo

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl

Bardziej szczegółowo

METODY ESTYMACJI PUNKTOWEJ. nieznanym parametrem (lub wektorem parametrów). Przez X będziemy też oznaczać zmienną losową o rozkładzie

METODY ESTYMACJI PUNKTOWEJ. nieznanym parametrem (lub wektorem parametrów). Przez X będziemy też oznaczać zmienną losową o rozkładzie METODY ESTYMACJI PUNKTOWEJ X 1,..., X n - próbka z rozkładu P θ, θ Θ, θ jest nieznanym parametrem (lub wektorem parametrów). Przez X będziemy też oznaczać zmienną losową o rozkładzie P θ. Definicja. Estymatorem

Bardziej szczegółowo

STATYSTYKA

STATYSTYKA Wykład 1 20.02.2008r. 1. ROZKŁADY PRAWDOPODOBIEŃSTWA 1.1 Rozkład dwumianowy Rozkład dwumianowy, 0 1 Uwaga: 1, rozkład zero jedynkowy. 1 ; 1,2,, Fakt: Niech,, będą niezależnymi zmiennymi losowymi o jednakowym

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład II: Zmienne losowe i charakterystyki ich rozkładów 13 października 2014 Zmienne losowe Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Definicja zmiennej losowej i jej

Bardziej szczegółowo

TEORIA RYZYKA. Ryszard Szekli

TEORIA RYZYKA. Ryszard Szekli TEORIA RYZYKA Ryszard Szekli Skrypt do wykładu - Uniwersytet Wrocławski -22/23 2 Spis treści Wprowadzenie 5 3 Prawdopodobieństwo ruiny: czas dyskretny 3. Proces ryzyka jako błądzenie losoweprawdopodobieństwo

Bardziej szczegółowo

4,5. Dyskretne zmienne losowe (17.03; 31.03)

4,5. Dyskretne zmienne losowe (17.03; 31.03) 4,5. Dyskretne zmienne losowe (17.03; 31.03) Definicja 1 Zmienna losowa nazywamy dyskretna (skokowa), jeśli zbiór jej wartości x 1, x 2,..., można ustawić w ciag. Zmienna losowa X, która przyjmuje wszystkie

Bardziej szczegółowo

Wykład 11: Martyngały: Twierdzenie o zbieżności i Hoeffdinga

Wykład 11: Martyngały: Twierdzenie o zbieżności i Hoeffdinga RAP 412 21.01.2009 Wykład 11: Martyngały: Twierdzenie o zbieżności i Hoeffdinga Wykładowca: Andrzej Ruciński Pisarz: Łukasz Waszak 1 Wstęp Na ostatnim wykładzie przedstawiliśmy twierdzenie o zbieżności

Bardziej szczegółowo

Proces Poissona. Proces {N(t), t 0} nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t.

Proces Poissona. Proces {N(t), t 0} nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t. Procesy stochastyczne WYKŁAD 5 Proces Poissona. Proces {N(t), t } nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t. Proces zliczający musi

Bardziej szczegółowo

Statystyka i eksploracja danych

Statystyka i eksploracja danych Wykład II: i charakterystyki ich rozkładów 24 lutego 2014 Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa,

Bardziej szczegółowo

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej 7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej Definicja 1 n-elementowa losowa próba prosta nazywamy ciag n niezależnych zmiennych losowych o jednakowych rozkładach

Bardziej szczegółowo

Spis treści 3 SPIS TREŚCI

Spis treści 3 SPIS TREŚCI Spis treści 3 SPIS TREŚCI PRZEDMOWA... 1. WNIOSKOWANIE STATYSTYCZNE JAKO DYSCYPLINA MATEMATYCZNA... Metody statystyczne w analizie i prognozowaniu zjawisk ekonomicznych... Badania statystyczne podstawowe

Bardziej szczegółowo

III. ZMIENNE LOSOWE JEDNOWYMIAROWE

III. ZMIENNE LOSOWE JEDNOWYMIAROWE III. ZMIENNE LOSOWE JEDNOWYMIAROWE.. Zmienna losowa i pojęcie rozkładu prawdopodobieństwa W dotychczas rozpatrywanych przykładach każdemu zdarzeniu była przyporządkowana odpowiednia wartość liczbowa. Ta

Bardziej szczegółowo

Zakładamy, że są niezależnymi zmiennymi podlegającymi (dowolnemu) rozkładowi o skończonej wartości oczekiwanej i wariancji.

Zakładamy, że są niezależnymi zmiennymi podlegającymi (dowolnemu) rozkładowi o skończonej wartości oczekiwanej i wariancji. Wnioskowanie_Statystyczne_-_wykład Spis treści 1 Centralne Twierdzenie Graniczne 1.1 Twierdzenie Lindeberga Levy'ego 1.2 Dowód 1.2.1 funkcja tworząca sumy zmiennych niezależnych 1.2.2 pochodna funkcji

Bardziej szczegółowo

Literatura. Leitner R., Zacharski J., Zarys matematyki wyŝszej dla studentów, cz. III.

Literatura. Leitner R., Zacharski J., Zarys matematyki wyŝszej dla studentów, cz. III. Literatura Krysicki W., Bartos J., Dyczka W., Królikowska K, Wasilewski M., Rachunek Prawdopodobieństwa i Statystyka Matematyczna w Zadaniach, cz. I. Leitner R., Zacharski J., Zarys matematyki wyŝszej

Bardziej szczegółowo

R ozkład norm alny Bardzo często używany do modelowania symetrycznych rozkładów zmiennych losowych ciągłych

R ozkład norm alny Bardzo często używany do modelowania symetrycznych rozkładów zmiennych losowych ciągłych R ozkład norm alny Bardzo często używany do modelowania symetrycznych rozkładów zmiennych losowych ciągłych Przykłady: Błąd pomiarowy Wzrost, wydajność Temperatura ciała Zawartość różnych składników we

Bardziej szczegółowo

AKADEMIA GÓRNICZO-HUTNICZA Wydział Matematyki Stosowanej ROZKŁAD NORMALNY ROZKŁAD GAUSSA

AKADEMIA GÓRNICZO-HUTNICZA Wydział Matematyki Stosowanej ROZKŁAD NORMALNY ROZKŁAD GAUSSA AKADEMIA GÓRNICZO-HUTNICZA Wydział Matematyki Stosowanej KATEDRA MATEMATYKI TEMAT PRACY: ROZKŁAD NORMALNY ROZKŁAD GAUSSA AUTOR: BARBARA MARDOSZ Kraków, styczeń 2008 Spis treści 1 Wprowadzenie 2 2 Definicja

Bardziej szczegółowo

LIII Egzamin dla Aktuariuszy z 31 maja 2010 r. Część III

LIII Egzamin dla Aktuariuszy z 31 maja 2010 r. Część III Komisja Egzaminacyjna dla Aktuariuszy LIII Egzamin dla Aktuariuszy z 3 maja 200 r. Część III Matematyka ubezpieczeń majątkowych Imię i nazwisko osoby egzaminowanej:. Czas egzaminu: 00 minut Komisja Nadzoru

Bardziej szczegółowo

Statystyka. Wydział Zarządzania Uniwersytetu Łódzkiego

Statystyka. Wydział Zarządzania Uniwersytetu Łódzkiego Statystyka Wydział Zarządzania Uniwersytetu Łódzkiego 2017 Podstawowe rozkłady zmiennych losowych Rozkłady zmiennych skokowych Rozkład zero-jedynkowy Rozpatrujemy doświadczenie, którego rezultatem może

Bardziej szczegółowo

Z Wikipedii, wolnej encyklopedii.

Z Wikipedii, wolnej encyklopedii. Rozkład normalny Rozkład normalny jest niezwykle ważnym rozkładem prawdopodobieństwa w wielu dziedzinach. Nazywa się go także rozkładem Gaussa, w szczególności w fizyce i inżynierii. W zasadzie jest to

Bardziej szczegółowo

Metoda Simplex bez użycia tabel simplex 29 kwietnia 2010

Metoda Simplex bez użycia tabel simplex 29 kwietnia 2010 R. Rȩbowski 1 WPROWADZENIE Metoda Simplex bez użycia tabel simplex 29 kwietnia 2010 1 Wprowadzenie Powszechnie uważa siȩ, że metoda simplex, jako uniwersalny algorytm pozwalaj acyznaleźć rozwi azanie optymalne

Bardziej szczegółowo

Pochodna i różniczka funkcji oraz jej zastosowanie do obliczania niepewności pomiarowych

Pochodna i różniczka funkcji oraz jej zastosowanie do obliczania niepewności pomiarowych Pochodna i różniczka unkcji oraz jej zastosowanie do obliczania niepewności pomiarowych Krzyszto Rębilas DEFINICJA POCHODNEJ Pochodna unkcji () w punkcie określona jest jako granica: lim 0 Oznaczamy ją

Bardziej szczegółowo

1. Ubezpieczenia życiowe

1. Ubezpieczenia życiowe 1. Ubezpieczenia życiowe Przy ubezpieczeniach życiowych mamy do czynienia z jednorazową wypłatą sumy ubezpieczenia. Moment jej wypłaty i wielkość wypłaty może być funkcją zmiennej losowej T a więc czas

Bardziej szczegółowo

Wykład z analizy danych: powtórzenie zagadnień z rachunku prawdopodobieństwa

Wykład z analizy danych: powtórzenie zagadnień z rachunku prawdopodobieństwa Wykład z analizy danych: powtórzenie zagadnień z rachunku prawdopodobieństwa Marek Kubiak Instytut Informatyki Politechnika Poznańska Plan wykładu Podstawowe pojęcia rachunku prawdopodobieństwa Rozkład

Bardziej szczegółowo

Prawa wielkich liczb, centralne twierdzenia graniczne

Prawa wielkich liczb, centralne twierdzenia graniczne , centralne twierdzenia graniczne Katedra matematyki i ekonomii matematycznej 17 maja 2012, centralne twierdzenia graniczne Rodzaje zbieżności ciągów zmiennych losowych, centralne twierdzenia graniczne

Bardziej szczegółowo

Zadania o numerze 4 z zestawów licencjat 2014.

Zadania o numerze 4 z zestawów licencjat 2014. Zadania o numerze 4 z zestawów licencjat 2014. W nawiasie przy zadaniu jego występowanie w numerze zestawu Spis treści (Z1, Z22, Z43) Definicja granicy ciągu. Obliczyć granicę:... 3 Definicja granicy ciągu...

Bardziej szczegółowo

Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie:

Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie: Ciągi rekurencyjne Zadanie 1 Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie: w dwóch przypadkach: dla i, oraz dla i. Wskazówka Należy poszukiwać rozwiązania w postaci, gdzie

Bardziej szczegółowo

Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x 1, x 2,...}, to mówimy, że jest to zmienna dyskretna.

Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x 1, x 2,...}, to mówimy, że jest to zmienna dyskretna. Wykład 4 Rozkłady i ich dystrybuanty Dwa typy zmiennych losowych Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x, x 2,...}, to mówimy, że jest to zmienna dyskretna.

Bardziej szczegółowo

Dystrybucje, wiadomości wstępne (I)

Dystrybucje, wiadomości wstępne (I) Temat 8 Dystrybucje, wiadomości wstępne (I) Wielkości fizyczne opisujemy najczęściej przyporządkowując im funkcje (np. zależne od czasu). Inną drogą opisu tych wielkości jest przyporządkowanie im funkcjonałów

Bardziej szczegółowo

ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 1 Wprowadzajacy

ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 1 Wprowadzajacy Wst ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 1 Wprowadzajacy 1 Matematyka aktuarialna 1. matematyka w ubezpieczeniach, 2. dok ladniej, matematyka ubezpieczeń na życie, 3. czasami szerzej,

Bardziej szczegółowo

Rachunek prawdopodobieństwa - Teoria - Przypomnienie.. A i B są niezależne, gdy P(A B) = P(A)P(B). P(A B i )P(B i )

Rachunek prawdopodobieństwa - Teoria - Przypomnienie.. A i B są niezależne, gdy P(A B) = P(A)P(B). P(A B i )P(B i ) Rachunek prawdopodobieństwa - Teoria - Przypomnienie Podstawy Definicja 1. Schemat klasyczny - wszystkie zdarzenia elementarne są równo prawdopodobne, licząc prawdopodobieństwo liczymy stosunek liczby

Bardziej szczegółowo

b) Niech: - wśród trzech wylosowanych opakowań jest co najwyżej jedno o dawce 15 mg. Wówczas:

b) Niech: - wśród trzech wylosowanych opakowań jest co najwyżej jedno o dawce 15 mg. Wówczas: ROZWIĄZANIA I ODPOWIEDZI Zadanie A1. Można założyć, że przy losowaniu trzech kul jednocześnie kolejność ich wylosowania nie jest istotna. A więc: Ω = 20 3. a) Niech: - wśród trzech wylosowanych opakowań

Bardziej szczegółowo

Warszawa, dnia 31 grudnia 2015 r. Poz ROZPORZĄDZENIE MINISTRA FINANSÓW. z dnia 22 grudnia 2015 r.

Warszawa, dnia 31 grudnia 2015 r. Poz ROZPORZĄDZENIE MINISTRA FINANSÓW. z dnia 22 grudnia 2015 r. DZIENNIK USTAW RZECZYPOSPOLITEJ POLSKIEJ Warszawa, dnia 31 grudnia 2015 r. Poz. 2338 ROZPORZĄDZENIE 1), 2) MINISTRA FINANSÓW z dnia 22 grudnia 2015 r. w sprawie szczegółowego sposobu wyliczenia wysokości

Bardziej szczegółowo

1. Przyszła długość życia x-latka

1. Przyszła długość życia x-latka Przyszła długość życia x-latka Rozważmy osobę mającą x lat; oznaczenie: (x) Jej przyszłą długość życia oznaczymy T (x), lub krótko T Zatem x+t oznacza całkowitą długość życia T jest zmienną losową, której

Bardziej szczegółowo

Statystyka matematyczna dla leśników

Statystyka matematyczna dla leśników Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 2013/2014 Wykład 3 Zmienna losowa i jej rozkłady Zdarzenia losowe Pojęcie prawdopodobieństwa

Bardziej szczegółowo

Matematyka finansowa 26.05.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r. Część I

Matematyka finansowa 26.05.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r. Część I Komisja Egzaminacyjna dla Aktuariuszy LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Przyjmijmy

Bardziej szczegółowo

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXI Egzamin dla Aktuariuszy z 1 października 2012 r.

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXI Egzamin dla Aktuariuszy z 1 października 2012 r. Komisja Egzaminacyjna dla Aktuariuszy LXI Egzamin dla Aktuariuszy z 1 października 2012 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1

Bardziej szczegółowo

ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH

ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH 1 ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH WFAiS UJ, Informatyka Stosowana II stopień studiów 2 Wnioskowanie statystyczne dla zmiennych numerycznych Porównywanie dwóch średnich Boot-strapping Analiza

Bardziej szczegółowo

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXXIII Egzamin dla Aktuariuszy z 7 marca 2016 r. Część I

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXXIII Egzamin dla Aktuariuszy z 7 marca 2016 r. Część I Komisja Egzaminacyjna dla Aktuariuszy LXXIII Egzamin dla Aktuariuszy z 7 marca 2016 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

4. Ubezpieczenie Życiowe

4. Ubezpieczenie Życiowe 4. Ubezpieczenie Życiowe Składka ubezpieczeniowa musi brać pod uwagę następujące czynniki: 1. Kwotę wypłaconą przy śmierci ubezpieczonego oraz jej wartość aktualną. 2. Rozkład czasu do śmierci ubezpieczonego

Bardziej szczegółowo

Zmienne losowe, statystyki próbkowe. Wrocław, 2 marca 2015

Zmienne losowe, statystyki próbkowe. Wrocław, 2 marca 2015 Zmienne losowe, statystyki próbkowe Wrocław, 2 marca 2015 Zasady zaliczenia 2 kolokwia (każde po 20 punktów) projekt (20 punktów) aktywność Zasady zaliczenia 2 kolokwia (każde po 20 punktów) projekt (20

Bardziej szczegółowo

Wykład 10 Estymacja przedziałowa - przedziały ufności dla średn

Wykład 10 Estymacja przedziałowa - przedziały ufności dla średn Wykład 10 Estymacja przedziałowa - przedziały ufności dla średniej Wrocław, 21 grudnia 2016r Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja 10.1 Przedziałem

Bardziej szczegółowo

W. Guzicki Zadanie IV z Informatora Maturalnego poziom rozszerzony 1

W. Guzicki Zadanie IV z Informatora Maturalnego poziom rozszerzony 1 W. Guzicki Zadanie IV z Informatora Maturalnego poziom rozszerzony 1 Zadanie IV. Dany jest prostokątny arkusz kartony o długości 80 cm i szerokości 50 cm. W czterech rogach tego arkusza wycięto kwadratowe

Bardziej szczegółowo

Zmienne losowe ciągłe i ich rozkłady

Zmienne losowe ciągłe i ich rozkłady Statystyka i opracowanie danych W3 Zmienne losowe ciągłe i ich rozkłady Dr Anna ADRIAN Paw B5, pok47 adan@agh.edu.pl Plan wykładu Rozkład Poissona. Zmienna losowa ciągła Dystrybuanta i funkcja gęstości

Bardziej szczegółowo

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15 Sylabus do programu kształcenia obowiązującego od roku akademickiego 0/5 () Nazwa Rachunek prawdopodobieństwa i statystyka () Nazwa jednostki prowadzącej Wydział Matematyczno - Przyrodniczy przedmiot ()

Bardziej szczegółowo

zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych

zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych 1. [E.A 5.10.1996/zad.4] Funkcja gęstości dana jest wzorem { 3 x + 2xy + 1 y dla (x y) (0 1) (0 1) 4 4 P (X > 1 2 Y > 1 2 ) wynosi:

Bardziej szczegółowo

12. Przynależność do grupy przedmiotów: Blok przedmiotów matematycznych

12. Przynależność do grupy przedmiotów: Blok przedmiotów matematycznych (pieczęć wydziału) KARTA PRZEDMIOTU Z1-PU7 WYDANIE N1 Strona 1 z 5 1. Nazwa przedmiotu: Rachunek prawdopodobieństwa i statystyka matematyczna 2. Kod przedmiotu: RPiS 3. Karta przedmiotu ważna od roku akademickiego:

Bardziej szczegółowo

Zmienne losowe ciągłe i ich rozkłady

Zmienne losowe ciągłe i ich rozkłady Rachunek Prawdopodobieństwa i Statystyka - W3 Zmienne losowe ciągłe i ich rozkłady Dr Anna ADRIAN Paw B5, pok47 adan@agh.edu.pl Plan wykładu Zmienna losowa ciągła Dystrybuanta i unkcja gęstości rozkładu

Bardziej szczegółowo

Korzystanie z podstawowych rozkładów prawdopodobieństwa (tablice i arkusze kalkulacyjne)

Korzystanie z podstawowych rozkładów prawdopodobieństwa (tablice i arkusze kalkulacyjne) Korzystanie z podstawowych rozkładów prawdopodobieństwa (tablice i arkusze kalkulacyjne) Przygotował: Dr inż. Wojciech Artichowicz Katedra Hydrotechniki PG Zima 2014/15 1 TABLICE ROZKŁADÓW... 3 ROZKŁAD

Bardziej szczegółowo

istocie dziedzina zajmująca się poszukiwaniem zależności na podstawie prowadzenia doświadczeń jest o wiele starsza: tak na przykład matematycy

istocie dziedzina zajmująca się poszukiwaniem zależności na podstawie prowadzenia doświadczeń jest o wiele starsza: tak na przykład matematycy MODEL REGRESJI LINIOWEJ. METODA NAJMNIEJSZYCH KWADRATÓW Analiza regresji zajmuje się badaniem zależności pomiędzy interesującymi nas wielkościami (zmiennymi), mające na celu konstrukcję modelu, który dobrze

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 4

RÓWNANIA RÓŻNICZKOWE WYKŁAD 4 RÓWNANIA RÓŻNICZKOWE WYKŁAD 4 Obszar określoności równania Jeżeli występująca w równaniu y' f ( x, y) funkcja f jest ciągła, to równanie posiada rozwiązanie. Jeżeli f jest nieokreślona w punkcie (x 0,

Bardziej szczegółowo

ROZPORZĄDZENIE MINISTRA FINANSÓW 1) z dnia 2 listopada 2010 r.

ROZPORZĄDZENIE MINISTRA FINANSÓW 1) z dnia 2 listopada 2010 r. 1409 ROZPORZĄDZENIE MINISTRA FINANSÓW 1) z dnia 2 listopada 2010 r. w sprawie zakresu informacji zawartych w rocznym raporcie o stanie portfela ubezpieczeń i reasekuracji zakładu ubezpieczeń Na podstawie

Bardziej szczegółowo

Matematyka finansowa 04.04.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r. Część I

Matematyka finansowa 04.04.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r. Część I Komisja Egzaminacyjna dla Aktuariuszy LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

Wstęp do rachunku prawdopodobieństwa. Cz. 2 / William Feller. wyd. 4, dodr. 3. Warszawa, Spis treści

Wstęp do rachunku prawdopodobieństwa. Cz. 2 / William Feller. wyd. 4, dodr. 3. Warszawa, Spis treści Wstęp do rachunku prawdopodobieństwa. Cz. 2 / William Feller. wyd. 4, dodr. 3. Warszawa, 2012 Spis treści Przedmowa 5 Oznaczenia i konwencje 7 Rozdział I Rozkład wykładniczy i rozkład jednostajny 1. Wprowadzenie

Bardziej szczegółowo

Całki nieoznaczone. 1 Własności. 2 Wzory podstawowe. Adam Gregosiewicz 27 maja a) Jeżeli F (x) = f(x), to f(x)dx = F (x) + C,

Całki nieoznaczone. 1 Własności. 2 Wzory podstawowe. Adam Gregosiewicz 27 maja a) Jeżeli F (x) = f(x), to f(x)dx = F (x) + C, Całki nieoznaczone Adam Gregosiewicz 7 maja 00 Własności a) Jeżeli F () = f(), to f()d = F () + C, dla dowolnej stałej C R. b) Jeżeli a R, to af()d = a f()d. c) Jeżeli f i g są funkcjami całkowalnymi,

Bardziej szczegółowo

ODRZUCANIE WYNIKÓW POJEDYNCZYCH POMIARÓW

ODRZUCANIE WYNIKÓW POJEDYNCZYCH POMIARÓW ODRZUCANIE WYNIKÓW OJEDYNCZYCH OMIARÓW W praktyce pomiarowej zdarzają się sytuacje gdy jeden z pomiarów odstaje od pozostałych. Jeżeli wykorzystamy fakt, że wyniki pomiarów są zmienną losową opisywaną

Bardziej szczegółowo

Metody statystyczne kontroli jakości i niezawodności Lekcja II: Karty kontrolne.

Metody statystyczne kontroli jakości i niezawodności Lekcja II: Karty kontrolne. Metody statystyczne kontroli jakości i niezawodności Lekcja II: Karty kontrolne. Wydział Matematyki Politechniki Wrocławskiej Karty kontroli jakości: przypomnienie Załóżmy, że chcemy mierzyć pewną charakterystykę.

Bardziej szczegółowo

Warszawa, dnia 30 grudnia 2015 r. Poz. 2321 ROZPORZĄDZENIE MINISTRA FINANSÓW 1) z dnia 23 grudnia 2015 r.

Warszawa, dnia 30 grudnia 2015 r. Poz. 2321 ROZPORZĄDZENIE MINISTRA FINANSÓW 1) z dnia 23 grudnia 2015 r. DZIENNIK USTAW RZECZYPOSPOLITEJ POLSKIEJ Warszawa, dnia 30 grudnia 2015 r. Poz. 2321 ROZPORZĄDZENIE MINISTRA FINANSÓW 1) z dnia 23 grudnia 2015 r. w sprawie szczegółowego sposobu obliczania podstawowego

Bardziej szczegółowo

Instytut Matematyczny Uniwersytet Wrocławski. Zakres egzaminu magisterskiego. Wybrane rozdziały anazlizy i topologii 1 i 2

Instytut Matematyczny Uniwersytet Wrocławski. Zakres egzaminu magisterskiego. Wybrane rozdziały anazlizy i topologii 1 i 2 Instytut Matematyczny Uniwersytet Wrocławski Zakres egzaminu magisterskiego Wybrane rozdziały anazlizy i topologii 1 i 2 Pojęcia, fakty: Definicje i pojęcia: metryka, iloczyn skalarny, norma supremum,

Bardziej szczegółowo

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

Definicja i własności wartości bezwzględnej.

Definicja i własności wartości bezwzględnej. Równania i nierówności z wartością bezwzględną. Rozwiązywanie układów dwóch (trzech) równań z dwiema (trzema) niewiadomymi. Układy równań liniowych z parametrem, analiza rozwiązań. Definicja i własności

Bardziej szczegółowo

K wartość kapitału zaangażowanego w proces produkcji, w tys. jp.

K wartość kapitału zaangażowanego w proces produkcji, w tys. jp. Sprawdzian 2. Zadanie 1. Za pomocą KMNK oszacowano następującą funkcję produkcji: Gdzie: P wartość produkcji, w tys. jp (jednostek pieniężnych) K wartość kapitału zaangażowanego w proces produkcji, w tys.

Bardziej szczegółowo

Indukcja matematyczna

Indukcja matematyczna Indukcja matematyczna 1 Zasada indukcji Rozpatrzmy najpierw następujący przykład. Przykład 1 Oblicz sumę 1 + + 5 +... + (n 1). Dyskusja. Widzimy że dla n = 1 ostatnim składnikiem powyższej sumy jest n

Bardziej szczegółowo

Aktuariat i matematyka finansowa. Metody kalkulacji składki w ubezpieczeniach typu non - life

Aktuariat i matematyka finansowa. Metody kalkulacji składki w ubezpieczeniach typu non - life Aktuariat i matematyka finansowa Metody kalkulacji składki w ubezpieczeniach typu non - life Budowa składki ubezpieczeniowej Składka ubezpieczeniowa cena jaką ubezpieczający płaci za ochronę ubezpieczeniowa

Bardziej szczegółowo

Rozkłady zmiennych losowych

Rozkłady zmiennych losowych Rozkłady zmiennych losowych Wprowadzenie Badamy pewną zbiorowość czyli populację pod względem występowania jakiejś cechy. Pobieramy próbę i na podstawie tej próby wyznaczamy pewne charakterystyki. Jeśli

Bardziej szczegółowo

Gdy n jest duże, statystyka ta (zwana statystyką chikwadrat), przy założeniu prawdziwości hipotezy H 0, ma w przybliżeniu rozkład χ 2 (k 1).

Gdy n jest duże, statystyka ta (zwana statystyką chikwadrat), przy założeniu prawdziwości hipotezy H 0, ma w przybliżeniu rozkład χ 2 (k 1). PRZYKŁADY TESTÓW NIEPARAMETRYCZNYCH. Test zgodności χ 2. Ten test służy testowaniu hipotezy, czy rozważana zmienna ma pewien ustalony rozkład, czy też jej rozkład różni się od tego ustalonego. Tym testem

Bardziej szczegółowo

Estymacja przedziałowa - przedziały ufności dla średnich. Wrocław, 5 grudnia 2014

Estymacja przedziałowa - przedziały ufności dla średnich. Wrocław, 5 grudnia 2014 Estymacja przedziałowa - przedziały ufności dla średnich Wrocław, 5 grudnia 2014 Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja Przedziałem ufności dla paramertu

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE A. RÓWNANIA RZĘDU PIERWSZEGO Uwagi ogólne Równanie różniczkowe zwyczajne rzędu pierwszego zawiera. Poza tym może zawierać oraz zmienną. Czyli ma postać ogólną Na przykład

Bardziej szczegółowo

STATYSTYKA wykład 5-6

STATYSTYKA wykład 5-6 TATYTYKA wykład 5-6 Twierdzenia graniczne Rozkłady statystyk z próby Wanda Olech Twierdzenia graniczne Jeżeli rozpatrujemy ciąg zmiennych losowych {X ; X ;...; X n }, to zdarza się, że ich rozkłady przy

Bardziej szczegółowo

PRAKTYCZNE METODY BADANIA NIEWYPŁACALNOŚCI ZAKŁADÓW UBEZPIECZEŃ

PRAKTYCZNE METODY BADANIA NIEWYPŁACALNOŚCI ZAKŁADÓW UBEZPIECZEŃ PRAKTYCZNE METODY BADANIA NIEWYPŁACALNOŚCI ZAKŁADÓW UBEZPIECZEŃ Autor: Wojciech Bijak, Wstęp Praca koncentruje się na ilościowych metodach i modelach pozwalających na wczesne wykrycie zagrożenia niewypłacalnością

Bardziej szczegółowo

Wykład 4. Określimy teraz pewną ważną klasę pierścieni.

Wykład 4. Określimy teraz pewną ważną klasę pierścieni. Wykład 4 Określimy teraz pewną ważną klasę pierścieni. Twierdzenie 1 Niech m, n Z. Jeśli n > 0 to istnieje dokładnie jedna para licz q, r, że: m = qn + r, 0 r < n. Liczbę r nazywamy resztą z dzielenia

Bardziej szczegółowo

dr Hubert Wiśniewski 1

dr Hubert Wiśniewski 1 dr Hubert Wiśniewski 1 Agenda: 1. Rodzaje i czynniki ryzyka w przedsiębiorstwie ubezpieczeniowym. 2. Miary ryzyka przedsiębiorstwa ubezpieczeniowego. 3. Zarządzanie ryzykiem ubezpieczeniowym w przedsiębiorstwie

Bardziej szczegółowo

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com Analiza korelacji i regresji KORELACJA zależność liniowa Obserwujemy parę cech ilościowych (X,Y). Doświadczenie jest tak pomyślane, aby obserwowane pary cech X i Y (tzn i ta para x i i y i dla różnych

Bardziej szczegółowo

Ćwiczenia 3 ROZKŁAD ZMIENNEJ LOSOWEJ JEDNOWYMIAROWEJ

Ćwiczenia 3 ROZKŁAD ZMIENNEJ LOSOWEJ JEDNOWYMIAROWEJ Ćwiczenia 3 ROZKŁAD ZMIENNEJ LOSOWEJ JEDNOWYMIAROWEJ Zadanie 1. Zmienna losowa przyjmuje wartości -1, 0, 1 z prawdopodobieństwami równymi odpowiednio: ¼, ½, ¼. Należy: a. Wyznaczyć rozkład prawdopodobieństwa

Bardziej szczegółowo

Pochodne wyższych rzędów definicja i przykłady

Pochodne wyższych rzędów definicja i przykłady Pochodne wyższych rzędów definicja i przykłady Pochodne wyższych rzędów Drugą pochodną funkcji nazywamy pochodną pochodnej tej funkcji. Trzecia pochodna jest pochodną drugiej pochodnej; itd. Ogólnie, -ta

Bardziej szczegółowo

Oznacza to, że chcemy znaleźć minimum, a właściwie wartość najmniejszą funkcji

Oznacza to, że chcemy znaleźć minimum, a właściwie wartość najmniejszą funkcji Wykład 11. Metoda najmniejszych kwadratów Szukamy zależności Dane są wyniki pomiarów dwóch wielkości x i y: (x 1, y 1 ), (x 2, y 2 ),..., (x n, y n ). Przypuśćmy, że nanieśliśmy je na wykres w układzie

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA. rachunek prawdopodobieństwa

STATYSTYKA MATEMATYCZNA. rachunek prawdopodobieństwa STATYSTYKA MATEMATYCZNA rachunek prawdopodobieństwa treść Zdarzenia losowe pojęcie prawdopodobieństwa prawo wielkich liczb zmienne losowe rozkłady teoretyczne zmiennych losowych Zanim zajmiemy się wnioskowaniem

Bardziej szczegółowo

LXX Egzamin dla Aktuariuszy z 23 marca 2015 r.

LXX Egzamin dla Aktuariuszy z 23 marca 2015 r. Komisja Egzaminacyjna dla Aktuariuszy LXX Egzamin dla Aktuariuszy z 23 marca 2015 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,

Bardziej szczegółowo

1. Wykład NWD, NWW i algorytm Euklidesa.

1. Wykład NWD, NWW i algorytm Euklidesa. 1.1. NWD, NWW i algorytm Euklidesa. 1. Wykład 1 Twierdzenie 1.1 (o dzieleniu z resztą). Niech a, b Z, b 0. Wówczas istnieje dokładnie jedna para liczb całkowitych q, r Z taka, że a = qb + r oraz 0 r< b.

Bardziej szczegółowo

Pochodna funkcji c.d.-wykład 5 ( ) Funkcja logistyczna

Pochodna funkcji c.d.-wykład 5 ( ) Funkcja logistyczna Pochodna funkcji c.d.-wykład 5 (5.11.07) Funkcja logistyczna Rozważmy funkcję logistyczną y = f 0 (t) = 40 1+5e 0,5t Funkcja f może być wykorzystana np. do modelowania wzrostu masy ziaren kukurydzy (zmienna

Bardziej szczegółowo

WYKŁAD 2. Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady

WYKŁAD 2. Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady WYKŁAD 2 Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady Metody statystyczne metody opisu metody wnioskowania statystycznego syntetyczny liczbowy opis właściwości zbioru danych ocena

Bardziej szczegółowo

Metoda największej wiarygodności

Metoda największej wiarygodności Metoda największej wiarygodności Próbki w obecności tła Funkcja wiarygodności Iloraz wiarygodności Pomiary o różnej dokładności Obciążenie Informacja z próby i nierówność informacyjna Wariancja minimalna

Bardziej szczegółowo