Temat: Algorytm kompresji plików metodą Huffmana

Wielkość: px
Rozpocząć pokaz od strony:

Download "Temat: Algorytm kompresji plików metodą Huffmana"

Transkrypt

1 Temat: Algorytm kompresji plików metodą Huffmana. Wymagania dotyczące kompresji danych Przez M oznaczmy zbiór wszystkich możliwych symboli występujących w pliku (alfabet pliku). Przykład M = 2, gdy plik tekstowy zawiera znaki alfabetu Morse'a: kropka i kreska M = 5, gdy plik tekstowy ma następującą zawartość: abaacdaae M = {a, b, c, d, e} M = 256 dla dowolnego pliku, jeżeli każdemu bajtowi pliku zinterpretowanemu jako znak (typ char) przyporządkujmy jego kod ASCII. Załóżmy, że znane jest prawdopodobieństwo wystąpienia dowolnego znaku m i (i=, 2,..., n; gdzie n = M ) w alfabecie M. Ustalamy również, że wszystkie znaki alfabetu chcemy zakodować w postaci ciągów zerojedynkowych. Oznaczmy to prawdopodobieństwo przez P(m i ). Wówczas: P m... + P m ( ) ( ) + n =

2 Def. Entropią źródła M nazywamy wartość wyrażenia L = P m L m P m L m (*) ave ( ) ( ) ( n ) ( n ) gdzie ( m ) = log ( P( )). L i 2 m i, Wartość L( m i ) ma sens minimalnej długości kodu dla symbolu m i. W roku 948 Claude E. Shannon wykazał, że równanie (*) daje najlepszą możliwą średnią długość kodu, kiedy symbole tworzące kod i częstości ich wystąpienia są znane. Żaden algorytm kompresji danych nie może dawać wyniku lepszego niż L ave, a im bliższy jest tej liczby, tym lepszy (wyższy) jest współczynnik kompresji zdefiniowany następująco: długość ciągu wejściowego - długość ciągu wyjściowego długość ciągu wejściowego Przykład Niech M = 3, a prawdopodobieństwa wystąpienia poszczególnych symboli wynoszą: P ( m ) = 0,25, P( m2 ) = 0,25, P( m3 ) = 0, 5. Wówczas długości minimalne przypisanych kodów będą wynosiły: log ( P( m )) = log2 P( m2 ) = log2 0,25 = log2 = log2 0,25 oraz log2 ( P ( m3 )) = log2( 2) =, a średnia długość kodu będzie wynosiła L ave = P( m ) 2 + P( m2 ) 2 + P( m3 ) =, 5. ( ) ( ) ( 4) 2 2 = 2

3 W metodach kompresji danych dąży się do zminimalizowania średniej długości kodu, konstruując kod optymalny wg zasady: Im mniejsze prawdopodobieństwo wystąpienia znaku tym dłuższy jest jego kod kompresji. Aby kompresja była poprawna muszą być spełnione następujące warunki: ) Każdy kod odpowiada dokładnie jednemu symbolowi. 2) Dekodowanie nie powinno wymagać podglądania większego fragmentu zakodowanego tekstu. Po wczytaniu z pliku pojedynczego symbolu powinniśmy umieć stwierdzić, czy osiągnięty został koniec napisu kodującego symbo pierwotnej wiadomości. Nie są więc potrzebne żadne specjalne znaki oddzielające dwa kody w sąsiedniej wiadomości. 3

4 Przykład Trzy różne sposoby zakodowania trzech symboli: Symbol Kod Kod 2 Kod 3 A B C Pierwszy kod nie rozróżnia ciągu znaków AB od C. AB: 0 C : 0 - Drugi kod wymaga podglądania następnych znaków. W ciągu: 000 pierwszy znak można zakodować jako A. - Wtedy następne dwa zera sugerują, że po A występuje B. Z tym jednak, że ostatnie zero nie koduje żadnego symbolu alfabetu. Zatem początek kodu musi "dawać" C, a pozostałe dwa zera dają B. Stąd poprawnie odkodowany ciąg to CB. Możemy to ustalić dopiero po odczytaniu całego ciągu Jedynie Kod 3 spełnia warunki ) i 2). 3) Długość kodu danego symbolu nie powinna przekraczać długości kodu symbolu mniej prawdopodobnego. Czy jeśli P m P m, to L m L m dla i, j n. ( ) ( ) ( ) ( ) i j 4) W optymalnym systemie kodowania nie powinny się być wykorzystane kody o długości k zanim nie zostaną wykorzystane optymalne kody o długościach mniejszych od k. Gdyby ten warunek nie był spełniony, to oznaczałoby to niepotrzebne wydłużanie kodów. i j 4

5 Przykład Ciąg kodów 0, 000, 00, 00, 0 dla pewnego alfabetu nie jest optymalny, ponieważ kod nigdzie nie jest używany. Kodowanie to można przekształcić w optymalny ciąg 0, 0,, 000, 00. Ciąg ten spełnia warunki od ) do 4). 2. Metoda Huffmana Metoda kompresji Huffmana oparta jest na algorytmie tworzenia tzw. drzewa Huffmana. Idea algorytmu tworzenia drzewa Huffmana. Dla każdego symbolu utwórz jednowęzłowe drzewo. 2. Uporządkuj wszystkie drzewa niemalejąco względem prawdopodobieństwa wystąpień symboli. 3. Weź dwa drzewa d i d 2 o najmniejszych prawdopodobieństwach p i p 2 występowania symboli i utwórz drzewo o synach d i d 2 i prawdopodobieństwie w korzeniu równym p + p Krok 3 powtarzaj aż do momentu, gdy zostanie tylko jedno drzewo. 5. Każdą krawędź skierowaną w lewo oznacz zerem, a każdą skierowaną w prawo jedynką; 6. Utwórz kod dla każdego symbolu, przechodząc drzewo od korzenia do liścia odpowiadającego temu symbolowi i łącząc napotykane zera i jedynki. W korzeniu otrzymanego drzewa prawdopodobieństwo wynosi. 5

6 Przykład Przyjmijmy, że: M = 5, M={A, B, C, D, E}, a prawdopodobieństwa wystąpienia poszczególnych symboli wynoszą: P A = 0,09, P B = 0,2, P C = 0,9, P D = 0,2, P E = ( ) ( ) ( ) ( ) ( ) 0, 39. Drzewa jednowęzłowe 0,09 A 0,2 B 0,9 C 0,2 D 0,39 E 2. Etapy budowania drzewa Huffmana 0,40 0,9 C 0,2 0,2 D 0,39 E 0,09 A 0,2 B 6

7 ,0 0,40 0,60 0,9 C 0,2 0,2 D 0,39 E 0,09 A 0,2 B Dla ustalenia efektywności kompresji metodą Huffmana wykorzystuje się pojęcie ważonej długości ścieżki L huf, definiowanej tak samo jak L ave w równaniu (*), tylko wartości L(m i ) zastępujemy długością kodu dla symbolu m i. Tak więc: L ave = 0,09 3, ,2 3, ,9 2, ,2 2, ,39,238 = 2,09 L = 0, , , , ,39 2 = 2,2 huf Ważona długość ścieżki różni się nieznacznie, bo tylko o 5% od entropii źródła. 7

8 Zauważmy, że dla każdego przypadku drzewa Huffmana zbudowanego dla tego samego pliku, otrzymujemy taką samą ważoną długość ścieżki. Prześledzimy teraz na przykładzie pewnego pliku wszystkie kroki algorytmów: kompresji i dekompresji metodą Huffmana. Dla uproszczenia będziemy zakładali, że kompresji poddajemy "krótki" plik tekstowy odczytywany znak po znaku. Plik: ABAACBDABBCEDAE Algorytm kompresji metodą Huffmana. Przeglądamy plik i ustalamy tablicę częstości wystąpienia poszczególnych symboli: A - 5 B - 4 C - 2 D - 2 E Tworzymy listę jednowęzłowych drzew symboli z częstościami uporządkowaną niemalejąco wg częstości Lista: E - 2 C - 2 D - 2 B - 4 A Na podstawie listy tworzymy drzewo Huffmana D-2 B E-2 C-2 A-5 8

9 4. Ustalamy kody kompresji poszczególnych symboli ma podstawie drzewa Huffmana. A: B: 0 C: 0 D: 00 E: Odczytujemy znaki pliku, który jest poddawany kompresji i przypisujemy im odpowiednie kody kompresji. Plik: A B A A C B D A B B C E D A E Kody kompresji: Do pliku powstającego po kompresji wstawiamy: - tablicę częstości symboli niezbędną przy dekompresji, - znaki o kodach obliczonych jako liczba dziesiętna powstała po zamianie ośmiobitowych serii kodu kompresji Kody kompresji z podziałem na serie ośmiobitowe: I bajt II bajt III bajt IV bajt V bajt (niepełny) I bajt: (0) 2 = (223) 0 II bajt: (0000) 2 = (22) 0 III bajt: (000) 2 = (73) 0 IV bajt: (0000) 2 = (35) 0 V bajt uzupełniony: ( ) 2 = (0) 0 Plik powstały w wyniku kompresji: #223 #22#73#35#0 (#k - operator zwracający znak o kodzie k) 9

10 Algorytm dekompresji metodą Huffmana Plik powstały w wyniku kompresji: #223 #22#73#35#0. Odczytujemy częstości wystąpienia symboli i obliczamy liczbę elementów w pliku, który został skompresowany. Liczba elementów pliku przed kompresją: =5 2. Na podstawie tablicy częstości budujemy drzewo Huffmana (identycznie jak w algorytmie kompresji) Ustalamy kody kompresji poszczególnych symboli na podstawie drzewa Huffmana (identycznie jak w algorytmie kompresji) A: B: 0 C: 0 D: 00 E: 00 D-2 B E-2 C-2 A-5 0

11 4. Odczytujemy znaki pliku, który jest poddawany dekompresji. Każdemu znakowi odczytanemu z pliku przyporządkowujemy ośmiobitową serię zerojedynkową stanowiącą reprezentację dwójkową kodu znaku. I bajt: (223) 0 = (0) 2 II bajt: (22) 0 = (0000) 2 III bajt: (73) 0 = (000) 2 IV bajt: (35) 0 = (0000) 2 V bajt: (0) 0 = ( ) 2 Plik powstały w wyniku kompresji: #223 #22#73#35#0 (#k - operator zwracający znak o kodzie k) 5.Ustalamy symbole po dekompresji na podstawie powstałego ciągu binarnego, kodów kompresji i drzewa Huffmana. Ciąg binarny : Sym.po dekomp.: A B A A CBDA B B C E D A E 6 "dostawionych" bitów - Ustalenie pojedynczego symbolu po dekompresji zaczyna się zawsze w korzeniu drzewa Huffmana, a kończy po osiągnięciu liścia w tym drzewie. - Dzięki temu, że znamy liczbę elementów pliku, który został poddany kompresji możemy po ustaleniu 5 symboli po dekompresji zakończyć proces dekodowania i tym samym "dostawione" bity zostaną zignorowane.

12 Koszt czasowy algorytmu kompresji: Rozmiar zadania: n - rozmiar alfabetu m - liczba znaków pliku, który kompresujemy. Tworzenie uporządkowanej listy jednowęzłowych drzew kosztuje optymalnie Θ(nlogn). 2. Jeden krok procesu scalania dwóch węzłów drzewa Huffmana jest realizowany kosztem stałym Θ(). Cały proces tworzenia drzewa Huffmana kosztuje zatem Θ(n 2 ). 3. Proces ustalania wszystkich kodów kompresji kosztuje Θ(n).Można go zrealizować stosując metodę przeglądania drzewa binarnego w porządku inorder (poprzeczny: L K P). 4. Krok algorytmu kompresji, który ustala kody znaków wpisywanych do skompresowanego pliku ma również koszt rzędu Θ(m). Stąd wynika, że koszt algorytmu kompresji metodą Huffmana pliku zawierającego m znaków nad n elementowym alfabetem wynosi Θ(n 2 +m). 2

Kodowanie Huffmana. Platforma programistyczna.net; materiały do laboratorium 2014/15 Marcin Wilczewski

Kodowanie Huffmana. Platforma programistyczna.net; materiały do laboratorium 2014/15 Marcin Wilczewski Kodowanie Huffmana Platforma programistyczna.net; materiały do laboratorium 24/5 Marcin Wilczewski Algorytm Huffmana (David Huffman, 952) Algorytm Huffmana jest popularnym algorytmem generującym optymalny

Bardziej szczegółowo

0-0000, 1-0001, 2-0010, 3-0011 itd... 9-1001.

0-0000, 1-0001, 2-0010, 3-0011 itd... 9-1001. KODOWANIE Jednym z problemów, z którymi spotykamy się w informatyce, jest problem właściwego wykorzystania pamięci. Konstruując algorytm staramy się zwykle nie tylko o zminimalizowanie kosztów czasowych

Bardziej szczegółowo

Def. Kod jednoznacznie definiowalny Def. Kod przedrostkowy Def. Kod optymalny. Przykłady kodów. Kody optymalne

Def. Kod jednoznacznie definiowalny Def. Kod przedrostkowy Def. Kod optymalny. Przykłady kodów. Kody optymalne Załóżmy, że mamy źródło S, które generuje symbole ze zbioru S={x, x 2,..., x N } z prawdopodobieństwem P={p, p 2,..., p N }, symbolom tym odpowiadają kody P={c, c 2,..., c N }. fektywność danego sposobu

Bardziej szczegółowo

Kompresja danych kodowanie Huffmana. Dariusz Sobczuk

Kompresja danych kodowanie Huffmana. Dariusz Sobczuk Kompresja danych kodowanie Huffmana Dariusz Sobczuk Plan wykładu Kodowanie metodą Shannona-Fano Kodowanie metodą Huffmana Elementarny kod Golomba Kod Golomba Kod Rice a kompresja danych 2 Efektywny kod

Bardziej szczegółowo

Nierówność Krafta-McMillana, Kodowanie Huffmana

Nierówność Krafta-McMillana, Kodowanie Huffmana Nierówność Krafta-McMillana, Kodowanie Huffmana Kodowanie i kompresja informacji - Wykład 2 1 marca 2010 Test na jednoznaczna dekodowalność Kod a jest prefiksem kodu b jeśli b jest postaci ax. x nazywamy

Bardziej szczegółowo

Wstęp Statyczne kody Huffmana Dynamiczne kody Huffmana Praktyka. Kodowanie Huffmana. Dawid Duda. 4 marca 2004

Wstęp Statyczne kody Huffmana Dynamiczne kody Huffmana Praktyka. Kodowanie Huffmana. Dawid Duda. 4 marca 2004 4 marca 2004 Podstawowe oznaczenia i definicje Wymagania wobec kodu Podstawowa idea Podsumowanie Podstawowe oznaczenia i definicje Podstawowe oznaczenia i definicje: alfabet wejściowy: A = {a 1, a 2,...,

Bardziej szczegółowo

Kody Huffmana. Konrad Wypyski. 11 lutego 2006 roku

Kody Huffmana. Konrad Wypyski. 11 lutego 2006 roku Kody Huffmana Konrad Wypyski 11 lutego 2006 roku Spis treści 1 Rozdział 1 Kody Huffmana Kody Huffmana (ang. Huffman coding) to jedna z najprostszych i najłatwiejszych w implementacji metod kompresji bezstratnej;

Bardziej szczegółowo

KODY SYMBOLI. Kod Shannona-Fano. Algorytm S-F. Przykład S-F

KODY SYMBOLI. Kod Shannona-Fano. Algorytm S-F. Przykład S-F KODY SYMBOLI Kod Shannona-Fano KODOWANIE DANYCH, A.Przelaskowski Metoda S-F Kod Huffmana Adaptacyjne drzewo Huffmana Problemy implementacji Kod Golomba Podsumowanie Kod drzewa binarnego Na wejściu rozkład:

Bardziej szczegółowo

Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 11,

Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 11, 1 Kwantyzacja skalarna Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 11, 10.05.005 Kwantyzacja polega na reprezentowaniu dużego zbioru wartości (być może nieskończonego) za pomocą wartości

Bardziej szczegółowo

0 + 0 = 0, = 1, = 1, = 0.

0 + 0 = 0, = 1, = 1, = 0. 5 Kody liniowe Jak już wiemy, w celu przesłania zakodowanego tekstu dzielimy go na bloki i do każdego z bloków dodajemy tak zwane bity sprawdzające. Bity te są w ścisłej zależności z bitami informacyjnymi,

Bardziej szczegółowo

KODY SYMBOLI. Materiały KODA, A.Przelaskowski. Koncepcja przedziałów nieskończonego alfabetu

KODY SYMBOLI. Materiały KODA, A.Przelaskowski. Koncepcja przedziałów nieskończonego alfabetu KODY SYMBOLI Materiały KODA, A.Przelaskowski Koncepcja drzewa binarnego Metoda S-F Kod Huffmana Adaptacyjne drzewo Huffmana Problemy implementacji Koncepcja przedziałów nieskończonego alfabetu Proste kody

Bardziej szczegółowo

Algorytmy i struktury danych

Algorytmy i struktury danych Cel ćwiczenia lgorytmy i struktury danych Instytut Sterowania i Systemów Informatycznych Wydział Elektrotechniki, Informatyki i Telekomunikacji Uniwersytet Zielonogórski Kompresja Ćwiczenie ma na celu

Bardziej szczegółowo

teoria informacji Entropia, informacja, kodowanie Mariusz Różycki 24 sierpnia 2015

teoria informacji Entropia, informacja, kodowanie Mariusz Różycki 24 sierpnia 2015 teoria informacji Entropia, informacja, kodowanie Mariusz Różycki 24 sierpnia 2015 1 zakres materiału zakres materiału 1. Czym jest teoria informacji? 2. Wprowadzenie matematyczne. 3. Entropia i informacja.

Bardziej szczegółowo

ZADANIE 1. Rozwiązanie:

ZADANIE 1. Rozwiązanie: EUROELEKTR Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 200/20 Rozwiązania zadań dla grupy teleinformatycznej na zawody II. stopnia ZNIE ramka logiczna w technologii MOS składa

Bardziej szczegółowo

teoria informacji Kanały komunikacyjne, kody korygujące Mariusz Różycki 25 sierpnia 2015

teoria informacji Kanały komunikacyjne, kody korygujące Mariusz Różycki 25 sierpnia 2015 teoria informacji Kanały komunikacyjne, kody korygujące Mariusz Różycki 25 sierpnia 2015 1 wczoraj Wprowadzenie matematyczne. Entropia i informacja. Kodowanie. Kod ASCII. Stopa kodu. Kody bezprefiksowe.

Bardziej szczegółowo

Wprowadzenie do informatyki i użytkowania komputerów. Kodowanie informacji System komputerowy

Wprowadzenie do informatyki i użytkowania komputerów. Kodowanie informacji System komputerowy 1 Wprowadzenie do informatyki i użytkowania komputerów Kodowanie informacji System komputerowy Kodowanie informacji 2 Co to jest? bit, bajt, kod ASCII. Jak działa system komputerowy? Co to jest? pamięć

Bardziej szczegółowo

Algorytmy kodowania entropijnego

Algorytmy kodowania entropijnego Algorytmy kodowania entropijnego 1. Kodowanie Shannona-Fano 2. Kodowanie Huffmana 3. Jednoznaczność kodów Huffmana. Kod o minimalnej wariancji 4. Dynamiczne kodowanie Huffmana Poprzedni wykład - podsumowanie

Bardziej szczegółowo

Techniki multimedialne

Techniki multimedialne Techniki multimedialne Digitalizacja podstawą rozwoju systemów multimedialnych. Digitalizacja czyli obróbka cyfrowa oznacza przetwarzanie wszystkich typów informacji - słów, dźwięków, ilustracji, wideo

Bardziej szczegółowo

Kodowanie informacji. Przygotował: Ryszard Kijanka

Kodowanie informacji. Przygotował: Ryszard Kijanka Kodowanie informacji Przygotował: Ryszard Kijanka Komputer jest urządzeniem służącym do przetwarzania informacji. Informacją są liczby, ale także inne obiekty, takie jak litery, wartości logiczne, obrazy

Bardziej szczegółowo

Algorytmy i. Wykład 5: Drzewa. Dr inż. Paweł Kasprowski

Algorytmy i. Wykład 5: Drzewa. Dr inż. Paweł Kasprowski Algorytmy i struktury danych Wykład 5: Drzewa Dr inż. Paweł Kasprowski pawel@kasprowski.pl Drzewa Struktury przechowywania danych podobne do list ale z innymi zasadami wskazywania następników Szczególny

Bardziej szczegółowo

Podstawy programowania 2. Temat: Drzewa binarne. Przygotował: mgr inż. Tomasz Michno

Podstawy programowania 2. Temat: Drzewa binarne. Przygotował: mgr inż. Tomasz Michno Instrukcja laboratoryjna 5 Podstawy programowania 2 Temat: Drzewa binarne Przygotował: mgr inż. Tomasz Michno 1 Wstęp teoretyczny Drzewa są jedną z częściej wykorzystywanych struktur danych. Reprezentują

Bardziej szczegółowo

mgr inż. Grzegorz Kraszewski SYSTEMY MULTIMEDIALNE wykład 4, strona 1. GOLOMBA I RICE'A

mgr inż. Grzegorz Kraszewski SYSTEMY MULTIMEDIALNE wykład 4, strona 1. GOLOMBA I RICE'A mgr inż. Grzegorz Kraszewski SYSTEMY MULTIMEDIALNE wykład 4, strona 1. KOMPRESJA ALGORYTMEM ARYTMETYCZNYM, GOLOMBA I RICE'A Idea algorytmu arytmetycznego Przykład kodowania arytmetycznego Renormalizacja

Bardziej szczegółowo

Przetwarzanie i transmisja danych multimedialnych. Wykład 3 Kodowanie Shannona Fano i Huffmana. Przemysław Sękalski.

Przetwarzanie i transmisja danych multimedialnych. Wykład 3 Kodowanie Shannona Fano i Huffmana. Przemysław Sękalski. Przetwarzanie i transmisja danych multimedialnych Wykład 3 Kodowanie Shannona Fano i Huffmana Przemysław Sękalski sekalski@dmcs.pl Politechnika Łódzka Katedra Mikroelektroniki i Technik Informatycznych

Bardziej szczegółowo

Wstęp do programowania. Reprezentacje liczb. Liczby naturalne, całkowite i rzeczywiste w układzie binarnym

Wstęp do programowania. Reprezentacje liczb. Liczby naturalne, całkowite i rzeczywiste w układzie binarnym Wstęp do programowania Reprezentacje liczb Liczby naturalne, całkowite i rzeczywiste w układzie binarnym System dwójkowy W komputerach stosuje się dwójkowy system pozycyjny do reprezentowania zarówno liczb

Bardziej szczegółowo

ARYTMETYKA BINARNA. Dziesiątkowy system pozycyjny nie jest jedynym sposobem kodowania liczb z jakim mamy na co dzień do czynienia.

ARYTMETYKA BINARNA. Dziesiątkowy system pozycyjny nie jest jedynym sposobem kodowania liczb z jakim mamy na co dzień do czynienia. ARYTMETYKA BINARNA ROZWINIĘCIE DWÓJKOWE Jednym z najlepiej znanych sposobów kodowania informacji zawartej w liczbach jest kodowanie w dziesiątkowym systemie pozycyjnym, w którym dla przedstawienia liczb

Bardziej szczegółowo

Przetwarzanie i transmisja danych multimedialnych. Wykład 5 Kodowanie słownikowe. Przemysław Sękalski.

Przetwarzanie i transmisja danych multimedialnych. Wykład 5 Kodowanie słownikowe. Przemysław Sękalski. Przetwarzanie i transmisja danych multimedialnych Wykład 5 Kodowanie słownikowe Przemysław Sękalski sekalski@dmcs.pl Politechnika Łódzka Katedra Mikroelektroniki i Technik Informatycznych DMCS Przemysław

Bardziej szczegółowo

1.1. Pozycyjne systemy liczbowe

1.1. Pozycyjne systemy liczbowe 1.1. Pozycyjne systemy liczbowe Systemami liczenia nazywa się sposób tworzenia liczb ze znaków cyfrowych oraz zbiór reguł umożliwiających wykonywanie operacji arytmetycznych na liczbach. Dla dowolnego

Bardziej szczegółowo

Sortowanie. Bartman Jacek Algorytmy i struktury

Sortowanie. Bartman Jacek Algorytmy i struktury Sortowanie Bartman Jacek jbartman@univ.rzeszow.pl Algorytmy i struktury danych Sortowanie przez proste wstawianie przykład 41 56 17 39 88 24 03 72 41 56 17 39 88 24 03 72 17 41 56 39 88 24 03 72 17 39

Bardziej szczegółowo

Komunikacja człowiek-komputer

Komunikacja człowiek-komputer Komunikacja człowiek-komputer Wykład 3 Dr inż. Michał Kruk Komunikacja człowiek - komputer dr inż. Michał Kruk Reprezentacja znaków Aby zakodować tekst, trzeba każdej możliwej kombinacji bitów przyporządkować

Bardziej szczegółowo

Arytmetyka komputera

Arytmetyka komputera Arytmetyka komputera Systemy zapisu liczb System dziesiętny Podstawą układu dziesiętnego jest liczba 10, a wszystkie liczby można zapisywać dziesięcioma cyframi: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Jednostka

Bardziej szczegółowo

Podstawy kompresji danych

Podstawy kompresji danych Podstawy kompresji danych Pojęcie kompresji W ogólności kompresja (kodowanie) jest procedurą (przekształceniem) zmiany reprezentacji wejściowego zbioru danych do postaci wymagającej mniejszej liczby bitów

Bardziej szczegółowo

2 Arytmetyka. d r 2 r + d r 1 2 r 1...d d 0 2 0,

2 Arytmetyka. d r 2 r + d r 1 2 r 1...d d 0 2 0, 2 Arytmetyka Niech b = d r d r 1 d 1 d 0 będzie zapisem liczby w systemie dwójkowym Zamiana zapisu liczby b na system dziesiętny odbywa się poprzez wykonanie dodawania d r 2 r + d r 1 2 r 1 d 1 2 1 + d

Bardziej szczegółowo

Wstęp do Informatyki

Wstęp do Informatyki Wstęp do Informatyki Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 4 Bożena Woźna-Szcześniak (AJD) Wstęp do Informatyki Wykład 4 1 / 1 DZIELENIE LICZB BINARNYCH Dzielenie

Bardziej szczegółowo

Python: JPEG. Zadanie. 1. Wczytanie obrazka

Python: JPEG. Zadanie. 1. Wczytanie obrazka Python: JPEG Witajcie! Jest to kolejny z serii tutoriali uczący Pythona, a w przyszłości być może nawet Cythona i Numby Jeśli chcesz nauczyć się nowych, zaawansowanych konstrukcji to spróbuj rozwiązać

Bardziej szczegółowo

Dla człowieka naturalnym sposobem liczenia jest korzystanie z systemu dziesiętnego, dla komputera natomiast korzystanie z zapisu dwójkowego

Dla człowieka naturalnym sposobem liczenia jest korzystanie z systemu dziesiętnego, dla komputera natomiast korzystanie z zapisu dwójkowego Arytmetyka cyfrowa Dla człowieka naturalnym sposobem liczenia jest korzystanie z systemu dziesiętnego, dla komputera natomiast korzystanie z zapisu dwójkowego (binarnego). Zapis binarny - to system liczenia

Bardziej szczegółowo

Pracownia Komputerowa wyk ad VII

Pracownia Komputerowa wyk ad VII Pracownia Komputerowa wyk ad VII dr Magdalena Posiada a-zezula Magdalena.Posiadala@fuw.edu.pl http://www.fuw.edu.pl/~mposiada Magdalena.Posiadala@fuw.edu.pl 1 Notacja szesnastkowa - przypomnienie Szesnastkowy

Bardziej szczegółowo

Systemy liczenia. 333= 3*100+3*10+3*1

Systemy liczenia. 333= 3*100+3*10+3*1 Systemy liczenia. System dziesiętny jest systemem pozycyjnym, co oznacza, Ŝe wartość liczby zaleŝy od pozycji na której się ona znajduje np. w liczbie 333 kaŝda cyfra oznacza inną wartość bowiem: 333=

Bardziej szczegółowo

Dane, informacja, programy. Kodowanie danych, kompresja stratna i bezstratna

Dane, informacja, programy. Kodowanie danych, kompresja stratna i bezstratna Dane, informacja, programy Kodowanie danych, kompresja stratna i bezstratna DANE Uporządkowane, zorganizowane fakty. Główne grupy danych: tekstowe (znaki alfanumeryczne, znaki specjalne) graficzne (ilustracje,

Bardziej szczegółowo

Tablice z haszowaniem

Tablice z haszowaniem Tablice z haszowaniem - efektywna metoda reprezentacji słowników (zbiorów dynamicznych, na których zdefiniowane są operacje Insert, Search i Delete) - jest uogólnieniem zwykłej tablicy - przyspiesza operacje

Bardziej szczegółowo

Temat 5. 20 pytań Teoria informacji

Temat 5. 20 pytań Teoria informacji Temat 5 20 pytań Teoria informacji Streszczenie Ile informacji znajduje się w tysiącstronicowej książce? Czy więcej informacji znajduje się w książce telefonicznej, na 1000 stron tradycyjnych wydruków

Bardziej szczegółowo

Luty 2001 Algorytmy (7) 2000/2001 s-rg@siwy.il.pw.edu.pl

Luty 2001 Algorytmy (7) 2000/2001 s-rg@siwy.il.pw.edu.pl System dziesiętny 7 * 10 4 + 3 * 10 3 + 0 * 10 2 + 5 *10 1 + 1 * 10 0 = 73051 Liczba 10 w tym zapisie nazywa się podstawą systemu liczenia. Jeśli liczba 73051 byłaby zapisana w systemie ósemkowym, co powinniśmy

Bardziej szczegółowo

Formaty obrazów rastrowych biblioteki PBM

Formaty obrazów rastrowych biblioteki PBM Formaty obrazów rastrowych biblioteki PBM Reprezentacja obrazu Obrazy pobierane z kamery, bądź dowolnego innego źródła, mogą być składowane na pliku dyskowym w jednym z wielu istniejących formatów zapisu

Bardziej szczegółowo

AKD Metody słownikowe

AKD Metody słownikowe AKD Metody słownikowe Algorytmy kompresji danych Sebastian Deorowicz 2009 03 19 Sebastian Deorowicz () AKD Metody słownikowe 2009 03 19 1 / 38 Plan wykładu 1 Istota metod słownikowych 2 Algorytm Ziva Lempela

Bardziej szczegółowo

ZESZYTY ETI ZESPOŁU SZKÓŁ W TARNOBRZEGU Nr 1 Seria: Teleinformatyka 2013 KOMPRESJA BEZSTRATNA PLIKÓW ALGORYTM HUFFMANA

ZESZYTY ETI ZESPOŁU SZKÓŁ W TARNOBRZEGU Nr 1 Seria: Teleinformatyka 2013 KOMPRESJA BEZSTRATNA PLIKÓW ALGORYTM HUFFMANA ZESZYTY ETI ZESPOŁU SZKÓŁ W TARNOBRZEGU Nr 1 Seria: Teleinformatyka 2013 Zespół Szkół im. ks. S. Staszica w Tarnobrzegu KOMPRESJA BEZSTRATNA PLIKÓW ALGORYTM HUFFMANA Streszczenie Referat zawiera szczegółowe

Bardziej szczegółowo

Wykład 5. Kompresja danych

Wykład 5. Kompresja danych Wykład 5 Kompresja danych 1 Metody kompresji - przegląd Co to jest kompresja danych Definicje Kompresja bezstratna i stratna Kody o stałej i zmiennej długości Entropia i warunek Shannon a Metody kodowania

Bardziej szczegółowo

Podstawą w systemie dwójkowym jest liczba 2 a w systemie dziesiętnym liczba 10.

Podstawą w systemie dwójkowym jest liczba 2 a w systemie dziesiętnym liczba 10. ZAMIANA LICZB MIĘDZY SYSTEMAMI DWÓJKOWYM I DZIESIĘTNYM Aby zamienić liczbę z systemu dwójkowego (binarnego) na dziesiętny (decymalny) należy najpierw przypomnieć sobie jak są tworzone liczby w ww systemach

Bardziej szczegółowo

Zadania do wykonania. Rozwiązując poniższe zadania użyj pętlę for.

Zadania do wykonania. Rozwiązując poniższe zadania użyj pętlę for. Zadania do wykonania Rozwiązując poniższe zadania użyj pętlę for. 1. apisz program, który przesuwa w prawo o dwie pozycje zawartość tablicy 10-cio elementowej liczb całkowitych tzn. element t[i] dla i=2,..,9

Bardziej szczegółowo

Zestaw 3. - Zapis liczb binarnych ze znakiem 1

Zestaw 3. - Zapis liczb binarnych ze znakiem 1 Zestaw 3. - Zapis liczb binarnych ze znakiem 1 Zapis znak - moduł (ZM) Zapis liczb w systemie Znak - moduł Znak liczby o n bitach zależy od najstarszego bitu b n 1 (tzn. cyfry o najwyższej pozycji): b

Bardziej szczegółowo

EGZAMIN MATURALNY Z INFORMATYKI

EGZAMIN MATURALNY Z INFORMATYKI Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MIN 2015 WPISUJE ZDAJĄCY KOD PESEL miejsce na naklejkę EGZAMIN MATURALNY Z INFORMATYKI POZIOM ROZSZERZONY CZĘŚĆ I PRZYKŁADOWY

Bardziej szczegółowo

Kodowanie informacji. Kody liczbowe

Kodowanie informacji. Kody liczbowe Wykład 2 2-1 Kodowanie informacji PoniewaŜ komputer jest urządzeniem zbudowanym z układów cyfrowych, informacja przetwarzana przez niego musi być reprezentowana przy pomocy dwóch stanów - wysokiego i niskiego,

Bardziej szczegółowo

Ćwiczenie nr 4: Kodowanie arytmetyczne, range coder

Ćwiczenie nr 4: Kodowanie arytmetyczne, range coder Algorytmy Kompresji Danych Laboratorium Ćwiczenie nr 4: Kodowanie arytmetyczne, range coder 1. Zapoznać się z opisem implementacji kodera entropijnego range coder i modelem danych opracowanym dla tego

Bardziej szczegółowo

Ćwiczenie nr 3. Wyświetlanie i wczytywanie danych

Ćwiczenie nr 3. Wyświetlanie i wczytywanie danych Ćwiczenie nr 3 Wyświetlanie i wczytywanie danych 3.1 Wstęp Współczesne komputery przetwarzają dane zakodowane za pomocą ciągów zerojedynkowych. W szczególności przetwarzane liczby kodowane są w systemie

Bardziej szczegółowo

Algorytmy kompresji. Kodowanie Huffmana, kodowanie arytmetyczne

Algorytmy kompresji. Kodowanie Huffmana, kodowanie arytmetyczne Algorytmy kompresji Kodowanie Huffmana, kodowanie arytmetyczne Kodowanie arytmetyczne Peter Elias 1923-2001 Kodowanie arytmetyczne to metoda kodowania źródłowego dyskretnych źródeł sygnałów, stosowana

Bardziej szczegółowo

Języki i metodyka programowania. Reprezentacja danych w systemach komputerowych

Języki i metodyka programowania. Reprezentacja danych w systemach komputerowych Reprezentacja danych w systemach komputerowych Kod (łac. codex - spis), ciąg składników sygnału (kombinacji sygnałów elementarnych, np. kropek i kresek, impulsów prądu, symboli) oraz reguła ich przyporządkowania

Bardziej szczegółowo

DZIESIĘTNY SYSTEM LICZBOWY

DZIESIĘTNY SYSTEM LICZBOWY DZIESIĘTNY SYSTEM LICZBOWY Do zapisu dowolnej liczby system wykorzystuje dziesięć symboli (cyfr): 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 Dowolną liczbę w systemie dziesiętnym możemy przedstawić jako następująca

Bardziej szczegółowo

Pracownia Komputerowa wyk ad IV

Pracownia Komputerowa wyk ad IV Pracownia Komputerowa wykad IV dr Magdalena Posiadaa-Zezula Magdalena.Posiadala@fuw.edu.pl http://www.fuw.edu.pl/~mposiada Magdalena.Posiadala@fuw.edu.pl 1 Reprezentacje liczb i znaków Liczby: Reprezentacja

Bardziej szczegółowo

Systemy zapisu liczb.

Systemy zapisu liczb. Systemy zapisu liczb. Cele kształcenia: Zapoznanie z systemami zapisu liczb: dziesiętny, dwójkowy, ósemkowy, szesnastkowy. Zdobycie umiejętności wykonywania działań na liczbach w różnych systemach. Zagadnienia:

Bardziej szczegółowo

Naturalny kod binarny (NKB)

Naturalny kod binarny (NKB) SWB - Arytmetyka binarna - wykład 6 asz 1 Naturalny kod binarny (NKB) pozycja 7 6 5 4 3 2 1 0 wartość 2 7 2 6 2 5 2 4 2 3 2 2 2 1 2 0 wartość 128 64 32 16 8 4 2 1 bity b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 System

Bardziej szczegółowo

Arytmetyka binarna - wykład 6

Arytmetyka binarna - wykład 6 SWB - Arytmetyka binarna - wykład 6 asz 1 Arytmetyka binarna - wykład 6 Adam Szmigielski aszmigie@pjwstk.edu.pl SWB - Arytmetyka binarna - wykład 6 asz 2 Naturalny kod binarny (NKB) pozycja 7 6 5 4 3 2

Bardziej szczegółowo

ZESPÓŁ LABORATORIÓW TELEMATYKI TRANSPORTU ZAKŁAD TELEKOMUNIKACJI W TRANSPORCIE WYDZIAŁ TRANSPORTU POLITECHNIKI WARSZAWSKIEJ

ZESPÓŁ LABORATORIÓW TELEMATYKI TRANSPORTU ZAKŁAD TELEKOMUNIKACJI W TRANSPORCIE WYDZIAŁ TRANSPORTU POLITECHNIKI WARSZAWSKIEJ ZESPÓŁ ABORATORIÓW TEEMATYKI TRANSPORTU ZAKŁAD TEEKOMUNIKACJI W TRANSPORCIE WYDZIAŁ TRANSPORTU POITECHNIKI WARSZAWSKIEJ ABORATORIUM Telekomunikacji Kolejowej INSTRUKCJA DO ĆWICZENIA NR 5 Kompresja danych

Bardziej szczegółowo

Run-Length Huffman - alternatywny algorytm kompresji map bitowych

Run-Length Huffman - alternatywny algorytm kompresji map bitowych Run-Length Huffman - alternatywny algorytm kompresji map bitowych Michał Stabno 1, Robert Wrembel 2 Streszczenie: Artykuł prezentuje nowy algorytm kompresji indeksów bitmapowych dla zastosowań w hurtowniach

Bardziej szczegółowo

Stan wysoki (H) i stan niski (L)

Stan wysoki (H) i stan niski (L) PODSTAWY Przez układy cyfrowe rozumiemy układy, w których w każdej chwili występują tylko dwa (zwykle) możliwe stany, np. tranzystor, jako element układu cyfrowego, może być albo w stanie nasycenia, albo

Bardziej szczegółowo

Algorytmy sortujące i wyszukujące

Algorytmy sortujące i wyszukujące Algorytmy sortujące i wyszukujące Zadaniem algorytmów sortujących jest ułożenie elementów danego zbioru w ściśle określonej kolejności. Najczęściej wykorzystywany jest porządek numeryczny lub leksykograficzny.

Bardziej szczegółowo

EGZAMIN MATURALNY Z INFORMATYKI

EGZAMIN MATURALNY Z INFORMATYKI WPISUJE ZDAJĄCY NUMER UCZNIA EGZAMIN MATURALNY Z INFORMATYKI POZIOM ROZSZERZONY CZĘŚĆ I ARKUSZ EGZAMINACYJNY PROJEKTU INFORMATURA DATA: 9 GRUDNIA 2016 R. CZAS PRACY: 60 MINUT LICZBA PUNKTÓW DO UZYSKANIA:

Bardziej szczegółowo

Rekurencja. Przykład. Rozważmy ciąg

Rekurencja. Przykład. Rozważmy ciąg Rekurencja Definicje rekurencyjne Definicja: Mówimy, iż ciąg jest zdefiniowany rekurencyjnie, jeżeli: (P) Określony jest pewien skończony zbiór wyrazów tego ciągu, zwykle jest to pierwszy wyraz tego ciągu

Bardziej szczegółowo

Cyfrowy zapis informacji. 5 grudnia 2013 Wojciech Kucewicz 2

Cyfrowy zapis informacji. 5 grudnia 2013 Wojciech Kucewicz 2 Cyfrowy zapis informacji 5 grudnia 2013 Wojciech Kucewicz 2 Bit, Bajt, Słowo 5 grudnia 2013 Wojciech Kucewicz 3 Cyfrowy zapis informacji Bit [ang. binary digit] jest elementem zbioru dwuelementowego używanym

Bardziej szczegółowo

Joint Photographic Experts Group

Joint Photographic Experts Group Joint Photographic Experts Group Artur Drozd Uniwersytet Jagielloński 14 maja 2010 1 Co to jest JPEG? Dlaczego powstał? 2 Transformata Fouriera 3 Dyskretna transformata kosinusowa (DCT-II) 4 Kodowanie

Bardziej szczegółowo

Porządek symetryczny: right(x)

Porządek symetryczny: right(x) Porządek symetryczny: x lef t(x) right(x) Własność drzewa BST: W drzewach BST mamy porządek symetryczny. Dla każdego węzła x spełniony jest warunek: jeżeli węzeł y leży w lewym poddrzewie x, to key(y)

Bardziej szczegółowo

Wybrane metody kompresji obrazów

Wybrane metody kompresji obrazów Wybrane metody kompresji obrazów Celem kodowania kompresyjnego obrazu jest redukcja ilości informacji w nim zawartej. Redukcja ta polega na usuwaniu informacji nadmiarowej w obrazie, tzw. redundancji.

Bardziej szczegółowo

Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych

Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych 1 Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych 1. Podstawowe operacje logiczne dla cyfr binarnych Jeśli cyfry 0 i 1 potraktujemy tak, jak wartości logiczne fałsz i prawda, to działanie

Bardziej szczegółowo

Podstawy Automatyki. Wykład 9 - Podstawy matematyczne automatyki procesów dyskretnych. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 9 - Podstawy matematyczne automatyki procesów dyskretnych. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki Wykład 9 - Podstawy matematyczne automatyki procesów dyskretnych Instytut Automatyki i Robotyki Warszawa, 2015 Kody liczb całkowitych nieujemnych Kody liczbowe dzielimy na analityczne nieanalityczne (symboliczne)

Bardziej szczegółowo

Układy arytmetyczne. Joanna Ledzińska III rok EiT AGH 2011

Układy arytmetyczne. Joanna Ledzińska III rok EiT AGH 2011 Układy arytmetyczne Joanna Ledzińska III rok EiT AGH 2011 Plan prezentacji Metody zapisu liczb ze znakiem Układy arytmetyczne: Układy dodające Półsumator Pełny sumator Półsubtraktor Pełny subtraktor Układy

Bardziej szczegółowo

Architektura komputerów Reprezentacja liczb. Kodowanie rozkazów.

Architektura komputerów Reprezentacja liczb. Kodowanie rozkazów. Architektura komputerów Reprezentacja liczb. Kodowanie rozkazów. Prezentacja jest współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego w projekcie pt. Innowacyjna dydaktyka

Bardziej szczegółowo

EGZAMIN MATURALNY Z INFORMATYKI 17 MAJA 2016 POZIOM PODSTAWOWY. Godzina rozpoczęcia: 14:00 CZĘŚĆ I WYBRANE: Czas pracy: 75 minut

EGZAMIN MATURALNY Z INFORMATYKI 17 MAJA 2016 POZIOM PODSTAWOWY. Godzina rozpoczęcia: 14:00 CZĘŚĆ I WYBRANE: Czas pracy: 75 minut Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2013 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę EGZAMIN MATURALNY Z INFORMATYKI POZIOM PODSTAWOWY CZĘŚĆ

Bardziej szczegółowo

a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9] a[10] 3-2 5 8 12-4 -26 12 45-76

a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9] a[10] 3-2 5 8 12-4 -26 12 45-76 . p. 1 Algorytmem nazywa się poddający się interpretacji skończony zbiór instrukcji wykonania zadania mającego określony stan końcowy dla każdego zestawu danych wejściowych W algorytmach mogą występować

Bardziej szczegółowo

1 Automaty niedeterministyczne

1 Automaty niedeterministyczne Szymon Toruńczyk 1 Automaty niedeterministyczne Automat niedeterministyczny A jest wyznaczony przez następujące składniki: Alfabet skończony A Zbiór stanów Q Zbiór stanów początkowych Q I Zbiór stanów

Bardziej szczegółowo

Przedmiot: Urządzenia techniki komputerowej Nauczyciel: Mirosław Ruciński

Przedmiot: Urządzenia techniki komputerowej Nauczyciel: Mirosław Ruciński Przedmiot: Urządzenia techniki komputerowej Nauczyciel: Mirosław Ruciński Temat: Systemy zapisu liczb. Cele kształcenia: Zapoznanie z systemami zapisu liczb: dziesiętny, dwójkowy, ósemkowy, szesnastkowy.

Bardziej szczegółowo

Wykład 2. Drzewa zbalansowane AVL i 2-3-4

Wykład 2. Drzewa zbalansowane AVL i 2-3-4 Wykład Drzewa zbalansowane AVL i -3-4 Drzewa AVL Wprowadzenie Drzewa AVL Definicja drzewa AVL Operacje wstawiania i usuwania Złożoność obliczeniowa Drzewa -3-4 Definicja drzewa -3-4 Operacje wstawiania

Bardziej szczegółowo

Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje

Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje Opracował: Zbigniew Rudnicki Powtórka z poprzedniego wykładu 2 1 Dokument, regiony, klawisze: Dokument Mathcada realizuje

Bardziej szczegółowo

Kod U2 Opracował: Andrzej Nowak

Kod U2 Opracował: Andrzej Nowak PODSTAWY TEORII UKŁADÓW CYFROWYCH Kod U2 Opracował: Andrzej Nowak Bibliografia: Urządzenia techniki komputerowej, K. Wojtuszkiewicz http://pl.wikipedia.org/ System zapisu liczb ze znakiem opisany w poprzednim

Bardziej szczegółowo

Teoretyczne Podstawy Informatyki

Teoretyczne Podstawy Informatyki Teoretyczne Podstawy Informatyki cel zajęć Celem kształcenia jest uzyskanie umiejętności i kompetencji w zakresie budowy schematów blokowych algor ytmów oraz ocenę ich złożoności obliczeniowej w celu optymizacji

Bardziej szczegółowo

Hurtownie danych - przegląd technologii Robert Wrembel Politechnika Poznańska Instytut Informatyki

Hurtownie danych - przegląd technologii Robert Wrembel Politechnika Poznańska Instytut Informatyki Hurtownie danych - przegląd technologii Robert Wrembel Politechnika Poznańska Instytut Informatyki Robert.Wrembel@cs.put.poznan.pl www.cs.put.poznan.pl/rwrembel Efektywność przetwarzania OLAP 1. Indeksowanie

Bardziej szczegółowo

wagi cyfry 7 5 8 2 pozycje 3 2 1 0

wagi cyfry 7 5 8 2 pozycje 3 2 1 0 Wartość liczby pozycyjnej System dziesiętny W rozdziale opiszemy pozycyjne systemy liczbowe. Wiedza ta znakomicie ułatwi nam zrozumienie sposobu przechowywania liczb w pamięci komputerów. Na pierwszy ogień

Bardziej szczegółowo

Programowanie dynamiczne

Programowanie dynamiczne Programowanie dynamiczne Patryk Żywica 5 maja 2008 1 Spis treści 1 Problem wydawania reszty 3 1.1 Sformułowanie problemu...................... 3 1.2 Algorytm.............................. 3 1.2.1 Prosty

Bardziej szczegółowo

----------------------------------------------------------------------------------------------------------------------------

---------------------------------------------------------------------------------------------------------------------------- Strona1 Napisz program, który czyta zdanie, a następnie wypisuje po kolei długości kolejnych jego wyrazów. Zakładamy, że zdanie zawiera litery alfabetu łacińskiego i spacje (po jednej pomiędzy dwoma dowolnymi

Bardziej szczegółowo

Algorytm. a programowanie -

Algorytm. a programowanie - Algorytm a programowanie - Program komputerowy: Program komputerowy można rozumieć jako: kod źródłowy - program komputerowy zapisany w pewnym języku programowania, zestaw poszczególnych instrukcji, plik

Bardziej szczegółowo

Historia kodowania i format plików XML. Jolanta Bachan

Historia kodowania i format plików XML. Jolanta Bachan Historia kodowania i format plików XML Jolanta Bachan Co to jest format? Format to, w ogólnym znaczeniu, reguły określające strukturę fizyczną, sposób rozmieszczenia, zapisu informacji danego typu. Inaczej:

Bardziej szczegółowo

EGZAMIN MATURALNY Z INFORMATYKI

EGZAMIN MATURALNY Z INFORMATYKI ARKUSZ ZAWIERA INORMACJE RAWNIE CHRONIONE DO MOMENTU ROZOCZĘCIA EGZAMINU! Miejsce na naklejkę MIN-R1_1-082 EGZAMIN MATURALNY Z INORMATYKI MAJ ROK 2008 OZIOM ROZSZERZONY CZĘŚĆ I Czas pracy 90 minut Instrukcja

Bardziej szczegółowo

Egzamin, AISDI, I termin, 18 czerwca 2015 r.

Egzamin, AISDI, I termin, 18 czerwca 2015 r. Egzamin, AISDI, I termin, 18 czerwca 2015 r. 1 W czasie niezależnym do danych wejściowych działają algorytmy A. sortowanie bąbelkowego i Shella B. sortowanie szybkiego i przez prosty wybór C. przez podział

Bardziej szczegółowo

Systemy liczbowe. Bibliografia: Urządzenia techniki komputerowej, K. Wojtuszkiewicz

Systemy liczbowe. Bibliografia: Urządzenia techniki komputerowej, K. Wojtuszkiewicz PODSTAWY TEORII UKŁADÓW CYFROWYCH Systemy liczbowe Opracował: Andrzej Nowak Bibliografia: Urządzenia techniki komputerowej, K. Wojtuszkiewicz http://pl.wikipedia.org/ System liczbowy zbiór reguł jednolitego

Bardziej szczegółowo

Algorytmy i struktury danych

Algorytmy i struktury danych Algorytmy i struktury danych Zaawansowane algorytmy sortowania Witold Marańda maranda@dmcs.p.lodz.pl 1 Sortowanie za pomocą malejących przyrostów metoda Shella Metoda jest rozwinięciem metody sortowania

Bardziej szczegółowo

Kody Huffmana oraz entropia przestrzeni produktowej. Zuzanna Kalicińska. 1 maja 2004

Kody Huffmana oraz entropia przestrzeni produktowej. Zuzanna Kalicińska. 1 maja 2004 Kody uffmana oraz entroia rzestrzeni rodutowej Zuzanna Kalicińsa maja 4 Otymalny od bezrefisowy Definicja. Kod nad alfabetem { 0, }, w tórym rerezentacja żadnego znau nie jest refisem rerezentacji innego

Bardziej szczegółowo

Zapis liczb binarnych ze znakiem

Zapis liczb binarnych ze znakiem Zapis liczb binarnych ze znakiem W tej prezentacji: Zapis Znak-Moduł (ZM) Zapis uzupełnień do 1 (U1) Zapis uzupełnień do 2 (U2) Zapis Znak-Moduł (ZM) Koncepcyjnie zapis znak - moduł (w skrócie ZM - ang.

Bardziej szczegółowo

Arytmetyka komputera. Na podstawie podręcznika Urządzenia techniki komputerowej Tomasza Marciniuka. Opracował: Kamil Kowalski klasa III TI

Arytmetyka komputera. Na podstawie podręcznika Urządzenia techniki komputerowej Tomasza Marciniuka. Opracował: Kamil Kowalski klasa III TI Arytmetyka komputera Na podstawie podręcznika Urządzenia techniki komputerowej Tomasza Marciniuka Opracował: Kamil Kowalski klasa III TI Spis treści 1. Jednostki informacyjne 2. Systemy liczbowe 2.1. System

Bardziej szczegółowo

INŻYNIERIA BEZPIECZEŃSTWA LABORATORIUM NR 2 ALGORYTM XOR ŁAMANIE ALGORYTMU XOR

INŻYNIERIA BEZPIECZEŃSTWA LABORATORIUM NR 2 ALGORYTM XOR ŁAMANIE ALGORYTMU XOR INŻYNIERIA BEZPIECZEŃSTWA LABORATORIUM NR 2 ALGORYTM XOR ŁAMANIE ALGORYTMU XOR 1. Algorytm XOR Operacja XOR to inaczej alternatywa wykluczająca, oznaczona symbolem ^ w języku C i symbolem w matematyce.

Bardziej szczegółowo

mgr inż. Grzegorz Kraszewski SYSTEMY MULTIMEDIALNE wykład 3, strona 1.

mgr inż. Grzegorz Kraszewski SYSTEMY MULTIMEDIALNE wykład 3, strona 1. mgr inż. Grzegorz Kraszewski SYSTEMY MULTIMEDIALNE wykład 3, strona 1. KOMPRESJA ALGORYTMEM HUFFMANA I LZ77 Idea algorytmu Huffmana Huffman kontra LZW Sposób tworzenia słownika Etapy budowy drzewa kodu

Bardziej szczegółowo

Arytmetyka stałopozycyjna

Arytmetyka stałopozycyjna Wprowadzenie do inżynierii przetwarzania informacji. Ćwiczenie 3. Arytmetyka stałopozycyjna Cel dydaktyczny: Nabycie umiejętności wykonywania podstawowych operacji arytmetycznych na liczbach stałopozycyjnych.

Bardziej szczegółowo

Zaawansowane algorytmy i struktury danych

Zaawansowane algorytmy i struktury danych Zaawansowane algorytmy i struktury danych u dr Barbary Marszał-Paszek Opracowanie pytań praktycznych z egzaminów. Strona 1 z 12 Pytania praktyczne z kolokwium zaliczeniowego z 19 czerwca 2014 (studia dzienne)

Bardziej szczegółowo

Pomorski Czarodziej 2016 Zadania. Kategoria C

Pomorski Czarodziej 2016 Zadania. Kategoria C Pomorski Czarodziej 2016 Zadania. Kategoria C Poniżej znajduje się 5 zadań. Za poprawne rozwiązanie każdego z nich możesz otrzymać 10 punktów. Jeżeli otrzymasz za zadanie maksymalną liczbę punktów, możesz

Bardziej szczegółowo

Złożoność obliczeniowa zadania, zestaw 2

Złożoność obliczeniowa zadania, zestaw 2 Złożoność obliczeniowa zadania, zestaw 2 Określanie złożoności obliczeniowej algorytmów, obliczanie pesymistycznej i oczekiwanej złożoności obliczeniowej 1. Dana jest tablica jednowymiarowa A o rozmiarze

Bardziej szczegółowo