Ústav teorie informace a automatizace. Tato prezentace je k dispozici na:
|
|
- Justyna Malinowska
- 6 lat temu
- Przeglądów:
Transkrypt
1 Aplikace bayesovských sítí Jiří Vomlel Ústav teorie informace a automatizace Akademie věd České republiky Tato prezentace je k dispozici na:
2 Obsah přednášky Podmíněná pravděpodobnost, Bayesův vzorec Nezávislost a podmíněná nezávislost Řetězcové pravidlo Definice bayesovské sítě Výhody reprezentace bayesovskou sítí Aplikace 1: modelování dědičných nemocí Aplikace 2: podpora rozhodování Aplikace 3: technická diagnostika Aplikace 4: adaptivní testování znalostí 2
3 Podmíněná pravděpodobnost Podmíněná pravděpodobnost veličiny A dáno veličina B je pravděpodobnostní distribuce P(A B) splňující vztah P(A B) P(B) = P(A, B). Jestliže P(B) je nenulové pak P(A B) = P(A,B) P(B). Například, mějme dvě binární veličiny: délka vlasů s hodnotami dlouhé a krátké pohlaví s hodnotami muž, žena P(muž dlouhé vlasy) = P(žena dlouhé vlasy) = P(muž, dlouhé vlasy) P(dlouhé vlasy) P(žena, dlouhé vlasy) P(dlouhé vlasy) 3
4 Bayesův vzorec P(A B) = P(A, B) P(B) = Například mějme dvě veličiny: P(B A) P(A) A P(A, B) = P(B A) P(A) A P(B A) P(A) R - Rain... v noci pršelo s hodnotami y = yes a n = no. W - Wet grass... tráva je mokrá s hodnotami y = yes a n = no. Víme, že: jestliže v noci pršelo pak je tráva mokrá s pravděpodobností 3 4, jestliže v noci nepršelo pak je tráva mokrá s pravděpodobností 1 8, pravděpodobnost, že bude v noci pršet je 1 3. Ráno vidíme, že tráva je mokrá. Jaká je pravděpodobnost, že v noci pršelo? 4
5 Bayesův vzorec P(R = y W = y) = P(W = y R = y) P(R = y) P(W = y R = y) P(R = y) + P(W = y R = n) P(R = n) = = = = 3 4 Pravděpodobnost, že v noci pršelo je
6 Nezávislost Pravděpodobnost společného výskytu hodnot veličin je rovna součinu pravděpodobností hodnot jednotlivých veličin. P(Dime = head, Penny = head) = P(Dime = head) P(Penny = head) Též, zjistíme-li hodnotu jedné veličiny, nemá to vliv na hodnotu druhé veličiny. P(Dime = head Penny = head) = P(Dime = head) 6
7 Náhodně vybereme jednu minci pro dva hody. První hod má vliv na pravděpodobnost výsledku druhého hodu. 7
8 Nyní, předpokládejme, že známe vybranou minci. Jestliže víme, která mince bude použita pak výsledek prvního hodu nemá vliv na pravděpodobnost výsledku druhého hodu. 8
9 Podmíněná nezávislost Pravděpodobnost společného výskytu hodnot veličin při dané hodnotě třetí veličiny je rovna součinu podmíněných pravděpodobností jednotlivých veličin dáno třetí veličina: P(First f lip = head, Second f lip = head Coin = dime) = P(First f lip = head Coin = dime) P(Second f lip = head Coin = dime) Jestliže neznáme minci, výsledek prvního hodu má vliv na pravděpodobnost výsledku druhého hodu. Jestliže známe minci, pak výsledek prvního hodu nemá vliv na pravděpodobnost výsledku druhého hodu. P(Second f lip = head Coin = dime, First f lip = head) = P(Second f lip = head Coin = dime) 9
10 Řetězcové pravidlo S definice podmíněné pravděpodobnosti plyne, že můžeme psát: P(A, B, C, D) = P(A B, C, D) P(B, C, D) = P(A B, C, D) P(B C, D) P(C, D) = P(A B, C, D) P(B C, D) P(C D) P(D) 10
11 Proč je Holmesův trávník mokrý? Holm Rn Sprnk Wat Je Holmesův trávník mokrý? Pršelo v noci? Byl Holmesův postřikovač zapnutý? Je Watsonův trávník mokrý? Holmesův trávník může být mokrý bud protože pršelo, nebo protože měl zapnutý postřikovač. Watsonův trávník může být mokrý protože pršelo. Holmesův postřikovač nemá vliv na Watsonův trávník. Déšt nesouvisí s tím, jestli má Holmes zapnutý postřikovač. Řetězcové pravidlo a podmíněné nezávislosti uvedené výše dávají: P(Holm, Wat, Rn, Sprnk) = P(Holm Wat, Rn, Sprnk) P(Wat Rn, Sprnk) P(Rn Sprnk) P(Sprnk) = P(Holm Rn, Sprnk) P(Wat Rn) P(Rn) P(Sprnk) 11
12 Proč je Holmesův trávník mokrý? P(Holm, Wat, Rn, Sprnk) = P(Holm Rn, Sprnk) P(Wat Rn) P(Rn) P(Sprnk) 12
13 Byl Holmesův postřikovač zapnutý? 13
14 Definice bayesovské sítě acyklický orientovaný graf (DAG) G = (V, E) každý uzel i V odpovídá jedné náhodné veličině X i s konečným počtem navzájem disjunktních hodnot X i pa(i) bude označovat množinu rodičů uzlu i v grafu G ke každému uzlu i V odpovídá podmíněná pravděpodobnostní distribuce P(X i (X j ) j pa(i) ) acyklický orientovaný graf (DAG) reprezentuje podmíněné nezávislostní vztahy mezi veličinami (X i ) i V 14
15 Výhoda reprezentace bayesovskou sítí Předpokládejme, že máme problém, který budeme modelovat pomocí n veličin a každá veličina může nabývat dvou hodnot. Použijeme-li representaci pomocí jedné tabulky potřebujeme pro uložení v paměti počítače distribuce 2 n 1 hodnot. Předpokládejme, bayesovskou sít mající též n veličin nabývajících dvou hodnot s grafem následující struktury: X 1 X 2 X 3 X n Pro její uložení v paměti počítače potřebujeme 1 + (n 1) 2 = 2n 1 hodnot. 15
16 Výhoda reprezentace bayesovskou sítí n 2 n 1 2n
17 Aplikace 1: modelování dědičných nemocí 17
18 18
19 19
20 20
21 Aplikace 2: podpora rozhodování Cíl: maximalizace očekávaného užitku 21
22 22
23 23
24 24
25 Aplikace 3: Technická diagnostika - popis problému Příčiny problému (závady) C C. Akce A A - opravné kroky, které mohou odstranit závadu. Otázky Q Q - kroky, které mohou pomoci identifikovat, kde je závada. Ke každé akci i otázce je přiřazena cena (c A značí cenu akce A, c Q cenu otázky Q). Cena může znamenat: dobu potřebnou k provedení akce či otázky, cenu za náhradní díl, který použijeme rizikovost akce nějaká kombinace výše uvedených. 25
26 Trouble: světlý tisk. Příklad technické diagnostiky tiskárny Troubleshooter: doporučí kroky, které pomohou odstranit trouble Akce a otázky cena A 1 : Remove, shake and reseat toner 5 A 2 : Try another toner 15 A 3 : Cycle power 1 Q 1 : Is the printer configuration page printed light? 2 Možné závady při světlém tisku P(C i ) C 1 : Toner low 0.4 C 2 : Defective toner 0.3 C 3 : Corrupted dataflow 0.2 C 4 : Wrong driver setting
27 Light Print Problem - Bayesian Network Actions Causes A 1 Problem C 1 c 1 c 2 C 2 c 3 c 4 C 3 C 4 A 2 A 3 Questions Q 1 27
28 Světlý tisk - strategie odstranění závady A 1 = yes Q 1 = no A 1 = no Q 1 = yes A 2 = no A 2 = yes 28
29 Application 4: Adaptivní testování znalostí T 1 : ( Příklady úloh: ) 1 8 = = = 4 8 = 1 2 T 2 : = = 3 12 = T 3 : = = 3 8 ( T 4 : ) ( ) = = 12 2 =
30 Základní a operační dovednosti CP Porovnávání (spol. čitatel nebo jmenovatel) 1 2 > 1 3, 2 3 > 1 3 AD Sčítání (spol. jmenovatel) = = 3 7 SB Odečítání (spol. jmenovatel) = = 1 5 MT Násobení = 3 CD Spol. jmenovatel ( 12, 2 3 ) CL Krácení 4 6 = = = ( 36, 4 6 ) CIM Konv. na slož. zlomek 7 2 = = CMI Konv. na nepravý zlomek = =
31 Špatné postupy Označení Popis Výskyt MAD MSB MMT1 MMT2 MMT3 MMT4 MC a b + d c = b+d a+c 14.8% a b d c = b d a c 9.4% a b a b a b a b cb = a c cb = a+c cd = a d cd = a c b 14.1% b b 8.1% b c 15.4% b+d 8.1% a b c = a b c 4.0% 31
32 Model studenta HV2 HV1 ACMI ACIM ACL ACD AD SB CMI CIM CL CD MT CP MAD MSB MC MMT1 MMT2 MMT3 MMT4 32
33 ( ) Model úlohy T1 1 8 = = = 4 8 = 1 2 T1 MT & CL & ACL & SB & MMT3 & MMT4 & MSB CL ACL MT SB MMT4 MSB T1 MMT3 P(X1 T1) X1 33
34 Model studenta spojený s modely otázek 34
35 Užitkovou funkcí je informační zisk Čím nižší je entropie, tím více o studentovi víme. H (P(X)) = x P(X = x) log P(X = x) 1 entropy probability Informační zisk v uzlu n strategie IG(e n ) = H(P(S)) H(P(S e n )) 35
36 Skill Prediction Quality adaptive average descending ascending 88 Quality of skill predictions Number of answered questions 36
Edita Pelantová, katedra matematiky / 16
Edita Pelantová, katedra matematiky seminář současné matematiky, září 2010 Axiomy reálných čísel Axiomy tělesa Axiom 1. x + y = y + x a xy = yx (komutativní zákon). Axiom 2. x + (y + z) = (x + y) + z a
Numerické metody 8. května FJFI ČVUT v Praze
Obyčejné diferenciální rovnice Numerické metody 8. května 2018 FJFI ČVUT v Praze 1 Úvod Úvod Základní metody Pokročilejší metody Soustava Vyšší řád Program 1 Úvod Úvod - Úloha Základní úloha, kterou řešíme
Úvodní informace. 18. února 2019
Úvodní informace Funkce více proměnných Cvičení první 18. února 2019 Obsah 1 Úvodní informace. 2 Funkce více proměnných Definiční obor Úvodní informace. Komunikace: e-mail: olga@majling.eu nebo olga.majlingova@fs.cvut.cz
Linea rnı (ne)za vislost
[1] Lineární (ne)závislost Skupiny, resp. množiny, vektorů mohou být lineárně závislé nebo lineárně nezávislé... a) zavislost, 3, b) P. Olšák, FEL ČVUT, c) P. Olšák 2010, d) BI-LIN, e) L, f) 2009/2010,
Co nám prozradí derivace? 21. listopadu 2018
Co nám prozradí derivace? Seminář sedmý 21. listopadu 2018 Derivace základních funkcí Tečna a normála Tečna ke grafu funkce f v bodě dotyku T = [x 0, f (x 0 )]: y f (x 0 ) = f (x 0 )(x x 0 ) Normála: y
5. a 12. prosince 2018
Integrální počet Neurčitý integrál Seminář 9, 0 5. a. prosince 08 Neurčitý integrál Definice. Necht funkce f (x) je definovaná na intervalu I. Funkce F (x) se nazývá primitivní k funkci f (x) na I, jestliže
Statistika (KMI/PSTAT)
Statistika (KMI/PSTAT) Cvičení deváté aneb Důležitá rozdělení pravděpodobnosti spojité náhodné veličiny Statistika (KMI/PSTAT) 1 / 15 Spojitá náhodná veličina Spojitá náhodná veličina Spojitá náhodná veličina
1 Soustava lineárních rovnic
Soustavy lineárních rovnic Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Soustava lineárních rovnic 2 Řešitelnost soustavy lineárních rovnic 3 Gaussova eliminační metoda 4 Jordanova eliminační
Matematika 2, vzorová písemka 1
Matematika 2, vzorová písemka Pavel Kreml 9.5.20 Přesun mezi obrazovkami Další snímek: nebo Enter. Zpět: nebo Shift + Enter 2 3 4 Doporučení Pokuste se vyřešit zadané úlohy samostatně. Pokud nebudete vědět
Katedra kybernetiky skupina Inteligentní Datové Analýzy (IDA) Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
Vytěžování dat Filip Železný Katedra kybernetiky skupina Inteligentní Datové Analýzy (IDA) Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Filip Železný (ČVUT) Vytěžování dat 1 / 26
(1) Derivace. Kristýna Kuncová. Matematika B2 17/18. Kristýna Kuncová (1) Derivace 1 / 35
(1) Derivace Kristýna Kuncová Matematika B2 17/18 Kristýna Kuncová (1) Derivace 1 / 35 Růst populací Zdroj : https://www.tes.com/lessons/ yjzt-cmnwtvsq/noah-s-ark Kristýna Kuncová (1) Derivace 2 / 35 Růst
Funkce zadané implicitně. 4. března 2019
Funkce zadané implicitně 4. března 2019 Parciální derivace druhého řádu Parciální derivace druhého řádu funkce z = f (x, y) jsou definovány: Parciální derivace 2 f 2 = ( ) f 2 f 2 = ( ) f 2 f a 2 f 2 f
Inverzní Z-transformace
Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 9. přednáška 11MSP úterý 16. dubna 2019 verze: 2019-04-15 12:25
Kristýna Kuncová. Matematika B2
(3) Průběh funkce Kristýna Kuncová Matematika B2 Kristýna Kuncová (3) Průběh funkce 1 / 26 Monotonie (x 2 ) = 2x (sin x) = cos x Jak souvisí derivace funkce a fakt, zda je funkce rostoucí nebo klesající?
prof. RNDr. Roman Kotecký DrSc., Dr. Rudolf Blažek, PhD Pravděpodobnost a statistika Katedra teoretické informatiky Fakulta informačních technologií
Náhodné vektory prof. RNDr. Roman Kotecký DrSc., Dr. Rudolf Blažek, PhD Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v Praze c Rudolf Blažek, Roman Kotecký,
Reprezentace dat. BI-PA1 Programování a Algoritmizace I. Ladislav Vagner
Reprezentace dat BI-PA1 Programování a Algoritmizace I. Ladislav Vagner Katedra teoretické informatiky Fakulta informačních technologíı ČVUT v Praze xvagner@fit.cvut.cz 9., 11. a 12. října 2017 Obsah Dvojková
Cauchyova úloha pro obyčejnou diferenciální rovnici
Řešení ODR v MATLABu Přednáška 3 15. října 2018 Cauchyova úloha pro obyčejnou diferenciální rovnici y = f (x, y), y(x 0 ) = y 0 Víme, že v intervalu a, b existuje jediné řešení. (f (x, y) a f y jsou spojité
Matematika (KMI/PMATE)
Matematika (KMI/PMATE) Úvod do matematické analýzy Limita a spojitost funkce Matematika (KMI/PMATE) Osnova přednášky lineární funkce y = kx + q definice lineární funkce význam (smysl) koeficientů lineární
Aproximace funkcí 1,00 0,841 1,10 0,864 1,20 0,885. Body proložíme lomenou čarou.
Příklad Známe následující hodnoty funkce Φ: u Φ(u) 1,00 0,841 1,10 0,864 1,20 0,885 Odhadněte přibližně hodnoty Φ(1,02) a Φ(1,16). Možnosti: Vezmeme hodnotu v nejbližším bodě. Body proložíme lomenou čarou.
Necht je funkce f spojitá v intervalu a, b a má derivaci v (a, b). Pak existuje bod ξ (a, b) tak, že f(b) f(a) b a. Geometricky
Monotónie a extrémy funkce Diferenciální počet - průběh funkce Věta o střední hodnotě (Lagrange) Necht je funkce f spojitá v intervalu a, b a má derivaci v (a, b). Pak existuje bod ξ (a, b) tak, že f (ξ)
Numerické metody minimalizace
Numerické metody minimalizace Než vám klesnou víčka - Stříbrnice 2011 12.2. 16.2.2011 Emu (Brkos 2011) Numerické metody minimalizace 12.2. 16.2.2011 1 / 19 Obsah 1 Úvod 2 Základní pojmy 3 Princip minimalizace
Kristýna Kuncová. Matematika B2 18/19. Kristýna Kuncová (1) Vzorové otázky 1 / 36
(1) Vzorové otázky Kristýna Kuncová Matematika B2 18/19 Kristýna Kuncová (1) Vzorové otázky 1 / 36 Limity - úlohy Otázka Určete lim x 0 f (x) A -3 B 0 C 5 D 7 E D Zdroj: Calculus: Single and Multivariable,
Logika V. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı BI-MLO, ZS 2011/12
Logika V. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı České vysoké učení technické v Praze c Kateřina Trlifajová, 2010 BI-MLO, ZS 2011/12 Evropský sociální
MATEMATIKA 3. Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci
MATEMATIKA 3 Dana Černá http://www.fp.tul.cz/kmd/ Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci Osnova: Komplexní funkce - definice, posloupnosti, řady Vybrané komplexní funkce
Kapitola 4: Soustavy diferenciálních rovnic 1. řádu
Sbírka příkladů Matematika II pro strukturované studium Kapitola 4: Soustavy diferenciálních rovnic 1 řádu Chcete-li ukončit prohlížení stiskněte klávesu Esc Chcete-li pokračovat stiskněte klávesu Enter
Tabulky, součin tabulek
Výpočet marginálních podmíněných pravděpodobností v bayesovské síti Úmluva: Zajímáme se pouze o bayesovské sítě, jejichž graf je spojitý. Jinak uvažujeme každou komponentu zvlášť. Tabulky, součin tabulek
Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost.
Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost. Vyšší matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU
Statistika (KMI/PSTAT)
Cvičení sedmé (a asi i osmé a doufám, že ne deváté) aneb Náhodná veličina, rozdělení pravděpodobnosti náhodné veličiny Náhodná veličina Náhodná veličina Studenti skládají písemku sestávající ze tří úloh.
Kristýna Kuncová. Matematika B2 18/19
(6) Určitý integrál Kristýna Kuncová Matematika B2 18/19 Kristýna Kuncová (6) Určitý integrál 1 / 28 Newtonův integrál Zdroj: https://kwcalculus.wikispaces.com/integral+applications Kristýna Kuncová (6)
(2) Funkce. Kristýna Kuncová. Matematika B2. Kristýna Kuncová (2) Funkce 1 / 25
(2) Funkce Kristýna Kuncová Matematika B2 Kristýna Kuncová (2) Funkce 1 / 25 Sudá a lichá funkce Určete, které funkce jsou sudé a které liché: liché: A, D, E sudé: B Kristýna Kuncová (2) Funkce 2 / 25
Komplexní analýza. Martin Bohata. Katedra matematiky FEL ČVUT v Praze Martin Bohata Komplexní analýza Mocninné řady 1 / 18
Komplexní analýza Mocninné řady Martin Bohata Katedra matematiky FEL ČVUT v Praze bohata@math.feld.cvut.cz Martin Bohata Komplexní analýza Mocninné řady 1 / 18 Posloupnosti komplexních čísel opakování
Katedra kybernetiky laboratoř Inteligentní Datové Analýzy (IDA) Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
Vytěžování dat: klasifikace Filip Železný Katedra kybernetiky laboratoř Inteligentní Datové Analýzy (IDA) Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Filip Železný (ČVUT) Vytěžování
Kombinatorika a grafy I
Kombinatorika a grafy I Martin Balko 1. přednáška 19. února 2019 Základní informace Základní informace úvodní kurs, kde jsou probrány základy kombinatoriky a teorie grafů ( pokračování diskrétní matematiky
Průvodce studiem V této kapitole se budeme zabývat diferenciálním počtem pro funkce více
5 Diferenciální počet funkcí více proměnných Průvodce studiem V této kapitole se budeme zabývat diferenciálním počtem pro funkce více proměnných, především budeme pracovat s funkcemi dvou proměnných Ukážeme
Stochastické modelování v ekonomii a financích Konzistence odhadu LWS. konzistence OLS odhadu. Předpoklady pro konzistenci LWS
Whitův pro heteroskedasticitě pro heteroskedasticitě Stochastické modelování v ekonomii a financích 7. 12. 2009 Obsah Whitův pro heteroskedasticitě pro heteroskedasticitě 1 Whitův 2 pro 3 heteroskedasticitě
Internetová matematická olympiáda 8. ročník, Baví se student Fakulty strojního inženýrství VUT v Brně (FSI) s kamarádem:
Internetová matematická olympiáda 8. ročník, 24. 11. 2015 1. Baví se student Fakulty strojního inženýrství VUT v Brně (FSI) s kamarádem: Kamarád: Co jsi tak veselý? Něco slavíš? Student FSI: Já přímo ne,
Tvarová optimalizace pro 3D kontaktní problém
Tvarová optimalizace pro 3D kontaktní problém s Coulombovým třením Petr Beremlijski, Jaroslav Haslinger, Michal Kočvara, Radek Kučera a Jiří V. Outrata Katedra aplikované matematik Fakulta elektrotechnik
Paradoxy geometrické pravděpodobnosti
Katedra aplikované matematiky 1. června 2009 Úvod Cíle práce : Analýza Bertrandova paradoxu. Tvorba simulačního softwaru. Osnova 1 2 3 4 Osnova 1 2 3 4 Osnova 1 2 3 4 Osnova 1 2 3 4 V rovině je zadán kruh
Univerzita Palackého v Olomouci
Počítačová grafika - 5. cvičení Radek Janoštík Univerzita Palackého v Olomouci 22.10.2018 Radek Janoštík (Univerzita Palackého v Olomouci) Počítačová grafika - 5. cvičení 22.10.2018 1 / 10 Reakce na úkoly
Martin Pergel. 26. února Martin Pergel
26. února 2017 Užitečné informace Navážeme na Programování I, změníme jazyk na C#, podrobnosti o C# budou v navazujícím kurzu, soustředíme se na totéž, co v zimě, tedy: technické programování, návrh a
Internet a zdroje. (Zdroje na Internetu) Mgr. Petr Jakubec. Katedra fyzikální chemie Univerzita Palackého v Olomouci Tř. 17.
Internet a zdroje (Zdroje na Internetu) Mgr. Petr Jakubec Katedra fyzikální chemie Univerzita Palackého v Olomouci Tř. 17. listopadu 12 26. listopadu 2010 (KFC-INTZ) Databáze, citování 26. listopadu 2010
Diferenciální rovnice základní pojmy. Rovnice se
Diferenciální rovnice základní pojmy. Rovnice se separovanými proměnnými. Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské
Anna Kratochvílová Anna Kratochvílová (FJFI ČVUT) PDR ve zpracování obrazu / 17
Parciální diferenciální rovnice ve zpracování obrazu Anna Kratochvílová FJFI ČVUT 10. 6. 2009 Anna Kratochvílová (FJFI ČVUT) PDR ve zpracování obrazu 10. 6. 2009 1 / 17 Obsah 1 Motivace 2 Vyšetření pomocí
Pracovní listy. Stereometrie hlavního textu
v tomto dodatu jsou sebrána zadání všech úloh řešených v aitolách Planimetrie a tereometrie hlavního textu slouží ta jao racovní listy samostatnému rocvičení uvedených úloh Zracoval Jiří Doležal 1 eznam
Laplaceova transformace
Laplaceova transformace Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 5. přednáška 11MSP 219 verze: 219-3-17
Komplexní analýza. Martin Bohata. Katedra matematiky FEL ČVUT v Praze Martin Bohata Komplexní analýza Úvod 1 / 32
Komplexní analýza Úvod Martin Bohata Katedra matematiky FEL ČVUT v Praze bohata@math.feld.cvut.cz Martin Bohata Komplexní analýza Úvod 1 / 32 Základní informace Stránky předmětu: http://math.feld.cvut.cz/bohata/kan.html
Vybrané kapitoly z matematiky
Vybrané kapitoly z matematiky VŠB-TU Ostrava 2018-2019 Vybrané kapitoly z matematiky 2018-2019 1 / 11 Křivkový integrál Vybrané kapitoly z matematiky 2018-2019 2 / 11 Parametricky zadaná křivka v R 3 :
Reprezentace a vyvozování znalostí
Reprezentace a vyvozování znalostí Aleš Horák E-mail: hales@fi.muni.cz http://nlp.fi.muni.cz/uui/ Obsah: Reprezentace a vyvozování znalostí Logika rezoluční pravidlo Extralogické informace Pravidlové systémy
Reprezentace a vyvozování znalostí
Reprezentace a vyvozování znalostí Aleš Horák E-mail: hales@fi.muni.cz http://nlp.fi.muni.cz/uui/ Obsah: Reprezentace a vyvozování znalostí Pravidlové systémy Nejistota a pravděpodobnost Úvod do umělé
Vybrané partie z kvantitativního řízení rizik - kreditní riziko
Vybrané partie z kvantitativního řízení rizik - kreditní riziko 1 Úvod Kreditní riziko je riziko vyplývající z neschopnosti nebo neochoty protistrany splatit své závazky. Basilejský rámec pro kapitálovou
Design of Experiment (DOE) Petr Misák. Brno 2016
Design of Experiment (DOE) Petr Misák Vysoké učení technické v Brně, Fakulta stavební, Ústav stavebního zkušebnictví Brno 2016 Úvod - Experiment jako nástroj hledání slavné vynálezy - žárovka, antibiotika
Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava
Lineární algebra 5. přednáška: Báze a řešitelnost soustav Dalibor Lukáš Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava email: dalibor.lukas@vsb.cz http://www.am.vsb.cz/lukas/la1 Text
Operace s funkcemi [MA1-18:P2.1] funkční hodnota... y = f(x) (x argument)
KAPITOLA : Funkce - úvod [MA-8:P.] reálná funkce (jedné) reálné proměnné... f : A R...... zobrazení množin A R do množin reálných čísel R funkční hodnota... = f() ( argument) ( tj. reálná funkce f : A
Paralelní implementace a optimalizace metody BDDC
Paralelní implementace a optimalizace metody BDDC J. Šístek, M. Čertíková, P. Burda, S. Pták, J. Novotný, A. Damašek, FS ČVUT, ÚT AVČR 22.1.2007 / SNA 2007 Osnova Metoda BDDC (Balancing Domain Decomposition
Stavový popis Stabilita spojitých systémů (K611MSAP) Katedra aplikované matematiky Fakulta dopravní ČVUT. čtvrtek 20. dubna 2006
Modelování systémů a procesů (K611MSAP) Přednáška 4 Katedra aplikované matematiky Fakulta dopravní ČVUT Pravidelná přednáška K611MSAP čtvrtek 20. dubna 2006 Obsah 1 Laplaceova transformace Přenosová funkce
Obsah. 1.2 Integrály typu ( ) R x, s αx+β
Sbírka úloh z matematické analýzy. Čížek Jiří Kubr Milan. prosince 006 Obsah Neurčitý integrál.. Základní integrály...................................... Integrály typu ) R, s α+β γ+δ d...........................
DFT. verze:
Výpočet spektra signálu pomocí DFT kacmarp@fel.cvut.cz verze: 009093 Úvod Signály můžeme rozdělit na signály spojité v čase nebo diskrétní v čase. Další možné dělení je na signály periodické nebo signály
POLIURETANOWE SPRĘŻYNY NACISKOWE. POLYURETHANOVÉ TLAČNÉ PRUŽINY
POLIURETAOWE SPRĘŻYY ACISKOWE. POLYURETHAOVÉ TLAČÉ PRUŽIY Oferowane są wymiary wyrobów o różnych twardościach. Konstrukcja tych sprężyn umożliwia zastąpienie sprężyn tradycyjnych tam, gdzie korozja, wibracje,
Petr Beremlijski, Marie Sadowská
Počítačová cvičení Petr Beremlijski, Marie Sadowská Katedra aplikované matematiky Fakulta elektrotechniky a informatiky VŠB - Technická univerzita Ostrava Cvičení : Matlab nástroj pro matematické modelování
Reprezentace a vyvozování znalostí
Reprezentace a vyvozování znalostí Aleš Horák E-mail: hales@fi.muni.cz http://nlp.fi.muni.cz/uui/ Obsah: Reprezentace a vyvozování znalostí Logika rezoluční pravidlo Extralogické informace Pravidlové systémy
Reprezentace a vyvozování znalostí.
Úvod do umělé inteligence Reprezentace a vyvozování znalostí E-mail: hales@fi.muni.cz http://nlp.fi.muni.cz/uui/ Obsah: Reprezentace a vyvozování znalostí Logika rezoluční pravidlo Extralogické informace
MATEMATIKA 3 NUMERICKÉ METODY. Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci
MATEMATIKA 3 NUMERICKÉ METODY Dana Černá http://kmd.fp.tul.cz Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci INFORMACE O PŘEDMĚTU Konzultační hodiny: ÚT 11:00-12:00, budova G,
Powyższe reguły to tylko jedna z wersji gry. Istnieje wiele innych wariantów, można też ustalać własne zasady. Miłej zabawy!
Krykiet W krykieta może grać od 2 do 4 osób, którzy albo grają każdy przeciw każdemu, albo dzielą się na dwie drużyny. Bramki oraz palik startowy i powrotne umieszcza się tak, jak pokazano na rysunku.
Kristýna Kuncová. Matematika B3
(10) Vícerozměrný integrál II Kristýna Kuncová Matematika B3 Kristýna Kuncová (10) Vícerozměrný integrál II 1 / 30 Transformace Otázka Jaký obrázek znázorňuje čtverec vpravo po transformaci u = x + y a
Numerické metody a statistika
Numerické metody a statistika Radek Kučera VŠB-TU Ostrava 2016-2017 ( ) Numerické metody a statistika 2016-2017 1 / 17 Číslo předmětu: 714-0781/02 Rozsah: 2+2 Hodnocení: 6 kreditů Přednáší: Radek Kučera
kontaktní modely (Winklerův, Pasternakův)
TÉMA 7: Pružný poloprostor, modely podloží pružný poloprostor základní předpoklady pružný poloprostor Boussinesqueovo řešení kontaktní modely (Winklerův, Pasternakův) 1 Pružný poloprostor (1) vychází z
Univerzita Karlova v Praze Matematicko-fyzikální fakulta. bankovnictví. Katedra pravděpodobnosti a matematické statistiky
Univerzita Karlova v Praze Matematicko-fyzikální fakulta BAKALÁŘSKÁ PRÁCE Barbora Janečková Aplikace 2-dimenzionálních rozdělení v bankovnictví Katedra pravděpodobnosti a matematické statistiky Vedoucí
Katedra kybernetiky laboratoř Inteligentní Datové Analýzy (IDA) Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
Vytěžování dat Filip Železný Katedra kybernetiky laboratoř Inteligentní Datové Analýzy (IDA) Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Filip Železný (ČVUT) Vytěžování dat 1 / 27
Univerzita Karlova v Praze Matematicko-fyzikální fakulta. Bc. Hana Tritová. Katedra pravděpodobnosti a matematické statistiky
Univerzita Karlova v Praze Matematicko-fyzikální fakulta DIPLOMOVÁ PRÁCE Bc. Hana Tritová Metody MCMC pro finanční časové řady Katedra pravděpodobnosti a matematické statistiky Vedoucí diplomové práce:
Základní elektrotechnická terminologie,
Přednáška č. 1: Základní elektrotechnická terminologie, veličiny a zákony Obsah 1 Terminologie 2 2 Veličiny 6 3 Kirchhoffovy zákony 11 4 Literatura 14 OBSAH Strana 1 / 14 1 TERMINOLOGIE Strana 2 / 14 1
Ekonomicko-statistický návrh regulačního diagramu
Ekonomicko-statistický návrh regulačního diagramu Eliška Cézová Centrum pro jakost a spolehlivost výroby, Ústav technické matematiky, Fakulta strojní Robust 2012 9. 14. září 2012, Němčičky Obsah Úvod Základní
Katedra kybernetiky skupina Inteligentní Datové Analýzy (IDA) 3. listopadu Filip Železný (ČVUT) Vytěžování dat 3. listopadu / 1
Vytěžování dat Filip Železný Katedra kybernetiky skupina Inteligentní Datové Analýzy (IDA) 3. listopadu 2014 Filip Železný (ČVUT) Vytěžování dat 3. listopadu 2014 1 / 1 Metafora pro tuto přednášku Filip
GEM a soustavy lineárních rovnic, část 2
GEM a soustavy lineárních rovnic, část Odpřednesenou látku naleznete v kapitole 6 skript Abstraktní a konkrétní lineární algebra. Jiří Velebil: B6B0LAG 8.3.09: GEM a soustavy, část / Minulá přednáška Gaussova
Poznámky k předmětu Statistika 3
Poznámky k předměu Saisika 3 Jan Kracík. dubna 04 Značení i.i.d. - nezávislé a sejně rozdělené (náhodné veličiny Není-li řečeno jinak, pak: Nerozlišujeme náhodnou veličinu a její hodnou. Význam bude vždy
fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu (reg. č. CZ.1.07/2.2.00/28.
Extrémy Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného
Obsah. Limita posloupnosti a funkce. Petr Hasil. Limita posloupnosti. Pro a R definujeme: Je-li a < 0, pak a =, a ( ) =. vlastní body.
Obsah a funkce Petr Hasil Přednáška z Matematické analýzy I Úvod 2 c Petr Hasil (MUNI) a funkce Matematická analýza / 90 c Petr Hasil (MUNI) a funkce Matematická analýza 2 / 90 Úvod Úvod Pro a R definujeme:
Teorie plasticity. Varianty teorie plasticity. Pružnoplastická matice tuhosti materiálu
Teorie plasticity Varianty teorie plasticity Teorie plastického tečení Přehled základních vztahů Pružnoplastická matice tuhosti materiálu 1 Pružnoplastické chování materiálu (1) Pracovní diagram pro případ
Matematická statistika, statistická rozdělení a termodynamická limita
Kapitola 6 Matematická statistika, statistická rozdělení a termodynamická limita 6. Matematická statistika a teorie pravděpodobnosti Jestliže popisujeme systém, který se skládá z velkého počtu elementárních
NDMI002 Diskrétní matematika
NDMI002 Diskrétní matematika prof. RNDr. Martin Loebl, CSc. ZS 2016/17 Obsah 1 Množiny 2 1.1 Relace....................................... 2 1.2 Ekvivalence.................................... 3 1.3 Částečné
Matematika 1 Jiˇr ı Fiˇser 24. z aˇr ı 2013 Jiˇr ı Fiˇser (KMA, PˇrF UP Olomouc) KMA MAT1 24. z aˇr ı / 52
í150doc-start í251doc-start Jiří Fišer (KMA, PřF UP Olomouc) KMA MAT1 24. září 2013 1 / 52 Matematika 1 Jiří Fišer 24. září 2013 Jiří Fišer (KMA, PřF UP Olomouc) KMA MAT1 24. září 2013 1 / 52 Zimní semestr
Metody, s nimiž se seznámíme v této kapitole, lze použít pro libovolnou
2. Řešení nelineárních rovnic Průvodce studiem Budeme se zabývat výpočtem reálných kořenů nelineární rovnice f(x) =0, (2.0.1) kde f je v jistém smyslu rozumná reálná funkce. Pro některé funkce (kvadratické,
Elementární funkce. Edita Pelantová. únor FJFI, ČVUT v Praze. katedra matematiky, FJFI, ČVUT v Praze
Elementární funkce Edita Pelantová FJFI, ČVUT v Praze Seminář současné matematiky katedra matematiky, FJFI, ČVUT v Praze únor 2013 c Edita Pelantová (FJFI) Elementární funkce únor 2013 1 / 19 Polynomiální
Univerzita Karlova v Praze Matematicko-fyzikální fakulta. rizik. Katedra pravděpodobnosti a matematické statistiky
Univerzita Karlova v Praze Matematicko-fyzikální fakulta DIPLOMOVÁ PRÁCE Bc. Milena Benešová Aktuárský přístup k modelování kreditních rizik Katedra pravděpodobnosti a matematické statistiky Vedoucí diplomové
Zaświadczenie. Nr 41/CB/2012. Niniejszym zaświadczam, iŝ Pan/Pani
Nr 41/CB/2012 Nr 42/CB/2012 Nr 43/CB/2012 Nr 44/CB/2012 Nr 45/CB/2012 Nr 46/CB/2012 Nr 47/CB/2012 Nr 48/CB/2012 Nr 49/CB/2012 Nr 50/CB/2012 Nr 51/CB/2012 Nr 52/CB/2012 Nr 53/CB/2012 Nr 54/CB/2012 Nr 55/CB/2012
7. Aplikace derivace
7. Aplikace derivace 7A. Taylorův polynom 7. Aplikace derivace Verze 20. července 207 Derivace funkce se využívá při řešení úloh technické prae i teorie. Uvedeme několik z nich: vyčíslení hodnot funkce,
Automatové modely. Stefan Ratschan. Fakulta informačních technologíı. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
Automatové modely Stefan Ratschan Katedra číslicového návrhu Fakulta informačních technologíı České vysoké učení technické v Praze Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Stefan
Petr Hasil. c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 1 / 187
Nekonečné řady Petr Hasil Přednáška z Matematické analýzy III c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 1 / 187 Obsah 1 Nekonečné číselné řady Základní pojmy Řady s nezápornými členy Řady s libovolnými
Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava
Lineární algebra 8. přednáška: Kvadratické formy Dalibor Lukáš Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava email: dalibor.lukas@vsb.cz http://www.am.vsb.cz/lukas/la Text byl vytvořen
Lineární regrese. Skutečné regresní funkce nejsou nikdy lineární! regrese extrémně užitečná jak svou koncepcí, tak prakticky.
Lineární regrese Lineární regrese je jednoduchý přístup k učení s učitelem (supervizovanému učení). Předpokládá, že závislost Y na X 1, X 2,..., X p je lineární. Skutečné regresní funkce nejsou nikdy lineární!
Jednoduchá zobrazení. Podpořeno z projektu FRVŠ 584/2011.
Podpořeno z projektu FRVŠ 584/2011. Obsah 1 2 Obsah 1 2 Společné vlastnosti jednoduchých zobrazení: Zobrazovací ref. plocha je rovina - souřadnice X, Y, případně ρ, ɛ Zobrazovaná ref. plocha je eliposid
Přehled aplikací matematického programovaní a
Přehled aplikací matematického programovaní a operačního výzkumu Martin Branda Matematicko-fyzikální fakulta Univerzita Karlova v Praze Výpočetní aspekty optimalizace Martin Branda (KPMS MFF UK) 1 / 15
Matematika III Stechiometrie stručný
Matematika III Stechiometrie stručný matematický úvod Miroslava Dubcová, Drahoslava Janovská, Daniel Turzík Ústav matematiky Přednášky LS 2015-2016 Obsah 1 Zápis chemické reakce 2 umožňuje jednotný přístup
PA152,Implementace databázových systémů 2 / 25
PA152 Implementace databázových systémů Pavel Rychlý pary@fi.muni.cz Laboratoř zpracování přirozeného jazyka http://www.fi.muni.cz/nlp/ 19. září 2008 PA152,Implementace databázových systémů 1 / 25 Technické
PARADIGMATA PROGRAMOVÁNÍ 1B
KATEDRA INFORMATIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITA PALACKÉHO PARADIGMATA PROGRAMOVÁNÍ 1B JAN KONEČNÝ, VILÉM VYCHODIL VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM
TGH01 - Algoritmizace
TGH01 - Algoritmizace Jan Březina Technical University of Liberec 31. března 2015 Metainformace materiály: jan.brezina.matfyz.cz/vyuka/tgh (./materialy/crls8.pdf - Introduction to algorithms) SPOX: tgh.spox.spoj.pl
prof. RNDr. Roman Kotecký DrSc., Dr. Rudolf Blažek, PhD Pravděpodobnost a statistika Katedra teoretické informatiky Fakulta informačních technologií
Základní pojmy pravděpodobnosti prof. RNDr. Roman Kotecký DrSc., Dr. Rudolf Blažek, PhD Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v Praze c Rudolf Blažek,
Statistická mechanika. Prof. RNDr. Václav Janiš, DrSc.
Statistická mechanika Prof. RNDr. Václav Janiš, DrSc. 4. ledna 28 Obsah Základy statistické mechaniky 4. Matematická statistika a teorie pravděpodobnosti............. 4.. Permutace, kombinace, pravděpodobnost.............
Matematika prˇedna sˇka Lenka Prˇibylova 7. u nora 2007 c Lenka Prˇibylova, 200 7
Matematika přednáška Lenka Přibylová 7. února 2007 Obsah Základy matematické logiky 9 Základní množinové pojmy 13 Množina reálných čísel a její podmnožiny 16 Funkce 18 Složená funkce 20 Vlastnosti funkcí
Chyby, podmíněnost a stabilita
Chyby, podmíněnost a stabilita Numerické metody 4. března 2018 FJFI ČVUT v Praze 1 Úvod Čísla v počítači Chyby Citlivost Stabilita 1 Čísla v počítači Čísla v počítači - Celá čísla jméno bity rozsah typy