Wykład 13: Elementy plazmoniki: fale powierzchniowe na granicy metali i dielektryków, nadrozdzielczość

Wielkość: px
Rozpocząć pokaz od strony:

Download "Wykład 13: Elementy plazmoniki: fale powierzchniowe na granicy metali i dielektryków, nadrozdzielczość"

Transkrypt

1 Fotonika Wykład 13: Elementy plazmoniki: fale powierzchniowe na granicy metali i dielektryków, nadrozdzielczość S. Maier Plasmonics fundamentals and applications (Springer, 007). Plan: związek dyspersyjny dla fali na powierzchni metalu długości charakterystyczne sposoby generacji plazmonów falowody planarne - dielektryczne, metalowe i plazmoniczne metaliczno-dielektryczne struktury warstwowe, metamateriały hiperboliczne soczewka Pendrego; nadrozdzielczość

2 Przenikalność elektryczna metali σi ϵ=ϵ1+ i ϵ =ϵ 1+ ω ϵ =( n+ i κ) 0 1μ m 500nm M. A. Ordal et al "Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd,Pt, Ag, Ti, and W in the infrared and far infrared," Appl. Opt., 1099, 1983

3

4 Wnikanie fali w metal β k y (stała propagacji - wielkość zachowana na granicy warstw) β +kx =ϵ d k0 Dielektryk ϵd> 1 y x kx β ky Metal ϵ m< 0 k 'x β +k' x =ϵm k0

5 Wnikanie fali w metal Stała propagacji β k y β +kx =ϵ d k0 kx =± ϵd k0 β Dielektryk ϵd> 1 y x λ/n kx β ky Metal ϵ m< 0 δskin k 'x Fala propaguje się w dielektryku β +k' x =ϵm k0 k' x =ϵm k0 β <0 k' x =i β ϵm k0 Fala zanika wykładniczo w metalu Głębokość wnikania dla padania prostopadłego nazywa się głębokością naskórkową δ skin= 1 Im(k0 ϵm)

6 Fale powierzchniowe Czy może istnieć fala, która zanika wykładniczo w obu ośrodkach, a propaguje się wzdłuż ich granicy? β k y (stała propagacji - wielkość zachowana na granicy warstw) β +kx =ϵ d k0 Dielektryk ϵd> 1 y x kx β ky Metal ϵ m< 0 k x =ϵd k0 β < 0 k 'x Fala zanika wykładniczo w dielektryku β +k' x =ϵm k0 k' x =ϵm k0 β <0 k' x =i β ϵm k0 Fala zanika wykładniczo w metalu

7 Fale powierzchniowe k ' x =i β ϵ m k0 k x = i β ϵ d k 0 Korzystamy ze wzorów Fresnela: ϵ d k ' x ϵm k x r = =0 ϵd k ' x + ϵm k x Hz TM ϵ d k ' x =ϵm k x k ' x k x r = =0 k ' x+ k x Ez TE k ' x =k x Brak rozwiązań o charakterze fali powierzchniowej

8 Fale powierzchniowe k ' x =i β ϵ m k0 k x = i β ϵ d k 0 Korzystamy ze wzorów Fresnela: ϵ d k ' x ϵm k x r = =0 ϵd k ' x + ϵm k x k ' x k x r = =0 k ' x+ k x Hz TM Ez TE ϵ d k ' x =ϵm k x k ' x =k x (Brak rozwiązań) i ϵ d β ϵ m k 0 = i ϵm β ϵ d k 0 Związek dyspersyjny dla fali powierzchniowej β=±k 0 = i β ϵ ϵ m ϵ d ϵm + ϵd k ' x =i β ϵ m k0 kx d k0

9

10

11 Powierzchniowe plazmony-polarytony Długości charakterystyczne Długość propagacji Ly = 1 Im(β) plazmonu Dielektryk ϵd> 1 y x Metal kx Głębokość wnikania plazmonu Lx (diel )= β ky Lx (met)= ϵ m< 0 k 'x Długość fali plazmonu λ spp=π/ Re(β)< λ 1 Im(k x ) 1 Im( kx ') Głębokość naskórkowa metalu δskin = 1 Im(k0 ϵ m)

12

13

14 Fale powierzchniowe Średniowieczne witraże (Notre Dame de Paris) P. Nagpal, et al. "Ultrasmooth Patterned Metals for Plasmonics and Metamaterials," Science 35, 594 (009);

15 Fale powierzchniowe P. Nagpal, et al. "Ultrasmooth Patterned Metals for Plasmonics and Metamaterials," Science 35, 594 (009);

16 Metody wzbudzania plazmonów Plazmonu nie da się wzbudzić po prostu oświetlając powierzchnię metalu falą płaską (trzeba dopasować składową wektora falowego równoległą do powierzchni) Sposób 1: z użyciem materiału o wyższym współczynniku załamania np. pryzmatu n prism> n1 nprism k0 β> 0 y n=1 n k0 β < 0 n1> n n1 k0 β < 0 x Sposób : z użyciem elementu periodycznego np. siatki dyfrakcyjnej k y β y x β=ky + π m/λ m Z n k0 k y > 0 Λ n=1 n1> n n1 k0 β < 0

17 Metody wzbudzania plazmonów Sposób 3: z użyciem elementów o rozmiarach subfalowych umieszonych w bliskim polu (bezpośrednie wytwarzanie fal ewanescentnych o bardzo krótkim zasięgu) SNOM Sposób 4: z użyciem cząstek naładowanych

18 Falowód plazmoniczny y x ϵ d> 1 ϵ m< 0 ϵ d> 1 kx β 1 ±k ' x β k x β 3 d Szukamy modów tak samo jak dla dielektrycznych falowodów planarnych Różne możliwości: dielektryki IMI - dielektryk-metal-dielektryk MIM-metal-dielektryk-metal

19 Mody w falowodach planarnych dielektrycznych, metalowych i MIM MIM z metalem o skończonym przewodnictwie Falowód metalowy Liczba modów: M = d n /λ Falowód dielektryczny

20 Mody plazmoniczne (powierzchniowe) w falowodach IMI i MIM - profil modu powierzchniowego składa się wyłącznie z fal ewanescentnych (wykładniczych)

21 Falowód plazmoniczny y x ϵ d> 1 ϵ m< 0 ϵ d> 1 k x β 1 ±k ' x β kx β 3 t 13 = (1 r ) exp (i ϕ) =± 1 r exp( i ϕ) r (1 exp( i ϕ)) r 13= =± 1 r exp ( i ϕ) d Szukamy modów tak samo jak dla dielektrycznych falowodów planarnych: r (β)=±exp ( i ϕ(β)) (m ) ϕ=k ' x d = k 0 n β ϵ d k ' x (β) ϵ m k x (β) r (β)= ϵ d k ' x (β)+ ϵ m k x (β) (m ) β =: neff k 0 Efektywny współczynnik załamania m-tego modu k ' x (β)= k 0 ϵ m β k x (β)=± k 0 ϵ d β Im(k x (β))> 0

22 Falowody planarne polaryzacja TM y x ϵ d> 1 ϵ m< 0 k x β 1 ±k ' x β kx β 3 ϵ d> 1 d ϵd k ' x ϵ m k x 1 ρ ±exp( i k ' x d )= = ϵd k ' x + ϵ m k x 1+ ρ ρ= i ϵ m k x ϵ d k ' x ρ= exp (i k ' x d / ) exp( i k ' x d / ) [ ( )] = tg d k ' x Polaryzacja TM ϵd k ' x tg z= i exp (i k ' x d / )±exp( i k ' x d / ) ±1 ϵm k x iz iz iz iz e e e +e Związek dyspersyjny dla falowodu planarnego (plazmonicznego lub zwykłego dielektrycznego) dla modów o polaryzacji TM β(m ) ( k 0 ) lub (m) n eff (λ )

23 Falowody planarne polaryzacja TE y x ϵ d> 1 ϵ m< 0 ϵ d> 1 k x β 1 ±k ' x β kx β 3 (Bez zmiany oznaczeń, zakładamy, że mamy strukturę MIM) d k ' x k x 1 ρ ±exp( i k ' x d )= = k ' x + k x 1+ ρ ρ= ρ= exp (i k ' x d / ) exp( i k ' x d / ) [ ( )] kx d k ' x i = tg k 'x Polaryzacja TE k'x tg z= i exp (i k ' x d / )±exp( i k ' x d / ) ±1 kx iz iz iz iz e e e +e Związek dyspersyjny dla falowodu planarnego (plazmonicznego lub zwykłego dielektrycznego) dla modów o polaryzacji TE β(m ) ( k 0 ) lub (m) n eff (λ )

24 Falowody IMI Mody nieparzyste dla dużej wartości stałej propagacji stają się słabo związane co skutkuje zwiększeniem drogi propagacji

25 Falowody MIM Nieparzysty mod podstawowy nie ma częstości odcięcia tzn. fala może się przeciskać przez bardzo cienkie szczeliny

26

27

28

29

30

31 Przezroczyste metale - Można wykonać metaliczno-dielektryczną periodyczną strukturę warstwową przezroczystą w zakresie widzialnym, lub podczerwonym, lub nadfioletowym, czyli tzw. przezroczysty metal - wyniki doświadczalne są zgodne z przewidywaniami - zastosowania: elektrody kom. LCD, ekrany termiczne, okulary ochronne, przezroczyste materiały przewodzące M. Scalora, M. J. Bloemer, A. S. Pethel, J. P. Dowling, C. M. Bowden et al."transparent, metallo-dielectric, one-dimensional, photonic bandgap structures," J. Appl. Phys. 83, 377 (1998); M. J. Bloemer, M. Scalora, "Transmissive properties of Ag/MgF photonic band gaps," Appl. Phys. Lett. 7, 1676 (1998);

32 Przezroczyste metale Przewidywane widmo transmisyjne Idea działania (metaliczny FP) M. Scalora, M. J. Bloemer, A. S. Pethel, J. P. Dowling, C. M. Bowden et al."transparent, metallo-dielectric, one-dimensional, photonic bandgap structures," J. Appl. Phys. 83, 377 (1998)

33 Rezonansowe tunelowanie d λ=633 nm, n1 =1, n Au= i, d Au =0 nm d λ=633 nm, n1 =1.5, n =1, k 0 d gap =1, θ=asin ( n /n 1) 1.05

34 Doskonała soczewka płaska D. Melville, R Blaikie, C. Wolf, Submicron imaging with a planar silver lens, Appl. Phys. Lett. 84, 4403, 004 =360nm J.B. Pendry, Phys. Rev. Lett. 85, 3966, (000)

35 Dygresja: (meta)materiały left-handed (LHM) Hipoteza postawiona teoretycznie blisko 50 lat temu przez Wiktora Veselago: Załóżmy, że istnieje ośrodek o jednocześnie ujemnej przenikalności elektrycznej i magnetycznej: (ϵ< 0,μ < 0) V. G. Veselago, The electrodynamics of substances with simultaneously negative values of permittivity and permeability, Sov. Phys. Usp. 10, 509, (1968). Jak wygląda propagacja fali EM w takim ośrodku? Równanie Helmoltza: 0 ( + n k ) Ψ =0 n =ϵ μ Wniosek: propagacja wygląda podobnie jak w dielektryku, bo równanie Helmoltza nie widzi oddzielnie znaków obu przenikalności

36 Dygresja: (meta)materiały left-handed (LHM) μ E=k ϵ E Wektorowe równanie falowe: zachowuje się przy transformacji Wobec tego zachowują się pola E Skrętność układu (E,H,k): exp ( i ω t) k 0 =ω / c η0= μ 0 /ϵ0 ϵ ϵ μ μ oraz D=ϵ0 ϵ E Zmienia się natomiast znak dla: Dla fali płaskiej mamy: 0 1 E=E 0 exp (i k r ) H= H 0 exp(i k r ) i B= ω E 1 1 S= E H H=μ 0 μ B k E0 =k 0 η0 μ H 0 E dielektryk (RHM): k H S metamateriał (LHM): E S H k

37 Materiały LHM ujemne załamanie (ϵ1, μ 1) n 1= ϵ1 μ 1 RHM (ϵ, μ ) k n 1= ϵ μ RHM r k tr θ1 θ θ1 k inc y sin(θ 1) = sin (θ ) n 1 x Dla wszystkich trzech wiązek zachowane są: n (ω, k y )

38 Materiały LHM ujemne załamanie (ϵ, μ ) (ϵ1, μ 1) n 1= ϵ1 μ 1 RHM k n = ϵ μ η= μ /ϵ LHM r θ1 θ θ1 k inc k tr y x sin(θ 1) n = sin (θ ) n1 Jeśli przepływ energii jest przeciwny do k to wygodnie jest przyjąć ujemny znak w definicji współczynnika załamania bo taka konwencja pozwala pozostawić niezmienioną formę prawa Snella

39 Doskonała soczewka płaska RHM =1, =1 d1 LHM RHM = 1, = 1 =1, =1 d 1 d d

40 Materiały o efektywnych własnościach magnetycznych ' ' ' ' ' E ' H Z' Z'' n '' n' P. Markos and C. M. Soukoulis, Transmission properties and effective electromagnetic parameters of double negative metamaterials, Opt. Express 11, (003),

41 Materiały o efektywnych własnościach magnetycznych Dla częstości mikrofalowych: D Shelby et al. Experimental Verification of a Negative Index of Refraction, Science 9, 77 (001) Dla częstości optycznych: S. Linden et al., Magnetic Response of Metamaterials at 100 Terahertz, Science 306, 1351 (004) 3D C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, M. Tanielian, Experimental verification and simulation of negative index of refraction using Snell's law, Phy. Rev. Lett. 90, , (003). Grigorenko et. al, Nanofabricated media with negative permeability at visible frequencies Nature 438, 335, 005

42 Hipersoczewka do obrazowania z powiększeniem obiektów o rozmiarach poniżej kryterium dyfrakcyjnego Zhaowei Liu, et al., "Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects," Science 315, 1686 (007); Wielowarstwa ułozona na brzegu cylindra pozwala na obrazowanie z powiększeniem - dzięki temu obraz obiektu o rozmiarach subfalowych może zostać zmierzony w polu dalekim

Fotonika. Plan: Wykład 14: podsumowanie, uzupełnienie

Fotonika. Plan: Wykład 14: podsumowanie, uzupełnienie Fotonika Wykład 14: podsumowanie, uzupełnienie Plan: Uzupełnienie: kryształy fotoniczne i metamateriały soczewka Pendrego, nadrozdzielczość Absorbery elektromagnetyczne elementy optyki fourierowskiej Optyka

Bardziej szczegółowo

Fotonika. Plan: Wykład 15: Elementy plazmoniki: struktury cienkowarstwowe, elementy teorii ośrodków efektywnych

Fotonika. Plan: Wykład 15: Elementy plazmoniki: struktury cienkowarstwowe, elementy teorii ośrodków efektywnych Fotonika Wykład 15: Elementy plazmoniki: struktury cienkowarstwowe, elementy teorii ośrodków efektywnych S. Maier Plasmonics fundamentals and applications (Springer, 2007). Plan: Elementy plazmoniki i

Bardziej szczegółowo

Wykład 12: prowadzenie światła

Wykład 12: prowadzenie światła Fotonika Wykład 12: prowadzenie światła Plan: Mechanizmy prowadzenia światła Mechanizmy oparte na odbiciu całkowite wewnętrzne odbicie, odbicie od ośrodków przewodzących, fotoniczna przerwa wzbroniona

Bardziej szczegółowo

Fotonika. Plan: Wykład 9: Interferencja w układach warstwowych

Fotonika. Plan: Wykład 9: Interferencja w układach warstwowych Fotonika Wykład 9: Interferencja w układach warstwowych Plan: metody macierzowe - macierze przejścia i rozpraszania Proste układy warstwowe powłoki antyrefleksyjne interferometr Fabry-Pérot tunelowanie

Bardziej szczegółowo

Fotonika. Plan: Wykład 11: Kryształy fotoniczne

Fotonika. Plan: Wykład 11: Kryształy fotoniczne Fotonika Wykład 11: Kryształy fotoniczne Plan: Kryształy fotoniczne Homogenizacja długofalowa Prawo załamania dla kryształów fotonicznych, superkolimacja Tw. Blocha, kryształy, kryształy fotoniczne, kryształy

Bardziej szczegółowo

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 6, Radosław Chrapkiewicz, Filip Ozimek

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 6, Radosław Chrapkiewicz, Filip Ozimek Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 6, 0.03.01 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 5 - przypomnienie ciągłość

Bardziej szczegółowo

Photovoltaics

Photovoltaics Photovoltaics PV Cell PV Array Components opv Cells omodules oarrays PV System Components Net Metering PV Array Fields Disadvantages of Solar Energy Less efficient and costly equipment Part Time Reliability

Bardziej szczegółowo

KATEDRA TELEKOMUNIKACJI I FOTONIKI

KATEDRA TELEKOMUNIKACJI I FOTONIKI ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY W SZCZECINIE WYDZIAŁ ELEKTRYCZNY KATEDRA TELEKOMUNIKACJI I FOTONIKI OPROGRAMOWANIE DO MODELOWANIA SIECI ŚWIATŁOWODOWYCH PROJEKTOWANIE FALOWODÓW PLANARNYCH (wydrukować

Bardziej szczegółowo

Wykłady 10: Kryształy fotoniczne, fale Blocha, fotoniczna przerwa wzbroniona, zwierciadła Bragga i odbicie omnidirectional

Wykłady 10: Kryształy fotoniczne, fale Blocha, fotoniczna przerwa wzbroniona, zwierciadła Bragga i odbicie omnidirectional Fotonika Wykłady 10: Kryształy fotoniczne, fale Blocha, fotoniczna przerwa wzbroniona, zwierciadła Bragga i odbicie omnidirectional Plan: Jednowymiarowe kryształy fotoniczne Fale Blocha, fotoniczna struktura

Bardziej szczegółowo

Fotonika. Plan: Wykład 3: Polaryzacja światła

Fotonika. Plan: Wykład 3: Polaryzacja światła Fotonika Wykład 3: Polaryzacja światła Plan: Równania Maxwella w ośrodku optycznie liniowym Równania Maxwella dla fal monochromatycznych Polaryzacja światła Fala płaska spolaryzowana Polaryzacje liniowe,

Bardziej szczegółowo

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 18, Radosław Chrapkiewicz, Filip Ozimek

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 18, Radosław Chrapkiewicz, Filip Ozimek Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 18, 23.04.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 17 - przypomnienie

Bardziej szczegółowo

Fotonika. Wykład (30h): Rafał Kotyński, wtorki 15:15-17:00, s. 1.40

Fotonika. Wykład (30h): Rafał Kotyński, wtorki 15:15-17:00, s. 1.40 Fotonika Fotonika to interdyscyplinarna dziedzina nauki i techniki, łącząca dokonania optyki, elektroniki i informatyki w celu opracowywania technik i urządzeń wykorzystujących promieniowanie elektromagnetyczne

Bardziej szczegółowo

Wykład 6: Reprezentacja informacji w układzie optycznym; układy liniowe w optyce; podstawy teorii dyfrakcji

Wykład 6: Reprezentacja informacji w układzie optycznym; układy liniowe w optyce; podstawy teorii dyfrakcji Fotonika Wykład 6: Reprezentacja informacji w układzie optycznym; układy liniowe w optyce; podstawy teorii dyfrakcji Plan: pojęcie sygnału w optyce układy liniowe filtry liniowe, transformata Fouriera,

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 6 wykład: Piotr Fita pokazy: Jacek Szczytko ćwiczenia: Aneta Drabińska, Paweł Kowalczyk, Barbara Piętka, Michał Karpiński Wydział

Bardziej szczegółowo

Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 18, Mateusz Winkowski, Łukasz Zinkiewicz

Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 18, Mateusz Winkowski, Łukasz Zinkiewicz Podstawy Fizyki III Optyka z elementami fizyki współczesnej wykład 18, 07.12.2017 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Łukasz Zinkiewicz Radosław Łapkiewicz Wykład 17 - przypomnienie

Bardziej szczegółowo

Fotonika. Wykład (30h): R. Kotyński Wtorki 15:15-17:00, s. 1.40

Fotonika. Wykład (30h): R. Kotyński Wtorki 15:15-17:00, s. 1.40 Fotonika Fotonika to interdyscyplinarna dziedzina nauki i techniki, łącząca dokonania optyki, elektroniki i informatyki w celu opracowywania technik i urządzeń wykorzystujących promieniowanie elektromagnetyczne

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 6 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15

Bardziej szczegółowo

1 Płaska fala elektromagnetyczna

1 Płaska fala elektromagnetyczna 1 Płaska fala elektromagnetyczna 1.1 Fala w wolnej przestrzeni Rozwiązanie równań Maxwella dla zespolonych amplitud pól przemiennych sinusoidalnie, reprezentujące płaską falę elektromagnetyczną w wolnej

Bardziej szczegółowo

Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie

Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie napisał Michał Wierzbicki Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie Prędkość grupowa paczki falowej Paczka falowa jest superpozycją fal o różnej częstości biegnących wzdłuż osi z.

Bardziej szczegółowo

Elektrodynamika Część 8 Fale elektromagnetyczne Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 8 Fale elektromagnetyczne Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 8 Fale elektromagnetyczne Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 9 Fale elektromagnetyczne 3 9.1 Fale w jednym wymiarze.................

Bardziej szczegółowo

Metody Obliczeniowe Mikrooptyki i Fotoniki

Metody Obliczeniowe Mikrooptyki i Fotoniki Metody Obliczeniowe Mikrooptyki i Fotoniki Metoda propagacji wiązki BPM cd wyznaczanie modów metodą urojonej długości i korelacyjną operowanie efektywnym współczynnikiem załamania metoda FT-BPM metoda

Bardziej szczegółowo

III. Opis falowy. /~bezet

III. Opis falowy.  /~bezet Światłowody III. Opis falowy BERNARD ZIĘTEK http://www.fizyka.umk.pl www.fizyka.umk.pl/~ /~bezet Równanie falowe w próżni Teoria falowa Równanie Helmholtza Równanie bezdyspersyjne fali płaskiej, rozchodzącej

Bardziej szczegółowo

Wykład 6: Reprezentacja informacji w układzie optycznym; układy liniowe w optyce; podstawy teorii dyfrakcji

Wykład 6: Reprezentacja informacji w układzie optycznym; układy liniowe w optyce; podstawy teorii dyfrakcji Fotonika Wykład 6: Reprezentacja informacji w układzie optycznym; układy liniowe w optyce; podstawy teorii dyfrakcji Plan: pojęcie sygnału w optyce układy liniowe filtry liniowe, transformata Fouriera,

Bardziej szczegółowo

Podstawy fizyki wykład 8

Podstawy fizyki wykład 8 Podstawy fizyki wykład 8 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Optyka geometryczna Polaryzacja Odbicie zwierciadła Załamanie soczewki Optyka falowa Interferencja Dyfrakcja światła D.

Bardziej szczegółowo

Fale elektromagnetyczne w dielektrykach

Fale elektromagnetyczne w dielektrykach Fale elektromagnetyczne w dielektrykach Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Krótka historia odkrycia

Bardziej szczegółowo

Metody Obliczeniowe Mikrooptyki i Fotoniki

Metody Obliczeniowe Mikrooptyki i Fotoniki Metody Obliczeniowe Mikrooptyki i Fotoniki https://www.igf.fuw.edu.pl/pl/courses/lectures/metody-obliczen-95-021c/ Podstawy metody różnic skończonych (Basics of finite-difference methods) Podstawy metody

Bardziej szczegółowo

Optyka. Wykład V Krzysztof Golec-Biernat. Fale elektromagnetyczne. Uniwersytet Rzeszowski, 8 listopada 2017

Optyka. Wykład V Krzysztof Golec-Biernat. Fale elektromagnetyczne. Uniwersytet Rzeszowski, 8 listopada 2017 Optyka Wykład V Krzysztof Golec-Biernat Fale elektromagnetyczne Uniwersytet Rzeszowski, 8 listopada 2017 Wykład V Krzysztof Golec-Biernat Optyka 1 / 17 Plan Swobodne równania Maxwella Fale elektromagnetyczne

Bardziej szczegółowo

Wykład 17: Optyka falowa cz.2.

Wykład 17: Optyka falowa cz.2. Wykład 17: Optyka falowa cz.2. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Interferencja w cienkich warstwach Załamanie

Bardziej szczegółowo

Fizyka elektryczność i magnetyzm

Fizyka elektryczność i magnetyzm Fizyka elektryczność i magnetyzm W5 5. Wybrane zagadnienia z optyki 5.1. Światło jako część widma fal elektromagnetycznych. Fale elektromagnetyczne, które współczesny człowiek potrafi wytwarzać, i wykorzystywać

Bardziej szczegółowo

Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 12, Mateusz Winkowski, Łukasz Zinkiewicz

Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 12, Mateusz Winkowski, Łukasz Zinkiewicz Podstawy Fizyki III Optyka z elementami fizyki współczesnej wykład, 0..07 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Łukasz Zinkiewicz Radosław Łapkiewicz Wykład - przypomnienie superpozycja

Bardziej szczegółowo

Rys. 1 Pole dyfrakcyjne obiektu wejściowego. Rys. 2 Obiekt quasi-periodyczny.

Rys. 1 Pole dyfrakcyjne obiektu wejściowego. Rys. 2 Obiekt quasi-periodyczny. Ćwiczenie 7 Samoobrazowanie obiektów periodycznych Wprowadzenie teoretyczne Jeśli płaski obiekt optyczny np. przezrocze z czarno-białym wzorem (dokładniej mówiąc z przeźroczysto-nieprzeźroczystym wzorem)

Bardziej szczegółowo

Wykład 17: Optyka falowa cz.1.

Wykład 17: Optyka falowa cz.1. Wykład 17: Optyka falowa cz.1. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Zasada Huyghensa Christian Huygens 1678 r. pierwsza

Bardziej szczegółowo

Zespolona funkcja dielektryczna metalu

Zespolona funkcja dielektryczna metalu Zespolona funkcja dielektryczna metalu Przenikalność elektryczna ośrodków absorbujących promieniowanie elektromagnetyczne jest zespolona, a także zależna od częstości promieniowania, które przenika przez

Bardziej szczegółowo

ZADANIE 111 DOŚWIADCZENIE YOUNGA Z UŻYCIEM MIKROFAL

ZADANIE 111 DOŚWIADCZENIE YOUNGA Z UŻYCIEM MIKROFAL ZADANIE 111 DOŚWIADCZENIE YOUNGA Z UŻYCIEM MIKROFAL X L Rys. 1 Schemat układu doświadczalnego. Fala elektromagnetyczna (światło, mikrofale) po przejściu przez dwie blisko położone (odległe o d) szczeliny

Bardziej szczegółowo

Mody sprzężone plazmon-fonon w silnych polach magnetycznych

Mody sprzężone plazmon-fonon w silnych polach magnetycznych Mody sprzężone plazmon-fonon w silnych polach magnetycznych Mody sprzężone w półprzewodnikach polarnych + E E pl η = st α = E E pl ξ = p B.B. Varga,, Phys. Rev. 137,, A1896 (1965) A. Mooradian and B. Wright,

Bardziej szczegółowo

Różne reżimy dyfrakcji

Różne reżimy dyfrakcji Fotonika Wykład 7 - Sposoby wyznaczania obrazu dyfrakcyjnego - Przykłady obrazów dyfrakcyjnych w polu dalekim obliczonych przy użyciu dyskretnej transformaty Fouriera - Elementy dyfrakcyjne Różne reżimy

Bardziej szczegółowo

Metody Obliczeniowe Mikrooptyki i Fotoniki. Metoda propagacji wiązki BPM Modelowanie propagacji

Metody Obliczeniowe Mikrooptyki i Fotoniki. Metoda propagacji wiązki BPM Modelowanie propagacji Metody Obliczeniowe Mikrooptyki i Fotoniki Metoda propagacji wiązki BPM Modelowanie propagacji Równanie BPM Równanie Helmholtza: n k 0 =0 Rozwiązanie zapisujemy jako: r =A r exp i k z Fala nośna k =n k

Bardziej szczegółowo

Mody sprzęŝone plazmon-fonon w silnych polach magnetycznych

Mody sprzęŝone plazmon-fonon w silnych polach magnetycznych Mody sprzęŝone plazmon-fonon w silnych polach magnetycznych Mody sprzęŝone w półprzewodnikach polarnych + E E pl η = st α = E E pl ξ = p B.B. Varga, Phys. Rev. 137,, A1896 (1965) A. Mooradian and B. Wright,

Bardziej szczegółowo

WSTĘP DO OPTYKI FOURIEROWSKIEJ

WSTĘP DO OPTYKI FOURIEROWSKIEJ 1100-4BW1, rok akademicki 018/19 WSTĘP DO OPTYKI FOURIEROWSKIEJ dr hab. Rafał Kasztelanic Wykład 4 Przestrzeń swobodna jako filtr częstości przestrzennych Załóżmy, że znamy rozkład pola na fale monochromatyczne

Bardziej szczegółowo

Zjawisko interferencji fal

Zjawisko interferencji fal Zjawisko interferencji fal Interferencja to efekt nakładania się fal (wzmacnianie i osłabianie się ruchu falowego widoczne w zmianach amplitudy i natęŝenia fal) w którym zachodzi stabilne w czasie ich

Bardziej szczegółowo

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 12, Radosław Chrapkiewicz, Filip Ozimek

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 12, Radosław Chrapkiewicz, Filip Ozimek Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 1, 3.03.01 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek rnest Grodner Wykład 11 - przypomnienie superpozycja

Bardziej szczegółowo

Promieniowanie dipolowe

Promieniowanie dipolowe Promieniowanie dipolowe Potencjały opóźnione φ i A dla promieniowanie punktowego dipola elektrycznego wygodnie jest wyrażać przez wektor Hertza Z φ = ϵ 0 Z, spełniający niejednorodne równanie falowe A

Bardziej szczegółowo

Prawa optyki geometrycznej

Prawa optyki geometrycznej Optyka Podstawowe pojęcia Światłem nazywamy fale elektromagnetyczne, o długościach, na które reaguje oko ludzkie, tzn. 380-780 nm. O falowych własnościach światła świadczą takie zjawiska, jak ugięcie (dyfrakcja)

Bardziej szczegółowo

Elektrodynamika. Część 8. Fale elektromagnetyczne. Ryszard Tanaś. Zakład Optyki Nieliniowej, UAM

Elektrodynamika. Część 8. Fale elektromagnetyczne. Ryszard Tanaś. Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 8 Fale elektromagnetyczne Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 9 Fale elektromagnetyczne 3 9.1 Fale w jednym wymiarze.................

Bardziej szczegółowo

OPTYKA FALOWA. W zjawiskach takich jak interferencja, dyfrakcja i polaryzacja światło wykazuje naturę

OPTYKA FALOWA. W zjawiskach takich jak interferencja, dyfrakcja i polaryzacja światło wykazuje naturę OPTYKA FALOWA W zjawiskach takich jak interferencja, dyfrakcja i polaryzacja światło wykazuje naturę falową. W roku 8 Thomas Young wykonał doświadczenie, które pozwoliło wyznaczyć długość fali światła.

Bardziej szczegółowo

Wykład FIZYKA II. 7. Optyka geometryczna. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA II. 7. Optyka geometryczna.   Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA II 7. Optyka geometryczna Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ WSPÓŁCZYNNIK ZAŁAMANIA Współczynnik załamania ośrodka opisuje zmianę prędkości fali

Bardziej szczegółowo

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 17, Mateusz Winkowski, Łukasz Zinkiewicz

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 17, Mateusz Winkowski, Łukasz Zinkiewicz Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 17, 01.12.2017 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Łukasz Zinkiewicz Radosław Łapkiewicz Wykład 16 - przypomnienie

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 8 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2013/14

Bardziej szczegółowo

Wykład 16: Optyka falowa

Wykład 16: Optyka falowa Wykład 16: Optyka falowa Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Zasada Huyghensa Christian Huygens 1678 r. pierwsza falowa

Bardziej szczegółowo

Solitony i zjawiska nieliniowe we włóknach optycznych

Solitony i zjawiska nieliniowe we włóknach optycznych Solitony i zjawiska nieliniowe we włóknach optycznych Prezentacja zawiera kopie folii omawianych na wykładzie. Niniejsze opracowanie chronione jest prawem autorskim. Wykorzystanie niekomercyjne dozwolone

Bardziej szczegółowo

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 17, Radosław Chrapkiewicz, Filip Ozimek

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 17, Radosław Chrapkiewicz, Filip Ozimek Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 17, 0.04.01 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 16 - przypomnienie dyfrakcja

Bardziej szczegółowo

Fotonika kurs magisterski grupa R41 semestr VII Specjalność: Inżynieria fotoniczna. Egzamin ustny: trzy zagadnienia do objaśnienia

Fotonika kurs magisterski grupa R41 semestr VII Specjalność: Inżynieria fotoniczna. Egzamin ustny: trzy zagadnienia do objaśnienia Dr inż. Tomasz Kozacki Prof. dr hab.inż. Romuald Jóźwicki Zakład Techniki Optycznej Instytut Mikromechaniki i Fotoniki pokój 513a ogłoszenia na tablicach V-tego piętra kurs magisterski grupa R41 semestr

Bardziej szczegółowo

- Strumień mocy, który wpływa do obszaru ograniczonego powierzchnią A ( z minusem wpływa z plusem wypływa)

- Strumień mocy, który wpływa do obszaru ograniczonego powierzchnią A ( z minusem wpływa z plusem wypływa) 37. Straty na histerezę. Sens fizyczny. Energia dostarczona do cewki ferromagnetykiem jest znacznie większa od energii otrzymanej. Energia ta jest tworzona w ferromagnetyku opisanym pętlą histerezy, stąd

Bardziej szczegółowo

Optyka. Optyka falowa (fizyczna) Optyka geometryczna Optyka nieliniowa Koherencja światła

Optyka. Optyka falowa (fizyczna) Optyka geometryczna Optyka nieliniowa Koherencja światła Optyka Optyka falowa (fizyczna) Optyka geometryczna Optyka nieliniowa Koherencja światła 1 Optyka falowa Opis i zastosowania fal elektromagnetycznych w zakresie widzialnym i bliskim widzialnemu Podstawowe

Bardziej szczegółowo

falowego widoczne w zmianach amplitudy i natęŝenia fal) w którym zachodzi

falowego widoczne w zmianach amplitudy i natęŝenia fal) w którym zachodzi Zjawisko interferencji fal Interferencja to efekt nakładania się fal (wzmacnianie i osłabianie się ruchu falowego widoczne w zmianach amplitudy i natęŝenia fal) w którym zachodzi stabilne w czasie ich

Bardziej szczegółowo

Wykład 16: Optyka falowa

Wykład 16: Optyka falowa Wykład 16: Optyka falowa Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Zasada Huyghensa Christian Huygens 1678 r. pierwsza

Bardziej szczegółowo

Wykład XI. Optyka geometryczna

Wykład XI. Optyka geometryczna Wykład XI Optyka geometryczna Jak widzimy? Aby przedmiot był widoczny, musi wysyłać światło w wielu kierunkach. Na podstawie światła zebranego przez oko mózg lokalizuje położenie obiektu. Niekiedy promienie

Bardziej szczegółowo

Fale elektromagnetyczne

Fale elektromagnetyczne Podstawy elektromagnetyzmu Wykład 11 Fale elektromagnetyczne Równania Maxwella H=J D t E= B t D= B=0 D= E J= E B= H Ruch ładunku jest źródłem pola magnetycznego Zmiana pola magnetycznego w czasie jest

Bardziej szczegółowo

FALE MATERII. De Broglie, na podstawie analogii optycznych, w roku 1924 wysunął hipotezę, że

FALE MATERII. De Broglie, na podstawie analogii optycznych, w roku 1924 wysunął hipotezę, że FAL MATRII De Broglie, na podstawie analogii optycznych, w roku 194 wysunął hipotezę, że cząstki materialne także charakteryzują się dualizmem korpuskularno-falowym. Hipoteza de Broglie a Cząstce materialnej

Bardziej szczegółowo

Jak odbić zimne atomy od płyty DVD,

Jak odbić zimne atomy od płyty DVD, z atomami dotychczas Jak odbić zimne atomy od płyty DVD, czyli o polarytonach plazmonów powierzchniowych na metalicznych siatkach dyfrakcyjnych Dobrosława Bartoszek Bober Zakład Optyki Atomowej IF UJ 21

Bardziej szczegółowo

OPTYKA GEOMETRYCZNA I INSTRUMENTALNA

OPTYKA GEOMETRYCZNA I INSTRUMENTALNA 1100-1BO15, rok akademicki 2018/19 OPTYKA GEOMETRYCZNA I INSTRUMENTALNA dr hab. Raał Kasztelanic Wykład 4 Obliczenia dla zwierciadeł Równanie zwierciadła 1 1 2 1 s s r s s 2 Obliczenia dla zwierciadeł

Bardziej szczegółowo

IV. Transmisja. /~bezet

IV. Transmisja.  /~bezet Światłowody IV. Transmisja BERNARD ZIĘTEK http://www.fizyka.umk.pl www.fizyka.umk.pl/~ /~bezet 1. Tłumienność 10 7 10 6 Tłumienność [db/km] 10 5 10 4 10 3 10 2 10 SiO 2 Tłumienność szkła w latach (za A.

Bardziej szczegółowo

Optyka. Wykład VII Krzysztof Golec-Biernat. Prawa odbicia i załamania. Uniwersytet Rzeszowski, 22 listopada 2017

Optyka. Wykład VII Krzysztof Golec-Biernat. Prawa odbicia i załamania. Uniwersytet Rzeszowski, 22 listopada 2017 Optyka Wykład VII Krzysztof Golec-Biernat Prawa odbicia i załamania Uniwersytet Rzeszowski, 22 listopada 2017 Wykład VII Krzysztof Golec-Biernat Optyka 1 / 20 Plan Zachowanie pola elektromagnetycznego

Bardziej szczegółowo

LABORATORIUM POMIARY W AKUSTYCE. ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej

LABORATORIUM POMIARY W AKUSTYCE. ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej LABORATORIUM POMIARY W AKUSTYCE ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej 1. Cel ćwiczenia Celem ćwiczenia jest poznanie metody

Bardziej szczegółowo

Cloaking, czyli czapka niewidka?

Cloaking, czyli czapka niewidka? 7 maja 2009 1 Zamiana zmiennych w równaniach Maxwella Niewidzialne przedmioty Inna zamiana zmiennych? 2 Przedmioty prawie niewidzialne Płaszcze uproszczone w mikrofalach Płaszcze z dopasowaną impedancją

Bardziej szczegółowo

Mody sprzęŝone plazmon-fonon w silnych polach magnetycznych

Mody sprzęŝone plazmon-fonon w silnych polach magnetycznych Mody sprzęŝone plazmon-fonon w silnych polach magnetycznych Klasyczny przykład pośredniego oddziaływania pola magnetycznego na wzbudzenia fononowe Schemat: pole magnetyczne (siła Lorentza) nośniki (oddziaływanie

Bardziej szczegółowo

Równania Maxwella. roth t

Równania Maxwella. roth t , H wektory natężenia pola elektrycznego i magnetycznego D, B wektory indukcji elektrycznej i magnetycznej J gęstość prądu elektrycznego Równania Maxwella D roth t B rot+ t J Dla ośrodka izotropowego D

Bardziej szczegółowo

Optyka. Optyka geometryczna Optyka falowa (fizyczna) Interferencja i dyfrakcja Koherencja światła Optyka nieliniowa

Optyka. Optyka geometryczna Optyka falowa (fizyczna) Interferencja i dyfrakcja Koherencja światła Optyka nieliniowa Optyka Optyka geometryczna Optyka falowa (fizyczna) Interferencja i dyfrakcja Koherencja światła Optyka nieliniowa 1 Optyka falowa Opis i zastosowania fal elektromagnetycznych w zakresie widzialnym i bliskim

Bardziej szczegółowo

Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska

Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska Podstawy fizyki Wykład 11 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska D. Halliday, R. Resnick, J.Walker: Podstawy Fizyki, tom 3, Wydawnictwa Naukowe PWN, Warszawa 2003. K.Sierański, K.Jezierski,

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 8 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15

Bardziej szczegółowo

Reflekcyjno-absorpcyjna spektroskopia w podczerwieni RAIRS (IRRAS) Reflection-Absorption InfraRed Spectroscopy

Reflekcyjno-absorpcyjna spektroskopia w podczerwieni RAIRS (IRRAS) Reflection-Absorption InfraRed Spectroscopy Reflekcyjno-absorpcyjna spektroskopia w podczerwieni RAIRS (IRRAS) Reflection-Absorption InfraRed Spectroscopy Odbicie promienia od powierzchni metalu E n 1 Równania Fresnela E θ 1 θ 1 r E = E odb, 0,

Bardziej szczegółowo

Elektrostatyka, cz. 1

Elektrostatyka, cz. 1 Podstawy elektromagnetyzmu Wykład 3 Elektrostatyka, cz. 1 Prawo Coulomba F=k q 1 q 2 r 2 1 q1 q 2 Notka historyczna: 1767: John Priestley - sugestia 1771: Henry Cavendish - eksperyment 1785: Charles Augustin

Bardziej szczegółowo

Metody Obliczeniowe Mikrooptyki i Fotoniki

Metody Obliczeniowe Mikrooptyki i Fotoniki Metody Obliczeniowe Mikrooptyki i Fotoniki Kod USOS: 1103-4Fot4 Wykład (30h): R. Kotyński Wtorki 9:15-11:00, s.1.38 lub B4.17(ul. Pasteura 5) Ćwiczenia (45h): Wtorki, w godz. 14.15-16.30, s.1.7 lub B4.17

Bardziej szczegółowo

VII. CZĄSTKI I FALE VII.1. POSTULAT DE BROGLIE'A (1924) De Broglie wysunął postulat fal materii tzn. małym cząstkom przypisał fale.

VII. CZĄSTKI I FALE VII.1. POSTULAT DE BROGLIE'A (1924) De Broglie wysunął postulat fal materii tzn. małym cząstkom przypisał fale. VII. CZĄSTKI I FALE VII.1. POSTULAT DE BROGLIE'A (1924) De Broglie wysunął postulat fal materii tzn. małym cząstkom przypisał fale. Światło wykazuje zjawisko dyfrakcyjne. Rys.VII.1.Światło padające na

Bardziej szczegółowo

Oscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem. S 0 amplituda odkształcenia. f [Hz] - częstotliwość.

Oscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem. S 0 amplituda odkształcenia. f [Hz] - częstotliwość. Akusto-optyka Fala akustyczna jest falą mechaniczną Oscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem ( x, t) S cos( Ωt qx) s Częstotliwość kołowa Ω πf Długość fali

Bardziej szczegółowo

Światło jako fala Fala elektromagnetyczna widmo promieniowania Czułość oka ludzkiego w zakresie widzialnym

Światło jako fala Fala elektromagnetyczna widmo promieniowania Czułość oka ludzkiego w zakresie widzialnym Światło jako fala Fala elektromagnetyczna widmo promieniowania ν = c λ Czułość oka ludzkiego w zakresie widzialnym Wytwarzanie fali elektromagnetycznej o częstościach radiowych E(x, t) = Em sin (kx ωt)

Bardziej szczegółowo

Przedmowa do wydania drugiego Konwencje i ważniejsze oznaczenia... 13

Przedmowa do wydania drugiego Konwencje i ważniejsze oznaczenia... 13 Przedmowa do wydania drugiego... 11 Konwencje i ważniejsze oznaczenia... 13 1. Rachunek i analiza wektorowa... 17 1.1. Wielkości skalarne i wektorowe... 17 1.2. Układy współrzędnych... 20 1.2.1. Układ

Bardziej szczegółowo

Oscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem. S 0 amplituda odkształcenia. f [Hz] -częstotliwość.

Oscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem. S 0 amplituda odkształcenia. f [Hz] -częstotliwość. Akusto-optyka Fala akustyczna jest falą mechaniczną Oscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem ( x, t) S cos( Ωt qx) s Częstotliwość kołowa Ω πf Długość fali

Bardziej szczegółowo

Podstawy fizyki sezon 2 8. Fale elektromagnetyczne

Podstawy fizyki sezon 2 8. Fale elektromagnetyczne Podstawy fizyki sezon 8. Fale elektromagnetyczne Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Przenoszenie

Bardziej szczegółowo

Dipolowe lustro optyczne dziś i jutro

Dipolowe lustro optyczne dziś i jutro Dipolowe lustro optyczne dziś i jutro Dobrosława Bartoszek Zakład Optyki Atomowej 17 listopada 2008 Dobrosława Bartoszek 17 listopada 2008 1 / 18 Plan seminarium Dobrosława Bartoszek 17 listopada 2008

Bardziej szczegółowo

Zjawisko interferencji fal

Zjawisko interferencji fal Zjawisko interferencji fal Interferencja to efekt nakładania się fal (wzmacnianie i osłabianie się ruchu falowego widoczne w zmianach amplitudy i natężenia fal) w którym zachodzi stabilne w czasie ich

Bardziej szczegółowo

Rodzaje fal. 1. Fale mechaniczne. 2. Fale elektromagnetyczne. 3. Fale materii. dyfrakcja elektronów

Rodzaje fal. 1. Fale mechaniczne. 2. Fale elektromagnetyczne. 3. Fale materii. dyfrakcja elektronów Wykład VI Fale t t + Dt Rodzaje fal 1. Fale mechaniczne 2. Fale elektromagnetyczne 3. Fale materii dyfrakcja elektronów Fala podłużna v Przemieszczenia elementów spirali ( w prawo i w lewo) są równoległe

Bardziej szczegółowo

Grafen materiał XXI wieku!?

Grafen materiał XXI wieku!? Grafen materiał XXI wieku!? Badania grafenu w aspekcie jego zastosowań w sensoryce i metrologii Tadeusz Pustelny Plan prezentacji: 1. Wybrane właściwości fizyczne grafenu 2. Grafen materiał 21-go wieku?

Bardziej szczegółowo

Zadania na zaliczenie ćwiczeń z Elektrodynamiki

Zadania na zaliczenie ćwiczeń z Elektrodynamiki Zadania na zaliczenie ćwiczeń z Elektrodynamiki semest letni 2009 literatura: J. D. Jackson, Elektrodynamika klasyczna, PWN 1987 D. J. Griffiths, Podstawy Elektrodynamiki, PWN 2001 M. Suffczyński, Elektrodynamika,

Bardziej szczegółowo

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 11, Radosław Chrapkiewicz, Filip Ozimek

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 11, Radosław Chrapkiewicz, Filip Ozimek Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 11, 19.03.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 10 - przypomnienie

Bardziej szczegółowo

Światło ma podwójną naturę:

Światło ma podwójną naturę: Światło ma podwójną naturę: przejawia własności fal i cząstek W. C. Roentgen ( Nobel 1901) Istnieje ciągłe przejście pomiędzy tymi własnościami wzdłuż spektrum fal elektromagnetycznych Dla niskich częstości

Bardziej szczegółowo

Optyczna spektroskopia oscylacyjna. w badaniach powierzchni

Optyczna spektroskopia oscylacyjna. w badaniach powierzchni Optyczna spektroskopia oscylacyjna w badaniach powierzchni Zalety oscylacyjnej spektroskopii optycznej uŝycie fotonów jako cząsteczek wzbudzających i rejestrowanych nie wymaga uŝycia próŝni (moŝliwość

Bardziej szczegółowo

Informatyka kwantowa i jej fizyczne podstawy Rezonans spinowy, bramki dwu-kubitowe

Informatyka kwantowa i jej fizyczne podstawy Rezonans spinowy, bramki dwu-kubitowe Wykład 4 29 kwietnia 2015 Informatyka kwantowa i jej fizyczne podstawy Rezonans spinowy, bramki dwu-kubitowe Łukasz Cywiński lcyw@ifpan.edu.pl http://info.ifpan.edu.pl/~lcyw/ Dobra lektura: Michel Le Bellac

Bardziej szczegółowo

Ośrodki dielektryczne optycznie nieliniowe

Ośrodki dielektryczne optycznie nieliniowe Ośrodki dielektryczne optycznie nieliniowe Równania Maxwella roth rot D t B t = = przy czym tym razem wektor indukcji elektrycznej D ε + = ( ) Wektor polaryzacji jest nieliniową funkcją natężenia pola

Bardziej szczegółowo

Fizyka 12. Janusz Andrzejewski

Fizyka 12. Janusz Andrzejewski Fizyka 1 Janusz Andrzejewski Przypomnienie: Drgania procesy w których pewna wielkość fizyczna na przemian maleje i rośnie Okresowy ruch drgający (periodyczny) - jeżeli wartości wielkości fizycznych zmieniające

Bardziej szczegółowo

Fala elektromagnetyczna o określonej częstotliwości ma inną długość fali w ośrodku niż w próżni. Jako przykłady policzmy:

Fala elektromagnetyczna o określonej częstotliwości ma inną długość fali w ośrodku niż w próżni. Jako przykłady policzmy: Rozważania rozpoczniemy od ośrodków jednorodnych. W takich ośrodkach zależność między indukcją pola elektrycznego a natężeniem pola oraz między indukcją pola magnetycznego a natężeniem pola opisana jest

Bardziej szczegółowo

Fizyka Laserów wykład 5. Czesław Radzewicz

Fizyka Laserów wykład 5. Czesław Radzewicz Fizyka Laserów wykład 5 Czesław Radzewicz rezonatory optyczne, optyczne wnęki rezonansowe rezonatory otwarte: Fabry-Perot E t E 0 R 0.99 T 1 0 E r R R R 0. R 0.9 E t = TE 0 e iδφ R 0.5 R 0.9 E t Gires-Tournois

Bardziej szczegółowo

Optyka kwantowa wprowadzenie. Początki modelu fotonowego Detekcja pojedynczych fotonów Podstawowe zagadnienia optyki kwantowej

Optyka kwantowa wprowadzenie. Początki modelu fotonowego Detekcja pojedynczych fotonów Podstawowe zagadnienia optyki kwantowej Optyka kwantowa wprowadzenie Początki modelu fotonowego Detekcja pojedynczych fotonów Podstawowe zagadnienia optyki kwantowej Krótka (pre-)historia fotonu (1900-1923) Własności światła i jego oddziaływania

Bardziej szczegółowo

FIZYKA 2. Janusz Andrzejewski

FIZYKA 2. Janusz Andrzejewski FIZYKA 2 wykład 8 Janusz Andrzejewski Fale przypomnienie Fala -zaburzenie przemieszczające się w przestrzeni i w czasie. y(t) = Asin(ωt- kx) A amplituda fali kx ωt faza fali k liczba falowa ω częstość

Bardziej szczegółowo

dr inż. Beata Brożek-Pluska SERS La boratorium La serowej

dr inż. Beata Brożek-Pluska SERS La boratorium La serowej dr inż. Beata Brożek-Pluska La boratorium La serowej Spektroskopii Molekularnej PŁ Powierzchniowo wzmocniona sp ektroskopia Ramana (Surface Enhanced Raman Spectroscopy) Cząsteczki zaadsorbowane na chropowatych

Bardziej szczegółowo

Zjawisko interferencji fal

Zjawisko interferencji fal Zjawisko interferencji fal Interferencja to efekt nakładania się fal (wzmacnianie i osłabianie się ruchu falowego widoczne w zmianach amplitudy i natężenia fal) w którym zachodzi stabilne w czasie ich

Bardziej szczegółowo

Rys.1 Rozkład mocy wnikającej do dielektryka przy padaniu fali płaskiej Natężenie pola wewnątrz dielektryka maleje wykładniczo. Określa to wzór: (1)

Rys.1 Rozkład mocy wnikającej do dielektryka przy padaniu fali płaskiej Natężenie pola wewnątrz dielektryka maleje wykładniczo. Określa to wzór: (1) Temat nr 22: Badanie kuchenki mikrofalowej 1.Wiadomości podstawowe Metoda elektrotermiczna mikrofalowa polega na wytworzeniu ciepła we wsadzie głównie na skutek przepływu prądu przesunięcia (polaryzacji)

Bardziej szczegółowo

Spis treœci. Wstêp... 9

Spis treœci. Wstêp... 9 Spis treœci Wstêp... 9 1. Elementy analizy wektorowej i geometrii analitycznej... 11 1.1. Podstawowe pojêcia rachunku wektorowego... 11 1.2. Dodawanie i mno enie wektorów... 14 1.3. Uk³ady wspó³rzêdnych

Bardziej szczegółowo

1.1 Przegląd wybranych równań i modeli fizycznych. , u x1 x 2

1.1 Przegląd wybranych równań i modeli fizycznych. , u x1 x 2 Temat 1 Pojęcia podstawowe 1.1 Przegląd wybranych równań i modeli fizycznych Równaniem różniczkowym cząstkowym rzędu drugiego o n zmiennych niezależnych nazywamy równanie postaci gdzie u = u (x 1, x,...,

Bardziej szczegółowo