FIZYKA 2. Janusz Andrzejewski

Wielkość: px
Rozpocząć pokaz od strony:

Download "FIZYKA 2. Janusz Andrzejewski"

Transkrypt

1 FIZYKA 2 wykład 8 Janusz Andrzejewski

2 Fale przypomnienie Fala -zaburzenie przemieszczające się w przestrzeni i w czasie. y(t) = Asin(ωt- kx) A amplituda fali kx ωt faza fali k liczba falowa ω częstość kołowa Długość fali: Okres: λ = 2π k 2π ω Janusz Andrzejewski 2 T Częstość: = ν = Prędkość: ω v = k 1 T

3 Fala elektromagnetyczna (EM) Falę elektromagnetyczną rozchodzącą się w kierunku osi x, można opisać: E m, B m amplitudy odpowiednio pola elektrycznego oraz pola magnetycznego E = E m sin(ωt- kx) B = B m sin(ωt- kx) Kierunek rozchodzenia się fali możemy zapisać tak: E r B r Janusz Andrzejewski 3

4 Fala EM unosi ze sobą energię Gęstość energii pola elektrycznego (w E ) i magnetycznego (w B ) wynosi odpowiednio: w 2 ε E B 2 2µ 2 0 E = wb = 0 Ponieważ w fali elektromagnetycznej B E E ε E w B = = = = = 2 2µ 2c µ E c = => B = B w ( ) E µ 2 ε 0 µ 0 0 E c Energia zgromadzona w polu magnetycznym jest równa energii zgromadzonej w polu elektrycznym Janusz Andrzejewski 4

5 Fala EM unosi ze sobą energię Całkowita gęstość energii wynosi w = 2w B 2 = B 2 2µ = 0 EB µ c Transport energii przez falę opisujemy za pomocą wektora Poyntinga r S = 1 µ 0 r r E B Wektor Poyntinga opisuje szybkość przepływu energii przez jednostkową powierzchnię. W układzie SI wymiarem wektora jest W/m 2 Średnia energia przenoszona w określonym czasie 2 2 EB 1 2 E 2 E S = = E = sin ωt kx = = µ cµ cµ cµ ( ) I Średnia energia przenoszona w jednostce czasu przez jednostkę powierzchni (I) nosi nazwę natężenia fali. 0 0 Janusz Andrzejewski 5

6 Fala EM unosi ze sobą pęd Pęd niesiony przez falę elektromagnetyczną o energii U to p = U c Uwaga: jest to wynik relatywistyczny!!! Jeżeli ciało o powierzchni A pochłonie falę i uzyska energię ΔUto uzyska pęd Δpi zadziała na nie siła: U p p = ; F = ; U = IA t => F = c t Zatem ciśnienie wywierane przy pochłonięciu fali elektromagnetycznej p f = Zaś przy jej całkowitym odbiciu I c 2I p f = c IA c Janusz Andrzejewski 6

7 Polaryzacja Za kierunek polaryzacji wybrano kierunek wektora E Płaszczyzną polaryzacji określa się płaszczyznę, w której leżą wektor E i wektor kierunku propagacji fali. W fali spolaryzowanej liniowo, pole elektryczne drga w jednej płaszczyźnie. W fali niespolaryzowanej, kierunek drgań pola. elektrycznego zmienia się przypadkowo. źródło: np. antena radiowa źródło: wzbudzone atomy, np. żarówka 7 Janusz Andrzejewski

8 Polaryzatory Niespolaryzowane światło można zamienić na światło spolaryzowane, przepuszczając je przez przez folię polaryzacyjną. (polaroid). Składowa wektora natężenia pola elektrycznego równoległa do kierunku polaryzacji jest przepuszczana przez folię polaryzacyjną, składowa prostopadła do tego kierunku jest absorbowana. Janusz Andrzejewski 8

9 Prawo Malusa E t = E i cosθ I = I t i 2 cos 1808, Etienne Malus, inżynier w armii Napoleona θ Janusz Andrzejewski 9

10 Czułość oka ludzkiego Maksimum czułości oka ludzkiego przypada dla barwy zielono-żółtej dla λ= 550 nm. Janusz Andrzejewski 10

11 Optyka geometryczna Długość fali świetlnej jest na tyle mała w porównaniu z rozmiarami większości przyrządów optycznych, że efekty interferencyjne nie ujawniają się. Fale świetlne rozprzestrzeniają się wzdłuż linii prostych prostopadłych do czoła fali. Dowolna taka prosta wzdłuż kierunku propagacji fal świetlnych nazywana jest promieniem świetlnym. Promienie świetlne są od siebie niezależne Zwrot biegu promieni świetlnych jest odwracalny Stosując prawo odbicia i załamania i zwykłe zasady geometrii euklidesowej można zbudować opis matematyczny lub obraz geometryczny propagacji promieni świetlnych. Taki opis matematyczny promieni świetlnych stanowi oddzielny dział fizyki i nosi nazwę optyki geometrycznej. Janusz Andrzejewski 11

12 Optyka geometryczna W ramach optyki geometrycznej, traktujemy światło tak, jak gdyby rozchodziło się po linii prostej. Gdy wiązka światła dociera do granicy ośrodków, następują zjawiska odbicia i załamania. Janusz Andrzejewski 12

13 Odbicie Prawo odbicia: promień odbity leży w płaszczyźnie padania, a kąt odbicia równy jest kątowi padania. θ = ' 1 θ1 Janusz Andrzejewski 13

14 Załamanie Prawo załamania: promień załamany leży w płaszczyźnie padania, a kąt załamania jest związany z kątem padania zależnością: n = 1 sinθ 1 n 2 sin gdzie: n 1, n 2 współczynniki załamania światła. θ 2 Prawo załamania nazywa się też Prawem Snelliusa lub Snella Janusz Andrzejewski 14

15 Współczynnik załamania Współczynnik załamania światła ndla każdego ośrodka jest równy c/vgdzie vjest prędkością światła w ośrodku, a cjest prędkością światła w próżni. c n = v Współczynnik załamania światła (tzw. bezwzględny wsp. Załamania) Janusz Andrzejewski 15

16 Rozszczepienie światła Współczynnik załamania światła nw każdym ośrodku, z wyjątkiem próżni, zależy od długości fali światła. Na wiązkę światła białego składają się prawie wszystkie barwy z zakresu widzialnego widma, z jednakowym w przybliżeniu natężeniem. Przy przejściu wiązki światła białego z powietrza do szkła, kąt załamania składowej niebieskiej jest mniejszy niż kąt załamania składowej czerwonej. Janusz Andrzejewski 16

17 Rozszczepienie światła Rozdzielenie barw można zwiększyć, używając pryzmatu szklanego. Rozszczepienie zachodzi na pierwszej powierzchni załamującej i jest zwiększane na drugiej powierzchni załamującej. Tęcza jest wynikiem rozszczepiania światła na kroplach wody. Janusz Andrzejewski 17

18 Całkowite wewnętrzne odbicie Gdy promień świetlny biegnący w ośrodku optycznie gęstym, pada na ośrodek o mniejszej gęstości optycznej, istnieje pewien kąt graniczny Θ c. Dla kątów padania większych od tego kąta granicznego, nie ma promienia załamanego, natomiast zachodzi zjawisko całkowitego wewnętrznego odbicia. n 2 θ1 θc, θ2 90 n = 1 sinθ1 n2 sin θ 2 o n n 1 = n n 1 12 > 2 1 Względny wsp. załamania n1 o sinθc = sin 90 = 1 n2 2 sin θ = n c n 1 Janusz Andrzejewski 18

19 Polaryzacja przy odbiciu Gdy światło niespolaryzowane pada na powierzchnię ośrodka o innej gęstości optycznej, światło odbite jest częściowo spolaryzowane. Gdy światło pada pod pewnym kątem, nazywanym kątem Brewstera, światło odbite zostaje całkowicie spolaryzowane. Gdzie jest żółw? Odblask od powierzchni wody Odblask zatrzymany przez pionowy polaryzator Janusz Andrzejewski 19

20 Kąt Brewstera α + 90 n1 sinα B = n2 sin β + β = 180 => β = B α B ( 90 α B ) cosα B sin β = sin = Promień odbijający sinα B n2 n 1 sin α B = n 2 cos α B => = tg α B = się pod cos α B n1 kątem Brewstera. Gdy na granicę ośrodków przezroczystych pada światło Symbole niespolaryzowane pod takim kątem, że promień odbity i załamany tworzą kąt prosty, to światło oznaczają odbite jest całkowicie spolaryzowane. Kierunek pola elektrycznego światła kierunek odbitego jest prostopadły do płaszczyzny padania (płaszczyzny rysunku). Polaryzacja drgań ta w pola optyce zwana jest prostopadłą i oznaczana S(lub inaczej TE-transverseelectric). Promień elektryczne załamany jest spolaryzowany częściowo. go - prostopadłe, równole głe) Warunek Brewstera można zapisać α +β=90. Janusz Andrzejewski 20

21 Widzenie kolorów Kolorowe obiekty pochłaniają światło widzialne, co powoduje, że postrzegamy ich kolor. Obiekt czarny absorbuje równo wszystkie kolory światła widzialnego. Obiekt biały odbija równo wszystkie kolory światła widzialnego. Gdy obiekt absorbuje wszystkie kolory oprócz jednego, widzimy kolor który nie jest absorbowany. Żółty pasek odbija światło żółte i dlatego widzimy, że jest żółty. Gdy obiekt absorbuje jeden kolor, widzimy kolor komplementarny. Żółty pasek absorbuje kolor fioletowy i dlatego widzimy kolor żółty, który jest kolorem komplementarnym. Roztwór, który absorbuje kolor czerwony i pomarańczowy, ma kolor komplementarny niebieski i zielono niebieski. Janusz Andrzejewski 21

22 Soczewki Soczewka jest przezroczystym obiektem o dwóch powierzchniach załamujących, których osie pokrywają się. Soczewkę która sprawia, że początkowo równoległe do jej osi promienie świetlne są po przejściu promieniami zbieżnymi, nazywa się soczewką skupiającą. Gdy promienie są rozbieżne, nazywa się ją soczewką rozpraszającą. Janusz Andrzejewski 22

23 Soczewki -położenie obrazów Odległość przedmiotu O od soczewki skupiającej jest większa niż ogniskowa soczewki. Odległość przedmiotu O od soczewki skupiającej jest mniejsza niż ogniskowa soczewki. Dla dowolnego położenia przedmiotu O względem soczewki rozpraszającej. Janusz Andrzejewski 23

24 Soczewki wzór soczewkowy Cienka soczewka w powietrzu: 1 f 1 = ( n 1) R R Zdolność zbierająca soczewki(mierzona w dioptriach jako odwrotność metra): Ψ = 1 f 2 Odległość przedmiotu p, obrazu q i ogniskowa f są ze sobą związane zależnością: = p q f UWAGA NA KONWENCJĘ ZNAKÓW!!! Janusz Andrzejewski 24

25 Soczewki -aberracje Podane wzory dla zwierciadeł i soczewek są prawdziwe tylko dla promieni przyosiowych(biegnący blisko osi optycznej). W rzeczywistości założenie to nie jest spełnione. Powoduje to powstawanie zniekształceń. Zasada powstawania Przykład Zasada powstawania Przykład Aberracja chromatyczna Aberracja sferyczna Janusz Andrzejewski 25

26 Optyka: geometryczna i falowa Optyka falowa opis falowy przy pomocy: r r r r E, B, S, k, ω, ε Optyka geometryczna opis geometryczny przy pomocy: promień wiązka (sferyczna, (ro)zbieżna, równoległa) front falowy obiekt, obraz - rzeczywisty - pozorny Janusz Andrzejewski 26

27 Stosowalność optyki geometrycznej Dla danej długości fali λugięcięfali (dyfrakcja) jest tym wyraźniejsza Im mniejsza jest szerokość aszczeliny Janusz Andrzejewski 27

28 Zasada Huygensa Zasada Huygensa mówi, że wszystkie punkty czoła fali można uważać za źródła nowych fal kulistych. Położenie czoła fali po czasie t będzie dane przez powierzchnię styczną do tych fal kulistych Jest pierwszą falową teorią światła zaproponowaną przez Christian Huygens w 1678 r. Janusz Andrzejewski 28

29 Interferencja Interferencja = nakładanie się fal (superpozycja fal) Doświadczenie interferencyjne Thomasa Younga Janusz Andrzejewski 29

30 Doświadczenie interferencyjne Younga Jasność w każdym punkcie ekranu w doświadczeniu Younga jest określona przez różnicę dróg jakie przebywają promienie dochodzące do tego punktu. Różnica dróg: L= dsinθ Dla jasnego prążka: λ długość fali Dla ciemnego prążka: dsinθ = mλ, m = 0, 1, 2... dsinθ = (m + 1/2)λ, m = 0, 1, 2... Janusz Andrzejewski 30

31 Światło spójne i niespójne Warunkiem powstawania obrazu interferencyjnego na ekranie jest stała w czasie różnica faz promieni docierających do ekranu. Występuje to w jedynie w przypadku źródeł spójnych. Fale wychodzące ze szczelin S1 i S2 są częściami jednej fali świetlnej, więc różnica faz pozostaje stała w czasie, a fale są spójne. W świetle emitowanym np. przez dwie żarówki, różnica faz zmienia się szybko w całkowicie przypadkowy sposób, w związku z czym, fale są niespójne. Obraz interferencyjny zmienia się tak samo szybko wczasie, co daje efekt równomiernego oświetlenia ekranu. Janusz Andrzejewski 31

32 Interferencja w cienkich warstwach Gdy fala świetlna pada na cienką warstwę, fale świetlne odbite od przedniej i od tylnej powierzchni warstwy mogą wytworzyć interferencyjny. bańka mydlana rozlany olej W skrzydłach motyla światło niebieskie ulega konstruktywnej interferencji, co powoduje ich niebieski kolor. Janusz Andrzejewski 32

33 Dyfrakcja Jeżeli fala napotyka na swojej drogę przeszkodę, w której znajduje się otwór o rozmiarach zbliżonych do długości fali, to ta część fali, która przechodzi przez otwór będzie się rozprzestrzeniać w całym obszarze poza przeszkodą (zgodnie z zasadą Huygensa). Janusz Andrzejewski 33

34 Przykłady dyfrakcji Dyfrakcja na kołowej przesłonie. W środku widoczna plamka Fresnela. Dyfrakcja światła na kropli (ilustracja) Dyfrakcja na siatce dyfrakcyjnej Dyfrakcja fal morskich Dyfrakcja na otworach i krawędzi Janusz Andrzejewski żyletki 34

35 Dyfrakcja Fresnelai Franhoufera a) Dyfrakcja Fresnela -źródło fal i ekran, na którym powstaje obraz znajdują się w skończonej odległości od przesłony ze szczeliną b) Dyfrakcja Fraunhofera - źródło fal i ekran, na którym powstaje obraz znajdują się bardzo daleko od przesłony ze szczeliną Janusz Andrzejewski 35

36 Dyfrakcja Franhoufera Położenia minimów: a sinθ = mλ asinθ = 2m 1 Położenia maksimów: ( ) 2 λ Janusz Andrzejewski 36

37 Natężenie światła w obrazie dyfrakcyjnym pojedynczej szczeliny W miarę wzrostu szerokości szczeliny (w porównaniu z długością fali światła), szerokość centralnego maksimum się zmniejsza. Szerokość maksimów bocznych również ulega zwężeniu i osłabieniu. Gdy a >> λ, maksima boczne znikają i światło nie jest uginane przez szczelinę (ale nadal występuje dyfrakcja na krawędziach szczeliny). Janusz Andrzejewski 37

38 Dyfrakcja na otworze kołowym Pierwsze minimum w obrazie dyfrakcyjnym okrągłego otworu o średnicy d ma położenie kątowe: λ sin θ =1. 22 d Pojedyncza szczelina: sinθ = λ d Pamiętajmy, że dla małych kątów: sinθ θ Janusz Andrzejewski 38

39 Rozdzielczość kryterium Rayleigha Efekty interferencyjne są ważne gdy chcemy rozróżnić dwa odległe punktowe przedmioty, których odległość kątowa jest mała. Kryterium Rayleigha: dwa obrazy są rozróżnialne gdy centralne maksimum jednego obrazu dyfrakcyjnego pokrywa się z pierwszym minimum drugiego obszaru. λ θ R sin θ R = d Janusz Andrzejewski 39

40 Rozdzielczość Poprawę rozdzielczości można uzyskać poprzez zwiększenie średnicy soczewki lub zmniejszenie długości fali. Wiązka elektronów może się również zachowywać jak fala, o długości fali 10-5 długości fali światła widzialnego. Mikroskopy elektronowe pozwalają uzyskać znacznie lepszą rozdzielczość. Czerwone ciałka krwi Wirus Janusz Andrzejewski 40

Podstawy fizyki wykład 8

Podstawy fizyki wykład 8 Podstawy fizyki wykład 8 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Optyka geometryczna Polaryzacja Odbicie zwierciadła Załamanie soczewki Optyka falowa Interferencja Dyfrakcja światła D.

Bardziej szczegółowo

Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska

Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska Podstawy fizyki Wykład 11 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska D. Halliday, R. Resnick, J.Walker: Podstawy Fizyki, tom 3, Wydawnictwa Naukowe PWN, Warszawa 2003. K.Sierański, K.Jezierski,

Bardziej szczegółowo

Wykład 17: Optyka falowa cz.1.

Wykład 17: Optyka falowa cz.1. Wykład 17: Optyka falowa cz.1. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Zasada Huyghensa Christian Huygens 1678 r. pierwsza

Bardziej szczegółowo

Prawa optyki geometrycznej

Prawa optyki geometrycznej Optyka Podstawowe pojęcia Światłem nazywamy fale elektromagnetyczne, o długościach, na które reaguje oko ludzkie, tzn. 380-780 nm. O falowych własnościach światła świadczą takie zjawiska, jak ugięcie (dyfrakcja)

Bardziej szczegółowo

Wykład 16: Optyka falowa

Wykład 16: Optyka falowa Wykład 16: Optyka falowa Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Zasada Huyghensa Christian Huygens 1678 r. pierwsza

Bardziej szczegółowo

Wykład 16: Optyka falowa

Wykład 16: Optyka falowa Wykład 16: Optyka falowa Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Zasada Huyghensa Christian Huygens 1678 r. pierwsza falowa

Bardziej szczegółowo

Wykład 17: Optyka falowa cz.2.

Wykład 17: Optyka falowa cz.2. Wykład 17: Optyka falowa cz.2. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Interferencja w cienkich warstwach Załamanie

Bardziej szczegółowo

OPTYKA FALOWA. W zjawiskach takich jak interferencja, dyfrakcja i polaryzacja światło wykazuje naturę

OPTYKA FALOWA. W zjawiskach takich jak interferencja, dyfrakcja i polaryzacja światło wykazuje naturę OPTYKA FALOWA W zjawiskach takich jak interferencja, dyfrakcja i polaryzacja światło wykazuje naturę falową. W roku 8 Thomas Young wykonał doświadczenie, które pozwoliło wyznaczyć długość fali światła.

Bardziej szczegółowo

Falowa natura światła

Falowa natura światła Falowa natura światła Christiaan Huygens Thomas Young James Clerk Maxwell Światło jest falą elektromagnetyczną Barwa światło zależy od jej długości (częstości). Optyka geometryczna Optyka geometryczna

Bardziej szczegółowo

Interferencja. Dyfrakcja.

Interferencja. Dyfrakcja. Interferencja. Dyfrakcja. Wykład 8 Wrocław University of Technology 05-05-0 Światło jako fala Zasada Huygensa: Wszystkie punkty czoła fali zachowują się jak punktowe źródła elementarnych kulistych fal

Bardziej szczegółowo

Fizyka elektryczność i magnetyzm

Fizyka elektryczność i magnetyzm Fizyka elektryczność i magnetyzm W5 5. Wybrane zagadnienia z optyki 5.1. Światło jako część widma fal elektromagnetycznych. Fale elektromagnetyczne, które współczesny człowiek potrafi wytwarzać, i wykorzystywać

Bardziej szczegółowo

przenikalność atmosfery ziemskiej typ promieniowania długość fali [m] ciało o skali zbliżonej do długości fal częstotliwość [Hz]

przenikalność atmosfery ziemskiej typ promieniowania długość fali [m] ciało o skali zbliżonej do długości fal częstotliwość [Hz] ELEMENTY OPTYKI Fale elektromagnetyczne Promieniowanie świetlne Odbicie światła Załamanie światła Dyspersja światła Tęcza pierwotna i wtórna Dyfrakcja i interferencja światła Politechnika Opolska Opole

Bardziej szczegółowo

Wykład FIZYKA II. 7. Optyka geometryczna. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA II. 7. Optyka geometryczna.   Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA II 7. Optyka geometryczna Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ WSPÓŁCZYNNIK ZAŁAMANIA Współczynnik załamania ośrodka opisuje zmianę prędkości fali

Bardziej szczegółowo

Ćwiczenie: "Zagadnienia optyki"

Ćwiczenie: Zagadnienia optyki Ćwiczenie: "Zagadnienia optyki" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: 1.

Bardziej szczegółowo

Optyka geometryczna MICHAŁ MARZANTOWICZ

Optyka geometryczna MICHAŁ MARZANTOWICZ Optyka geometryczna Optyka geometryczna światło jako promień, opis uproszczony Optyka falowa światło jako fala, opis pełny Fizyka współczesna: światło jako cząstka (foton), opis pełny Optyka geometryczna

Bardziej szczegółowo

Wykład XI. Optyka geometryczna

Wykład XI. Optyka geometryczna Wykład XI Optyka geometryczna Jak widzimy? Aby przedmiot był widoczny, musi wysyłać światło w wielu kierunkach. Na podstawie światła zebranego przez oko mózg lokalizuje położenie obiektu. Niekiedy promienie

Bardziej szczegółowo

Optyka falowa. dr inż. Ireneusz Owczarek CMF PŁ 2012/13

Optyka falowa. dr inż. Ireneusz Owczarek CMF PŁ  2012/13 Optyka falowa dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2012/13 Plan wykładu Spis treści 1. Fale elektromagnetyczne 2 1.1. Model falowy światła...........................................

Bardziej szczegółowo

18 K A T E D R A F I ZYKI STOSOWAN E J

18 K A T E D R A F I ZYKI STOSOWAN E J 18 K A T E D R A F I ZYKI STOSOWAN E J P R A C O W N I A F I Z Y K I Ćw. 18. Wyznaczanie długości fal świetlnych diody laserowej przy pomocy siatki dyfrakcyjnej Wprowadzenie Światło jest promieniowaniem

Bardziej szczegółowo

Problemy optyki falowej. Teoretyczne podstawy zjawisk dyfrakcji, interferencji i polaryzacji światła.

Problemy optyki falowej. Teoretyczne podstawy zjawisk dyfrakcji, interferencji i polaryzacji światła. . Teoretyczne podstawy zjawisk dyfrakcji, interferencji i polaryzacji światła. Rozwiązywanie zadań wykorzystujących poznane prawa I LO im. Stefana Żeromskiego w Lęborku 27 luty 2012 Dyfrakcja światła laserowego

Bardziej szczegółowo

pobrano z serwisu Fizyka Dla Każdego - http://fizyka.dk - zadania z fizyki, wzory fizyczne, fizyka matura

pobrano z serwisu Fizyka Dla Każdego - http://fizyka.dk - zadania z fizyki, wzory fizyczne, fizyka matura 12. Fale elektromagnetyczne zadania z arkusza I 12.5 12.1 12.6 12.2 12.7 12.8 12.9 12.3 12.10 12.4 12.11 12. Fale elektromagnetyczne - 1 - 12.12 12.20 12.13 12.14 12.21 12.22 12.15 12.23 12.16 12.24 12.17

Bardziej szczegółowo

POMIARY OPTYCZNE 1. Wykład 1. Dr hab. inż. Władysław Artur Woźniak

POMIARY OPTYCZNE 1. Wykład 1.  Dr hab. inż. Władysław Artur Woźniak POMIARY OPTYCZNE Wykład Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej Pokój 8/ bud. A- http://www.if.pwr.wroc.pl/~wozniak/ OPTYKA GEOMETRYCZNA Codzienne obserwacje: światło

Bardziej szczegółowo

Dyfrakcja. Dyfrakcja to uginanie światła (albo innych fal) przez drobne obiekty (rozmiar porównywalny z długością fali) do obszaru cienia

Dyfrakcja. Dyfrakcja to uginanie światła (albo innych fal) przez drobne obiekty (rozmiar porównywalny z długością fali) do obszaru cienia Dyfrakcja 1 Dyfrakcja Dyfrakcja to uginanie światła (albo innych fal) przez drobne obiekty (rozmiar porównywalny z długością fali) do obszaru cienia uginanie na szczelinie uginanie na krawędziach przedmiotów

Bardziej szczegółowo

OPTYKA GEOMETRYCZNA I INSTRUMENTALNA

OPTYKA GEOMETRYCZNA I INSTRUMENTALNA 1100-1BO15, rok akademicki 2018/19 OPTYKA GEOMETRYCZNA I INSTRUMENTALNA dr hab. Rafał Kasztelanic Wykład 7 Dystorsja Zależy od wielkości pola widzenia. Dystorsja nie wpływa na ostrość obrazu lecz dokonuje

Bardziej szczegółowo

Dyfrakcja. interferencja światła. dr inż. Romuald Kędzierski

Dyfrakcja. interferencja światła. dr inż. Romuald Kędzierski Dyfrakcja i interferencja światła. dr inż. Romuald Kędzierski Zasada Huygensa - przypomnienie Każdy punkt ośrodka, do którego dotarło czoło fali można uważać za źródło nowej fali kulistej. Fale te zwane

Bardziej szczegółowo

+OPTYKA 3.stacjapogody.waw.pl K.M.

+OPTYKA 3.stacjapogody.waw.pl K.M. Zwierciadło płaskie, prawo odbicia. +OPTYKA.stacjapogody.waw.pl K.M. Promień padający, odbity i normalna leżą w jednej płaszczyźnie, prostopadłej do płaszczyzny zwierciadła Obszar widzialności punktu w

Bardziej szczegółowo

Natura światła. W XVII wieku ścierały się dwa, poglądy na temat natury światła. Isaac Newton

Natura światła. W XVII wieku ścierały się dwa, poglądy na temat natury światła. Isaac Newton Natura światła W XVII wieku ścierały się dwa, poglądy na temat natury światła. Isaac Newton W swojej pracy naukowej najpierw zajmował się optyką. Pierwsze sukcesy odniósł właśnie w optyce, konstruując

Bardziej szczegółowo

Podstawy fizyki sezon 2 8. Fale elektromagnetyczne

Podstawy fizyki sezon 2 8. Fale elektromagnetyczne Podstawy fizyki sezon 8. Fale elektromagnetyczne Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Przenoszenie

Bardziej szczegółowo

Fala elektromagnetyczna o określonej częstotliwości ma inną długość fali w ośrodku niż w próżni. Jako przykłady policzmy:

Fala elektromagnetyczna o określonej częstotliwości ma inną długość fali w ośrodku niż w próżni. Jako przykłady policzmy: Rozważania rozpoczniemy od ośrodków jednorodnych. W takich ośrodkach zależność między indukcją pola elektrycznego a natężeniem pola oraz między indukcją pola magnetycznego a natężeniem pola opisana jest

Bardziej szczegółowo

OPTYKA FALOWA I (FTP2009L) Ćwiczenie 2. Dyfrakcja światła na szczelinach.

OPTYKA FALOWA I (FTP2009L) Ćwiczenie 2. Dyfrakcja światła na szczelinach. OPTYKA FALOWA I (FTP2009L) Ćwiczenie 2. Dyfrakcja światła na szczelinach. Zagadnienia, które należy znać przed wykonaniem ćwiczenia: Dyfrakcja światła to zjawisko fizyczne zmiany kierunku rozchodzenia

Bardziej szczegółowo

Załamanie na granicy ośrodków

Załamanie na granicy ośrodków Załamanie na granicy ośrodków Gdy światło napotyka na granice dwóch ośrodków przezroczystych ulega załamaniu tak jak jest to przedstawione na rysunku obok. Dla każdego ośrodka przezroczystego istnieje

Bardziej szczegółowo

ZADANIE 111 DOŚWIADCZENIE YOUNGA Z UŻYCIEM MIKROFAL

ZADANIE 111 DOŚWIADCZENIE YOUNGA Z UŻYCIEM MIKROFAL ZADANIE 111 DOŚWIADCZENIE YOUNGA Z UŻYCIEM MIKROFAL X L Rys. 1 Schemat układu doświadczalnego. Fala elektromagnetyczna (światło, mikrofale) po przejściu przez dwie blisko położone (odległe o d) szczeliny

Bardziej szczegółowo

1. Wektory E i B są zawsze prostopadłe do kierunku rozchodzenia się fali. 2. Wektor natężenia pola elektrycznego jest zawsze prostopadły do wektora indukcja pola magnetycznego. 3. Iloczyn wektorowy E x

Bardziej szczegółowo

WŁASNOŚCI FAL ELEKTROMAGNETYCZNYCH: INTERFERENCJA, DYFRAKCJA, POLARYZACJA

WŁASNOŚCI FAL ELEKTROMAGNETYCZNYCH: INTERFERENCJA, DYFRAKCJA, POLARYZACJA WŁASNOŚCI FAL ELEKTROMAGNETYCZNYCH: INTERFERENCJA, DYFRAKCJA, POLARYZACJA 1. Interferencja fal z dwóch źródeł 2. Fale koherentne i niekoherentne 3. Interferencja fal z wielu źródeł 4. Zasada Huygensa 5.

Bardziej szczegółowo

Opis matematyczny odbicia światła od zwierciadła kulistego i przejścia światła przez soczewki.

Opis matematyczny odbicia światła od zwierciadła kulistego i przejścia światła przez soczewki. Opis matematyczny odbicia światła od zwierciadła kulistego i przejścia światła przez soczewki. 1. Równanie soczewki i zwierciadła kulistego. Z podobieństwa trójkątów ABF i LFD (patrz rysunek powyżej) wynika,

Bardziej szczegółowo

Zjawisko interferencji fal

Zjawisko interferencji fal Zjawisko interferencji fal Interferencja to efekt nakładania się fal (wzmacnianie i osłabianie się ruchu falowego widoczne w zmianach amplitudy i natęŝenia fal) w którym zachodzi stabilne w czasie ich

Bardziej szczegółowo

XXXI. FALE ELEKTROMAGNETYCZNE

XXXI. FALE ELEKTROMAGNETYCZNE XXXI. FALE ELEKTROMAGNETYCZNE 31.1. Fale elektromagnetyczne Dotychczas poznane fale wymagają istnienia ośrodka materialnego, przez który lub wzdłuż którego mogą rozchodzić się. Fale elektromagnetyczne

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z FIZYKI

WYMAGANIA EDUKACYJNE Z FIZYKI WYMAGANIA EDUKACYJNE Z FIZYKI KLASA III Drgania i fale mechaniczne Wymagania na stopień dopuszczający obejmują treści niezbędne dla dalszego kształcenia oraz użyteczne w pozaszkolnej działalności ucznia.

Bardziej szczegółowo

Ćwiczenie 12 (44) Wyznaczanie długości fali świetlnej przy pomocy siatki dyfrakcyjnej

Ćwiczenie 12 (44) Wyznaczanie długości fali świetlnej przy pomocy siatki dyfrakcyjnej Ćwiczenie 12 (44) Wyznaczanie długości fali świetlnej przy pomocy siatki dyfrakcyjnej Wprowadzenie Światło widzialne jest to promieniowanie elektromagnetyczne (zaburzenie poła elektromagnetycznego rozchodzące

Bardziej szczegółowo

Światło jako fala Fala elektromagnetyczna widmo promieniowania Czułość oka ludzkiego w zakresie widzialnym

Światło jako fala Fala elektromagnetyczna widmo promieniowania Czułość oka ludzkiego w zakresie widzialnym Światło jako fala Fala elektromagnetyczna widmo promieniowania ν = c λ Czułość oka ludzkiego w zakresie widzialnym Wytwarzanie fali elektromagnetycznej o częstościach radiowych E(x, t) = Em sin (kx ωt)

Bardziej szczegółowo

Zjawisko interferencji fal

Zjawisko interferencji fal Zjawisko interferencji fal Interferencja to efekt nakładania się fal (wzmacnianie i osłabianie się ruchu falowego widoczne w zmianach amplitudy i natężenia fal) w którym zachodzi stabilne w czasie ich

Bardziej szczegółowo

Interferencja jest to zjawisko nakładania się fal prowadzące do zwiększania lub zmniejszania amplitudy fali wypadkowej. Interferencja zachodzi dla

Interferencja jest to zjawisko nakładania się fal prowadzące do zwiększania lub zmniejszania amplitudy fali wypadkowej. Interferencja zachodzi dla Interferencja jest to zjawisko nakładania się fal prowadzące do zwiększania lub zmniejszania amplitudy fali wypadkowej. Interferencja zachodzi dla wszystkich rodzajów fal, we wszystkich ośrodkach, w których

Bardziej szczegółowo

Zwierciadło kuliste stanowi część gładkiej, wypolerowanej powierzchni kuli. Wyróżniamy zwierciadła kuliste:

Zwierciadło kuliste stanowi część gładkiej, wypolerowanej powierzchni kuli. Wyróżniamy zwierciadła kuliste: Fale świetlne Światło jest falą elektromagnetyczną, czyli rozchodzącymi się w przestrzeni zmiennymi i wzajemnie przenikającymi się polami: elektrycznym i magnetycznym. Szybkość światła w próżni jest największa

Bardziej szczegółowo

Pomiar długości fali świetlnej i stałej siatki dyfrakcyjnej.

Pomiar długości fali świetlnej i stałej siatki dyfrakcyjnej. POLITECHNIKA ŚLĄSKA WYDZIAŁ CHEMICZNY KATEDRA FIZYKOCHEMII I TECHNOLOGII POLIMERÓW LABORATORIUM Z FIZYKI Pomiar długości fali świetlnej i stałej siatki dyfrakcyjnej. Wprowadzenie Przy opisie zjawisk takich

Bardziej szczegółowo

ŚWIATŁO. Czym jest światło? 8.1. Elementy optyki geometrycznej odbicie, załamanie światła

ŚWIATŁO. Czym jest światło? 8.1. Elementy optyki geometrycznej odbicie, załamanie światła ŚWIATŁO Wykład 8 Pamiętaj, że najmniejszy krok w stronę celu jest więcej wart niż maraton dobrych chęci. Czym jest światło? 8.1. Elementy optyki geometrycznej odbicie, załamanie światła 8.2. Elementy optyki

Bardziej szczegółowo

Optyka stanowi dział fizyki, który zajmuje się światłem (także promieniowaniem niewidzialnym dla ludzkiego oka).

Optyka stanowi dział fizyki, który zajmuje się światłem (także promieniowaniem niewidzialnym dla ludzkiego oka). Optyka geometryczna Optyka stanowi dział fizyki, który zajmuje się światłem (także promieniowaniem niewidzialnym dla ludzkiego oka). Założeniem optyki geometrycznej jest, że światło rozchodzi się jako

Bardziej szczegółowo

28 Optyka geometryczna i falowa

28 Optyka geometryczna i falowa MODUŁ IX Moduł IX- Optyka geometryczna i falowa 8 Optyka geometryczna i falowa 8. Wstęp Promieniowanie świetlne, o którym będziemy mówić w poniższych rozdziałach jest pewnym, niewielkim wycinkiem widma

Bardziej szczegółowo

Optyka 2012/13 powtórzenie

Optyka 2012/13 powtórzenie strona 1 Imię i nazwisko ucznia Data...... Klasa... Zadanie 1. Słońce w ciągu dnia przemieszcza się na niebie ze wschodu na zachód. W którym kierunku obraca się Ziemia? Zadanie 2. Na rysunku przedstawiono

Bardziej szczegółowo

Wykład XIV. wiatła. Younga. Younga. Doświadczenie. Younga

Wykład XIV. wiatła. Younga. Younga. Doświadczenie. Younga Wykład XIV Poglądy na naturęświat wiatła Dyfrakcja i interferencja światła rozwój poglądów na naturę światła doświadczenie spójność światła interferencja w cienkich warstwach interferometr Michelsona dyfrakcja

Bardziej szczegółowo

Na ostatnim wykładzie

Na ostatnim wykładzie Na ostatnim wykładzie Falę elektromagnetyczną możemy przedstawić podając jej kierunek rozchodzenia się (promień) albo czoła fali (umowne powierzchnie, na których wartość natężenia pola elektrycznego jest

Bardziej szczegółowo

Rys. 1 Interferencja dwóch fal sferycznych w punkcie P.

Rys. 1 Interferencja dwóch fal sferycznych w punkcie P. Ćwiczenie 4 Doświadczenie interferencyjne Younga Wprowadzenie teoretyczne Charakterystyczną cechą fal jest ich zdolność do interferencji. Światło jako fala elektromagnetyczna również może interferować.

Bardziej szczegółowo

WYZNACZANIE DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ

WYZNACZANIE DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ ĆWICZENIE 84 WYZNACZANIE DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ Cel ćwiczenia: Wyznaczenie długości fali emisji lasera lub innego źródła światła monochromatycznego, wyznaczenie stałej siatki

Bardziej szczegółowo

17. Który z rysunków błędnie przedstawia bieg jednobarwnego promienia światła przez pryzmat? A. rysunek A, B. rysunek B, C. rysunek C, D. rysunek D.

17. Który z rysunków błędnie przedstawia bieg jednobarwnego promienia światła przez pryzmat? A. rysunek A, B. rysunek B, C. rysunek C, D. rysunek D. OPTYKA - ĆWICZENIA 1. Promień światła padł na zwierciadło tak, że odbił się od niego tworząc z powierzchnią zwierciadła kąt 30 o. Jaki był kąt padania promienia na zwierciadło? A. 15 o B. 30 o C. 60 o

Bardziej szczegółowo

Przedmiot: Fizyka. Światło jako fala. 2016/17, sem. letni 1

Przedmiot: Fizyka. Światło jako fala. 2016/17, sem. letni 1 Światło jako fala 1 Fala elektromagnetyczna widmo promieniowania Czułość oka ludzkiego w zakresie widzialnym 2 Wytwarzanie fali elektromagnetycznej o częstościach radiowych H. Hertz (1888) doświadczalne

Bardziej szczegółowo

Optyka. Wykład IX Krzysztof Golec-Biernat. Optyka geometryczna. Uniwersytet Rzeszowski, 13 grudnia 2017

Optyka. Wykład IX Krzysztof Golec-Biernat. Optyka geometryczna. Uniwersytet Rzeszowski, 13 grudnia 2017 Optyka Wykład IX Krzysztof Golec-Biernat Optyka geometryczna Uniwersytet Rzeszowski, 13 grudnia 2017 Wykład IX Krzysztof Golec-Biernat Optyka 1 / 16 Plan Dyspersja chromatyczna Przybliżenie optyki geometrycznej

Bardziej szczegółowo

ŚWIATŁO I JEGO ROLA W PRZYRODZIE

ŚWIATŁO I JEGO ROLA W PRZYRODZIE ŚWIATŁO I JEGO ROLA W PRZYRODZIE I. Optyka geotermalna W tym rozdziale poznasz właściwości światła widzialnego, prawa rządzące jego rozchodzeniem się w przestrzeni oraz sposoby wykorzystania tych praw

Bardziej szczegółowo

ELEMENTY OPTYKI Fale elektromagnetyczne Promieniowanie świetlne Odbicie światła Załamanie światła Dyspersja światła Polaryzacja światła Dwójłomność

ELEMENTY OPTYKI Fale elektromagnetyczne Promieniowanie świetlne Odbicie światła Załamanie światła Dyspersja światła Polaryzacja światła Dwójłomność ELEMENTY OPTYKI Fale elektromagnetyczne Promieniowanie świetlne Odbicie światła Załamanie światła Dyspersja światła Polaryzacja światła Dwójłomność Holografia FALE ELEKTROMAGNETYCZNE Fale elektromagnetyczne

Bardziej szczegółowo

OPTYKA GEOMETRYCZNA I INSTRUMENTALNA

OPTYKA GEOMETRYCZNA I INSTRUMENTALNA 1100-1BO15, rok akademicki 2018/19 OPTYKA GEOMETRYCZNA I INSTRUMENTALNA dr hab. Raał Kasztelanic Wykład 4 Obliczenia dla zwierciadeł Równanie zwierciadła 1 1 2 1 s s r s s 2 Obliczenia dla zwierciadeł

Bardziej szczegółowo

LASERY I ICH ZASTOSOWANIE

LASERY I ICH ZASTOSOWANIE LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 3 Temat: Efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą modulowania zmiany polaryzacji światła oraz

Bardziej szczegółowo

Rodzaje fal. 1. Fale mechaniczne. 2. Fale elektromagnetyczne. 3. Fale materii. dyfrakcja elektronów

Rodzaje fal. 1. Fale mechaniczne. 2. Fale elektromagnetyczne. 3. Fale materii. dyfrakcja elektronów Wykład VI Fale t t + Dt Rodzaje fal 1. Fale mechaniczne 2. Fale elektromagnetyczne 3. Fale materii dyfrakcja elektronów Fala podłużna v Przemieszczenia elementów spirali ( w prawo i w lewo) są równoległe

Bardziej szczegółowo

OPTYKA. Leszek Błaszkieiwcz

OPTYKA. Leszek Błaszkieiwcz OPTYKA Leszek Błaszkieiwcz Ojcem optyki jest Witelon (1230-1314) Zjawisko odbicia fal promień odbity normalna promień padający Leszek Błaszkieiwcz Rys. Zjawisko załamania fal normalna promień padający

Bardziej szczegółowo

falowego widoczne w zmianach amplitudy i natęŝenia fal) w którym zachodzi

falowego widoczne w zmianach amplitudy i natęŝenia fal) w którym zachodzi Zjawisko interferencji fal Interferencja to efekt nakładania się fal (wzmacnianie i osłabianie się ruchu falowego widoczne w zmianach amplitudy i natęŝenia fal) w którym zachodzi stabilne w czasie ich

Bardziej szczegółowo

Ćwiczenie 53. Soczewki

Ćwiczenie 53. Soczewki Ćwiczenie 53. Soczewki Małgorzata Nowina-Konopka, Andrzej Zięba Cel ćwiczenia Pomiar ogniskowych soczewki skupiającej i układu soczewek (skupiająca i rozpraszająca), obliczenie ogniskowej soczewki rozpraszającej.

Bardziej szczegółowo

Zjawisko interferencji fal

Zjawisko interferencji fal Zjawisko interferencji fal Interferencja to efekt nakładania się fal (wzmacnianie i osłabianie się ruchu falowego widoczne w zmianach amplitudy i natężenia fal) w którym zachodzi stabilne w czasie ich

Bardziej szczegółowo

Wyznaczanie wartości współczynnika załamania

Wyznaczanie wartości współczynnika załamania Grzegorz F. Wojewoda Zespół Szkół Ogólnokształcących nr 1 Bydgoszcz Wyznaczanie wartości współczynnika załamania Jest dobrze! Nareszcie można sprawdzić doświadczalnie wartości współczynników załamania

Bardziej szczegółowo

- 1 - OPTYKA - ĆWICZENIA

- 1 - OPTYKA - ĆWICZENIA - 1 - OPTYKA - ĆWICZENIA 1. Promień światła padł na zwierciadło tak, że odbił się od niego tworząc z powierzchnią zwierciadła kąt 30 o. Jaki był kąt padania promienia na zwierciadło? A. 15 o B. 30 o C.

Bardziej szczegółowo

Wykład FIZYKA II 8. Optyka falowa Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ Nakładanie się fal nazywamy ogólnie superpozycją. Nakładanie

Bardziej szczegółowo

WSTĘP DO OPTYKI FOURIEROWSKIEJ

WSTĘP DO OPTYKI FOURIEROWSKIEJ 1100-4BW1, rok akademicki 018/19 WSTĘP DO OPTYKI FOURIEROWSKIEJ dr hab. Rafał Kasztelanic Wykład 4 Przestrzeń swobodna jako filtr częstości przestrzennych Załóżmy, że znamy rozkład pola na fale monochromatyczne

Bardziej szczegółowo

Fale elektromagnetyczne. Obrazy.

Fale elektromagnetyczne. Obrazy. Fale elektroagnetyczne. Obrazy. Wykład 7 1 Wrocław University of Technology 28-4-212 Tęcza Maxwella 2 1 Tęcza Maxwella 3 ( kx t) ( kx t) E = E sin ω = sin ω Prędkość rozchodzenia się fali: 1 8 c = = 3.

Bardziej szczegółowo

WŁASNOŚCI FAL (c.d.)

WŁASNOŚCI FAL (c.d.) RUCH FALOWY Własności i rodzaje fal. Prędkość rozchodzenia się fal. Fala harmoniczna płaska. Fala stojąca. Zasada Huygensa. Dyfrakcja fal. Obraz dyfrakcyjny. Kryterium Rayleigha. Interferencja fal. Doświadczenie

Bardziej szczegółowo

9. Optyka Interferencja w cienkich warstwach. λ λ

9. Optyka Interferencja w cienkich warstwach. λ λ 9. Optyka 9.3. nterferencja w cienkich warstwach. Światło odbijając się od ośrodka optycznie gęstszego ( o większy n) zienia fazę. Natoiast gdy odbicie zachodzi od powierzchni ośrodka optycznie rzadszego,

Bardziej szczegółowo

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE Ćwiczenie nr 6 Temat: Wyznaczenie stałej siatki dyfrakcyjnej i dyfrakcja światła na otworach kwadratowych i okrągłych. 1. Wprowadzenie Fale

Bardziej szczegółowo

Wstęp do astrofizyki I

Wstęp do astrofizyki I Wstęp do astrofizyki I Wykład 5 Tomasz Kwiatkowski 3 listopad 2010 r. Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 5 1/41 Plan wykładu Podstawy optyki geometrycznej Załamanie światła, soczewki Odbicie

Bardziej szczegółowo

I. PROMIENIOWANIE CIEPLNE

I. PROMIENIOWANIE CIEPLNE I. PROMIENIOWANIE CIEPLNE - lata '90 XIX wieku WSTĘP Widmo promieniowania elektromagnetycznego zakres "pokrycia" różnymi rodzajami fal elektromagnetycznych promieniowania zawartego w danej wiązce. rys.i.1.

Bardziej szczegółowo

Najprostszą soczewkę stanowi powierzchnia sferyczna stanowiąca granicę dwóch ośr.: powietrza, o wsp. załamania n 1. sin θ 1. sin θ 2.

Najprostszą soczewkę stanowi powierzchnia sferyczna stanowiąca granicę dwóch ośr.: powietrza, o wsp. załamania n 1. sin θ 1. sin θ 2. Ia. OPTYKA GEOMETRYCZNA wprowadzenie Niemal każdy system optoelektroniczny zawiera oprócz źródła światła i detektora - co najmniej jeden element optyczny, najczęściej soczewkę gdy system służy do analizy

Bardziej szczegółowo

Wprowadzenie do technologii HDR

Wprowadzenie do technologii HDR Wprowadzenie do technologii HDR Konwersatorium 2 - inspiracje biologiczne mgr inż. Krzysztof Szwarc krzysztof@szwarc.net.pl Sosnowiec, 5 marca 2018 1 / 26 mgr inż. Krzysztof Szwarc Wprowadzenie do technologii

Bardziej szczegółowo

Elementy optyki geometrycznej i optyki falowej

Elementy optyki geometrycznej i optyki falowej Elementy optyki geometrycznej i optyki falowej Wykład 8 Pamiętaj, że najmniejszy krok w stronę celu jest więcej wart niż maraton dobrych chęci. Czym jest światło? 8.1. Elementy optyki geometrycznej odbicie,

Bardziej szczegółowo

Soczewkami nazywamy ciała przeźroczyste ograniczone dwoma powierzchniami o promieniach krzywizn R 1 i R 2.

Soczewkami nazywamy ciała przeźroczyste ograniczone dwoma powierzchniami o promieniach krzywizn R 1 i R 2. Optyka geometryczna dla soczewek Autorzy: Zbigniew Kąkol, Piotr Morawski Soczewkami nazywamy ciała przeźroczyste ograniczone dwoma powierzchniami o promieniach krzywizn R i R 2. Nasze rozważania własności

Bardziej szczegółowo

Elementy optyki geometrycznej i optyki falowej

Elementy optyki geometrycznej i optyki falowej Elementy optyki geometrycznej i optyki falowej Wykład 8 Pamiętaj, że najmniejszy krok w stronę celu jest więcej wart niż maraton dobrych chęci. Czym jest światło? 8.1. Elementy optyki geometrycznej odbicie,

Bardziej szczegółowo

Optyka. Wykład XI Krzysztof Golec-Biernat. Równania zwierciadeł i soczewek. Uniwersytet Rzeszowski, 3 stycznia 2018

Optyka. Wykład XI Krzysztof Golec-Biernat. Równania zwierciadeł i soczewek. Uniwersytet Rzeszowski, 3 stycznia 2018 Optyka Wykład XI Krzysztof Golec-Biernat Równania zwierciadeł i soczewek Uniwersytet Rzeszowski, 3 stycznia 2018 Wykład XI Krzysztof Golec-Biernat Optyka 1 / 16 Plan Równanie zwierciadła sferycznego i

Bardziej szczegółowo

Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu

Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu Ruch falowy Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu Fala rozchodzi się w przestrzeni niosąc ze sobą energię, ale niekoniecznie musi

Bardziej szczegółowo

Widmo fal elektromagnetycznych

Widmo fal elektromagnetycznych Czym są fale elektromagnetyczne? Widmo fal elektromagnetycznych dr inż. Romuald Kędzierski Podstawowe pojęcia związane z falami - przypomnienie pole falowe część przestrzeni objęta w danej chwili falą

Bardziej szczegółowo

BADANIE I ACHROMATYZACJA PRĄŻKÓW INTERFERENCYJNYCH TWORZONYCH ZA POMOCĄ ZWIERCIADŁA LLOYDA

BADANIE I ACHROMATYZACJA PRĄŻKÓW INTERFERENCYJNYCH TWORZONYCH ZA POMOCĄ ZWIERCIADŁA LLOYDA BADANIE I ACHROMATYZACJA PRĄŻKÓW INTERFERENCYJNYCH TWORZONYCH ZA POMOCĄ ZWIERCIADŁA LLOYDA Celem ćwiczenia jest: 1. demonstracja dużej liczby prążków w interferometrze Lloyda z oświetleniem monochromatycznym,

Bardziej szczegółowo

Optyka. Optyka geometryczna Optyka falowa (fizyczna) Interferencja i dyfrakcja Koherencja światła Optyka nieliniowa

Optyka. Optyka geometryczna Optyka falowa (fizyczna) Interferencja i dyfrakcja Koherencja światła Optyka nieliniowa Optyka Optyka geometryczna Optyka falowa (fizyczna) Interferencja i dyfrakcja Koherencja światła Optyka nieliniowa 1 Optyka falowa Opis i zastosowania fal elektromagnetycznych w zakresie widzialnym i bliskim

Bardziej szczegółowo

Zasada Fermata mówi o tym, że promień światła porusza się po drodze najmniejszego czasu.

Zasada Fermata mówi o tym, że promień światła porusza się po drodze najmniejszego czasu. Pokazy 1. 2. 3. 4. Odbicie i załamanie światła laser, tarcza Kolbego. Ognisko w zwierciadle parabolicznym: dwa metalowe zwierciadła paraboliczne, miernik temperatury, żarówka 250 W. Obrazy w zwierciadłach:

Bardziej szczegółowo

BADANIE INTERFEROMETRU YOUNGA

BADANIE INTERFEROMETRU YOUNGA Celem ćwiczenia jest: BADANIE INTERFEROMETRU YOUNGA 1. poznanie podstawowych właściwości interferometru z podziałem czoła fali w oświetleniu monochromatycznym i świetle białym, 2. demonstracja możliwości

Bardziej szczegółowo

DYFRAKCJA NA POJEDYNCZEJ I PODWÓJNEJ SZCZELINIE

DYFRAKCJA NA POJEDYNCZEJ I PODWÓJNEJ SZCZELINIE Ćwiczenie O-9 YFRAKCJA NA POJEYNCZEJ POWÓJNEJ SZCZELNE. Cel ćwiczenia: zapoznanie ze zjawiskiem dyfrakcji światła na pojedynczej i podwójnej szczelinie. Pomiar długości fali światła laserowego i szerokości

Bardziej szczegółowo

Optyka geometryczna z elementami optyki falowej. Marian Talar

Optyka geometryczna z elementami optyki falowej. Marian Talar Optyka geometryczna z elementami optyki falowej Marian Talar 21 lipca 2006 1 Informacje ogólne To, że światło jest falą elektromagnetyczną wiadomo było już od czasu gdy J. C. Maxwell (1831-1879) sformułował

Bardziej szczegółowo

Fale elektromagnetyczne w dielektrykach

Fale elektromagnetyczne w dielektrykach Fale elektromagnetyczne w dielektrykach Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Krótka historia odkrycia

Bardziej szczegółowo

Optyka. Wykład VII Krzysztof Golec-Biernat. Prawa odbicia i załamania. Uniwersytet Rzeszowski, 22 listopada 2017

Optyka. Wykład VII Krzysztof Golec-Biernat. Prawa odbicia i załamania. Uniwersytet Rzeszowski, 22 listopada 2017 Optyka Wykład VII Krzysztof Golec-Biernat Prawa odbicia i załamania Uniwersytet Rzeszowski, 22 listopada 2017 Wykład VII Krzysztof Golec-Biernat Optyka 1 / 20 Plan Zachowanie pola elektromagnetycznego

Bardziej szczegółowo

G:\AA_Wyklad 2000\FIN\DOC\FRAUN1.doc. "Drgania i fale" ii rok FizykaBC. Dyfrakcja: Skalarna teoria dyfrakcji: ia λ

G:\AA_Wyklad 2000\FIN\DOC\FRAUN1.doc. Drgania i fale ii rok FizykaBC. Dyfrakcja: Skalarna teoria dyfrakcji: ia λ Dyfrakcja: Skalarna teoria dyfrakcji: U iω t [ e ] ( t) Re U ( ) ;. c t U ( ; t) oraz [ + ] U ( ) k. U ia s ( ) A e ik r ( rs + r ) cos( n, ) cos( n, s ) ds s r. Dyfrakcja Fresnela (a) a dyfrakcja Fraunhofera

Bardziej szczegółowo

Ćwiczenie 363. Polaryzacja światła sprawdzanie prawa Malusa. Początkowa wartość kąta 0..

Ćwiczenie 363. Polaryzacja światła sprawdzanie prawa Malusa. Początkowa wartość kąta 0.. Nazwisko... Data... Nr na liście... Imię... Wydział... Dzień tyg.... Godzina... Polaryzacja światła sprawdzanie prawa Malusa Początkowa wartość kąta 0.. 1 25 49 2 26 50 3 27 51 4 28 52 5 29 53 6 30 54

Bardziej szczegółowo

Ćwiczenie 4. Doświadczenie interferencyjne Younga. Rys. 1

Ćwiczenie 4. Doświadczenie interferencyjne Younga. Rys. 1 Ćwiczenie 4 Doświadczenie interferencyjne Younga Wprowadzenie teoretyczne Charakterystyczną cechą fal jest ich zdolność do interferencji. Światło jako fala elektromagnetyczna również może interferować.

Bardziej szczegółowo

Badanie zjawisk optycznych przy użyciu zestawu Laser Kit

Badanie zjawisk optycznych przy użyciu zestawu Laser Kit LABORATORIUM OPTOELEKTRONIKI Ćwiczenie 5 Badanie zjawisk optycznych przy użyciu zestawu Laser Kit Cel ćwiczenia: Zapoznanie studentów ze zjawiskami optycznymi. Badane elementy: Zestaw ćwiczeniowy Laser

Bardziej szczegółowo

Wykład III. Interferencja fal świetlnych i zasada Huygensa-Fresnela

Wykład III. Interferencja fal świetlnych i zasada Huygensa-Fresnela Wykład III Interferencja fal świetlnych i zasada Huygensa-Fresnela Interferencja fal płaskich Na kliszy fotograficznej, leżącej na płaszczyźnie z=0 rejestrujemy interferencję dwóch fal płaskich, o tej

Bardziej szczegółowo

POLARYZACJA ŚWIATŁA. Uporządkowanie kierunku drgań pola elektrycznego E w poprzecznej fali elektromagnetycznej (E B). światło niespolaryzowane

POLARYZACJA ŚWIATŁA. Uporządkowanie kierunku drgań pola elektrycznego E w poprzecznej fali elektromagnetycznej (E B). światło niespolaryzowane FALE ELEKTROMAGNETYCZNE Polaryzacja światła Sposoby polaryzacji Dwójłomność Skręcanie płaszczyzny polaryzacji Zastosowania praktyczne polaryzacji Efekty fotoelastyczne Stereoskopia Holografia Politechnika

Bardziej szczegółowo

Rozważania rozpoczniemy od fal elektromagnetycznych w próżni. Dla próżni równania Maxwella w tzw. postaci różniczkowej są następujące:

Rozważania rozpoczniemy od fal elektromagnetycznych w próżni. Dla próżni równania Maxwella w tzw. postaci różniczkowej są następujące: Rozważania rozpoczniemy od fal elektromagnetycznych w próżni Dla próżni równania Maxwella w tzw postaci różniczkowej są następujące:, gdzie E oznacza pole elektryczne, B indukcję pola magnetycznego a i

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 6 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15

Bardziej szczegółowo

LASERY I ICH ZASTOSOWANIE W MEDYCYNIE

LASERY I ICH ZASTOSOWANIE W MEDYCYNIE LASERY I ICH ZASTOSOWANIE W MEDYCYNIE Laboratorium Instrukcja do ćwiczenia nr 4 Temat: Modulacja światła laserowego: efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą

Bardziej szczegółowo

Wykład FIZYKA II. 8. Optyka falowa

Wykład FIZYKA II. 8. Optyka falowa Wykład FIZYKA II 8. Optyka falowa Dr hab. inż. Władysław Artur Woźniak Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska http://www.if.pwr.wroc.pl/~wozniak/fizyka.html

Bardziej szczegółowo

Optyka. Matura Matura Zadanie 24. Soczewka (10 pkt) 24.1 (3 pkt) 24.2 (4 pkt) 24.3 (3 pkt)

Optyka. Matura Matura Zadanie 24. Soczewka (10 pkt) 24.1 (3 pkt) 24.2 (4 pkt) 24.3 (3 pkt) Matura 2006 Zadanie 24. Soczewka (10 pkt) Optyka W pracowni szkolnej za pomocą cienkiej szklanej soczewki dwuwypukłej o jednakowych promieniach krzywizny, zamontowanej na ławie optycznej, uzyskiwano obrazy

Bardziej szczegółowo