Wyznaczanie orbity komety 73P Schwassmann-Wachmann 3 C
|
|
- Stefan Mróz
- 6 lat temu
- Przeglądów:
Transkrypt
1 Wyznaczanie orbity komety 73P Schwassmann-Wachmann 3 C Rafał Szudera 16 czerwca Streszczenie W protokole tym zawarłem opis procesu oliczania orbity komety 73P Schwassmann- Wachmann 3, a dokładniej jej najjasniejszego fragmentu C. Na poczatku zamieszczony jest mały rys histyoryczny zwiazany z kometaą. Nastepnie opisane sa same obserwacje komety, dane z nich wynikajace oraz metody obliczeniowe jakimi sieę posługiwałem w trakcie mojej pracy. Na zakonczenie umieszczone saą wyniki oraz ich interpretacje. Rezultaty mojej pracy okazały sieę niewłasciwe, gdyzż parametry orbity fragmentu C komety wyszły bardzo zblizone do ziemskich. Postaram sieę to jednak wytłumaczyć we wnioskach. 2 Wstęp Kometa okresowa 73P/Schwassmann-Wachmann 3 została odkryta na poczatku maja 1930 roku przez dwóch niemieckich astronomów: Arnolda Schwassmanna i Arno Arthura Wachmanna. Znajdowała sieę wówczas ok. 9,2 mln km od Ziemi czyli 0,06 jednostki astronomicznej(au). Okazała sieę bycć ona kometaą krótkookresowaą, o półosi wielkiej a=3,1 AU, a wiec zgodnie z III Prawem Keplera miała okres obiegu tylko: T=5,41 lat. Kometa wracała w okolice Ziemi wielokrotnie, azżdo 1995 roku kiedy to odkryto, żze rozpadła sieę na mniejsze fragmenty. Proces rozpadu był wielostopniowy: Na poczatku wrzesnia kometa rozpadła sieę na czesci (B,C,E) N przełomie pazdziernika i listopada, fragmenty B i C podzieliły sieę na B i A oraz C i F. W tym roku gdy kometa znalazła sieę znowu w okolicy Ziemi, okazało sieę, żze jadro uległo dalszej dezintegracji. Obecnie istnieje co najmniej 19 fragmentów: C, Q, P, B, G, J, R, S, K, M, H, N, L, W, X, Y, T, U i V. Niektóre z nich saą jednak bardzo słabo widoczne, gdyż ich jasnosci nie przekraczajaą +20 mag. Ja, w mojej pracy, zajałem sieę najjasniejszym fragmentem komety 73P Schwassmann- Wachmann 3, fragmentem C. Fragment ten był najblizej Ziemi 12 maja Moje obserwacje pochodzaą z nocy z na , tak wiec krótko przed maksymalnym zblizeniem.[rysunek 1] przedstawia mapke z serwisu ASTROHOBBY.PL, która pokazuje połozenie fragmentu C na niebie w maju. 1
2 3 Obserwacje Obserwacje komety 73P Schwassmann-Wachmann 3 C odbyły sieę w nocy z 9 maja 2006 na 10 maja 2006, krótko po północy, w OBSERWATORIUM ASTRONO- MICZNYM W BOROWCU pod Poznaniem. Obserwacje były wykonywane zdalnie, przy pomocy "małego teleskopu fotometrycznego". Składa sieę on z 20cm teleskopu Newton, do którego podłaczona jest kamera CCD ST7. Pogoda nocaąbyła bardzo zadowalajaca. Kłopoty w obserwacjach sprawiał jednak Ksiezyc, który był widoczny w 88%. Temperatura otoczenia wynosiła +21 o C. Zdjecia CCD z których skorzystałem w mojej pracy wykonał Mgr Kszysztof Kaminski z OA w Poznaniu, za co Mu serdecznie dziekuje. Podczas robienia zdjec kamera ccd była zchłodzona do temperatury -10 o C. Zastosowano filtr I(podczerwień). Czas ekspozycji został ustawiony na 20 sekund. Zrobiono serie 10 zdjecć typu FLAT(2s),serie 10 zdjec typu DARK(20s) i serie 10 zdjecć typu BIAS(0s). Seria zdjecć fragmentu C rozpoczeła sieę o godzinie 00:07: a zakonczyła sieę o 00:59: Wykonano 120 zdjec. Jest to bardzo niewiele danych aby obliczycć, chocć przyblizonaą orbite komety, jednak musiało mi to wystarczyć. 4 Opracowywanie danych Aby obliczyć orbitę komety dysponowałem metodaą, która potrzebowała trzech połozenń rozpatrywanej komety, w róznych momentach czasu. Tak wiec wybrałem trzy zdjecia komety (zdjecie: 1,61,120), jedno na poczatku obserwacji, jedno w połowie i jedno na koncu. Zdjecia te poddałem wstepnej redukcji za pomocaą ramek FLAT, BIAS i DARK, wykorzystujac do tego skrypt autorstwa Mgr Krzysztofa Kaminskiego pt: red. Majac juzż poredukowane ramki, uruchomiłem pakiet aplikacji astronomicznych pt: STARLINK. Uzywałem graficznego programu GAIA, w którym mogłem przegladacć i analizowacć ramki ze zdjeciami. Za pomocaą Gaii wyznaczyłem współrzedne X i Y komety, oraz współrzedne X i Y trzech gwiazd odniesienia, z kazdej ramki. Gwiazdy odniesienia bedaą mi potrzebne przy obliczeniach. Potrzebowałem jeszcze współrzednych astronomicznych(ra,dec) gwiazd odniesienia, które uzyskałem z aplikacji XEphem. Było to doscśtrudne, gdyzż na mapach gwiazdowych musiałem znalescźć dokładne miejsce na niebie, jakie widnieje na ramce. Pomogły mi w tym przyblizone wartosci współrzednych komety jakie wyczytałem z efemeryd umieszczonych w internecie. Na zakonczenie odczytałem jeszcze współrzedne astronomiczne(a,d) śsrodka kazdej ramki ccd 5 Obliczenia Aby wyznaczyć orbiteę komety potrzebowałem jej dokładnych współrzednych rektascencji i deklinacji obliczonych z kazdej ramki. Opisze teraz schemat postepowania 2
3 z jednaąramkaą, gdyzż w tem sam sposób postepowałem z pozoztałymi. Do obliczen uzywałem matematycznej aplikacji MUPAD. 1. Dla kazdej gwiazdy oporowej obliczyłem standardowe współrzedne tangencjalne, kozystajac ze wzorów: ksi = ni = cosδ sin α A cosd sinδ cosd cosδ cosα A cosd sinδ sin D cosδ cosα A sin D sin δ + cosd cosδ cosα A gdzie α i δ to współrzedne danej gwiazdy oporowej, A i D to współrzedne śsrodka optycznego ramki ccd 2. Dla kazdej z gwiazd oporowych sporzadziłem układ równanń: (1) (2) ksi X = a 1 X + b 1 Y + c 1 (3) ni Y = d 1 x + e 1 Y + f 1 (4) gdzie X i Y to współrzedne z ramki, kazdej gwiazdy oporowej. Tworzac taki układ dla kazdej z trzech gwiazd oporowych otrzymałem układ szesciu równanń z szescioma niewiadomymi a 1, b 1, c 1, d 1, e 1, f 1 3. Majac juzż wyznaczonea 1, b 1, c 1, d 1, e 1, f 1 stworzyłem taki sam układ dla współrzednych X i Y komety. 4. Dysponujac współrzednymi tangencjalnymi komety obliczyłem jej prawdziwe współrzedne α i δ, kozystajac ze wzorów: 6 Zestawienie Wyników ksi α = arctan( cosd ni sind ) + A (5) sin D + ni cosd δ = arctan( cosα A) (6) cosd ni sin D W trakcie mojej pracy uzyskałem nastepujace wyniki. Tabela zawiera współrzedne: rektascencje i deklinacje komety z kazdej ramki,oraz czas wyrazony w mierze UT zdjęcie rektascencja deklinacja czas(godzina) :07: :32: :59: Tablica 1: Zestawienie współrzednych fragmentu C komety 73P Schwassmann- Wachmann 3 z r Te dane ostatecznie wstawiłem do skryptu napisanego przez dr Wojciecha Borczyka z OA w Poznaniu, obliczajacego orbite z metody Moulton-Vaisala-Cunningham. Otrzymałem nastepujace parametry orbity kometya: 3
4 odległosc perycentrum mimosród nachylenie orbity argument perycentrum długoscśćwezła wstepujacego tau Tperi q= AU e= i= om= OM= tau= Tperi= Tablica 2: Zestawienie elementów orbity fragmentu C komety 73P Schwassmann- Wachmann 3 z r 7 Wnioski Moje wyniki wg ostatniego uzywanego skryptu sa poprawne jednak z logicznego punktu widzenia nie maja sensu. Juz sam mimosrów tylko minimalnie wiekszy od zera pokazuje ze cos jest nie tak. Zerowy mimosród oznaczałby orbite w postaci okregu. Pozostałe parametry takie jak q czy i równiez malo pasuja. Owe trzy parametry opisuja bardziej orbite Ziemi niz komety. Ma to swoje uzasadnienie. Kometa przelatywała bardzo blizko Ziemi. Obserwacje jakimi dysponowalem obejmowaly tylko 1 godzine jej przelotu. To bardzo krótki czas aby wyznaczyc orbite. W tak krótkim czasie orbita komety 73P Schwassmann-Wachmann 3 C mogła byc zblizona do orbity Ziemi. To jrdyne wytłumaczenie jakie przychodzi mi do głowy, gdyż pozatym wszystko w trakcie pracy przebiegało dobrze. 4
5 Rysunek 1: Kometa na majowym niebie 5
Komety 2P/Encke 41P/Tuttle-Giacobini-Kresak C/2015 V2 (Johnson) Oznaczenia w tabeli:
Komety W 2017 roku przez peryhelium przejdą 64 znane komety. Zamieszczona tabela podaje ich parametry. Teoretycznie dostępne dla obserwacji przez lornetki mogą być komety: 2P/Encke, 41P/Tuttle- Giacobini-Kresak,
Wstęp do astrofizyki I
Wstęp do astrofizyki I Wykład 10 Tomasz Kwiatkowski 8 grudzień 2010 r. Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 10 1/36 Plan wykładu Wyznaczanie mas ciał niebieskich Gwiazdy podwójne Optycznie
Obliczanie pozycji obiektu na podstawie znanych elementów orbity. Rysunek: Elementy orbity: rozmiar wielkiej półosi, mimośród, nachylenie
Obliczanie pozycji obiektu na podstawie znanych elementów orbity Rysunek: Elementy orbity: rozmiar wielkiej półosi, mimośród, nachylenie a - wielka półoś orbity e - mimośród orbity i - nachylenie orbity
Analiza danych. 7 th International Olympiad on Astronomy & Astrophysics 27 July 5 August 2013, Volos Greece. Zadanie 1.
Analiza danych Zadanie 1. Zdjęcie 1 przedstawiające część gwiazdozbioru Wielkiej Niedźwiedzicy, zostało zarejestrowane kamerą CCD o rozmiarze chipu 17mm 22mm. Wyznacz ogniskową f systemu optycznego oraz
Wędrówki między układami współrzędnych
Wykład udostępniam na licencji Creative Commons: Wędrówki między układami współrzędnych Piotr A. Dybczyński Układ równikowy godzinny i układ horyzontalny zenit północny biegun świata Z punkt wschodu szerokość
( W.Ogłoza, Uniwersytet Pedagogiczny w Krakowie, Pracownia Astronomiczna)
TEMAT: Analiza zdjęć ciał niebieskich POJĘCIA: budowa i rozmiary składników Układu Słonecznego POMOCE: fotografie róŝnych ciał niebieskich, przybory kreślarskie, kalkulator ZADANIE: Wykorzystując załączone
Konrad Słodowicz sk30792 AR22 Zadanie domowe satelita
Konrad Słodowicz sk3079 AR Zadanie domowe satelita Współrzędne kartezjańskie Do opisu ruchu satelity potrzebujemy 4 zmiennych stanu współrzędnych położenia i prędkości x =r x =r x 3 = r 3, x 4 = r 4 gdzie
SZKIC ODPOWIEDZI I SCHEMAT OCENIANIA ROZWIĄZAŃ ZADAŃ W ARKUSZU I. Informacje dla oceniających
SZKIC ODPOWIEDZI I SCHEMAT OCENIANIA ROZWIĄZAŃ ZADAŃ W ARKUSZU I Inormacje dla oceniających. Rozwiązania poszczególnych zadań i poleceń oceniane są na podstawie punktowych kryteriów oceny poszczególnych
SZKIC ODPOWIEDZI I SCHEMAT OCENIANIA ROZWIĄZAŃ ZADAŃ W ARKUSZU I. Informacje dla oceniających
SZKIC ODPOWIEDZI I SCHEMAT OCENIANIA ROZWIĄZAŃ ZADAŃ W ARKUSZU I Inormacje dla oceniających. Rozwiązania poszczególnych zadań i poleceń oceniane są na podstawie punktowych kryteriów oceny poszczególnych
Obserwacje fotometryczne planetoid
Obserwacje fotometryczne planetoid Anna Borucka 2002-01-14 Streszczenie Sprawozdanie dotyczy obserwacji planetoidy 54 Alexandra wykonanej w Borowcu 8-go października 2001. Dalej przedstawiono redukcję
Gwiazdy zmienne. na przykładzie V729 Cygni. Janusz Nicewicz
Gwiazdy zmienne na przykładzie V729 Cygni Plan prezentacji Czym są gwiazdy zmienne? Rodzaje gwiazd zmiennych Układy podwójne gwiazd Gwiazdy zmienne zaćmieniowe Model Roche'a V729 Cygni Obserwacje Analiza
LXI Olimpiada Astronomiczna 2017/2018 Zadania z zawodów III stopnia
LXI Olimpiada Astronomiczna 2017/2018 Zadania z zawodów III stopnia 1. Okres obrotu Księżyca wokół osi jest równy jego okresowi orbitalnemu. Dzięki temu Księżyc jest stale zwrócony ku Ziemi jedną stroną.
Cairns (Australia): Szerokość: 16º 55' " Długość: 145º 46' " Sapporo (Japonia): Szerokość: 43º 3' " Długość: 141º 21' 15.
5 - Obliczenia przejścia Wenus z 5-6 czerwca 2012 r. 5.1. Wybieranie miejsca obserwacji. W tej części zajmiemy się nadchodzącym tranzytem Wenus, próbując wyobrazić sobie sytuację jak najbardziej zbliżoną
DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu
Ćwiczenie 7 DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Cel ćwiczenia Doświadczalne wyznaczenie częstości drgań własnych układu o dwóch stopniach swobody, pokazanie postaci drgań odpowiadających
Ruchy planet. Wykład 29 listopada 2005 roku
Ruchy planet planety wewnętrzne: Merkury, Wenus planety zewnętrzne: Mars, Jowisz, Saturn, Uran, Neptun, Pluton Ruch planet wewnętrznych zachodzi w cyklu: koniunkcja dolna, elongacja wschodnia, koniunkcja
Wycieczka po Załęczańskim Niebie
Wycieczka po Załęczańskim Niebie Strona 1 z 25 Prezentowana kolekcja zdjęć została wykonana przez uczestników tegorocznych letnich obozów astronomicznych (w dniach 28.07 25.08.2002) zorganizowanych przez
Dyfrakcja to zdolność fali do uginania się na krawędziach przeszkód. Dyfrakcja światła stanowi dowód na to, że światło ma charakter falowy.
ZAŁĄCZNIK V. SŁOWNICZEK. Czas uniwersalny Czas uniwersalny (skróty: UT lub UTC) jest taki sam, jak Greenwich Mean Time (skrót: GMT), tzn. średni czas słoneczny na południku zerowym w Greenwich, Anglia
Przykładowe zagadnienia.
Wykład udostępniam na licencji Creative Commons: Przykładowe zagadnienia. Piotr A. Dybczyński Z BN E N h W Nd A S BN Z δ N t S α BS zenit północny biegun świata BN miejscowy południk astronomiczny Z punkt
LVII Olimpiada Astronomiczna 2013/2014 Zadania zawodów III stopnia
Zadanie 1. LVII Olimpiada Astronomiczna 2013/2014 Zadania zawodów III stopnia Z północnego bieguna księżycowego wystrzelono pocisk, nadając mu prędkość początkową równą lokalnej pierwszej prędkości kosmicznej.
ZAŁĄCZNIK IV. Obliczanie rotacji / translacji obrazów.
ZAŁĄCZNIK IV. Obliczanie rotacji / translacji obrazów. Jak to zostało przedstawione w części 5.2.1, jeżeli zrobimy Słońcu zdjęcie z jakiegoś miejsca na powierzchni ziemi w danym momencie t i dokładnie
Przykładowe zagadnienia.
Wykład udostępniam na licencji Creative Commons: Przykładowe zagadnienia. Piotr A. Dybczyński Z BN E N h W Nd A S BN Z t δ N S α BS zenit północny biegun świata BN miejscowy południk astronomiczny Z punkt
rectan.co.uk 1. Szkic projektu Strona:1
Zadanie: Wyznaczyć położenie głównych centralnych osi bezwładności i obliczyć główne centralne momenty bezwładności 1. Szkic projektu * Rozwiązanie zadania * Oznaczenia: A [cm²] - pole powierzchni figury
Pochodna i różniczka funkcji oraz jej zastosowanie do obliczania niepewności pomiarowych
Pochodna i różniczka unkcji oraz jej zastosowanie do obliczania niepewności pomiarowych Krzyszto Rębilas DEFINICJA POCHODNEJ Pochodna unkcji () w punkcie określona jest jako granica: lim 0 Oznaczamy ją
LX Olimpiada Astronomiczna 2016/2017 Zadania z zawodów III stopnia. S= L 4π r L
LX Olimpiada Astronomiczna 2016/2017 Zadania z zawodów III stopnia 1. Przyjmij, że prędkość rotacji różnicowej Słońca, wyrażoną w stopniach na dobę, można opisać wzorem: gdzie φ jest szerokością heliograficzną.
Gdzie jest kometa C/2010 X1 Elenin?
dr Ireneusz Włodarczyk Planetarium Śląskie Chorzów astrobit@ka.onet.pl Aktualizacja 2011-10-24 Gdzie jest kometa C/2010 X1 Elenin? Trwają poszukiwania komety C/2010 X1 Elenin. Kometa, która miała być dobrze
LIX Olimpiada Astronomiczna 2015/2016 Zawody III stopnia zadania teoretyczne
LIX Olimpiada Astronomiczna 2015/2016 Zawody III stopnia zadania teoretyczne 1. Dwie gwiazdy ciągu głównego o masach M i m tworzyły układ podwójny o orbitach kołowych. W wyniku ewolucji, bardziej masywny
Wenus na tle Słońca. Sylwester Kołomański Tomasz Mrozek. Instytut Astronomiczny Uniwersytetu Wrocławskiego
Wenus na tle Słońca Sylwester Kołomański Tomasz Mrozek Instytut Astronomiczny Uniwersytetu Wrocławskiego Instytut Astronomiczny UWr Czym się zajmujemy? uczymy studentów, prowadzimy badania naukowe (astrofizyka
Człowiek najlepsza inwestycja. Fot.NASA FENIKS PRACOWNIA DYDAKTYKI ASTRONOMII
Fot.NASA FENIKS PRACOWNIA DYDAKTYKI ASTRONOMII PROPOZYCJA ĆWICZEŃ DZIENNYCH Z ASTRONOMII DLA UCZESTNIKÓW PROGRAMU FENIKS dr hab. Piotr Gronkowski, prof. UR gronk@univ.rzeszow.pl Uniwersytet Rzeszowski
MATEMATYKA 8. Funkcje trygonometryczne kąta ostrego (α < 90 ). Stosunki długości boków trójkąta prostokątnego nazywamy funkcjami trygonometrycznymi.
INSTYTUT MEDICUS Kurs przygotowawczy do matury i rekrutacji na studia medyczne Rok 017/018 www.medicus.edu.pl tel. 501 38 39 55 MATEMATYKA 8 FUNKCJE TRYGONOMETRYCZNE. Funkcje trygonometryczne kąta ostrego
Asteroida Ignatianum 1
Rocznik Filozoficzny Ignatianum The Ignatianum Philosophical Yearbook PL ISSN 2300 1402 www.ignatianum.edu.pl/rfi XIX / 2 (2013), s. 178 182 Sprawozdania i referaty Reports and Papers Robert J Wydział
Oszacowywanie możliwości wykrywania śmieci kosmicznych za pomocą teleskopów Pi of the Sky
Mirosław Należyty Agnieszka Majczyna Roman Wawrzaszek Marcin Sokołowski Wilga, 27.05.2010. Obserwatorium Astronomiczne Uniwersytetu Warszawskiego i Instytut Problemów Jądrowych w Warszawie Oszacowywanie
wersja
www.as.up.krakow.pl wersja 2013-01-12 STAŁE: π = 3.14159268... e = 2.718281828... Jednostka astronomiczna 1 AU = 149.6 mln km = 8 m 19 s świetlnych Rok świetlny [l.y.] = c t = 9460730472580800 m = 9.46
LIV Olimpiada Astronomiczna 2010 / 2011 Zawody III stopnia
LIV Olimpiada Astronomiczna 2010 / 2011 Zawody III stopnia 1. Wskutek efektów relatywistycznych mierzony całkowity strumień promieniowania od gwiazdy, która porusza się w kierunku obserwatora z prędkością
Skala jasności w astronomii. Krzysztof Kamiński
Skala jasności w astronomii Krzysztof Kamiński Obserwowana wielkość gwiazdowa (magnitudo) Skala wymyślona prawdopodobnie przez Hipparcha, który podzielił gwiazdy pod względem jasności na 6 grup (najjaśniejsze:
Zapisy podstawy programowej Uczeń: 2. 1) wyjaśnia cechy budowy i określa położenie różnych ciał niebieskich we Wszechświecie;
Geografia listopad Liceum klasa I, poziom rozszerzony XI Ziemia we wszechświecie Zapisy podstawy programowej Uczeń: 2. 1) wyjaśnia cechy budowy i określa położenie różnych ciał niebieskich we Wszechświecie;
Kamera internetowa: prosty instrument astronomiczny. Dr Tomasz Mrozek Instytut Astronomiczny Uniwersytet Wrocławski
Kamera internetowa: prosty instrument astronomiczny Dr Tomasz Mrozek Instytut Astronomiczny Uniwersytet Wrocławski Detektory promieniowania widzialnego Detektory promieniowania widzialnego oko błona fotograficzna
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW NR 196324 WYGENEROWANY AUTOMATYCZNIE W SERWISIE WWW.ZADANIA.INFO POZIOM PODSTAWOWY CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Rozwiazaniem
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 0 KWIETNIA 200 CZAS PRACY: 70 MINUT Zadania zamknięte ZADANIE ( PKT.) 3 Liczba 5 6 5 jest równa
Ziemia jako zegar Piotr A. Dybczyński
Wykład udostępniam na licencji Creative Commons: Ziemia jako zegar Piotr A. Dybczyński Czas gwiazdowy N N N N N N N N N N N s = 0h N s = 0h Czemu taka dziwna tarcza? N s = 0h Czemu taka dziwna tarcza?
2 cos α 4. 2 h) g) tgx. i) ctgx
ZESTAW I - FUNKCJE TRYGONOMETRYCZNE - powtórzenie. Znajdź wartości pozostałych funkcji trygonometrycznych, jeśli: sin α b). Oblicz wartość wyrażenia: tg ctg 77 = b) sin 0 (cos ) = c) sin = d) [( sin 0
ASTRONOMIA Klasa Ia Rok szkolny 2012/2013
1 ASTRONOMIA Klasa Ia Rok szkolny 2012/2013 NR Temat Konieczne 1 Niebo w oczach dawnych kultur i cywilizacji - wie, jakie były wyobrażenia starożytnych (zwłaszcza starożytnych Greków) na budowę Podstawowe
Niebo nad nami Styczeń 2018
Niebo nad nami Styczeń 2018 Comiesięczny kalendarz astronomiczny STOWARZYSZENIE NA RZECZ WIEDZY I ROZWOJU WiR KOPERNIK WWW.WIRKOPERNIK.PL CZARNA 857, 37-125 CZARNA TEL: 603 155 527 E-MAIL: kontakt@wirkopernik.pl
Komety 21P/Giacobini-Zinner 46P/Wirtanen 21P/Giacobini-Zinner 46P/Wirtanen Oznaczenia w tabeli:
Komety W 2018 roku przez peryhelium przejdzie 77 znanych komet. Zamieszczona tabela podaje ich parametry. Teoretycznie dostępne dla obserwacji przez lornetki mogą być komety: 21P/Giacobini-Zinner, 46P/Wirtanen
EGZAMIN POTWIERDZAJĄCY KWALIFIKACJE W ZAWODZIE Rok 2016 CZĘŚĆ PRAKTYCZNA
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu Układ graficzny CKE 2016 Nazwa kwalifikacji: Wykonywanie pomiarów sytuacyjnych i wysokościowych oraz opracowywanie wyników pomiarów
W poszukiwaniu nowej Ziemi. Andrzej Udalski Obserwatorium Astronomiczne Uniwersytetu Warszawskiego
W poszukiwaniu nowej Ziemi Andrzej Udalski Obserwatorium Astronomiczne Uniwersytetu Warszawskiego Gdzie mieszkamy? Ziemia: Masa = 1 M E Średnica = 1 R E Słońce: 1 M S = 333950 M E Średnica = 109 R E Jowisz
POLAND. Zasady zawodów drużynowych
Zasady zawodów drużynowych 1. W zawodach drużynowych mogą uczestniczyć drużyny złożone z trzech lub więcej uczestników. 2. Każda drużyna otrzyma zestaw 5 zadań do rozwiązania w czasie 60 minut. 3. O wyniku
Gdzie się znajdujemy na Ziemi i w Kosmosie
Gdzie się znajdujemy na Ziemi i w Kosmosie Realizując ten temat wspólnie z uczniami zajęliśmy się określeniem położenia Ziemi w Kosmosie. Cele: Rozwijanie umiejętności określania kierunków geograficznych
Przykład 4.2. Sprawdzenie naprężeń normalnych
Przykład 4.. Sprawdzenie naprężeń normalnych Sprawdzić warunki nośności przekroju ze względu na naprężenia normalne jeśli naprężenia dopuszczalne są równe: k c = 0 MPa k r = 80 MPa 0, kn 0 kn m 0,5 kn/m
Wyznaczanie długości i szerokości geograficznej z obserwacji astronomicznych.
Wykład udostępniam na licencji Creative Commons: Wyznaczanie długości i szerokości geograficznej z obserwacji astronomicznych. Piotr A. Dybczyński Związek czasu słonecznego z gwiazdowym. Zadanie:
Celem tego projektu jest stworzenie
Prosty kalkulator Celem tego projektu jest stworzenie prostego kalkulatora, w którym użytkownik będzie podawał dwie liczby oraz działanie, które chce wykonać. Aplikacja będzie zwracała wynik tej operacji.
Komety. P/2010 V1 (Ikeya-Murakami) α 2000 δ 2000 r m
Komety W 2016 roku przez peryhelium przejdą 64 znane komety. Zamieszczona tabela podaje ich parametry. Teoretycznie dostępne dla obserwacji przez lornetki mogą być komety: P/2010 V1 (Ikeya- Murakami),
Wykład 2 - zagadnienie dwóch ciał (od praw Keplera do prawa powszechnego ciążenia i z powrotem..)
Wykład 2 - zagadnienie dwóch ciał (od praw Keplera do prawa powszechnego ciążenia i z powrotem..) 24.02.2014 Prawa Keplera Na podstawie obserwacji zgromadzonych przez Tycho Brahe (głównie obserwacji Marsa)
EGZAMIN MATURALNY 2013 FIZYKA I ASTRONOMIA
Centralna Komisja Egzaminacyjna EGZAMIN MATURALNY 2013 FIZYKA I ASTRONOMIA POZIOM PODSTAWOWY Kryteria oceniania odpowiedzi MAJ 2013 2 Egzamin maturalny z fizyki i astronomii Zadanie 1. (0 1) Obszar standardów
Grawitacja - powtórka
Grawitacja - powtórka 1. Oceń prawdziwość każdego zdania. Zaznacz, jeśli zdanie jest prawdziwe, lub, jeśli jest A. Jednorodne pole grawitacyjne istniejące w obszarze sali lekcyjnej jest wycinkiem centralnego
GWIEZDNE INTERFEROMETRY MICHELSONA I ANDERSONA
GWIEZNE INTERFEROMETRY MICHELSONA I ANERSONA Cel ćwiczenia Celem ćwiczenia jest zestawienie i demonstracja modelu gwiezdnego interferometru Andersona oraz laboratoryjny pomiar wymiaru sztucznej gwiazdy.
KLUCZ PUNKTOWANIA ODPOWIEDZI
Egzamin maturalny maj 009 MATEMATYKA POZIOM ROZSZERZONY KLUCZ PUNKTOWANIA ODPOWIEDZI Zadanie. a) Wiadomości i rozumienie Matematyka poziom rozszerzony Wykorzystanie pojęcia wartości argumentu i wartości
PROPOZYCJA ĆWICZEŃ OBSERWACYJNYCH Z ASTRONOMII DO PRZEPROWADZENIA W OBSERWATORIUM ASTRONOMICZNYM INSTYTUTU FIZYKI UR DLA UCZESTNIKÓW PROJEKTU FENIKS
PROPOZYCJA ĆWICZEŃ OBSERWACYJNYCH Z ASTRONOMII DO PRZEPROWADZENIA W OBSERWATORIUM ASTRONOMICZNYM INSTYTUTU FIZYKI UR DLA UCZESTNIKÓW PROJEKTU FENIKS dr hab. Piotr Gronkowski - gronk@univ.rzeszow.pl Ćwiczenie
Pozorne orbity planet Z notatek prof. Antoniego Opolskiego. Tomasz Mrozek Instytut Astronomiczny UWr Zakład Fizyki Słońca CBK PAN
Pozorne orbity planet Z notatek prof. Antoniego Opolskiego Tomasz Mrozek Instytut Astronomiczny UWr Zakład Fizyki Słońca CBK PAN Początek Młody miłośnik astronomii patrzy w niebo Młody miłośnik astronomii
Pomiary jasności nieba z użyciem aparatu cyfrowego. Tomek Mrozek 1. Instytut Astronomiczny UWr 2. Zakład Fizyki Słońca CBK PAN
Pomiary jasności nieba z użyciem aparatu cyfrowego Tomek Mrozek 1. Instytut Astronomiczny UWr 2. Zakład Fizyki Słońca CBK PAN Jasność nieba Jasność nieba Jelcz-Laskowice 20 km od centrum Wrocławia Pomiary
4π 2 M = E e sin E G neu = sin z. i cos A i sin z i sin A i cos z i 1
1 Z jaką prędkością porusza się satelita na orbicie geostacjonarnej? 2 Wiedząc, że doba gwiazdowa na planecie X (stała grawitacyjna µ = 500 000 km 3 /s 2 ) trwa 24 godziny, oblicz promień orbity satelity
O 2 O 1. Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego
msg M 7-1 - Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego Zagadnienia: prawa dynamiki Newtona, moment sił, moment bezwładności, dynamiczne równania ruchu wahadła fizycznego,
Odległość kątowa. Liceum Klasy I III Doświadczenie konkursowe 1
Liceum Klasy I III Doświadczenie konkursowe 1 Rok 2015 1. Wstęp teoretyczny Patrząc na niebo po zachodzie Słońca mamy wrażenie, że znajdujemy się pod rozgwieżdżoną kopułą. Kopuła ta stanowi połowę tzw.
2 5 C). Bok rombu ma długość: 8 6
Zadanie 1 W trójkącie prostokątnym o przeciwprostokątnej 6 i przyprostokątnej sinus większego z kątów ostrych ma wartość: C) Zadanie Krótsza przekątna rombu o długości tworzy z bokiem rombu kąt 60 0. Bok
KLUCZ PUNKTOWANIA ODPOWIEDZI
Egzamin maturalny maj 009 MATEMATYKA POZIOM PODSTAWOWY KLUCZ PUNKTOWANIA ODPOWIEDZI Zadanie 1. Matematyka poziom podstawowy Wyznaczanie wartości funkcji dla danych argumentów i jej miejsca zerowego. Zdający
Odległość kątowa. Szkoła średnia Klasy I IV Doświadczenie konkursowe 5
Szkoła średnia Klasy I IV Doświadczenie konkursowe 5 Rok 2019 1. Wstęp teoretyczny Patrząc na niebo po zachodzie Słońca, mamy wrażenie, że znajdujemy się pod rozgwieżdżoną kopułą. Kopuła ta stanowi połowę
Odległość mierzy się zerami
Odległość mierzy się zerami Jednostki odległości w astronomii jednostka astronomiczna AU, j.a. rok świetlny l.y., r.św. parsek pc średnia odległość Ziemi od Słońca odległość przebyta przez światło w próżni
Ziemia jako zegar Piotr A. Dybczyński
Wykład udostępniam na licencji Creative Commons: Ziemia jako zegar Piotr A. Dybczyński Czas gwiazdowy N N N N N N N N N N N s = 0h N s = 0h Czemu taka dziwna tarcza? N s = 0h Czemu taka dziwna tarcza?
1.Rejestracja w programie ( step 1 Log in or create account )
Sally Ride EarthKAM przewodnik po programie Strona programu: https://earthkam.ucsd.edu/ Na tej stronie znajdujemy 5 etapów udziału w misji ( step 1-5) Przed przystąpieniem do misji: 1.Rejestracja w programie
LUBELSKA PRÓBA PRZED MATURĄ POZIOM PODSTAWOWY Klasa 1 Klasa 1
Klasa 1 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 18 stron. 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym. 3. W zadaniach
Elementy astronomii w geografii
Elementy astronomii w geografii Prowadzący: Marcin Kiraga kiraga@astrouw.edu.pl Podstawowe podręczniki: Jan Mietelski, Astronomia w geografii Eugeniusz Rybka, Astronomia ogólna Podręczniki uzupełniające:
Ziemia jako zegar Piotr A. Dybczyński
Wykład udostępniam na licencji Creative Commons: Ziemia jako zegar Piotr A. Dybczyński Czas gwiazdowy N N N N N N N N N N N s = 0h N s = 0h Czemu taka dziwna tarcza? N s = 0h Czemu taka dziwna tarcza?
Sponsorem wydruku schematu odpowiedzi jest wydawnictwo
Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA Sponsorem wydruku schematu odpowiedzi jest wydawnictwo KRYTERIA OCENIANIA POZIOM PODSTAWOWY Katalog poziom podstawowy
CZY TE SCENY TO TYLKO FIKCJA LITERACKA CZY. CZY STAROśYTNI EGIPCJANIE FAKTYCZNIE UMIELI TAK DOBRZE PRZEWIDYWAĆ ZAĆMIENIA?
MOTYW ZAĆMIENIA SŁOŃCA S W POWIEŚCI I FILMIE FARAON M CZY TE SCENY TO TYLKO FIKCJA LITERACKA CZY TEś CHOĆBY SZANSA MOśLIWO LIWOŚCI? CZY STAROśYTNI EGIPCJANIE FAKTYCZNIE UMIELI TAK DOBRZE PRZEWIDYWAĆ ZAĆMIENIA?
Klucz odpowiedzi do zadań zamkniętych i przykładowe rozwiązania zadań otwartych
Centralna Komisja Egzaminacyjna Materiał współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Próbny egzamin maturalny z matematyki listopad 009 Klucz odpowiedzi do
SPRAWDZIAN NR Merkury krąży wokół Słońca po orbicie, którą możemy uznać za kołową.
SPRAWDZIAN NR 1 IMIĘ I NAZWISKO: KLASA: GRUPA A 1. Merkury krąży wokół Słońca po orbicie, którą możemy uznać za kołową. Zaznacz poprawne dokończenie zdania. Siłę powodującą ruch Merkurego wokół Słońca
Aplikacje informatyczne w Astronomii. Internet źródło informacji i planowanie obserwacji astronomicznych
Aplikacje informatyczne w Astronomii Internet źródło informacji i planowanie obserwacji astronomicznych Planowanie obserwacji ciał Układu Słonecznego Plan zajęć: planety wewnętrzne planety zewnętrzne systemy
EGZAMIN MATURALNY 2012 FIZYKA I ASTRONOMIA
Centralna Komisja Egzaminacyjna EGZAMIN MATURALNY 2012 FIZYKA I ASTRONOMIA POZIOM PODSTAWOWY Kryteria oceniania odpowiedzi MAJ 2012 2 Egzamin maturalny z fizyki i astronomii Zadanie 1. (0 1) Obszar standardów
Skrypt 24. Geometria analityczna: Opracowanie L5
Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 24 Geometria analityczna:
Elementy astronomii w nauczaniu przyrody. dr Krzysztof Rochowicz Zakład Dydaktyki Fizyki UMK 2011
Elementy astronomii w nauczaniu przyrody dr Krzysztof Rochowicz Zakład Dydaktyki Fizyki UMK 2011 Szkic referatu Krótki przegląd wątków tematycznych przedmiotu Przyroda w podstawie MEN Astronomiczne zasoby
Sejsmologia gwiazd. Andrzej Pigulski Instytut Astronomiczny Uniwersytetu Wrocławskiego
Sejsmologia gwiazd Andrzej Pigulski Instytut Astronomiczny Uniwersytetu Wrocławskiego XXXIV Zjazd Polskiego Towarzystwa Astronomicznego, Kraków, 16.09.2009 Asterosejsmologia: jak to działa? Z obserwacji
Systemy odniesienia pozycji w odbiornikach nawigacyjnych. dr inż. Paweł Zalewski
Systemy odniesienia pozycji w odbiornikach nawigacyjnych dr inż. Paweł Zalewski Wprowadzenie Terestryczne systemy odniesienia (terrestrial reference systems) lub systemy współrzędnych (coordinate systems)
Prawda/Fałsz. Klucz odpowiedzi. Uwaga: Akceptowane są wszystkie odpowiedzi merytorycznie poprawne i spełniające warunki zadania. Zad 1.
Klucz odpowiedzi Uwaga: Akceptowane są wszystkie odpowiedzi merytorycznie poprawne i spełniające warunki zadania. Zad 1.1 Poprawna odpowiedź: 2 pkt narysowane wszystkie siły, zachowane odpowiednie proporcje
KLUCZ PUNKTOWANIA ODPOWIEDZI
Egzamin maturalny maj 009 MATEMATYKA POZIOM PODSTAWOWY KLUCZ PUNKTOWANIA ODPOWIEDZI Zadanie. a) Matematyka poziom podstawowy Wyznaczanie wartości funkcji dla danych argumentów i jej miejsca zerowego.
Analiza danych Strona 1 z 6
Analiza danych Strona 1 z 6 (D1) Pulsar podwójny Dzięki systematycznym badaniom na przestrzeni ostatnich dziesiątek lat astronom znalazł dużą liczbę pulsarów milisekundowych (okres obrotu < 10ms) W większość
Skrypt 12. Funkcja kwadratowa:
Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 12 Funkcja kwadratowa: 8.
Od redakcji. Symbolem oznaczono zadania wykraczające poza zakres materiału omówionego w podręczniku Fizyka z plusem cz. 2.
Od redakcji Niniejszy zbiór zadań powstał z myślą o tych wszystkich, dla których rozwiązanie zadania z fizyki nie polega wyłącznie na mechanicznym przekształceniu wzorów i podstawieniu do nich danych.
Lista 6. Kamil Matuszewski 13 kwietnia D n =
Lista 6 Kamil Matuszewski 3 kwietnia 6 3 4 5 6 7 8 9 Zadanie Mamy Pokaż, że det(d n ) = n.... D n =.... Dowód. Okej. Dla n =, n = trywialne. Załóżmy, że dla n jest ok, sprawdzę dla n. Aby to zrobić skorzystam
OCENIANIE ARKUSZA POZIOM ROZSZERZONY
Numer zadania... Etapy rozwiązania zadania Przekształcenie wzoru funkcji do żądanej postaci f( x) = + lub f( x) x = x. I sposób rozwiązania podpunktu b). Zapisanie wzoru funkcji w postaci sumy OCENIANIE
Ziemia jako planeta w Układzie Słonecznym
Wykład udostępniam na licencji Creative Commons: Ziemia jako planeta w Układzie Słonecznym Data courtesy Marc Imhoff of NASA GSFC and Christopher Elvidge of NOAA NGDC. Image by Craig Mayhew and Robert
Scenariusz lekcji diagnozującej z matematyki przygotowującej do sprawdzianu z funkcji kwadratowej
Scenariusz lekcji diagnozującej z matematyki przygotowującej do sprawdzianu z funkcji kwadratowej Temat : Powtórzenie i utrwalenie wiadomości z funkcji kwadratowej Czas trwania : 90 min. Środki dydaktyczne:
ODLEGŁOŚĆ NA PŁASZCZYŹNIE - SPRAWDZIAN
ODLEGŁOŚĆ NA PŁASZCZYŹNIE - SPRAWDZIAN Gr. 1 Zad. 1. Dane są punkty: P = (-, 1), R = (5, -1), S = (, 3). a) Oblicz odległość między punktami R i S. b) Wyznacz współrzędne środka odcinka PR. c) Napisz równanie
LUBELSKA PRÓBA PRZED MATURĄ 2015
1 MATEMATYKA - poziom podstawowy klasa 2 CZERWIEC 2015 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 17 stron. 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to
Obłok Oorta. Piotr A. Dybczyński. Wszelkie prawa zastrzeżone, tylko do użytku wewnętrznego
Obłok Oorta Piotr A. Dybczyński Wszelkie prawa zastrzeżone, tylko do użytku wewnętrznego Skale czasu, odległości i prędkości a [AU] P [mln lat] 10000 20000 40000 60000 80000 100000 1.0 2.8 8.0 15 23 31
KLASA I LO Poziom podstawowy (styczeń) Treści nauczania wymagania szczegółowe:
KLASA I LO Poziom podstawowy (styczeń) Treści nauczania wymagania szczegółowe: ZAKRES PODSTAWOWY 7. Planimetria. Uczeń: 1) rozpoznaje trójkąty podobne i wykorzystuje (także w kontekstach praktycznych)
ZESTAW PRZYKŁADOWYCH ZADAŃ Z MATEMATYKI ZAKRES ROZSZERZONY
ZESTAW PRZYKŁADOWYCH ZADAŃ Z MATEMATYKI ZAKRES ROZSZERZONY Zadanie Wskaż w zbiorze A = Zadanie Usuń niewymierność z wyrażenia,(0); 0,9; ; 0; 8; 0; 0 liczby wymierne 6 Zadanie Rozwiąż nierówność x + > Rozwiązanie
Zasady oceniania karta pracy
Zadanie 1.1. 5) stosuje zasadę zachowania energii oraz zasadę zachowania pędu do opisu zderzeń sprężystych i niesprężystych. Zderzenie, podczas którego wózki łączą się ze sobą, jest zderzeniem niesprężystym.
Wyznaczanie długości i szerokości geograficznej z obserwacji astronomicznych.
Wykład udostępniam na licencji Creative Commons: Wyznaczanie długości i szerokości geograficznej z obserwacji astronomicznych. Piotr A. Dybczyński Związek czasu słonecznego z gwiazdowym. Zadanie:
Przykład projektowania łuku poziomego nr 1 z symetrycznymi klotoidami, łuku poziomego nr 2 z niesymetrycznymi klotoidami i krzywej esowej ł
1. Dane Droga klasy technicznej G 1/2, Vp = 60 km/h poza terenem zabudowanym Prędkość miarodajna: Vm = 90 km/h (Vm = 100 km/h dla krętości trasy = 53,40 /km i dla drogi o szerokości jezdni 7,0 m bez utwardzonych
KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM Fizyka Poziom rozszerzony. Listopad Poprawna odpowiedź i zasady przyznawania punktów
GIELDAMATURALNA.PL ODBIERZ KOD DOSTĘPU* - Twój indywidualny klucz do wiedzy! *Kod na końcu klucza odpowiedzi KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM Fizyka Poziom rozszerzony Vademecum i
OCENIANIE ARKUSZA POZIOM ROZSZERZONY
OCENIANIE ARKUSZA POZIOM ROZSZERZONY Numer zadania... Etapy rozwiązania zadania Przekształcenie wzoru funkcji do żądanej postaci f( x) = + lub f( x) =. x x I sposób rozwiązania podpunktu b). Zapisanie