Przykładowe zagadnienia.

Wielkość: px
Rozpocząć pokaz od strony:

Download "Przykładowe zagadnienia."

Transkrypt

1 Wykład udostępniam na licencji Creative Commons: Przykładowe zagadnienia. Piotr A. Dybczyński

2

3 Z BN E N h W Nd A S

4 BN Z t δ N S α BS

5 zenit północny biegun świata BN miejscowy południk astronomiczny Z punkt wschodu szerokość geograficzna deklinacja E punkt północy kąt godzinny horyzont astronomiczny punkt Barana α h W azymut rektascensja Nd nadir A S wysokość równik niebieski punkt zachodu t δ N punkt południa BS pierwszy wertykał południowy biegun świata

6 Równanie czasu (ΔT = czas słoneczny prawdziwy - średni) [min] ΔT nachylenie ekliptyki do równika eliptyczność orbity Ziemi Sty 1 Mar 1 Maj 1 Lip 1 Wrz 1 List 1 Sty

7 Deklinacja Słońca Analemma

8

9 punkt górowania na równiku s = t = t* + α* t* BN α*

10

11 Zadanie Gwiazda o deklinacji δ = +10 góruje po południowej stronie zenitu na wysokości h = +60. Jaka jest szerokość geograficzna obserwatora?

12 linia pionu zenit horyzont

13 zenit góruje po południowej stronie zenitu... horyzont

14 Z góruje po południowej stronie zenitu... horyzont S

15 Z góruje po południowej stronie zenitu... horyzont na wysokości h = S

16 Z góruje po południowej stronie zenitu... na wysokości h = horyzont S

17 Z góruje po południowej stronie zenitu... na wysokości h = horyzont gwiazda o deklinacji δ = S

18 Z góruje po południowej stronie zenitu... na wysokości h = ró w ni k horyzont gwiazda o deklinacji δ = S

19 Z góruje po południowej stronie zenitu... na wysokości h = φ 60 ró w ni k horyzont S gwiazda o deklinacji δ = φ=?

20 Z góruje po południowej stronie zenitu... na wysokości h = BN 10 φ horyzont 60 S ró w ni k N φ gwiazda o deklinacji δ = φ = +40

21 Zadanie Która jest godzina czasu gwiazdowego w chwili, gdy kąt godzinny gwiazdy górującej 3 godziny przed górowaniem punktu Barana wynosi t = 22h?

22 płaszczyzna równika niebieskiego

23 kierunek ruchu sfery niebieskiej punkt przecięcia równika z południkiem miejscowym. płaszczyzna równika niebieskiego

24 gdy kąt godzinny gwiazdy wynosi t = 22h...

25 gdy kąt godzinny gwiazdy wynosi t = 22h... t = 22h

26 gwiazdy górującej 3 godziny przed górowaniem punktu Barana... gdy kąt godzinny gwiazdy wynosi t = 22h... t = 22h

27 gwiazdy górującej 3 godziny przed górowaniem punktu Barana... gdy kąt godzinny gwiazdy wynosi t = 22h... 3h t = 22h

28 gwiazdy górującej 3 godziny przed górowaniem punktu Barana... gdy kąt godzinny gwiazdy wynosi t = 22h... 3h t = 22h s = t =?

29 gwiazdy górującej 3 godziny przed górowaniem punktu Barana... gdy kąt godzinny gwiazdy wynosi t = 22h... 3h t = 22h s = t = 19h

30 Zadanie W miejscu o szerokości geograficznej φ = 0 zauważono, że pewna gwiazda góruje na wysokości h = 45 w momencie zachodu punktu Barana. Podaj współrzędne równikowe równonocne (α i δ) tej gwiazdy.

31 linia pionu zenit horyzont

32 W miejscu o szerokości geograficznej φ = 0... horyzont zenit

33 Z linia pionu W miejscu o szerokości geograficznej φ = 0... horyzont? równik niebieski?

34 Z linia pionu W miejscu o szerokości geograficznej φ = 0... horyzont równik niebieski BN = N oś świata BS = S

35 Z gwiazda góruje na wysokości h = linia pionu W miejscu o szerokości geograficznej φ = 0... horyzont równik niebieski BN = N oś świata BS = S

36 Z gwiazda góruje na wysokości h = linia pionu W miejscu o szerokości geograficznej φ = 0... BN = N horyzont równik niebieski h = 45 oś świata BS = S

37 albo... Z gwiazda góruje na wysokości h = linia pionu W miejscu o szerokości geograficznej φ = 0... BN = N horyzont równik niebieski h = 45 oś świata BS = S

38 Z gwiazda góruje na wysokości h = linia pionu W miejscu o szerokości geograficznej φ = 0... h = 45 horyzont równik niebieski BN = N h = 45 oś świata BS = S

39 Z gwiazda góruje na wysokości h = linia pionu W miejscu o szerokości geograficznej φ = 0... oś świata ruch dobowy horyzont h = 45 równik niebieski BN = N ruch dobowy h = 45 BS = S

40 W miejscu o szerokości geograficznej φ = 0... gwiazda góruje na wysokości h = Z δ1 = +45 δ2 = 45 oś świata ruch dobowy horyzont równik niebieski h = 45 linia pionu BN = N ruch dobowy h = 45 BS = S

41 kierunek ruchu sfery niebieskiej punkt przecięcia równika z południkiem miejscowym. płaszczyzna równika niebieskiego

42 gwiazda góruje... płaszczyzna równika niebieskiego

43 gwiazda góruje... płaszczyzna równika niebieskiego

44 gwiazda góruje... w momencie zachodu punktu Barana... W E płaszczyzna równika niebieskiego

45 w momencie zachodu punktu Barana... gwiazda góruje... t = 6h = W E płaszczyzna równika niebieskiego

46 w momencie zachodu punktu Barana... gwiazda góruje... α=? t = 6h = W E płaszczyzna równika niebieskiego

47 w momencie zachodu punktu Barana... gwiazda góruje... α = 6h t = 6h = W E płaszczyzna równika niebieskiego

48 Zadanie Kąt godzinny gwiazdy znajdującej się na pewnej wysokości wynosi t = 19h30m. Jaki będzie jej kąt godzinny w momencie, gdy po pewnym czasie znajdzie się na tej samej wysokości z drugiej strony południka miejscowego?

49 t1 t2=24h-t1

50 punkt przecięcia równika niebieskiego z południkiem miejscowym. kąt godzinny gwiazdy wynosi t = 19h30m... 4h30m 4h30m W E t = 19h30m płaszczyzna równika niebieskiego

51 Zadanie Gwiazda o deklinacji δ = -25 przecięła południk miejscowy na wysokości h = +10. Podaj szerokość geograficzną tego miejsca, rozważając wszelkie możliwe przypadki. Czy było to górowanie czy dołowanie?

52 linia pionu zenit horyzont

53 gwiazda przecięła południk miejscowy na wysokości h = horyzont zenit

54 gwiazda przecięła południk miejscowy na wysokości h = zenit 10 horyzont

55 gwiazda przecięła południk miejscowy na wysokości h = zenit gwiazda o deklinacji δ = horyzont

56 gwiazda przecięła południk miejscowy na wysokości h = zenit gwiazda o deklinacji δ = δ = horyzont ró i n w k eb i n i k ies

57 gwiazda przecięła południk miejscowy na wysokości h = BN zenit gwiazda o deklinacji δ = φ δ = -25 N 10 horyzont ró i n w k eb i n S i k ies φ = +55

58 gwiazda przecięła południk miejscowy na wysokości h = BN zenit gwiazda o deklinacji δ = φ δ = -25 N 10 horyzont ró i n w i jest to górowanie... k eb i n S i k ies φ = +55

59 Ale jest też druga możliwość... zenit 10 horyzont

60 Ale jest też druga możliwość... zenit gwiazda o deklinacji δ = horyzont

61 Ale jest też druga możliwość... równ i k ni zenit ebie ski horyzont gwiazda o deklinacji δ = δ = -25

62 Ale jest też druga możliwość... równ N i k ni zenit ebie ski horyzont gwiazda o deklinacji δ = BS 10 δ = -25 S

63 Ale jest też druga możliwość... równ N i k ni zenit BS ebie ski horyzont gwiazda o deklinacji δ = φ δ = -25 S φ = 75

64 Ale jest też druga możliwość... równ N i k ni zenit i jest to dołowanie... BS ebie ski horyzont gwiazda o deklinacji δ = φ δ = -25 S φ = 75 BN

65 Zadanie Obliczyć kąt godzinny Słońca prawdziwego h m w Sydney (λe = ) i Honolulu (λw = 10h31m) w chwili, gdy w Warszawie (λe = 1h24m) jest prawdziwa północ (północ czasu słonecznego prawdziwego)?

66 Honolulu Warszawa Sydney 0h λw=10h31m λe=1h24m λe=10h04m

67 0h 8h40m 11h55m λw=10h31m λe=1h24m λe=10h04m

68 t = 12h0m 0h 8h40m 11h55m λw=10h31m λe=1h24m λe=10h04m

69 t = 12h0m 0h t = 20h40m 8h40m 11h55m λw=10h31m λe=1h24m λe=10h04m

70 t = 0h05m t = 12h0m 0h t = 20h40m 8h40m 11h55m λw=10h31m λe=1h24m λe=10h04m

71 t = 0h05m t = 12h0m 0h t = 20h40m 8h40m 11h55m λw=10h31m λe=1h24m λe=10h04m

72 Zadanie W pewnym miejscu o szerokości geograficznej φ = +80, o godz. 23h30m miejscowego czasu gwiazdowego, obserwowano przejście gwiazdy przez południk miejscowy na wysokości h = 35 po północnej stronie zenitu. Czy było to górowanie, czy dołowanie? Podaj współrzędne równikowe równonocne (α i δ) tej gwiazdy. Jaki kąt godzinny będzie ona miała o godz. 23h50m miejscowego czasu gwiazdowego w tym samym miejscu?

73 zenit linia pionu w miejscu o szerokości geograficznej φ = horyzont

74 w miejscu o szerokości geograficznej φ = BN Z φ=+80 N ski e i b e i n k i n w ó r horyzont S

75 w miejscu o szerokości geograficznej φ = BN przejście przez południk na wys. h = +35 po półn. stronie zenitu... Z φ=+80 N ski e i b e i n k i n w ó r horyzont S

76 BN w miejscu o szerokości geograficznej φ = N h = +35 ski e i b e i n k i n w ó r przejście przez południk na wys. h = +35 po półn. stronie zenitu... Z φ=+80 horyzont S

77 w miejscu o szerokości geograficznej φ = N BN 35 ski e i b e i n k i n w ó r było to dołowanie... przejście przez południk na wys. h = +35 po półn. stronie zenitu... Z φ=+80 horyzont S

78 BN w miejscu o szerokości geograficznej φ = δ N 35 ski e i b e i n k i n w ó r było to dołowanie... przejście przez południk na wys. h = +35 po półn. stronie zenitu... Z φ=+80 horyzont S δ = 45

79 kierunek ruchu sfery niebieskiej punkt przecięcia równika z południkiem miejscowym. W E płaszczyzna równika niebieskiego

80 gwiazda dołowała... E W

81 gwiazda dołowała... E W

82 gwiazda dołowała... E t = 12h W

83 gwiazda dołowała... E o godz. 23h30m miejscowego czasu gwiazdowego t = 12h W

84 gwiazda dołowała... E o godz. 23h30m miejscowego czasu gwiazdowego t = 12h W α=?

85 gwiazda dołowała... E o godz. 23h30m miejscowego czasu gwiazdowego t = 12h W α = 11h30m

86 gwiazda dołowała... E Jaki kąt godzinny będzie miała o godz. 23h50m miejscowego czasu gwiazdowego w tym samym miejscu? o godz. 23h30m miejscowego czasu gwiazdowego t = 12h W α = 11h30m

87 o godz. 23h30m miejscowego czasu gwiazdowego gwiazda dołowała... E Jaki kąt godzinny będzie miała o godz. 23h50m miejscowego czasu gwiazdowego w tym samym miejscu? t = 12h20m W α = 11h30m

88 Zadanie Dołowanie gwiazdy na wysokości h = 0 h m nastąpiło o godzinie czasu gwiazdowego Greenwich. Deklinacja gwiazdy wynosi δ = +50, a długość geograficzna miejsca obserwacji λw = 5h. Podać rektascensję gwiazdy i szerokość geograficzną miejsca obserwacji.

89 zenit linia pionu dołowanie na wysokości h = 0... horyzont

90 zenit linia pionu dołowanie na wysokości h = 0... horyzont

91 zenit linia pionu dołowanie na wysokości h = 0... horyzont deklinacja gwiazdy wynosi δ =

92 zenit deklinacja gwiazdy wynosi δ = linia pionu dołowanie na wysokości h = 0... δ = +50 w ró horyzont ni k ni i eb ki es

93 zenit deklinacja gwiazdy wynosi δ = BS linia pionu dołowanie na wysokości h = 0... δ = +50 w ró horyzont ni k ni i eb ki es Półkula południowa?

94 zenit deklinacja gwiazdy wynosi δ = BS linia pionu dołowanie na wysokości h = 0... δ = +50 w ró horyzont ni k ni i eb ki es Nie! To jest górowanie! Półkula południowa?

95 zenit deklinacja gwiazdy wynosi δ = BS linia pionu dołowanie na wysokości h = 0... δ = +50 w ró horyzont ni k ni i eb ki es Nie! To jest górowanie! Półkula południowa?

96 zenit es ki eb i ni ró w ni linia pionu BN deklinacja gwiazdy wynosi δ = k dołowanie na wysokości h = 0... δ = +50 horyzont

97 zenit es ki eb i ni ró w ni linia pionu BN deklinacja gwiazdy wynosi δ = k dołowanie na wysokości h = 0... δ = +50 jest dołowanie... horyzont

98 zenit es ki eb i ni φ ró w ni linia pionu BN deklinacja gwiazdy wynosi δ = k dołowanie na wysokości h = 0... δ = +50 jest dołowanie... horyzont Zatem: φ=+40

99 i druga część: Dołowanie gwiazdy nastąpiło o godzinie 10h30m czasu gwiazdowego Greenwich. Długość geograficzna miejsca obserwacji λw = 5h. Podać rektascensję gwiazdy.

100 dołowanie t * = 12h Czas gwiazdowy: w Greenwich godzina 10 h30m na długości λw = 5h godzina 5h30m Rektascensja: gwiazdy górującej gwizdy dołującej 5 h30m 17h30m

101 Zadanie Ile wynosi (z dokładnością do pół godziny) miejscowy czas gwiazdowy w Sydney (λe = 10h04m) dnia 31 lipca o godzinie 11:05 miejscowego, prawdziwego czasu słonecznego

102 pomyślmy marca Słońce jest w punkcie Barana, h czyli ma rektascensję 0 h 22 czerwca ma rektascensję 6 Zatem 31 lipca rektascensja wyniesie około 8h40m 11:05 miejscowego,prawdziwego czasu słonecznego to 55 minut przed górowaniem Tak więc miejscowy czas gwiazdowy wynosi h m ok A długość geograficzna Sydney nie jest potrzebna...

103 i tak na rysunkach lub w głowie rozwiązać można szybko każde z tych zadań... czasami może przydać się kalkulator...

104 Zadanie Ile wynosi w przybliżeniu rektascensja i deklinacja Słońca prawdziwego 1 grudnia?

105 Deklinacja Słońca Analemma Z rysunku analemmy odczytujemy wprost: δ» -22 Natomiast poprawka czasu: ΔT» 10m20s

106 Dzień 1 grudnia to =335 dzień roku. Słońce ma rektascensję równą zeru 21 marca. Ta data to =80 dzień roku. Zatem od równonocy wiosennej do 1 grudnia minęło = 255 dni. Każdego dnia rektascensja Słońca średniego rośnie o 3m56s czyli o 236s. Zatem 1 grudnia rektascensja Słońca średniego wyniesie 255*236s=60180s» 16h43m. Odejmujemy (bo poprawka do czasu jest dodatnia zatem rektascensja musi być mniejsza) poprawkę odczytaną z rysunku: 16h43m - 10m20s» 16h33m

107 Otrzymaliśmy zatem na 1 grudnia deklinację Słońca prawdziwego równą: δ» -22 oraz rektascensję: α = 16h33m Z rocznika na rok 2012 można odczytać: δ = ' oraz α = 16h29m

108 Zadanie Dnia 27 lipca 2015 pewna gwiazda górowała w Poznaniu (φ = +52, λe = 1h07m) o godzinie 3h35m czasu wschodnio-europejskiego (czas h letni, strefa UTC+2 ). Jaką rektascensję (z dokładnością 10 minut) ma ta gwiazda?

109 Dzień 27 lipca to 365 ( ) 4= 208 dzień roku. Słońce średnie ma rektascensję równą zeru 21 marca. Ta data to =80 dzień roku. Zatem od równonocy wiosennej do 27 lipca minęło = 128 dni. Każdego dnia rektascensja Słońca średniego rośnie o 3m56s czyli o 236s. Zatem 27 lipca rektascensja Słońca średniego wyniesie 128*236s=30208s» 8h23m.

110 Była godzina 3h35m czasu wschodnio-europejskiego a zatem 3h35m 2h + 1h07m = 2h42m średniego miejscowego czasu słonecznego w Poznaniu. Kąt godzinny Słońca średniego wynosił więc wtedy 14h42m. Skoro rektascensja Słońca średniego wynosiła 8h23m to była wówczas godzina 14h42m + 8h23m = 23h05m miejscowego czasu gwiazdowego. Gwiazda wtedy górowała więc jej rektascensja wynosiła właśnie około 23h05m, a szerokość geograficzna Poznania nie była do niczego potrzebna.

111 ...do zobaczenia na kolokwium!

Przykładowe zagadnienia.

Przykładowe zagadnienia. Wykład udostępniam na licencji Creative Commons: Przykładowe zagadnienia. Piotr A. Dybczyński Z BN E N h W Nd A S BN Z δ N t S α BS zenit północny biegun świata BN miejscowy południk astronomiczny Z punkt

Bardziej szczegółowo

Jak rozwiązywać zadania.

Jak rozwiązywać zadania. Wykład udostępniam na licencji Creative Commons: Jak rozwiązywać zadania. Piotr A. Dybczyński zenit północny biegun świata BN miejscowy południk astronomiczny Z punkt wschodu szerokość geograficzna deklinacja

Bardziej szczegółowo

Układy współrzędnych równikowych

Układy współrzędnych równikowych Wykład udostępniam na licencji Creative Commons: Układy współrzędnych równikowych Piotr A. Dybczyński Taki układ wydaje się prosty. Sytuacja komplikuje się gdy musimy narysować i używać dwóch lub trzech

Bardziej szczegółowo

Układy współrzędnych równikowych

Układy współrzędnych równikowych Wykład udostępniam na licencji Creative Commons: Układy współrzędnych równikowych Piotr A. Dybczyński 15 października 2013 Układ współrzędnych sferycznych Taki układ wydaje się prosty. Sytuacja komplikuje

Bardziej szczegółowo

Ziemia jako zegar Piotr A. Dybczyński

Ziemia jako zegar Piotr A. Dybczyński Wykład udostępniam na licencji Creative Commons: Ziemia jako zegar Piotr A. Dybczyński Czas gwiazdowy N N N N N N N N N N N s = 0h N s = 0h Czemu taka dziwna tarcza? N s = 0h Czemu taka dziwna tarcza?

Bardziej szczegółowo

Wędrówki między układami współrzędnych

Wędrówki między układami współrzędnych Wykład udostępniam na licencji Creative Commons: Wędrówki między układami współrzędnych Piotr A. Dybczyński Układ równikowy godzinny i układ horyzontalny zenit północny biegun świata Z punkt wschodu szerokość

Bardziej szczegółowo

Ziemia jako zegar Piotr A. Dybczyński

Ziemia jako zegar Piotr A. Dybczyński Wykład udostępniam na licencji Creative Commons: Ziemia jako zegar Piotr A. Dybczyński Czas gwiazdowy N N N N N N N N N N N s = 0h Miara czasowa kątów 360 = 24h 15 = 1h = 60m m 1 = 4 m 60' = 4 15' = 1m

Bardziej szczegółowo

Ziemia jako zegar Piotr A. Dybczyński

Ziemia jako zegar Piotr A. Dybczyński Wykład udostępniam na licencji Creative Commons: Ziemia jako zegar Piotr A. Dybczyński Czas gwiazdowy N N N N N N N N N N N s = 0h N s = 0h Czemu taka dziwna tarcza? N s = 0h Czemu taka dziwna tarcza?

Bardziej szczegółowo

Ziemia jako zegar Piotr A. Dybczyński

Ziemia jako zegar Piotr A. Dybczyński Wykład udostępniam na licencji Creative Commons: Ziemia jako zegar Piotr A. Dybczyński Czas gwiazdowy N N N N N N N N N N N s = 0h N s = 0h Czemu taka dziwna tarcza? N s = 0h Czemu taka dziwna tarcza?

Bardziej szczegółowo

Gdzie się znajdujemy na Ziemi i w Kosmosie

Gdzie się znajdujemy na Ziemi i w Kosmosie Gdzie się znajdujemy na Ziemi i w Kosmosie Realizując ten temat wspólnie z uczniami zajęliśmy się określeniem położenia Ziemi w Kosmosie. Cele: Rozwijanie umiejętności określania kierunków geograficznych

Bardziej szczegółowo

Wyznaczanie długości i szerokości geograficznej z obserwacji astronomicznych.

Wyznaczanie długości i szerokości geograficznej z obserwacji astronomicznych. Wykład udostępniam na licencji Creative Commons: Wyznaczanie długości i szerokości geograficznej z obserwacji astronomicznych. Piotr A. Dybczyński Związek czasu słonecznego z gwiazdowym. Zadanie:

Bardziej szczegółowo

Wyznaczanie długości i szerokości geograficznej z obserwacji astronomicznych.

Wyznaczanie długości i szerokości geograficznej z obserwacji astronomicznych. Wykład udostępniam na licencji Creative Commons: Wyznaczanie długości i szerokości geograficznej z obserwacji astronomicznych. Piotr A. Dybczyński Związek czasu słonecznego z gwiazdowym. Zadanie:

Bardziej szczegółowo

Rozwiązania przykładowych zadań

Rozwiązania przykładowych zadań Rozwiązania przykładowych zadań Oblicz czas średni i czas prawdziwy słoneczny na południku λ=45 E o godzinie 15 00 UT dnia 1 VII. Rozwiązanie: RóŜnica czasu średniego słonecznego T s w danym miejscu i

Bardziej szczegółowo

WZORY NA WYSOKOŚĆ SŁOŃCA. Wzory na wysokość Słońca

WZORY NA WYSOKOŚĆ SŁOŃCA. Wzory na wysokość Słońca TEMAT: Obliczanie wysokości Słońca. Daty WZORY NA WYSOKOŚĆ SŁOŃCA Wzory dla półkuli północnej 21 III i 23 IX h= 90 -φ h= 90 -φ Wzory dla półkuli południowej 22 VI h= 90 -φ+ 23 27 h= 90 -φ- 23 27 22 XII

Bardziej szczegółowo

Odległość kątowa. Liceum Klasy I III Doświadczenie konkursowe 1

Odległość kątowa. Liceum Klasy I III Doświadczenie konkursowe 1 Liceum Klasy I III Doświadczenie konkursowe 1 Rok 2015 1. Wstęp teoretyczny Patrząc na niebo po zachodzie Słońca mamy wrażenie, że znajdujemy się pod rozgwieżdżoną kopułą. Kopuła ta stanowi połowę tzw.

Bardziej szczegółowo

Analemmatyczny zegar słoneczny dla Włocławka

Analemmatyczny zegar słoneczny dla Włocławka Analemmatyczny zegar słoneczny dla Włocławka Jest to zegar o poziomej tarczy z pionowym gnomonem przestawianym w zależności od deklinacji Słońca (δ) kąta miedzy kierunkiem na to ciało a płaszczyzną równika

Bardziej szczegółowo

RUCH OBROTOWY I OBIEGOWY ZIEMI

RUCH OBROTOWY I OBIEGOWY ZIEMI 1. Wpisz w odpowiednich miejscach następujące nazwy: Równik, Zwrotnika Raka, Zwrotnik Koziorożca iegun Południowy, iegun Północny Koło Podbiegunowe Południowe Koło Podbiegunowe Południowe RUCH OROTOWY

Bardziej szczegółowo

NACHYLENIE OSI ZIEMSKIEJ DO PŁASZCZYZNY ORBITY. Orbita tor ciała niebieskiego lub sztucznego satelity krążącego wokół innego ciała niebieskiego.

NACHYLENIE OSI ZIEMSKIEJ DO PŁASZCZYZNY ORBITY. Orbita tor ciała niebieskiego lub sztucznego satelity krążącego wokół innego ciała niebieskiego. RUCH OBIEGOWY ZIEMI NACHYLENIE OSI ZIEMSKIEJ DO PŁASZCZYZNY ORBITY Orbita tor ciała niebieskiego lub sztucznego satelity krążącego wokół innego ciała niebieskiego. OBIEG ZIEMI WOKÓŁ SŁOŃCA W czasie równonocy

Bardziej szczegółowo

24 godziny 23 godziny 56 minut 4 sekundy

24 godziny 23 godziny 56 minut 4 sekundy Ruch obrotowy Ziemi Podstawowe pojęcia Ruch obrotowy, inaczej wirowy to ruch Ziemi wokół własnej osi. Oś Ziemi jest teoretyczną linią prostą, która przechodzi przez Biegun Północny i Biegun Południowy.

Bardziej szczegółowo

Astronomia. Wykład IV. Waldemar Ogłoza. >> dla studentów. Wykład dla studentów fizyki

Astronomia. Wykład IV.  Waldemar Ogłoza. >> dla studentów. Wykład dla studentów fizyki Astronomia Wykład IV Wykład dla studentów fizyki Waldemar Ogłoza www.as.up.krakow.pl >> dla studentów Ruch obrotowy Ziemi Efekty ruchu wirowego Ziemi Zjawisko dnia i nocy Spłaszczenie Ziemi przez siłę

Bardziej szczegółowo

Aplikacje informatyczne w Astronomii. Internet źródło informacji i planowanie obserwacji astronomicznych

Aplikacje informatyczne w Astronomii. Internet źródło informacji i planowanie obserwacji astronomicznych Aplikacje informatyczne w Astronomii Internet źródło informacji i planowanie obserwacji astronomicznych Skrót kursu: Tydzień I wstęp i planowanie pokazów popularnonaukowych a) współrzędne niebieskie układy

Bardziej szczegółowo

Elementy astronomii w geografii

Elementy astronomii w geografii Elementy astronomii w geografii Prowadzący: Marcin Kiraga kiraga@astrouw.edu.pl Podstawowe podręczniki: Jan Mietelski, Astronomia w geografii Eugeniusz Rybka, Astronomia ogólna Podręczniki uzupełniające:

Bardziej szczegółowo

wersja

wersja www.as.up.krakow.pl wersja 2013-01-12 STAŁE: π = 3.14159268... e = 2.718281828... Jednostka astronomiczna 1 AU = 149.6 mln km = 8 m 19 s świetlnych Rok świetlny [l.y.] = c t = 9460730472580800 m = 9.46

Bardziej szczegółowo

Astronomia. Wykład II. Waldemar Ogłoza. Wykład dla studentów fizyki. > dla studentów > zajęcia W.Ogłozy

Astronomia. Wykład II.   Waldemar Ogłoza. Wykład dla studentów fizyki. > dla studentów > zajęcia W.Ogłozy Astronomia Wykład II Wykład dla studentów fizyki Waldemar Ogłoza www.as.up.krakow.pl > dla studentów > zajęcia W.Ogłozy Układy współrzędnych sferycznych Koła Wielkie i Koła Małe RównoleŜniki to koła małe

Bardziej szczegółowo

Astronomia. Wykład I. Waldemar Ogłoza. Wykład dla studentów geografii. dla studentów > informacje>zajęcia W.Ogłozy>a4g-w1.

Astronomia. Wykład I.  Waldemar Ogłoza. Wykład dla studentów geografii. dla studentów > informacje>zajęcia W.Ogłozy>a4g-w1. Astronomia Wykład I Wykład dla studentów geografii Waldemar Ogłoza www.as.up.krakow.pl dla studentów > informacje>zajęcia W.Ogłozy>a4g-w1.pdf Literatura: J.M.Kreiner Ziemia i Wszechświat astronomia nie

Bardziej szczegółowo

Obliczanie czasów miejscowych słonecznych i czasów strefowych. 1h = 15 0

Obliczanie czasów miejscowych słonecznych i czasów strefowych. 1h = 15 0 Obliczanie czasów miejscowych słonecznych i czasów strefowych. Kilka słów wstępnych Ziemia obraca się z zachodu na wschód. W ciągu 24 godzin obróci się o 360 0. Jeżeli podzielimy 360 0 na 24 godziny otrzymamy

Bardziej szczegółowo

Tomasz Ściężor. Almanach Astronomiczny na rok 2012

Tomasz Ściężor. Almanach Astronomiczny na rok 2012 Tomasz Ściężor Almanach Astronomiczny na rok 2012 Klub Astronomiczny Regulus Kraków 2011 1 Skład komputerowy almanachu wykonał autor publikacji Tomasz Ściężor Wszelkie prawa zastrzeżone. Żadna część tej

Bardziej szczegółowo

Czas w astronomii. Krzysztof Kamiński

Czas w astronomii. Krzysztof Kamiński Czas w astronomii Krzysztof Kamiński Czas gwiazdowy - kąt godzinny punktu Barana; lokalny na danym południku Ziemi; związany z układem równikowym równonocnym; odzwierciedla niejednorodności rotacji Ziemi

Bardziej szczegółowo

Astronomia II, ćwiczenia, podsumowanie. Kolokwium I. m= 2.5log F F 0

Astronomia II, ćwiczenia, podsumowanie. Kolokwium I. m= 2.5log F F 0 Astronomia II, ćwiczenia, podsumowanie 1 Wielkościgwiazdowe Definicja wielkości gwiazdowej: Kolokwium I m= 2.5log F F 0, (1) gdzief jestnateżeniempromieniowaniapoch adz acego od danej gwiazdy, af 0 nateżeniempromieniowaniagwiazdy,dlaktórejzostałoustalonem=0

Bardziej szczegółowo

Odległość kątowa. Szkoła średnia Klasy I IV Doświadczenie konkursowe 5

Odległość kątowa. Szkoła średnia Klasy I IV Doświadczenie konkursowe 5 Szkoła średnia Klasy I IV Doświadczenie konkursowe 5 Rok 2019 1. Wstęp teoretyczny Patrząc na niebo po zachodzie Słońca, mamy wrażenie, że znajdujemy się pod rozgwieżdżoną kopułą. Kopuła ta stanowi połowę

Bardziej szczegółowo

I OKREŚLANIE KIERUNKÓW NA ŚWIECIE

I OKREŚLANIE KIERUNKÓW NA ŚWIECIE GEOGRAFIA I OKREŚLANIE KIERUNKÓW NA ŚWIECIE a) róża kierunków b) według przedmiotów terenowych Na samotnie rosnących drzewach gałęzie od strony południowej są dłuższe i grubsze. Słoje w pieńkach od strony

Bardziej szczegółowo

Astronomia Wykład I. KOSMOLOGIA bada Wszechświat jako całość. Literatura: dla studentów > informacje>zajęcia W.Ogłozy>a4g-w1.

Astronomia Wykład I. KOSMOLOGIA bada Wszechświat jako całość. Literatura:  dla studentów > informacje>zajęcia W.Ogłozy>a4g-w1. Astronomia Wykład I Wykład dla studentów geografii Waldemar Ogłoza www.as.up.krakow.pl dla studentów > informacje>zajęcia W.Ogłozy>a4g-w1.pdf J.M.Kreiner Rybka E. E, Literatura: Ziemia i Wszechświat astronomia

Bardziej szczegółowo

Zapisy podstawy programowej Uczeń: 2. 1) wyjaśnia cechy budowy i określa położenie różnych ciał niebieskich we Wszechświecie;

Zapisy podstawy programowej Uczeń: 2. 1) wyjaśnia cechy budowy i określa położenie różnych ciał niebieskich we Wszechświecie; Geografia listopad Liceum klasa I, poziom rozszerzony XI Ziemia we wszechświecie Zapisy podstawy programowej Uczeń: 2. 1) wyjaśnia cechy budowy i określa położenie różnych ciał niebieskich we Wszechświecie;

Bardziej szczegółowo

Tomasz Ściężor. Almanach Astronomiczny na rok 2014

Tomasz Ściężor. Almanach Astronomiczny na rok 2014 Tomasz Ściężor Almanach Astronomiczny na rok 2014 Klub Astronomiczny Regulus Kraków 2013 1 Recenzent prof. dr hab. Jerzy M. Kreiner Skład komputerowy almanachu wykonał autor publikacji Tomasz Ściężor Wszelkie

Bardziej szczegółowo

Obliczanie pozycji obiektu na podstawie znanych elementów orbity. Rysunek: Elementy orbity: rozmiar wielkiej półosi, mimośród, nachylenie

Obliczanie pozycji obiektu na podstawie znanych elementów orbity. Rysunek: Elementy orbity: rozmiar wielkiej półosi, mimośród, nachylenie Obliczanie pozycji obiektu na podstawie znanych elementów orbity Rysunek: Elementy orbity: rozmiar wielkiej półosi, mimośród, nachylenie a - wielka półoś orbity e - mimośród orbity i - nachylenie orbity

Bardziej szczegółowo

Ruch obiegowy Ziemi. Ruch obiegowy Ziemi. Cechy ruchu obiegowego. Cechy ruchu obiegowego

Ruch obiegowy Ziemi. Ruch obiegowy Ziemi. Cechy ruchu obiegowego. Cechy ruchu obiegowego Ruch obiegowy Ziemi Ruch obiegowy Ziemi Ziemia obiega Słońce po drodze zwanej orbitą ma ona kształt lekko wydłużonej elipsy Czas pełnego obiegu wynosi 365 dni 5 godzin 48 minut i 46 sekund okres ten nazywamy

Bardziej szczegółowo

3b. Zadania - ruch obiegowy (wysokość górowania Słońca)

3b. Zadania - ruch obiegowy (wysokość górowania Słońca) 3b. Zadania - ruch obiegowy (wysokość górowania Słońca) W dniach równonocy (21 III i 23 IX) promienie słoneczne padają prostopadle na równik. Jeżeli oddalimy się od równika o 10, to kąt padania promieni

Bardziej szczegółowo

Elementy astronomii dla geografów. Bogdan Wszołek Agnieszka Kuźmicz

Elementy astronomii dla geografów. Bogdan Wszołek Agnieszka Kuźmicz Elementy astronomii dla geografów Bogdan Wszołek Agnieszka Kuźmicz Instytut Geografii i Gospodarki Przestrzennej Uniwersytetu Jagiellońskiego Elementy astronomii dla geografów Bogdan Wszołek Agnieszka

Bardziej szczegółowo

Człowiek najlepsza inwestycja. Fot.NASA FENIKS PRACOWNIA DYDAKTYKI ASTRONOMII

Człowiek najlepsza inwestycja. Fot.NASA FENIKS PRACOWNIA DYDAKTYKI ASTRONOMII Fot.NASA FENIKS PRACOWNIA DYDAKTYKI ASTRONOMII PROPOZYCJA ĆWICZEŃ DZIENNYCH Z ASTRONOMII DLA UCZESTNIKÓW PROGRAMU FENIKS dr hab. Piotr Gronkowski, prof. UR gronk@univ.rzeszow.pl Uniwersytet Rzeszowski

Bardziej szczegółowo

Tomasz Ściężor. Almanach Astronomiczny na rok 2013

Tomasz Ściężor. Almanach Astronomiczny na rok 2013 Tomasz Ściężor Almanach Astronomiczny na rok 2013 Klub Astronomiczny Regulus Kraków 2012 1 Skład komputerowy almanachu wykonał autor publikacji Tomasz Ściężor Wszelkie prawa zastrzeżone. Żadna część tej

Bardziej szczegółowo

I. KARTA PRZEDMIOTU. Zapoznanie z układem współrzędnych sferycznych horyzontalnych.

I. KARTA PRZEDMIOTU. Zapoznanie z układem współrzędnych sferycznych horyzontalnych. I. KARTA PRZEDMIOTU. Nazwa przedmiotu: ASTRONAWIGACJA. Kod przedmiotu: Na. Jednostka prowadząca: Wydział Nawigacji i Uzbrojenia Okrętowego 4. Kierunek: Nawigacja 5. Specjalność: Wszystkie specjalności

Bardziej szczegółowo

Wprowadzenie do astronomii

Wprowadzenie do astronomii Wprowadzenie do astronomii (wydanie czwarte) Bogdan Wszołek Obserwatorium Astronomiczne Królowej Jadwigi Rzepiennik Biskupi 2018 Redakcja Bogdan Wszołek Projekt okładki Bogdan Wszołek Copyright by Obserwatorium

Bardziej szczegółowo

Astronomia Wykład III

Astronomia Wykład III Astronomia Wykład III Wykład dla studentów geografii Ruch obrotowy Ziemi Waldemar Ogłoza www.as.up.krakow.pl >> dla studentów Efekty ruchu wirowego Ziemi Zmierzchy i świty Zjawisko dnia i nocy Spłaszczenie

Bardziej szczegółowo

LX Olimpiada Astronomiczna 2016/2017 Zadania z zawodów III stopnia. S= L 4π r L

LX Olimpiada Astronomiczna 2016/2017 Zadania z zawodów III stopnia. S= L 4π r L LX Olimpiada Astronomiczna 2016/2017 Zadania z zawodów III stopnia 1. Przyjmij, że prędkość rotacji różnicowej Słońca, wyrażoną w stopniach na dobę, można opisać wzorem: gdzie φ jest szerokością heliograficzną.

Bardziej szczegółowo

Kartkówka powtórzeniowa nr 2

Kartkówka powtórzeniowa nr 2 Terminarz: 3g 7 lutego 3b, 3e 8 lutego 3a, 3c, 3f 9 lutego Kartkówka powtórzeniowa nr 2 Zagadnienia: 1. czas słoneczny 2. ruch obrotowy i obiegowy Słońca 3. dni charakterystyczne, oświetlenie Ziemi Ad.

Bardziej szczegółowo

Wykład z podstaw astronomii

Wykład z podstaw astronomii Wykład z podstaw astronomii dla studentów I roku geografii zaocznej, rok 2005/2006 wykładowca: Iwona Wytrzyszczak 1 Spis treści 1 Układy współrzędnych niebieskich 4 1.1 Układ horyzontalny.............................

Bardziej szczegółowo

Cykl Metona. Liceum Klasy I III Doświadczenie konkursowe nr 1

Cykl Metona. Liceum Klasy I III Doświadczenie konkursowe nr 1 Liceum Klasy I III Doświadczenie konkursowe nr 1 Rok 2017 1. Wstęp teoretyczny Od czasów prehistorycznych życie człowieka regulują trzy regularnie powtarzające się cykle astronomiczne. Pierwszy z nich

Bardziej szczegółowo

Analiza danych. 7 th International Olympiad on Astronomy & Astrophysics 27 July 5 August 2013, Volos Greece. Zadanie 1.

Analiza danych. 7 th International Olympiad on Astronomy & Astrophysics 27 July 5 August 2013, Volos Greece. Zadanie 1. Analiza danych Zadanie 1. Zdjęcie 1 przedstawiające część gwiazdozbioru Wielkiej Niedźwiedzicy, zostało zarejestrowane kamerą CCD o rozmiarze chipu 17mm 22mm. Wyznacz ogniskową f systemu optycznego oraz

Bardziej szczegółowo

Model ruchomy - globus ze sklepieniem niebieskim wersja uproszczona

Model ruchomy - globus ze sklepieniem niebieskim wersja uproszczona IMPORTER: educarium spółka z o.o. ul. Grunwaldzka 207, 85-451 Bydgoszcz tel. (52) 32 47 800 fax (52) 32 10 251, 32 47 880 e-mail: info@educarium.pl portal edukacyjny: www.educarium.pl sklep internetowy:

Bardziej szczegółowo

Zapoznanie z pojęciem sfery niebieskiej oraz definicjami podstawowych jej elementów.

Zapoznanie z pojęciem sfery niebieskiej oraz definicjami podstawowych jej elementów. C C C3 I. KARTA PRZEDMIOTU. Nazwa przedmiotu: ASTRONAWIGACJA. Kod przedmiotu: Na 3. Jednostka prowadząca: Wydział Nawigacji i Uzbrojenia Okrętowego 4. Kierunek: Nawigacja 5. Specjalność: Wszystkie specjalności

Bardziej szczegółowo

b. Ziemia w Układzie Słonecznym sprawdzian wiadomości

b. Ziemia w Układzie Słonecznym sprawdzian wiadomości a. b. Ziemia w Układzie Słonecznym sprawdzian wiadomości 1. Cele lekcji Cel ogólny: podsumowanie wiadomości o Układzie Słonecznym i miejscu w nim Ziemi. Uczeń: i. a) Wiadomości zna planety Układu Słonecznego,

Bardziej szczegółowo

Dyfrakcja to zdolność fali do uginania się na krawędziach przeszkód. Dyfrakcja światła stanowi dowód na to, że światło ma charakter falowy.

Dyfrakcja to zdolność fali do uginania się na krawędziach przeszkód. Dyfrakcja światła stanowi dowód na to, że światło ma charakter falowy. ZAŁĄCZNIK V. SŁOWNICZEK. Czas uniwersalny Czas uniwersalny (skróty: UT lub UTC) jest taki sam, jak Greenwich Mean Time (skrót: GMT), tzn. średni czas słoneczny na południku zerowym w Greenwich, Anglia

Bardziej szczegółowo

Ruch obrotowy i orbitalny Ziemi

Ruch obrotowy i orbitalny Ziemi Ruch obrotowy i orbitalny Ziemi Ruch dobowy sfery niebieskiej jest pozorny wynika z obracania się Ziemi wokół własnej osi z okresem równym 1 dobie gwiazdowej. Tor pozornego ruchu dobowego sfery niebieskiej

Bardziej szczegółowo

ROZDZIAŁ 1. NAWIGACJA MORSKA, WSPÓŁRZĘDNE GEOGRAFICZNE, ZBOCZENIE NAWIGACYJNE. KIERUNEK NA MORZU.

ROZDZIAŁ 1. NAWIGACJA MORSKA, WSPÓŁRZĘDNE GEOGRAFICZNE, ZBOCZENIE NAWIGACYJNE. KIERUNEK NA MORZU. SPIS TREŚCI Przedmowa ROZDZIAŁ 1. NAWIGACJA MORSKA, WSPÓŁRZĘDNE GEOGRAFICZNE, ZBOCZENIE NAWIGACYJNE. KIERUNEK NA MORZU. 1.1. Szerokość i długość geograficzna. Różnica długości. Różnica szerokości. 1.1.1.

Bardziej szczegółowo

Wykład udostępniam na licencji Creative Commons: Ziemia jako planeta

Wykład udostępniam na licencji Creative Commons: Ziemia jako planeta Wykład udostępniam na licencji Creative Commons: Ziemia jako planeta Data courtesy Marc Imhoff of NASA GSFC and Christopher Elvidge of NOAA NGDC. Image by Craig Mayhew and Robert Simmon, NASA GSFC. Piotr

Bardziej szczegółowo

2. Ziemia we Wszechświecie

2. Ziemia we Wszechświecie 2. Ziemia we Wszechświecie 5 4 6 3 Horyzont N O 2 1 Rysunek 2.1 Punkty orientacyjne na sferze niebieskiej z horyzontem dla obserwatora O stojącego w Krakowie 21 III w punkcie o współrzędnych geograficznych

Bardziej szczegółowo

Przykład testu z astronomicznych podsatw geografii Uzupełnić puste pola : Wybarć własciwe odpowiedzi a,b,c,d,e... (moŝe byc kilka poprawnych!!

Przykład testu z astronomicznych podsatw geografii Uzupełnić puste pola : Wybarć własciwe odpowiedzi a,b,c,d,e... (moŝe byc kilka poprawnych!! Przykład testu z astronomicznych podsatw geografii Uzupełnić puste pola : Wybarć własciwe odpowiedzi a,b,c,d,e.... (moŝe byc kilka poprawnych!!) 1. Astronomia zajmuje się badaniem 2. Z powodu zjawiska

Bardziej szczegółowo

PROPOZYCJA ĆWICZEŃ OBSERWACYJNYCH Z ASTRONOMII DO PRZEPROWADZENIA W OBSERWATORIUM ASTRONOMICZNYM INSTYTUTU FIZYKI UR DLA UCZESTNIKÓW PROJEKTU FENIKS

PROPOZYCJA ĆWICZEŃ OBSERWACYJNYCH Z ASTRONOMII DO PRZEPROWADZENIA W OBSERWATORIUM ASTRONOMICZNYM INSTYTUTU FIZYKI UR DLA UCZESTNIKÓW PROJEKTU FENIKS PROPOZYCJA ĆWICZEŃ OBSERWACYJNYCH Z ASTRONOMII DO PRZEPROWADZENIA W OBSERWATORIUM ASTRONOMICZNYM INSTYTUTU FIZYKI UR DLA UCZESTNIKÓW PROJEKTU FENIKS dr hab. Piotr Gronkowski - gronk@univ.rzeszow.pl Ćwiczenie

Bardziej szczegółowo

BADANIE WYNIKÓW KLASA 1

BADANIE WYNIKÓW KLASA 1 BADANIE WYNIKÓW KLASA 1 Zad. 1 (0-1p) Wielki Mur Chiński ma obecnie długość około 2500km. Jego długość na mapie w skali 1:200 000 000 wynosi A. 125 cm B. 12,5 cm C. 1,25 cm D. 0,125 cm Zad. 2 (0-1p) Rzeka

Bardziej szczegółowo

( W.Ogłoza, Uniwersytet Pedagogiczny w Krakowie, Pracownia Astronomiczna)

( W.Ogłoza, Uniwersytet Pedagogiczny w Krakowie, Pracownia Astronomiczna) TEMAT: Analiza zdjęć ciał niebieskich POJĘCIA: budowa i rozmiary składników Układu Słonecznego POMOCE: fotografie róŝnych ciał niebieskich, przybory kreślarskie, kalkulator ZADANIE: Wykorzystując załączone

Bardziej szczegółowo

4. Ruch obrotowy Ziemi

4. Ruch obrotowy Ziemi 4. Ruch obrotowy Ziemi Jednym z pierwszych dowodów na ruch obrotowy Ziemi było doświadczenie, wykazujące ODCHYLENIE CIAŁ SWOBODNIE SPADAJĄCYCH Z WIEŻY: gdy ciało zostanie zrzucone z wysokiej wieży, to

Bardziej szczegółowo

PODRĘCZNA INSTRUKCJA ASTRO-EXCELA

PODRĘCZNA INSTRUKCJA ASTRO-EXCELA 2015 rok Janusz Bańkowski, Bełchatów Patronat programu SOS PTMA PODRĘCZNA INSTRUKCJA ASTRO-EXCELA Wstęp Arkusz kalkulacyjny MS Excel to doskonałe narzędzie obliczeniowe wszechstronnego użytku. Za pomocą

Bardziej szczegółowo

Konkurs Astronomiczny Astrolabium III Edycja 25 marca 2015 roku Klasy I III Liceum Ogólnokształcącego Test Konkursowy

Konkurs Astronomiczny Astrolabium III Edycja 25 marca 2015 roku Klasy I III Liceum Ogólnokształcącego Test Konkursowy Instrukcja Zaznacz prawidłową odpowiedź. Tylko jedna odpowiedź jest poprawna. Czas na rozwiązanie testu wynosi 75 minut. 1. Przyszłość. Ludzie mieszkają w stacjach kosmicznych w kształcie okręgu o promieniu

Bardziej szczegółowo

Współrzędne geograficzne

Współrzędne geograficzne Współrzędne geograficzne Siatka kartograficzna jest to układ południków i równoleżników wykreślony na płaszczyźnie (mapie); jest to odwzorowanie siatki geograficznej na płaszczyźnie. Siatka geograficzna

Bardziej szczegółowo

3a. Ruch obiegowy Ziemi

3a. Ruch obiegowy Ziemi 3a. Ruch obiegowy Ziemi Ziemia obiega gwiazdę znajdującą się w środku naszego układu planetarnego, czyli Słońce. Ta konstatacja, dzisiaj absolutnie niekwestionowana, z trudem dochodziła do powszechnej

Bardziej szczegółowo

LIV Olimpiada Astronomiczna 2010 / 2011 Zawody III stopnia

LIV Olimpiada Astronomiczna 2010 / 2011 Zawody III stopnia LIV Olimpiada Astronomiczna 2010 / 2011 Zawody III stopnia 1. Wskutek efektów relatywistycznych mierzony całkowity strumień promieniowania od gwiazdy, która porusza się w kierunku obserwatora z prędkością

Bardziej szczegółowo

Ziemia we Wszechświecie lekcja powtórzeniowa

Ziemia we Wszechświecie lekcja powtórzeniowa Scenariusz lekcji Scenariusz lekcji powtórzeniowej do podręczników PULS ZIEMI 1 i PLANETA NOWA 1 45 min Ziemia we Wszechświecie lekcja powtórzeniowa t Hasło programowe: Ziemia we Wszechświecie/Ruchy Ziemi.

Bardziej szczegółowo

... Zadanie 55. (0-1) Oblicz różnicę czasu słonecznego między Hrubieszowem (50 49'N, 23 53'E) a Cedynią (52 53'N, 14 12'E). Obliczenia: ...

... Zadanie 55. (0-1) Oblicz różnicę czasu słonecznego między Hrubieszowem (50 49'N, 23 53'E) a Cedynią (52 53'N, 14 12'E). Obliczenia: ... Zadanie 54. (0-2) Wybierz i podkreśl spośród podanych lat te, które były latami przestępnymi. Uzasadnij swój wybór. 966, 1145, 1256, 1314, 1400, 1512, 1600, 1678, 1893, 1924, 2005 Uzasadnienie: Zadanie

Bardziej szczegółowo

Inne Nieba. Gimnazjum Klasy I III Doświadczenie konkursowe nr 4

Inne Nieba. Gimnazjum Klasy I III Doświadczenie konkursowe nr 4 Gimnazjum Klasy I III Doświadczenie konkursowe nr 4 Rok 2017 1. Wstęp teoretyczny Układ Słoneczny jest niezwykle skomplikowanym mechanizmem. Mnogość parametrów przekłada się na mnogość zjawisk, jakie można

Bardziej szczegółowo

XXXIX OLIMPIADA GEOGRAFICZNA Zawody III stopnia pisemne podejście 2

XXXIX OLIMPIADA GEOGRAFICZNA Zawody III stopnia pisemne podejście 2 -2/1- Zadanie 8. W każdym z poniższych zdań wpisz lub podkreśl poprawną odpowiedź. XXXIX OLIMPIADA GEOGRAFICZNA Zawody III stopnia pisemne podejście 2 A. Słońce nie znajduje się dokładnie w centrum orbity

Bardziej szczegółowo

Spokojnie, to tylko awaria cz. 4

Spokojnie, to tylko awaria cz. 4 Spokojnie, to tylko awaria cz. 4 Artur Krystosik Błysk i potworny huk. Ogłuszeni powoli dochodzimy do siebie. Wokół rozchodzi się swąd spalenizny pomieszany z zapachem ozonu. Właśnie przeżyliśmy uderzenie

Bardziej szczegółowo

Tomasz Ściężor. Almanach Astronomiczny na rok 2015

Tomasz Ściężor. Almanach Astronomiczny na rok 2015 Tomasz Ściężor Almanach Astronomiczny na rok 2015 Polskie Towarzystwo Astronomiczne Warszawa 2014 RECENZENT Jerzy M. Kreiner OPRACOWANIE TECHNICZNE I SKŁAD Tomasz Ściężor Wszelkie prawa zastrzeżone. Żadna

Bardziej szczegółowo

ZBIÓR ZADAŃ CKE 2015 ZAKRES ROZSZERZONY

ZBIÓR ZADAŃ CKE 2015 ZAKRES ROZSZERZONY ZBIÓR ZADAŃ CKE 2015 ZAKRES ROZSZERZONY Zadanie: 026 Na rysunku przedstawiono osiem planet Układu Słonecznego. Jedną z planet oznaczono literą A. Oceń prawdziwość poniższychinformacji. Wpisz znak X w

Bardziej szczegółowo

Kartkówka powtórzeniowa nr 1

Kartkówka powtórzeniowa nr 1 Terminarz: 3g 3 stycznia 3b 4stycznia 3e 11 stycznia 3a, 3c, 3f 12 stycznia Kartkówka powtórzeniowa nr 1 Zagadnienia: 1. Współrzędne geograficzne 2. Skala 3. Prezentacja zjawisk na mapach Ad. 1. WSPÓŁRZĘDNE

Bardziej szczegółowo

ZAŁĄCZNIK IV. Obliczanie rotacji / translacji obrazów.

ZAŁĄCZNIK IV. Obliczanie rotacji / translacji obrazów. ZAŁĄCZNIK IV. Obliczanie rotacji / translacji obrazów. Jak to zostało przedstawione w części 5.2.1, jeżeli zrobimy Słońcu zdjęcie z jakiegoś miejsca na powierzchni ziemi w danym momencie t i dokładnie

Bardziej szczegółowo

Zadanie 2. (0-2) Podaj dzień tygodnia i godzinę, która jest w Nowym Orleanie. dzień tygodnia... godzina...

Zadanie 2. (0-2) Podaj dzień tygodnia i godzinę, która jest w Nowym Orleanie. dzień tygodnia... godzina... Zadanie 1.(0-1) Na południe od pewnego równoleżnika Słońce codziennie wschodzi i zachodzi, zaś na północ od tego równoleżnika występuje zjawisko dni i nocy polarnych. Powyższy opis dotyczy równoleżnika:

Bardziej szczegółowo

nawigację zliczeniową, która polega na określaniu pozycji na podstawie pomiaru przebytej drogi i jej kierunku.

nawigację zliczeniową, która polega na określaniu pozycji na podstawie pomiaru przebytej drogi i jej kierunku. 14 Nawigacja dla żeglarzy nawigację zliczeniową, która polega na określaniu pozycji na podstawie pomiaru przebytej drogi i jej kierunku. Rozwiązania drugiego problemu nawigacji, tj. wyznaczenia bezpiecznej

Bardziej szczegółowo

ul. Marii Skłodowskiej-Curie 7 39-400 Tarnobrzeg tel/fax (15) 823 82 75 e-mail: market@astrozakupy.pl

ul. Marii Skłodowskiej-Curie 7 39-400 Tarnobrzeg tel/fax (15) 823 82 75 e-mail: market@astrozakupy.pl ul. Marii Skłodowskiej-Curie 7 39-400 Tarnobrzeg tel/fax (15) 823 82 75 e-mail: market@astrozakupy.pl ul. Grunwaldzka 31C 60-783 Poznań tel/fax (61) 853 24 76 e-mail:poznan@astrozakupy.pl ABC TELESKOPU

Bardziej szczegółowo

32 B Środowisko naturalne. Ederlinda Viñuales Gavín Cristina Viñas Viñuales. Jak długi jest dzień

32 B Środowisko naturalne. Ederlinda Viñuales Gavín Cristina Viñas Viñuales. Jak długi jest dzień 32 B Środowisko naturalne Ederlinda Viñuales Gavín Cristina Viñas Viñuales B Jak długi jest dzień Środowisko naturalne B 33 WPROWADZENIE W ramach lekcji Jak długi jest dzień uczniowie mają za zadanie:

Bardziej szczegółowo

1 Szkic historii astronomii i jej zwiazków z fizyka

1 Szkic historii astronomii i jej zwiazków z fizyka ELEMENTY ASTROFIZYKI I DYDAKTYKI ASTRONOMII UKŁAD SŁONECZNY Prowadzący: Marcin Kiraga. Podstawowe podręczniki: Paweł Artymowicz Astrofizyka układów planetarnych Eugeniusz Rybka Astronomia ogólna Frank

Bardziej szczegółowo

Test sprawdzający wiadomości z rozdziału I i II

Test sprawdzający wiadomości z rozdziału I i II Test sprawdzający wiadomości z rozdziału I i II Zadanie 1 Do poniższych poleceń dobierz najlepsze źródło informacji. Uwaga: do każdego polecenia dobierz tylko jedno źródło informacji. Polecenie Źródło

Bardziej szczegółowo

OPIS MODUŁ KSZTAŁCENIA (SYLABUS)

OPIS MODUŁ KSZTAŁCENIA (SYLABUS) OPIS MODUŁ KSZTAŁCENIA (SYLABUS) I. Informacje ogólne: 1 Nazwa modułu Astronomia sferyczna 2 Kod modułu 04-ASTR1-ASFER60-1L 3 Rodzaj modułu obowiązkowy 4 Kierunek studiów Astronomia 5 Poziom studiów I

Bardziej szczegółowo

Skale czasu. 1.1 Dokładność czasu T IE - Time Interval Error

Skale czasu. 1.1 Dokładność czasu T IE - Time Interval Error Skale czasu 1 Dokładność i stabilność zegarów Zegar wytwarza sygnał okresowy (częstotliwościowy), który opisać można prostą funkcją harmoniczną: s(t) = A sin(2πν nom + φ 0 ) (1) ν nom = 9192631770Hz jest

Bardziej szczegółowo

ZAĆMIENIA. Zaćmienia Słońca

ZAĆMIENIA. Zaćmienia Słońca ZAĆMIENIA Zaćmienia Słońca 1. Całkowite zaćmienie Słońca 20 marca 2015. Pas fazy całkowitej zaćmienia rozpocznie się 20 marca 2015 o godzinie 9 h 10 m na północnym Atlantyku, prawie 500 km na południe

Bardziej szczegółowo

Astronomia. Studium Podyplomowe Fizyki z Astronomią. Marcin Kiraga kiraga@astrouw.edu.pl

Astronomia. Studium Podyplomowe Fizyki z Astronomią. Marcin Kiraga kiraga@astrouw.edu.pl Astronomia Studium Podyplomowe Fizyki z Astronomią Marcin Kiraga kiraga@astrouw.edu.pl Plan wykładów. Historia astronomii, opis podstawowych zjawisk na niebie, opis sfery niebieskiej, astronomiczne układy

Bardziej szczegółowo

STOPIEŃ I KONKURSU GEOGRAFICZNEGO dla uczniów gimnazjów i oddziałów gimnazjalnych szkół województwa pomorskiego rok szkolny 2018/2019

STOPIEŃ I KONKURSU GEOGRAFICZNEGO dla uczniów gimnazjów i oddziałów gimnazjalnych szkół województwa pomorskiego rok szkolny 2018/2019 ... Suma punktów STOPIEŃ I KONKURSU GEOGRAFICZNEGO dla uczniów gimnazjów i oddziałów gimnazjalnych szkół województwa pomorskiego rok szkolny 2018/2019 19 października 2018 r. Temat: Podróże po Afryce,

Bardziej szczegółowo

Zadania do testu Wszechświat i Ziemia

Zadania do testu Wszechświat i Ziemia INSTRUKCJA DLA UCZNIA Przeczytaj uważnie czas trwania tekstu 40 min. ). W tekście, który otrzymałeś są zadania. - z luką - rozszerzonej wypowiedzi - zadania na dobieranie ). Nawet na najłatwiejsze pytania

Bardziej szczegółowo

LIX Olimpiada Astronomiczna 2015/2016 Zawody III stopnia zadania teoretyczne

LIX Olimpiada Astronomiczna 2015/2016 Zawody III stopnia zadania teoretyczne LIX Olimpiada Astronomiczna 2015/2016 Zawody III stopnia zadania teoretyczne 1. Dwie gwiazdy ciągu głównego o masach M i m tworzyły układ podwójny o orbitach kołowych. W wyniku ewolucji, bardziej masywny

Bardziej szczegółowo

Ruch Gwiazd. Szkoła Podstawowa Klasy IV VI Doświadczenie konkursowe nr 3

Ruch Gwiazd. Szkoła Podstawowa Klasy IV VI Doświadczenie konkursowe nr 3 Szkoła Podstawowa Klasy IV VI Doświadczenie konkursowe nr 3 Rok 2017 1. Wstęp teoretyczny Ludzka wyobraźnia łączy rozproszone po niebie gwiazdy w pewne charakterystyczne wzory, ułatwiające nawigację po

Bardziej szczegółowo

Tellurium szkolne [ BAP_1134000.doc ]

Tellurium szkolne [ BAP_1134000.doc ] Tellurium szkolne [ ] Prezentacja produktu Przeznaczenie dydaktyczne. Kosmograf CONATEX ma stanowić pomoc dydaktyczną w wyjaśnianiu i demonstracji układu «ZIEMIA - KSIĘŻYC - SŁOŃCE», zjawiska nocy i dni,

Bardziej szczegółowo

Istnieje wiele sposobów przedstawiania obrazów Ziemi lub jej fragmentów, należą do nich plany, mapy oraz globusy.

Istnieje wiele sposobów przedstawiania obrazów Ziemi lub jej fragmentów, należą do nich plany, mapy oraz globusy. Współrzędne geograficzne Istnieje wiele sposobów przedstawiania obrazów Ziemi lub jej fragmentów, należą do nich plany, mapy oraz globusy. Najbardziej wiernym modelem Ziemi ukazującym ją w bardzo dużym

Bardziej szczegółowo

Tomasz Ściężor. Almanach Astronomiczny na rok 2016

Tomasz Ściężor. Almanach Astronomiczny na rok 2016 Tomasz Ściężor Almanach Astronomiczny na rok 2016 Polskie Towarzystwo Astronomiczne Warszawa 2015 RECENZENT Jerzy M. Kreiner OPRACOWANIE TECHNICZNE I SKŁAD Tomasz Ściężor Wszelkie prawa zastrzeżone. Żadna

Bardziej szczegółowo

1.2. Geografia fizyczna ogólna

1.2. Geografia fizyczna ogólna 1. Zadania 17 1.2. Geografia fizyczna ogólna 1.2.1. Ziemia we Wszechświecie Zadanie 26. Na rysunku przedstawiono osiem planet Układu Słonecznego. Jedną z planet oznaczono literą A. Źródło: http://www.eszkola-wielkopolska.pl

Bardziej szczegółowo

ZAĆMIENIA. Zaćmienia Słońca

ZAĆMIENIA. Zaćmienia Słońca ZAĆMIENIA Zaćmienia Słońca 1. Częściowe zaćmienie Słońca 4 stycznia 2011. Cień Księżyca przechodzi nad północnymi obszarami biegunowymi Ziemi. Zaćmienie widoczne będzie w północnej Afryce, Europie oraz

Bardziej szczegółowo

Układy współrzędnych

Układy współrzędnych Układy współrzędnych Układ współrzędnych matematycznie - funkcja przypisująca każdemu punktowi danej przestrzeni skończony ciąg (krotkę) liczb rzeczywistych zwanych współrzędnymi punktu. Układ współrzędnych

Bardziej szczegółowo

ASTRONOMIA. Autor wyraził zgodę na zamieszczenie niniejszej wersji elektronicznej podręcznika do użytku publicznego

ASTRONOMIA. Autor wyraził zgodę na zamieszczenie niniejszej wersji elektronicznej podręcznika do użytku publicznego ASTRONOMIA KONRAD RUDNICKI Wersja elektroniczna opracowana przez częstochowskich miłośników astronomii dla potrzeb samokształceniowych w oparciu o dawniejszy licealny podręcznik astronomii autorstwa Konrada

Bardziej szczegółowo

Opozycja... astronomiczna...

Opozycja... astronomiczna... Opozycja... astronomiczna... Pojęcie opozycja bez dodatków ją bliżej określających jest intuicyjnie zrozumiałe. Wyraz ma swoją etymologię łacińską - oppositio i oznacza przeciwstawienie. Przenosząc to

Bardziej szczegółowo

Obrotowa mapa nieba ćwiczenie w Excelu

Obrotowa mapa nieba ćwiczenie w Excelu Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego (POKL) Obrotowa mapa nieba ćwiczenie w Excelu Wstęp Mapka nieba jest jak mini-planetarium. Jeśli umieścimy ją

Bardziej szczegółowo

3. Odległość między punktami A i B wynosi 500 km. Oblicz skalę liczbową mapy, na której odległość ta wynosi 2,5 cm.

3. Odległość między punktami A i B wynosi 500 km. Oblicz skalę liczbową mapy, na której odległość ta wynosi 2,5 cm. SKALA MAPY 1. Przekształć skale mianowane na skale liczbowe. Następnie ułóż uzyskane skale liczbowe w kolejności od największej do najmniejszej. Traktuj skalę jak ułamek, czyli im większa liczba w mianowniku,

Bardziej szczegółowo

Astronomia poziom rozszerzony

Astronomia poziom rozszerzony Astronomia poziom rozszerzony Zadanie 1. (2 pkt) ś ż ś ę ł ść ę ż ł ł ść ę ż ł ł ść Ł Źródło: CKE 2005 (PR), zad. 39. Zadanie 2. (1 pkt) Źródło: CKE 2006 (PR), zad. 28. Do podanych niżej miejscowości dobierz

Bardziej szczegółowo