Wstęp do astrofizyki I

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Wstęp do astrofizyki I"

Transkrypt

1 Wstęp do astrofizyki I Wykład 10 Tomasz Kwiatkowski 8 grudzień 2010 r. Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 10 1/36

2 Plan wykładu Wyznaczanie mas ciał niebieskich Gwiazdy podwójne Optycznie i wizualnie podwójne Astrometrycznie podwójne Podwójne zaćmieniowe Spektroskopowo podwójne Wyznaczanie mas gwiazd Podwójne wizualnie ze znaną paralaksą Podwójne wizualnie ze zmierzonymi v r Wyznaczanie orbity z projekcji Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 10 2/36

3 Wyznaczanie mas w astronomii masy ciał niebieskich wyznaczane najczęściej z układów podwójnych masa Ziemi z układu Ziemia-Księżyc, z ruchu sztucznych satelitów Ziemi masa Słońca z układu Słońce-Ziemia masa Księżyca z ruchu sztucznych satelitów Księżyca masy planetoid z planetoid podwójnych, z odchylenia toru sondy w pobliżu planetoidy masy gwiazd z układów podwójnych masy galaktych z oddziaływań grawitacyjnych galaktyk Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 10 3/36

4 III prawo Keplera i środek masy Środek masy: III prawo Keplera: M 1 r 1 = M 2 r 2 (a 1 + a 2 ) 3 P 2 = G 4π 2 (M 1 + M 2 ) M 1, M 2 masy gwiazd, P okres orbitalny, a 1, a 2 półosie orbit względem wspólnego środka masy, r 1, r 2 promienie wodzące gwiazd M 1 a 2 r 2 r 1 a 1 M 2 Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 10 4/36

5 Podział gwiazd podwójnych Optycznie podwójne Nie są prawdziwymi układami podwójnymi; gwiazdy widoczne na niebie blisko siebie, lecz oddalone w przestrzeni Wizualnie podwójne Oba składniki układu są widoczne, jeśli okres orbitalny nie jest zbyt długi, można wyznaczyć orbity obu składników i położenia środka masy; znając paralaksę, można otrzymać odległość składników od siebie Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 10 5/36

6 Gwiazdy podwójne astrometrycznie Jeśli gwiazda porusza się ruchem wężowym świadczy to o obecności niewidocznego towarzysza. Środek masy układu musi poruszać się ruchem jednostajnym po linii prostej (I prawo Newtona) Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 10 6/36

7 Gwiazdy podwójne zaćmieniowe Kierunek patrzenia w pobliżu płaszczyzny orbity, widoczne okresowe zaćmienia składników Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 10 7/36

8 Zmiany jasności FM Leo Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 10 8/36

9 Gwiazdy spektroskopowo podwójne W widmie widoczne linie dwóch lub jednego składnika (podwójne dwu- i jednoliniowe), okresowo zmieniające położenia na skutek efektu Dopplera Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 10 9/36

10 Prędkości radialne FM Leo Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 10 10/36

11 Parametry fizyczne FM Leo Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 10 11/36

12 Wyznaczanie mas z układów podwójnych Możliwe w trzech przypadkach: podwójne wizualnie ze znaną paralaksą podwójne wizualnie ze zmierzonymi prędkościami radialnymi v r w ciągu pełnego obiegu podwójne zaćmieniowe, będące jednocześnie spektroskopowo podwójnymi (dwuliniowymi) Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 10 12/36

13 Podwójne wizualnie ze znaną paralaksą, 1 Znana paralaksa trygonometryczna pozwala wyznaczyć odległość układu podwójnego d Odległość kątowa gwiazd α może być zamieniona na odległość liniową a: a = αd (α w radianach) Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 10 13/36

14 Przykład: Syriusz A i B Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 10 14/36

15 Podwójne wizualnie ze znaną paralaksą, 2 Z obserwacji wyznacza się orbitę względną jednego składnika względem drugiego; jej półoś α = α 1 + α 2 Półoś orbity w mierze liniowej: a = αd (α w radianach) Indywidualne wyznaczenie a 1 i a 2 możliwe, ale trudniejsze Można wyznaczyć iloraz i sumę mas, a z nich indywidualne masy Problem z projekcją rzeczywistej orbity na sferę Misja Gaia pomierzy orbity wizualne dla 10 4 gwiazd, wyznaczając ich masy z dokładnością 3-10% Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 10 15/36

16 Podwójne wizualnie ze zmierzonymi v r Na orbicie kołowej v = 2πr/P Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 10 16/36

17 Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 10 17/36

18 Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 10 18/36

19 Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 10 19/36

20 Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 10 20/36

21 Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 10 21/36

22 Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 10 22/36

23 Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 10 23/36

24 Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 10 24/36

25 Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 10 25/36

26 Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 10 26/36

27 Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 10 27/36

28 Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 10 28/36

29 Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 10 29/36

30 Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 10 30/36

31 Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 10 31/36

32 Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 10 32/36

33 Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 10 33/36

34 Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 10 34/36

35 Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 10 35/36

36 Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 10 36/36

LIV Olimpiada Astronomiczna 2010 / 2011 Zawody III stopnia

LIV Olimpiada Astronomiczna 2010 / 2011 Zawody III stopnia LIV Olimpiada Astronomiczna 2010 / 2011 Zawody III stopnia 1. Wskutek efektów relatywistycznych mierzony całkowity strumień promieniowania od gwiazdy, która porusza się w kierunku obserwatora z prędkością

Bardziej szczegółowo

14 POLE GRAWITACYJNE. Włodzimierz Wolczyński. Wzór Newtona. G- stała grawitacji 6, Natężenie pola grawitacyjnego.

14 POLE GRAWITACYJNE. Włodzimierz Wolczyński. Wzór Newtona. G- stała grawitacji 6, Natężenie pola grawitacyjnego. Włodzimierz Wolczyński 14 POLE GRAWITACYJNE Wzór Newtona M r m G- stała grawitacji Natężenie pola grawitacyjnego 6,67 10 jednostka [ N/kg] Przyspieszenie grawitacyjne jednostka [m/s 2 ] Praca w polu grawitacyjnym

Bardziej szczegółowo

Astronomia. Znając przyspieszenie grawitacyjne planety (ciała), obliczyć możemy ciężar ciała drugiego.

Astronomia. Znając przyspieszenie grawitacyjne planety (ciała), obliczyć możemy ciężar ciała drugiego. Astronomia M = masa ciała G = stała grawitacji (6,67 10-11 [N m 2 /kg 2 ]) R, r = odległość dwóch ciał/promień Fg = ciężar ciała g = przyspieszenie grawitacyjne ( 9,8 m/s²) V I = pierwsza prędkość kosmiczna

Bardziej szczegółowo

Wyznaczanie długości i szerokości geograficznej z obserwacji astronomicznych.

Wyznaczanie długości i szerokości geograficznej z obserwacji astronomicznych. Wykład udostępniam na licencji Creative Commons: Wyznaczanie długości i szerokości geograficznej z obserwacji astronomicznych. Piotr A. Dybczyński Związek czasu słonecznego z gwiazdowym. Zadanie:

Bardziej szczegółowo

Ruchy planet. Wykład 29 listopada 2005 roku

Ruchy planet. Wykład 29 listopada 2005 roku Ruchy planet planety wewnętrzne: Merkury, Wenus planety zewnętrzne: Mars, Jowisz, Saturn, Uran, Neptun, Pluton Ruch planet wewnętrznych zachodzi w cyklu: koniunkcja dolna, elongacja wschodnia, koniunkcja

Bardziej szczegółowo

GRAWITACJA MODUŁ 6 SCENARIUSZ TEMATYCZNY LEKCJA NR 2 FIZYKA ZAKRES ROZSZERZONY WIRTUALNE LABORATORIA FIZYCZNE NOWOCZESNĄ METODĄ NAUCZANIA.

GRAWITACJA MODUŁ 6 SCENARIUSZ TEMATYCZNY LEKCJA NR 2 FIZYKA ZAKRES ROZSZERZONY WIRTUALNE LABORATORIA FIZYCZNE NOWOCZESNĄ METODĄ NAUCZANIA. MODUŁ 6 SCENARIUSZ TEMATYCZNY GRAWITACJA OPRACOWANE W RAMACH PROJEKTU: FIZYKA ZAKRES ROZSZERZONY WIRTUALNE LABORATORIA FIZYCZNE NOWOCZESNĄ METODĄ NAUCZANIA. PROGRAM NAUCZANIA FIZYKI Z ELEMENTAMI TECHNOLOGII

Bardziej szczegółowo

Sztuczny satelita Ziemi. Ruch w polu grawitacyjnym

Sztuczny satelita Ziemi. Ruch w polu grawitacyjnym Sztuczny satelita Ziemi Ruch w polu grawitacyjnym Sztuczny satelita Ziemi Jest to obiekt, któremu na pewnej wysokości nad powierzchnią Ziemi nadano prędkość wystarczającą do uzyskania przez niego ruchu

Bardziej szczegółowo

Wyznaczanie długości i szerokości geograficznej z obserwacji astronomicznych.

Wyznaczanie długości i szerokości geograficznej z obserwacji astronomicznych. Wykład udostępniam na licencji Creative Commons: Wyznaczanie długości i szerokości geograficznej z obserwacji astronomicznych. Piotr A. Dybczyński Związek czasu słonecznego z gwiazdowym. Zadanie:

Bardziej szczegółowo

W poszukiwaniu nowej Ziemi. Andrzej Udalski Obserwatorium Astronomiczne Uniwersytetu Warszawskiego

W poszukiwaniu nowej Ziemi. Andrzej Udalski Obserwatorium Astronomiczne Uniwersytetu Warszawskiego W poszukiwaniu nowej Ziemi Andrzej Udalski Obserwatorium Astronomiczne Uniwersytetu Warszawskiego Gdzie mieszkamy? Ziemia: Masa = 1 M E Średnica = 1 R E Słońce: 1 M S = 333950 M E Średnica = 109 R E Jowisz

Bardziej szczegółowo

Wykład 2 - zagadnienie dwóch ciał (od praw Keplera do prawa powszechnego ciążenia i z powrotem..)

Wykład 2 - zagadnienie dwóch ciał (od praw Keplera do prawa powszechnego ciążenia i z powrotem..) Wykład 2 - zagadnienie dwóch ciał (od praw Keplera do prawa powszechnego ciążenia i z powrotem..) 24.02.2014 Prawa Keplera Na podstawie obserwacji zgromadzonych przez Tycho Brahe (głównie obserwacji Marsa)

Bardziej szczegółowo

Odległość mierzy się zerami

Odległość mierzy się zerami Odległość mierzy się zerami Jednostki odległości w astronomii jednostka astronomiczna AU, j.a. rok świetlny l.y., r.św. parsek pc średnia odległość Ziemi od Słońca odległość przebyta przez światło w próżni

Bardziej szczegółowo

Pozorne orbity planet Z notatek prof. Antoniego Opolskiego. Tomasz Mrozek Instytut Astronomiczny UWr Zakład Fizyki Słońca CBK PAN

Pozorne orbity planet Z notatek prof. Antoniego Opolskiego. Tomasz Mrozek Instytut Astronomiczny UWr Zakład Fizyki Słońca CBK PAN Pozorne orbity planet Z notatek prof. Antoniego Opolskiego Tomasz Mrozek Instytut Astronomiczny UWr Zakład Fizyki Słońca CBK PAN Początek Młody miłośnik astronomii patrzy w niebo Młody miłośnik astronomii

Bardziej szczegółowo

GRAWITACJA I ELEMENTY ASTRONOMII

GRAWITACJA I ELEMENTY ASTRONOMII MODUŁ 1 SCENARIUSZ TEMATYCZNY GRAWITACJA I ELEMENTY ASTRONOMII OPRACOWANE W RAMACH PROJEKTU: FIZYKA ZAKRES PODSTAWOWY WIRTUALNE LABORATORIA FIZYCZNE NOWOCZESNĄ METODĄ NAUCZANIA. PROGRAM NAUCZANIA FIZYKI

Bardziej szczegółowo

OPIS MODUŁ KSZTAŁCENIA (SYLABUS)

OPIS MODUŁ KSZTAŁCENIA (SYLABUS) OPIS MODUŁ KSZTAŁCENIA (SYLABUS) I. Informacje ogólne: 1 Nazwa modułu kształcenia Astronomia ogólna 2 Kod modułu kształcenia 04-ASTR1-ASTROG90-1Z 3 Rodzaj modułu kształcenia obowiązkowy 4 Kierunek studiów

Bardziej szczegółowo

4π 2 M = E e sin E G neu = sin z. i cos A i sin z i sin A i cos z i 1

4π 2 M = E e sin E G neu = sin z. i cos A i sin z i sin A i cos z i 1 1 Z jaką prędkością porusza się satelita na orbicie geostacjonarnej? 2 Wiedząc, że doba gwiazdowa na planecie X (stała grawitacyjna µ = 500 000 km 3 /s 2 ) trwa 24 godziny, oblicz promień orbity satelity

Bardziej szczegółowo

OPIS MODUŁ KSZTAŁCENIA (SYLABUS)

OPIS MODUŁ KSZTAŁCENIA (SYLABUS) OPIS MODUŁ KSZTAŁCENIA (SYLABUS) I. Informacje ogólne: 1 Nazwa modułu Astronomia ogólna 2 Kod modułu 04-A-AOG-90-1Z 3 Rodzaj modułu obowiązkowy 4 Kierunek studiów astronomia 5 Poziom studiów I stopień

Bardziej szczegółowo

FIZYKA IV etap edukacyjny zakres podstawowy

FIZYKA IV etap edukacyjny zakres podstawowy FIZYKA IV etap edukacyjny zakres podstawowy Cele kształcenia wymagania ogólne I. Wykorzystanie wielkości fizycznych do opisu poznanych zjawisk lub rozwiązania prostych zadań obliczeniowych. II. Przeprowadzanie

Bardziej szczegółowo

Fizyka. Kurs przygotowawczy. na studia inżynierskie. mgr Kamila Haule

Fizyka. Kurs przygotowawczy. na studia inżynierskie. mgr Kamila Haule Fizyka Kurs przygotowawczy na studia inżynierskie mgr Kamila Haule Grawitacja Grawitacja we Wszechświecie Planety przyciągają Księżyce Ziemia przyciąga Ciebie Słońce przyciąga Ziemię i inne planety Gwiazdy

Bardziej szczegółowo

SPRAWDZIAN NR Merkury krąży wokół Słońca po orbicie, którą możemy uznać za kołową.

SPRAWDZIAN NR Merkury krąży wokół Słońca po orbicie, którą możemy uznać za kołową. SPRAWDZIAN NR 1 IMIĘ I NAZWISKO: KLASA: GRUPA A 1. Merkury krąży wokół Słońca po orbicie, którą możemy uznać za kołową. Zaznacz poprawne dokończenie zdania. Siłę powodującą ruch Merkurego wokół Słońca

Bardziej szczegółowo

Fizyka. Kurs przygotowawczy. na studia inżynierskie. mgr Kamila Haule

Fizyka. Kurs przygotowawczy. na studia inżynierskie. mgr Kamila Haule Fizyka Kurs przygotowawczy na studia inżynierskie mgr Kamila Haule Grawitacja Grawitacja we Wszechświecie Ziemia przyciąga Ciebie Planety przyciągają Księżyce Słońce przyciąga Ziemię i inne planety Gwiazdy

Bardziej szczegółowo

Dyfrakcja to zdolność fali do uginania się na krawędziach przeszkód. Dyfrakcja światła stanowi dowód na to, że światło ma charakter falowy.

Dyfrakcja to zdolność fali do uginania się na krawędziach przeszkód. Dyfrakcja światła stanowi dowód na to, że światło ma charakter falowy. ZAŁĄCZNIK V. SŁOWNICZEK. Czas uniwersalny Czas uniwersalny (skróty: UT lub UTC) jest taki sam, jak Greenwich Mean Time (skrót: GMT), tzn. średni czas słoneczny na południku zerowym w Greenwich, Anglia

Bardziej szczegółowo

Grawitacja - powtórka

Grawitacja - powtórka Grawitacja - powtórka 1. Oceń prawdziwość każdego zdania. Zaznacz, jeśli zdanie jest prawdziwe, lub, jeśli jest A. Jednorodne pole grawitacyjne istniejące w obszarze sali lekcyjnej jest wycinkiem centralnego

Bardziej szczegółowo

Obliczanie pozycji obiektu na podstawie znanych elementów orbity. Rysunek: Elementy orbity: rozmiar wielkiej półosi, mimośród, nachylenie

Obliczanie pozycji obiektu na podstawie znanych elementów orbity. Rysunek: Elementy orbity: rozmiar wielkiej półosi, mimośród, nachylenie Obliczanie pozycji obiektu na podstawie znanych elementów orbity Rysunek: Elementy orbity: rozmiar wielkiej półosi, mimośród, nachylenie a - wielka półoś orbity e - mimośród orbity i - nachylenie orbity

Bardziej szczegółowo

Egzamin maturalny z fizyki i astronomii 5 Poziom podstawowy

Egzamin maturalny z fizyki i astronomii 5 Poziom podstawowy Egzamin maturalny z fizyki i astronomii 5 Poziom podstawowy 14. Kule (3 pkt) Dwie małe jednorodne kule A i B o jednakowych masach umieszczono w odległości 10 cm od siebie. Kule te oddziaływały wówczas

Bardziej szczegółowo

Sprawdzian Na rysunku przedstawiono siłę, którą kula o masie m przyciąga kulę o masie 2m.

Sprawdzian Na rysunku przedstawiono siłę, którą kula o masie m przyciąga kulę o masie 2m. Imię i nazwisko Data Klasa Wersja A Sprawdzian 1. 1. Orbita każdej planety jest elipsą, a Słońce znajduje się w jednym z jej ognisk. Treść tego prawa podał a) Kopernik. b) Newton. c) Galileusz. d) Kepler..

Bardziej szczegółowo

Prawo powszechnego ciążenia, siła grawitacyjna, pole grawitacyjna

Prawo powszechnego ciążenia, siła grawitacyjna, pole grawitacyjna Prawo powszechnego ciążenia, siła grawitacyjna, pole grawitacyjna G m m r F = r r F = F Schemat oddziaływania: m pole sił m Prawo powszechnego ciążenia, siła grawitacyjna, pole grawitacyjna Masa M jest

Bardziej szczegółowo

Wykład 5 - całki ruchu zagadnienia n ciał i perturbacje ruchu keplerowskiego

Wykład 5 - całki ruchu zagadnienia n ciał i perturbacje ruchu keplerowskiego Wykład 5 - całki ruchu zagadnienia n ciał i perturbacje ruchu keplerowskiego 20.03.2013 Układ n ciał przyciągających się siłami grawitacji Mamy n ciał przyciągających się siłami grawitacji. Masy ciał oznaczamy

Bardziej szczegółowo

Materiały edukacyjne Tranzyt Wenus Zestaw 3. Paralaksa. Zadanie 1. Paralaksa czyli zmiana

Materiały edukacyjne Tranzyt Wenus Zestaw 3. Paralaksa. Zadanie 1. Paralaksa czyli zmiana Materiały edukacyjne Tranzyt Wenus 2012 Zestaw 3. Paralaksa Zadanie 1. Paralaksa czyli zmiana Paralaksa to zjawisko pozornej zmiany położenia obiektu oglądanego z dwóch kierunków. W praktyce najłatwiej

Bardziej szczegółowo

Wykład Prawa Keplera Wyznaczenie stałej grawitacji Równania opisujące ruch planet

Wykład Prawa Keplera Wyznaczenie stałej grawitacji Równania opisujące ruch planet Wykład 9 3.5.4.1 Prawa Keplera 3.5.4. Wyznaczenie stałej grawitacji 3.5.4.3 Równania opisujące ruch planet 008-11-01 Reinhard Kulessa 1 3.5.4.1 Prawa Keplera W roku 140 n.e. Claudius Ptolemeus zaproponował

Bardziej szczegółowo

Ruch pod wpływem sił zachowawczych

Ruch pod wpływem sił zachowawczych Ruch pod wpływem sił zachowawczych Fizyka I (B+C) Wykład XV: Energia potencjalna Siły centralne Ruch w polu grawitacyjnym Pole odpychajace Energia potencjalna Równania ruchu Znajomość energii potencjalnej

Bardziej szczegółowo

Grawitacja i astronomia, zakres podstawowy test wiedzy i kompetencji ZADANIA ZAMKNIĘTE

Grawitacja i astronomia, zakres podstawowy test wiedzy i kompetencji ZADANIA ZAMKNIĘTE Grawitacja i astronomia, zakres podstawowy test wiedzy i kompetencji. Imię i nazwisko, klasa.. data Czas rozwiązywania testu: 40 minut. ZADANIA ZAMKNIĘTE W zadaniach od 1-4 wybierz i zapisz czytelnie jedną

Bardziej szczegółowo

Ruch obiegowy Ziemi. Ruch obiegowy Ziemi. Cechy ruchu obiegowego. Cechy ruchu obiegowego

Ruch obiegowy Ziemi. Ruch obiegowy Ziemi. Cechy ruchu obiegowego. Cechy ruchu obiegowego Ruch obiegowy Ziemi Ruch obiegowy Ziemi Ziemia obiega Słońce po drodze zwanej orbitą ma ona kształt lekko wydłużonej elipsy Czas pełnego obiegu wynosi 365 dni 5 godzin 48 minut i 46 sekund okres ten nazywamy

Bardziej szczegółowo

Treści dopełniające Uczeń potrafi:

Treści dopełniające Uczeń potrafi: P Lp. Temat lekcji Treści podstawowe 1 Elementy działań na wektorach podać przykłady wielkości fizycznych skalarnych i wektorowych, wymienić cechy wektora, dodać wektory, odjąć wektor od wektora, pomnożyć

Bardziej szczegółowo

Podstawy fizyki sezon 1 VII. Pole grawitacyjne*

Podstawy fizyki sezon 1 VII. Pole grawitacyjne* Podstawy fizyki sezon 1 VII. Pole grawitacyjne* Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha * Resnick, Halliday,

Bardziej szczegółowo

Fizyka i Chemia Ziemi

Fizyka i Chemia Ziemi Fizyka i Chemia Ziemi Temat 4: Ruch geocentryczny i heliocentryczny planet T.J. Jopek jopek@amu.edu.pl IOA UAM Układ Planetarny - klasyfikacja. Planety grupy ziemskiej: Merkury Wenus Ziemia Mars 2. Planety

Bardziej szczegółowo

pobrano z serwisu Fizyka Dla Każdego - http://fizyka.dk - zadania fizyka, wzory fizyka, matura fizyka

pobrano z serwisu Fizyka Dla Każdego - http://fizyka.dk - zadania fizyka, wzory fizyka, matura fizyka 4. Pole grawitacyjne. Praca. Moc.Energia zadania z arkusza I 4.8 4.1 4.9 4.2 4.10 4.3 4.4 4.11 4.12 4.5 4.13 4.14 4.6 4.15 4.7 4.16 4.17 4. Pole grawitacyjne. Praca. Moc.Energia - 1 - 4.18 4.27 4.19 4.20

Bardziej szczegółowo

Konkurs Astronomiczny Astrolabium III Edycja 25 marca 2015 roku Klasy I III Liceum Ogólnokształcącego Test Konkursowy

Konkurs Astronomiczny Astrolabium III Edycja 25 marca 2015 roku Klasy I III Liceum Ogólnokształcącego Test Konkursowy Instrukcja Zaznacz prawidłową odpowiedź. Tylko jedna odpowiedź jest poprawna. Czas na rozwiązanie testu wynosi 75 minut. 1. Przyszłość. Ludzie mieszkają w stacjach kosmicznych w kształcie okręgu o promieniu

Bardziej szczegółowo

ETAP II. Astronomia to nauka. pochodzeniem i ewolucją. planet i gwiazd. na wydarzenia na Ziemi.

ETAP II. Astronomia to nauka. pochodzeniem i ewolucją. planet i gwiazd. na wydarzenia na Ziemi. ETAP II Konkurencja I Ach te definicje! (każda poprawnie ułożona definicja warta jest aż dwa punkty) Astronomia to nauka o ciałach niebieskich zajmująca się badaniem ich położenia, ruchów, odległości i

Bardziej szczegółowo

FIZYKA-egzamin opracowanie pozostałych pytań

FIZYKA-egzamin opracowanie pozostałych pytań FIZYKA-egzamin opracowanie pozostałych pytań Andrzej Przybyszewski Michał Witczak Marcin Talarek. Definicja pracy na odcinku A-B 2. Zdefiniować różnicę energii potencjalnych gdy ciało przenosimy z do B

Bardziej szczegółowo

Wirtualny Hogwart im. Syriusza Croucha

Wirtualny Hogwart im. Syriusza Croucha Wirtualny Hogwart im. Syriusza Croucha Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. EGZAMIN STANDARDOWYCH UMIEJĘTNOŚCI MAGICZNYCH ASTRONOMIA LIPIEC 2013 Instrukcja dla zdających:

Bardziej szczegółowo

Analiza spektralna widma gwiezdnego

Analiza spektralna widma gwiezdnego Analiza spektralna widma gwiezdnego JG &WJ 13 kwietnia 2007 Wprowadzenie Wprowadzenie- światło- podstawowe źródło informacji Wprowadzenie- światło- podstawowe źródło informacji Wprowadzenie- światło- podstawowe

Bardziej szczegółowo

ASTRONOMIA Klasa Ia Rok szkolny 2012/2013

ASTRONOMIA Klasa Ia Rok szkolny 2012/2013 1 ASTRONOMIA Klasa Ia Rok szkolny 2012/2013 NR Temat Konieczne 1 Niebo w oczach dawnych kultur i cywilizacji - wie, jakie były wyobrażenia starożytnych (zwłaszcza starożytnych Greków) na budowę Podstawowe

Bardziej szczegółowo

Kontrola wiadomości Grawitacja i elementy astronomii

Kontrola wiadomości Grawitacja i elementy astronomii Kontrola wiadomości Grawitacja i elementy astronomii I LO im. Stefana Żeromskiego w Lęborku 15 października Kartkówka w klasie IA - 20 minut Grupa 1 1 Wykonaj rysunek ilustrujący sposób wyznaczania odległości

Bardziej szczegółowo

Plan wykładu. Mechanika Układu Słonecznego

Plan wykładu. Mechanika Układu Słonecznego Mechanika nieba Marcin Kiraga: kiraga@astrouw.edu.pl 30 godzin wykładu + 30 godzin ćwiczeń wykłady poniedziałki godzina 13:15 ćwiczenia poniedziałki godzina 15:15 Warunki zaliczenia ćwiczeń: prace domowe

Bardziej szczegółowo

Wstęp do astrofizyki I

Wstęp do astrofizyki I Wstęp do astrofizyki I Wykład 15 Tomasz Kwiatkowski Uniwersytet im. Adama Mickiewicza w Poznaniu Wydział Fizyki Instytut Obserwatorium Astronomiczne Tomasz Kwiatkowski, OA UAM Wstęp do astrofizyki I, Wykład

Bardziej szczegółowo

Zagadnienie dwóch ciał

Zagadnienie dwóch ciał Zagadnienie dwóch ciał Rysunek : Rysunek ilustrujący zagadnienie dwóch ciał. Wektor R określa położenie środka masy, wektor x położenie masy m, a wektor x 2 położenie masy m 2. Położenie masy m 2 względem

Bardziej szczegółowo

Budowa Galaktyki. Materia rozproszona Rozkład przestrzenny materii Krzywa rotacji i ramiona spiralne

Budowa Galaktyki. Materia rozproszona Rozkład przestrzenny materii Krzywa rotacji i ramiona spiralne Budowa Galaktyki Materia rozproszona Rozkład przestrzenny materii Krzywa rotacji i ramiona spiralne Gwiazdy w otoczeniu Słońca Gaz międzygwiazdowy Hartmann (1904) Delta Orionis (gwiazda podwójna) obserwowana

Bardziej szczegółowo

rok szkolny 2017/2018

rok szkolny 2017/2018 NiezbĘdne wymagania edukacyjne Z fizyki w XXI LO w Krakowie rok szkolny 2017/2018 1 Wymagania edukacyjne z fizyki dla klasy I I. Wiadomości i umiejętności konieczne do uzyskania oceny dopuszczającej. Uczeń

Bardziej szczegółowo

Ruch ciał niebieskich

Ruch ciał niebieskich Podręcznik dla uczniów Ruch ciał niebieskich Politechnika Gdańska, Wydział Fizyki Technicznej i Matematyki Stosowanej ul. Narutowicza 11/12, 80-233 Gdańsk, tel. +48 58 348 63 70 http://e-doswiadczenia.mif.pg.gda.pl

Bardziej szczegółowo

Gwiazdy zmienne. na przykładzie V729 Cygni. Janusz Nicewicz

Gwiazdy zmienne. na przykładzie V729 Cygni. Janusz Nicewicz Gwiazdy zmienne na przykładzie V729 Cygni Plan prezentacji Czym są gwiazdy zmienne? Rodzaje gwiazd zmiennych Układy podwójne gwiazd Gwiazdy zmienne zaćmieniowe Model Roche'a V729 Cygni Obserwacje Analiza

Bardziej szczegółowo

Przykład testu z astronomicznych podsatw geografii Uzupełnić puste pola : Wybarć własciwe odpowiedzi a,b,c,d,e... (moŝe byc kilka poprawnych!!

Przykład testu z astronomicznych podsatw geografii Uzupełnić puste pola : Wybarć własciwe odpowiedzi a,b,c,d,e... (moŝe byc kilka poprawnych!! Przykład testu z astronomicznych podsatw geografii Uzupełnić puste pola : Wybarć własciwe odpowiedzi a,b,c,d,e.... (moŝe byc kilka poprawnych!!) 1. Astronomia zajmuje się badaniem 2. Z powodu zjawiska

Bardziej szczegółowo

ZAŁĄCZNIK IV. Obliczanie rotacji / translacji obrazów.

ZAŁĄCZNIK IV. Obliczanie rotacji / translacji obrazów. ZAŁĄCZNIK IV. Obliczanie rotacji / translacji obrazów. Jak to zostało przedstawione w części 5.2.1, jeżeli zrobimy Słońcu zdjęcie z jakiegoś miejsca na powierzchni ziemi w danym momencie t i dokładnie

Bardziej szczegółowo

POLAND. Zasady zawodów drużynowych

POLAND. Zasady zawodów drużynowych Zasady zawodów drużynowych 1. W zawodach drużynowych mogą uczestniczyć drużyny złożone z trzech lub więcej uczestników. 2. Każda drużyna otrzyma zestaw 5 zadań do rozwiązania w czasie 60 minut. 3. O wyniku

Bardziej szczegółowo

14R2 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - II POZIOM ROZSZERZONY

14R2 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - II POZIOM ROZSZERZONY 14R2 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - II POZIOM ROZSZERZONY Ruch jednostajny po okręgu Dynamika bryły sztywnej Pole grawitacyjne Rozwiązanie zadań należy zapisać w wyznaczonych

Bardziej szczegółowo

JAK MATEMATYKA POZWALA OPISYWAĆ WSZECHŚWIAT. 1 Leszek Błaszkiewicz

JAK MATEMATYKA POZWALA OPISYWAĆ WSZECHŚWIAT. 1 Leszek Błaszkiewicz JAK MATEMATYKA POZWALA OPISYWAĆ WSZECHŚWIAT 1 Leszek Błaszkiewicz 2 Matematyka w Astrometrii Matematyka w Astrometrii Astrometria (astronomia pozycyjna) najstarszy dział astronomii zajmujący się pomiarami

Bardziej szczegółowo

Wenus na tle Słońca. Sylwester Kołomański Tomasz Mrozek. Instytut Astronomiczny Uniwersytetu Wrocławskiego

Wenus na tle Słońca. Sylwester Kołomański Tomasz Mrozek. Instytut Astronomiczny Uniwersytetu Wrocławskiego Wenus na tle Słońca Sylwester Kołomański Tomasz Mrozek Instytut Astronomiczny Uniwersytetu Wrocławskiego Instytut Astronomiczny UWr Czym się zajmujemy? uczymy studentów, prowadzimy badania naukowe (astrofizyka

Bardziej szczegółowo

Fizyka 1 (mechanika) AF14. Wykład 10

Fizyka 1 (mechanika) AF14. Wykład 10 Fizyka 1 (mechanika) 1100-1AF14 Wykład 10 Jerzy Łusakowski 12.12.2016 Plan wykładu Grawitacja Wzór Bineta Grawitacja Oddziaływanie grawitacyjne m 2 m 1 r 12 F 21 F 12 F 12 = G m 1m 2 r 12 r12 2 ; G=6.67

Bardziej szczegółowo

Metody poszukiwania egzoplanet (planet pozasłonecznych) Autor tekstu: Bartosz Oszańca

Metody poszukiwania egzoplanet (planet pozasłonecznych) Autor tekstu: Bartosz Oszańca Metody poszukiwania egzoplanet (planet pozasłonecznych) Autor tekstu: Bartosz Oszańca Badania pozasłonecznych układów planetarnych stają się w ostatnich latach coraz popularniejszą gałęzią astronomii.

Bardziej szczegółowo

3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas

3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas 3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas oddziaływanie między ciałami, ani też rola, jaką to

Bardziej szczegółowo

Rotacja. W układzie związanym z planetą: siła odśrodkowa i siła Coroilisa. Potencjał efektywny w najprostszym przypadku (przybliżenie Roche a):

Rotacja. W układzie związanym z planetą: siła odśrodkowa i siła Coroilisa. Potencjał efektywny w najprostszym przypadku (przybliżenie Roche a): Rotacja W układzie związanym z planetą: siła odśrodkowa i siła Coroilisa. Potencjał efektywny w najprostszym przypadku (przybliżenie Roche a): Φ = ω2 r 2 sin 2 (θ) 2 GM r Z porównania wartości potencjału

Bardziej szczegółowo

Fizyka I. Kolokwium

Fizyka I. Kolokwium Fizyka I. Kolokwium 13.01.2014 Wersja A UWAGA: rozwiązania zadań powinny być czytelne, uporządkowane i opatrzone takimi komentarzami, by tok rozumowania był jasny dla sprawdzającego. Wynik należy przedstawić

Bardziej szczegółowo

Wirtualny Hogwart im. Syriusza Croucha

Wirtualny Hogwart im. Syriusza Croucha Wirtualny Hogwart im. Syriusza Croucha Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. EGZAMIN STANDARDOWYCH UMIEJĘTNOŚCI MAGICZNYCH ASTRONOMIA LISTOPAD 2013 Instrukcja dla

Bardziej szczegółowo

Wstęp do astrofizyki I

Wstęp do astrofizyki I Wstęp do astrofizyki I Wykład 1 Tomasz Kwiatkowski Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 1 1/30 Plan wykładu Uwagi wstępne Odległości do gwiazd Paralaksa trygonometryczna Hipparcos i Gaia

Bardziej szczegółowo

Plan wykładu. Mechanika układów planetarnych (Ukł. Słonecznego)

Plan wykładu. Mechanika układów planetarnych (Ukł. Słonecznego) Mechanika nieba Marcin Kiraga: kiraga@astrouw.edu.pl 30 godzin wykładu + 30 godzin ćwiczeń wykłady poniedziałki - godzina 15:15 ćwiczenia wtorki - godzina 12:15 Warunki zaliczenia ćwiczeń: prace domowe

Bardziej szczegółowo

FIZYKA KLASA I LICEUM OGÓLNOKSZTAŁCĄCEGO

FIZYKA KLASA I LICEUM OGÓLNOKSZTAŁCĄCEGO 2016-09-01 FIZYKA KLASA I LICEUM OGÓLNOKSZTAŁCĄCEGO ZAKRES PODSTAWOWY SZKOŁY BENEDYKTA 1. Cele kształcenia i wychowania Ogólne cele kształcenia zapisane w podstawie programowej dla zakresu podstawowego

Bardziej szczegółowo

Teoria ruchu Księżyca

Teoria ruchu Księżyca Wykład 9 - Ruch Księżyca. Odkształcenia związane z rotacją, oddziaływanie przypływowe, efekty relatywistyczne, efekty związane z promieniowaniem Słońca. 14.04.2014 Miesiące księżycowe Miesiąc synodyczny

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH OCEN ŚRÓROCZNYCH I ROCZNYCH FIZYKA - ZAKRES PODSTAWOWY KLASA I

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH OCEN ŚRÓROCZNYCH I ROCZNYCH FIZYKA - ZAKRES PODSTAWOWY KLASA I WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH OCEN ŚRÓROCZNYCH I ROCZNYCH FIZYKA - ZAKRES PODSTAWOWY KLASA I GRAWITACJA opowiedzieć o odkryciach Kopernika, Keplera i Newtona, opisać ruchy

Bardziej szczegółowo

Wymagania edukacyjne z fizyki zakres podstawowy. Grawitacja

Wymagania edukacyjne z fizyki zakres podstawowy. Grawitacja Wymagania edukacyjne z fizyki zakres podstawowy opowiedzieć o odkryciach Kopernika, Keplera i Newtona, Grawitacja opisać ruchy planet, podać treść prawa powszechnej grawitacji, narysować siły oddziaływania

Bardziej szczegółowo

LIX Olimpiada Astronomiczna 2015/2016 Zawody III stopnia zadania teoretyczne

LIX Olimpiada Astronomiczna 2015/2016 Zawody III stopnia zadania teoretyczne LIX Olimpiada Astronomiczna 2015/2016 Zawody III stopnia zadania teoretyczne 1. Dwie gwiazdy ciągu głównego o masach M i m tworzyły układ podwójny o orbitach kołowych. W wyniku ewolucji, bardziej masywny

Bardziej szczegółowo

Rozważania rozpoczniemy od fal elektromagnetycznych w próżni. Dla próżni równania Maxwella w tzw. postaci różniczkowej są następujące:

Rozważania rozpoczniemy od fal elektromagnetycznych w próżni. Dla próżni równania Maxwella w tzw. postaci różniczkowej są następujące: Rozważania rozpoczniemy od fal elektromagnetycznych w próżni Dla próżni równania Maxwella w tzw postaci różniczkowej są następujące:, gdzie E oznacza pole elektryczne, B indukcję pola magnetycznego a i

Bardziej szczegółowo

Fizyka i Chemia Ziemi

Fizyka i Chemia Ziemi Fizyka i Chemia Ziemi Temat 5: Zjawiska w układzie Ziemia - Księżyc T.J. Jopek jopek@amu.edu.pl IOA UAM 2012-01-26 T.J.Jopek, Fizyka i chemia Ziemi 1 Ruch orbitalny Księżyca Obserwowane tarcze Księżyca

Bardziej szczegółowo

ZADANIA MATURALNE Z FIZYKI I ASTRONOMII

ZADANIA MATURALNE Z FIZYKI I ASTRONOMII ZADANIA ZAMKNIĘTE W zadaniach od 1. do 10. wybierz i zaznacz na karcie odpowiedzi jedną poprawną odpowiedź. Zadanie 1. (1 pkt) Samochód porusza się po prostoliniowym odcinku autostrady. Drogę przebytą

Bardziej szczegółowo

WYMAGANIA NA POSZCZEGÓLNE OCENY Z FIZYKI DO KLASY PIERWSZEJ SZKOŁY PONADGIMNAZJALNEJ DO CYKLU ŚWIAT FIZYKI

WYMAGANIA NA POSZCZEGÓLNE OCENY Z FIZYKI DO KLASY PIERWSZEJ SZKOŁY PONADGIMNAZJALNEJ DO CYKLU ŚWIAT FIZYKI WYMAGANIA NA POSZCZEGÓLNE OCENY Z FIZYKI DO KLASY PIERWSZEJ SZKOŁY PONADGIMNAZJALNEJ DO CYKLU ŚWIAT FIZYKI Lp. 1 Trochę historii, czyli o odkryciach Kopernika, Keplera i o geniuszu Newtona. O Newtonie

Bardziej szczegółowo

PROGRAM NAUCZANIA Z FIZYKI ZASADNICZA SZKOŁA ZAWODOWA

PROGRAM NAUCZANIA Z FIZYKI ZASADNICZA SZKOŁA ZAWODOWA PROGRAMY NAUCZANIA Z FIZYKI REALIZOWANE W RAMACH PROJEKTU INNOWACYJNEGO TESTUJĄCEGO Zainteresowanie uczniów fizyką kluczem do sukcesu PROGRAM NAUCZANIA Z FIZYKI ZASADNICZA SZKOŁA ZAWODOWA IV etap edukacyjny

Bardziej szczegółowo

Skala jasności w astronomii. Krzysztof Kamiński

Skala jasności w astronomii. Krzysztof Kamiński Skala jasności w astronomii Krzysztof Kamiński Obserwowana wielkość gwiazdowa (magnitudo) Skala wymyślona prawdopodobnie przez Hipparcha, który podzielił gwiazdy pod względem jasności na 6 grup (najjaśniejsze:

Bardziej szczegółowo

Analiza danych Strona 1 z 6

Analiza danych Strona 1 z 6 Analiza danych Strona 1 z 6 (D1) Pulsar podwójny Dzięki systematycznym badaniom na przestrzeni ostatnich dziesiątek lat astronom znalazł dużą liczbę pulsarów milisekundowych (okres obrotu < 10ms) W większość

Bardziej szczegółowo

Z przedstawionych poniżej stwierdzeń dotyczących wartości pędów wybierz poprawne. Otocz kółkiem jedną z odpowiedzi (A, B, C, D lub E).

Z przedstawionych poniżej stwierdzeń dotyczących wartości pędów wybierz poprawne. Otocz kółkiem jedną z odpowiedzi (A, B, C, D lub E). Zadanie 1. (0 3) Podczas gry w badmintona zawodniczka uderzyła lotkę na wysokości 2 m, nadając jej poziomą prędkość o wartości 5. Lotka upadła w pewnej odległości od zawodniczki. Jest to odległość o jedną

Bardziej szczegółowo

Konkurs Astronomiczny Astrolabium IV Edycja 26 kwietnia 2017 roku Klasy I III Gimnazjum Test Konkursowy

Konkurs Astronomiczny Astrolabium IV Edycja 26 kwietnia 2017 roku Klasy I III Gimnazjum Test Konkursowy Instrukcja Zaznacz prawidłową odpowiedź. Tylko jedna odpowiedź jest poprawna. Czas na rozwiązanie testu wynosi 60 minut. 1. 11 kwietnia 2017 roku była pełnia Księżyca. Pełnia w dniu 11 kwietnia będzie

Bardziej szczegółowo

Siedem kroków w kierunku karła Od efektu Dopplera do pozasłonecznych układów planetarnych

Siedem kroków w kierunku karła Od efektu Dopplera do pozasłonecznych układów planetarnych Siedem kroków w kierunku karła Od efektu Dopplera do pozasłonecznych układów planetarnych EU HOU Napoli September 23 th 2006 Biały karzeł w siedmiu krokach Cwiczenie zaproponowane przez : Roger FERLET,

Bardziej szczegółowo

Opis założonych osiągnięć ucznia Fizyka zakres podstawowy:

Opis założonych osiągnięć ucznia Fizyka zakres podstawowy: Opis założonych osiągnięć ucznia Fizyka zakres podstawowy: Zagadnienie podstawowy Poziom ponadpodstawowy Numer zagadnienia z Podstawy programowej Uczeń: Uczeń: ASTRONOMIA I GRAWITACJA Z daleka i z bliska

Bardziej szczegółowo

Szczegółowe wymagania edukacyjne z fizyki do nowej podstawy programowej.

Szczegółowe wymagania edukacyjne z fizyki do nowej podstawy programowej. Szczegółowe wymagania edukacyjne z fizyki do nowej podstawy programowej. Zagadnienie podstawowy Uczeń: ponadpodstawowy Uczeń: Numer zagadnienia z Podstawy programowej ASTRONOMIA I GRAWITACJA Z daleka i

Bardziej szczegółowo

Fizyka - klasa I (mat.-fiz) Wymagania edukacyjne

Fizyka - klasa I (mat.-fiz) Wymagania edukacyjne Fizyka - klasa I (mat.-fiz) Wymagania edukacyjne Wymagania na każdy stopień wyższy obejmują również wymagania na stopień poprzedni. Wymagania umożliwiające uzyskanie stopnia celującego obejmują wymagania

Bardziej szczegółowo

Konkurs Astronomiczny Astrolabium II Edycja 26 marca 2014 roku Klasy I III Liceum Ogólnokształcącego Test Konkursowy

Konkurs Astronomiczny Astrolabium II Edycja 26 marca 2014 roku Klasy I III Liceum Ogólnokształcącego Test Konkursowy Instrukcja Zaznacz prawidłową odpowiedź. Tylko jedna odpowiedź jest poprawna. Czas na rozwiązanie testu wynosi 75 minut.. Do obserwacji Słońca wykorzystuje się filtr Hα, który przepuszcza z widma słonecznego

Bardziej szczegółowo

EGZAMIN MATURALNY 2013 FIZYKA I ASTRONOMIA

EGZAMIN MATURALNY 2013 FIZYKA I ASTRONOMIA Centralna Komisja Egzaminacyjna EGZAMIN MATURALNY 2013 FIZYKA I ASTRONOMIA POZIOM PODSTAWOWY Kryteria oceniania odpowiedzi MAJ 2013 2 Egzamin maturalny z fizyki i astronomii Zadanie 1. (0 1) Obszar standardów

Bardziej szczegółowo

WSZECHŚWIAT = KOSMOS

WSZECHŚWIAT = KOSMOS Wszechświat czyli po łacinie Uniwersum jest tym samym co Kosmos w języku i rozumieniu Greków. WSZECHŚWIAT = KOSMOS Grecy i my dziś definiujemy: KOSMOS to WSZYSTKO Nie wolno wskazywać lub wyobrażać sobie

Bardziej szczegółowo

Loty kosmiczne. dr inż. Romuald Kędzierski

Loty kosmiczne. dr inż. Romuald Kędzierski Loty kosmiczne dr inż. Romuald Kędzierski Trochę z historii astronautyki Pierwsza znana koncepcja wystrzelenia ciała, tak by okrążało Ziemię: Newton w 1666 roku przedstawił pomysł zbudowania ogromnego

Bardziej szczegółowo

Fizyka i Chemia Ziemi

Fizyka i Chemia Ziemi Fizyka i Chemia Ziemi Ruch geocentryczny i heliocentryczny planet T.J. Jopek jopek@amu.edu.pl IOA UAM 013-01-4 T.J.Jopek, Fizyka i chemia Ziemi 1 Układ Planetarny - klasyfikacja 1. Planety grupy ziemskiej:

Bardziej szczegółowo

( W.Ogłoza, Uniwersytet Pedagogiczny w Krakowie, Pracownia Astronomiczna)

( W.Ogłoza, Uniwersytet Pedagogiczny w Krakowie, Pracownia Astronomiczna) TEMAT: Analiza zdjęć ciał niebieskich POJĘCIA: budowa i rozmiary składników Układu Słonecznego POMOCE: fotografie róŝnych ciał niebieskich, przybory kreślarskie, kalkulator ZADANIE: Wykorzystując załączone

Bardziej szczegółowo

CELE OPERACYJNE, CZYLI PLAN WYNIKOWY klasa I

CELE OPERACYJNE, CZYLI PLAN WYNIKOWY klasa I CELE OPERACYJNE, CZYLI PLAN WYNIKOWY klasa I Lp. 1. Grawitacja 1 Trochę historii, czyli o odkryciach Kopernika, Keplera i o geniuszu Newtona. O Newtonie i prawie powszechnej grawitacji opowiedzieć o odkryciach

Bardziej szczegółowo

Uogólniony model układu planetarnego

Uogólniony model układu planetarnego Uogólniony model układu planetarnego Michał Marek Seminarium Zakładu Geodezji Planetarnej 22.05.2009 PLAN PREZENTACJI 1. Wstęp, motywacja, cele 2. Teoria wykorzystana w modelu 3. Zastosowanie modelu na

Bardziej szczegółowo

Aplikacje informatyczne w Astronomii. Internet źródło informacji i planowanie obserwacji astronomicznych

Aplikacje informatyczne w Astronomii. Internet źródło informacji i planowanie obserwacji astronomicznych Aplikacje informatyczne w Astronomii Internet źródło informacji i planowanie obserwacji astronomicznych Planowanie obserwacji ciał Układu Słonecznego Plan zajęć: planety wewnętrzne planety zewnętrzne systemy

Bardziej szczegółowo

Fizyka zakres podstawow y

Fizyka zakres podstawow y 12 Fizyka zakres podstawow y (dopuszczający) (dostateczny) (dobry) (bardzo dobry) 1 O odkryciach Kopernika, Keplera i o geniuszu Newtona. Prawo powszechnej grawitacji opowiedzieć o odkryciach Kopernika,

Bardziej szczegółowo

Oddziaływanie grawitacyjne

Oddziaływanie grawitacyjne Oddziaływanie grawitacyjne Przykład Obliczmy stosunek przyspieszenia dośrodkowego Księżyca w kierunku Ziemi do przyspieszenia grawitacyjnego przy powierzchni Ziemi. Przyspieszenie dośrodkowe w ruchu jednostajnym

Bardziej szczegółowo

Wymagania edukacyjne z fizyki dla klas pierwszych

Wymagania edukacyjne z fizyki dla klas pierwszych Zagadnienie Poziom Numer zagadnienia z Podstawy podstawowy ponadpodstawowy programowej Uczeń: Uczeń: ASTRONOMIA I GRAWITACJA Z daleka i z bliska porównuje rozmiary i odległości we Wszechświecie (galaktyki,

Bardziej szczegółowo

Ruch i położenie satelity. dr hab. inż. Paweł Zalewski, prof. AM Centrum Inżynierii Ruchu Morskiego

Ruch i położenie satelity. dr hab. inż. Paweł Zalewski, prof. AM Centrum Inżynierii Ruchu Morskiego Ruch i położenie satelity dr hab. inż. Paweł Zalewsi, prof. AM Centrum Inżynierii Ruchu Morsiego Podstawy mechanii ciał niebiesich: Znajomość pozycji satelity w przyjętym systemie odniesienia w danym momencie

Bardziej szczegółowo

PROGRAM NAUCZANIA Z FIZYKI SZKOŁA PONADGIMNAZJALNA ZAKRES PODSTATOWY

PROGRAM NAUCZANIA Z FIZYKI SZKOŁA PONADGIMNAZJALNA ZAKRES PODSTATOWY PROGRAMY NAUCZANIA Z FIZYKI REALIZOWANE W RAMACH PROJEKTU INNOWACYJNEGO TESTUJĄCEGO Zainteresowanie uczniów fizyką kluczem do sukcesu PROGRAM NAUCZANIA Z FIZYKI SZKOŁA PONADGIMNAZJALNA ZAKRES PODSTATOWY

Bardziej szczegółowo

Konkurs Astronomiczny Astrolabium IV Edycja 26 kwietnia 2017 roku Klasy I III Liceum Ogólnokształcącego Test Konkursowy

Konkurs Astronomiczny Astrolabium IV Edycja 26 kwietnia 2017 roku Klasy I III Liceum Ogólnokształcącego Test Konkursowy Instrukcja Zaznacz prawidłową odpowiedź. Tylko jedna odpowiedź jest poprawna. Czas na rozwiązanie testu wynosi 75 minut. 1. 11 kwietnia 017 roku była pełnia Księżyca. W tym samym dniu, pełnia Księżyca

Bardziej szczegółowo

Piotr Brych Wzajemne zakrycia planet Układu Słonecznego

Piotr Brych Wzajemne zakrycia planet Układu Słonecznego Piotr Brych Wzajemne zakrycia planet Układu Słonecznego 27 sierpnia 2006 roku nastąpiło zbliżenie Wenus do Saturna na odległość 0,07 czyli 4'. Odległość ta była kilkanaście razy większa niż średnica tarcz

Bardziej szczegółowo

Grawitacja. Wykład 7. Wrocław University of Technology

Grawitacja. Wykład 7. Wrocław University of Technology Wykład 7 Wrocław University of Technology 1 Droga mleczna Droga Mleczna galaktyka spiralna z poprzeczką, w której znajduje się m.in. nasz Układ Słoneczny. Galaktyka zawiera od 100 do 400 miliardów gwiazd.

Bardziej szczegółowo

CZY TE SCENY TO TYLKO FIKCJA LITERACKA CZY. CZY STAROśYTNI EGIPCJANIE FAKTYCZNIE UMIELI TAK DOBRZE PRZEWIDYWAĆ ZAĆMIENIA?

CZY TE SCENY TO TYLKO FIKCJA LITERACKA CZY. CZY STAROśYTNI EGIPCJANIE FAKTYCZNIE UMIELI TAK DOBRZE PRZEWIDYWAĆ ZAĆMIENIA? MOTYW ZAĆMIENIA SŁOŃCA S W POWIEŚCI I FILMIE FARAON M CZY TE SCENY TO TYLKO FIKCJA LITERACKA CZY TEś CHOĆBY SZANSA MOśLIWO LIWOŚCI? CZY STAROśYTNI EGIPCJANIE FAKTYCZNIE UMIELI TAK DOBRZE PRZEWIDYWAĆ ZAĆMIENIA?

Bardziej szczegółowo