OPTYMALNE KSZTAŁTOWANIE BELKI NA PODŁOŻU SPRĘ Ż YSTY M Z UWZGLĘ DNIENIEM OGRANICZEŃ NAPRĘ ŻŃ MACIEJ MAKOWSKI, GWIDON SZEFER (KRAKÓW) 1.

Wielkość: px
Rozpocząć pokaz od strony:

Download "OPTYMALNE KSZTAŁTOWANIE BELKI NA PODŁOŻU SPRĘ Ż YSTY M Z UWZGLĘ DNIENIEM OGRANICZEŃ NAPRĘ ŻŃ MACIEJ MAKOWSKI, GWIDON SZEFER (KRAKÓW) 1."

Transkrypt

1 M ECHAN IKA TEORETYCZNA 1 STOSOWANA 3, IS (1977) OPTYMALNE KSZTAŁTOWANIE BELKI NA PODŁOŻU SPRĘ Ż YSTY M Z UWZGLĘ DNIENIEM OGRANICZEŃ NAPRĘ ŻŃ E NORMALNYCH MACIEJ MAKOWSKI, GWIDON SZEFER (KRAKÓW) 1. Wstęp Przedmiotem pracy bę dzie optymalizacja kształtu (szerokoś ci) belki spoczywają cej na podłożu sprę ż ystym Winklera z uwagi na minimum obję tośi cprzy ograniczeniu naprę żń e normalnych. W tym celu w prostoką tnym, kartezjań skim układzie współrzę dnych Otx rozważ ymy belkę o skoń czonej długoś ci, sprę ż ystą, jednorodną, izotropową o przekroju prostoką tnym (rys. 1). p =kx Rys. 1 Linia ugię cia belki opisana jest znanym równaniem róż niczkowym (1.1) (EJx")" + kx = q(t), gdzie E oznacza moduł Younga, J moment bezwładnoś ci, x(t) ugię cie belki, q(t) obcią ż enie, к współczynnik podatnoś ci podłoż a. Rozważ ać bę dziemy belkę spoczywają ca na podłożu o stałym współczynniku podatnoś ci к, o stałej wysokoś ci i zmiennej, lecz symetrycznej wzglę dem osi belki, szerokoś ci. Szerokość belki moż emy wyrazić w postaci (1.) \EJ(t) 1 *(0 = h,. 3 У E = h 3 E m ( 0 ' gdzie mit) = EĄ t).

2 360 M. MAKOWSKI, G. SZEFER Szukanie minimum obję tośi cbelki przy takich założ eniach równoważ ne jest szukaniu minimum funkcjonału] m(t)dt. o W dalszym cią gu pracy belkę bę dziemy traktować jako układ sterowania, rozwią zując nieklasyczny problem wariacyjny na podstawie metody programowania dynamicznego BELLMANA.. Sformułowanie problemu Rozważ my belkę opisaną równaniem (.1) MO*"]" = q kx. ' Warunek ograniczają cy naprę ż eni e normalne (.) \o\<o d ; funkcjonał postaci (.3) J 0 = / (OA; Należy wyznaczyć taki kształt belki, który przy spełnieniu (.1) i (.) realizuje minimum funkcjonału J Rozwią zanie problemu Ograniczenie (.) zastą pimy równoważ nym ograniczeniem na drugą pochodną ugię cia. Korzystając ze wzoru n n \M\ \EJx"\ h \Ex"h\ (3.1). a= w = j = i uwzglę dniając (.), otrzymujemy (3.) \x"\ < o o, df cr, gdzie OQ = Eh Oznaczając x" = v, które traktujemy jako nowe sterowanie [1], moż na sformułowany problem przedstawić nastę pują co : (3.3) [m(t)x"]" = q kx, (3.4) x" = v, (3.5) D = {v: \v\ < a 0 ), i (3.6) min I m{t)dt.

3 OPTYMALNE KSZTAŁTOWANIE BELKI NA PODŁOŻU SPRĘ Ż YSTY M 361 Równanie (3.4) przedstawiamy w postaci układu równań rzę du pierwszego: (3.7) i = x, x = v, gdzie x, = x. i Umiejscawiając zagadnienie szukania min/m(t)dt w szerszej klasie ze zmienną dolną VSQ b granicą całkowania, mamy (3.8) f(x, t) = min i m(u)du, ч ел J gdzie x = (x x, x ). Równanie BELLMANA [1] dla wyznaczenia funkcji / ma postać] (3.9) 0 = min et cx t dx J Zależ ność w nawiasie kwadratowym od v jest liniowa, czyli minimum tego wyraż enia bę dzie osią gnię t e na brzegu Q. Mamy więc równoważ ną postać równania Bellmana (3.10) 0 = inf\m+^ + p x a stąd otrzymujemy sterowanie optymalne dx Я /* (3.11) v = o osgn^r, które moż na zapisać w równoważ nej postaci (3.1) \x"\ = o o. Rozwią zaniem optymalnym postawionego zadania jest więc belka równomiernej wytrzymałoś ci. Jakoś ciowy charakter sterowania został znaleziony stosunkowo prosto, jednak w dalszym cią gu należy poszukać WKW na to, aby belka była równomiernej wytrzymałoś ci i podać jej konstrukcję. ox 4. Belki o równomiernej wytrzymałoś ci na podłożu sprę ż ystym 4.1. Przypadek krzywizny stałego znaku. Rozważ my począ tkowo najprostszy przypadek, czyniąc zastrzeż enie (4.1) x">0 dla fe<0,/>. Warunek okreś lająy c kształt belki ma postać: a = a d, który zgodnie z (3.1) moż na zapisać л Ex"h (4.) = a d. 1 5 Mechanika teoretyczna 3/77

4 36 M. MAKOWSKI, G. SZEFER Równanie linii ugię cia belki po wykorzystaniu wzoru na moment bezwładnoś ci przyjmuje postać > t 6 Ex"h b(t)\ =q kx lub [a d b(t)\" = q kx po wykorzystaniu zwią zku (4.). Mamy stąd I (4.3) Do wyznaczenia poszukiwanego kształtu belki mamy więc układ dwóch równań (4.) (4.3). Są to równania róż niczkowe rzę du drugiego, należy więc dołą czyć do nich po dwa warunki począ tkowe lub brzegowe ze wzglę du na x(t) i b(t). %(t)*ą 0. Rys. ' Jako przykład rozważ my belkę utwierdzoną na jednym i swobodną na drugim koń cu, obcią ż on ą w sposób stały q(t) = q 0 const. Rozwią zanie równania (4.) ma postać Oj Eh t + Ci t+c, a po uwzglę dnieniu warunków począ tkowach x(0) = x'(0) = 0 otrzymujemy (4.4) Od o X = t Eh Po wstawieniu zwią zku (4.4) do (4.3) otrzymujemy równanie (4.5) którego rozwią zanie ma postać (4.6) ti,'a 6 / k<r к а, d Л A 3?o h a u Eh 3 Warunki począ tkowe dla b(t) otrzymujemy uwzglę dniają, cże moment i siła poprzeczna powinny być równe zeru dla t = /. Mamy wię c: I EJx"\ t=l = 0=>b(l) = 0, (EJx"y\ t.=, = 0=>b'(l) = 0.

5 OPTYMALNE KSZTAŁTOWANIE BELKI NA PODŁOŻU SPRĘ Ż YSTY M 363 Uwzglę dniając te warunki mamy poszukiwany kształt belki Do wyniku (4.7) moż emy dojść również inną metodą. Z założ enia x" = a 0, otrzymuk jemy reakcję podłoża równą a 0 t. Oznaczmy к (4.8) q(t) = a 0 cr 0 t. Moment od obcią ż eni a q(t) liczony z prawej strony przekroju ma postać // к \ (4.9), M(t) = J Uo a 0 u \(u t)du. Po wykonaniu całkowania otrzymujemy (4.10) M W._, 0 J' t + _^(_C_4' + jl). Powyż szy wynik otrzymaliś my przy założ eniu x" > 0, czyli M(t) jest ujemne dla t e <0, /). Poszukiwany kształt belki otrzymamy, wykorzystując wzór > (4.11) b{t)= W(t)\. naл Ponieważ \M(t)\ M(t), otrzymujemy ostatecznie wzór (4 1) b(t) = 'Ж ** H «4 M Ł ^ x i L ^ J «! Ą identyczny ze wzorem (4.7) otrzymanym w poprzedniej metodzie. Otrzymaliś my optymalny kształt belki przy uczynionym a priori założ eniu x" > 0 dla/e(0,/>. Wyprowadzimy obecnie warunek konieczny i wystarczają cy na to, aby x" > 0 dla t e (0,/>. Twierdzenie (4.1) Założ enie: x" > 0 dla re(0,/>. k Teza: q 0 ^o 0 l Ss 0. Dowód: x" > 0 => x" = cr 0 x = ~ 0 / => /ex = y o', ч df к, Oznaczmy q(t) = с 7 0 у о 0 Г. Ponieważ q(t) jest funkcją maleją cą, musi przyjmować wartoś ci dodatnie dla t e <0, /), gdyż w przeciwnym przypadku nie byłoby spełnione założ enie x" > 0. Zauważ my, że

6 364 M. MAKOWSKI, G. SZEFER wartość równą zeru może przyjmować q{t) jedynie dla t = l i że prawdziwa jest następują ca implikacja: к q 0 IT (f 0 t >0 к dla t e <0, /> => q 0 ^ a 0 l 5* 0, cbdo. A Z Twierdzenie (4.) Założ enie: q o ^ <y o l >0. Teza: Dowód: x">0 dla re<0,/>. 4o ~o 0 l ^ 0 => 9(0 f q 0 Ł^0fi > 0 dla r 6<0, /). Moment obliczony od obcią ż eni a q(t) przyjmuje wartoś ci ujemne, czyli x" przyjmuje wartoś ci dodatnie, cbdo. Otrzymaliś my więc warunek konieczny i wystarczają cy na to, aby x" było dodatnie w postaci nierównoś ci (4.13) q 0 ^<r 0 i ź O. Wzór (4.1) przedstawia więc optymalny kształt belki przy założ eniu, że parametry: к q 0, k, a 0 i / spełniają relację: q 0 a a l ^ 0. Zauważ my, że jeż eli we wzorze (4.1) przejdziemy w granicy z к do zera otrzymamy znane rozwią zanie Galileusza: (4.14) 6(0 3ffo { 6q 0 l 3l q 0 h a d h a d h a d 4.. Przypadek zmiany znaku krzywizny. Rozważ ać teraz bę dziemy przypadek z jednokrotną zmianą krzywizny parabol w przedziale (0,0; zakładamy wię c, ż e: (4.15) c f cr 0 dla 0 ^ t ^ a t, ~ 1 cr 0 dla a x < t < /, gdzie a x jest nieznanym punktem leż ą cym wewną trz przedziału (0, /). Na podstawie założ enia (4.15) mamy *i(0 1 a0 t dla 0 < t < a t, a po uwzglę dnieniu warunków zszycia: Otrzymujemy = x (a 1 ), x[(a t ) = x' (aj). x (t) = Y a ot + a 0 a 1 t a 0 a\ dla a x < t < /.

7 OPTYMALNE KSZTAŁTOWANIE BELKI NA PODŁOŻU SPRĘ Ż YSTY M 365 Przyjmując (4.16) q(t) = к q 0 at o d l a o< 1 ~ k { Y' t + <J oo i t a 0 alj dla a t < / < /, sprowadzamy zagadnienie do belki statycznie wyznaczalnej. Moment od obcią ż eni a q(t) dla a x <? < / ma postać W = J ^ o /c( ^ M +cr oa l M ff 0a j](m / )rfm. Po wykonaniu całkowania otrzymujemy / l t \ к IP 1* t*\ (4.17) M{t) = (r/ 0 + A:o 0 «f)^/ ~ ~j + ^("З ' 4 Г / + Podobnie w przedziale 0 < t < a x mamy,,.... (a, t) к а 0 1а * a] f 4 \ (4.18) M(0 = g o ± l ^ + ^ ± j t + ^ +,J, l a\\ kil 3 1* crt\ + (q 0 + k o o a\) la, / H + у "o \T 0 l 4 1*/ l' 3 'l a?\ I +^ (T 0a 1l ^ y f l I l + _ 6 _ / Wartość momentu w punkcie t = a x wynosi. (4.19) M(a x ) = («o+^oa )( ai / _C ^ + A o 0 ( J ai ^ ^ ] + + к (т 0 а Л T AI+ ~6~}' Na podstawie zwią zku EJx" = Mi założ enia, że w punkcie a x nastę puje skok x" oraz faktu, że moment od obcią ż eni a cią głego jest funkcją cią głą, wnioskujemy, że M(a t ) = = 0. Warunek M(a x ) = 0 pozwala wyznaczyć nieznaną wartość odcię tej punktu, w którym nastę puje zmiana krzywizny. Po przekształceniach wyraż enia (4.19) i przyrównaniu do zera otrzymujemy równanie stopnia czwartego Ш ^,» + (^ +^). ; _(^ + 4,) 0 l + (j ^4,f o. Rozwią zanie tego równania ze wzglę du na a x pozwoli wyznaczyć optymalny kształt belki po wykorzystaniu zwią zku b(t) =, f \M(t)\.

8 З бб М. MAKOWSKI, G. SZEFER ' Pierwiastki równania stopnia czwartego okreś lają znane wzory, jednak w naszym przypadku istotne jest znalezienie WKW na to, aby równanie (4.0) posiadało dokładnie jeden pierwiastek rzeczywisty w przedziale (0, /). W tym celu oprzemy się na nastę pują ce j definicji i twierdzeniu []: Definicja: Jeż eli w cią gu skoń czonym liczb rzeczywistych С 1г C,, C n zachodzi dla 1 < к < n l nierówność C k x C k+1 < 0, to mówimy, że para liczb C k, C k+l stanowi odmianę. Również w przypadku, gdy jest C k x C t + P + I < 0, przy czym C k+s = 0 dla s = 1,,......,p (1 < к,1 < p, k+p < «), to mówimy, że para liczb stanowi odmianę. W cią gu, 3, 5, 1, 0,, 7, 0, 0, 9, 5 odmianę tworzą pary: 3, 5;,1; 7, 9. Mamy więc trzy odmiany w tym cią gu. Reguła Fouriera. Tworzymy dla danego wielomianu f(x) stopnia n ciąg jego pochodnych: f(x), f'(x), f"(x), f m (x). Pochodna f w (x) jest stała. Oznaczmy przez N(x 0 ) ilość odmian w cią gu liczb f(x 0 ), f'(x 0 ),...,f m (x 0 ). Twierdzenie Budana Fouriera. Niech f(x) bę dzie wielomianem rzeczywistym i niech a < P,f{a) ф 0, f(fi) ф 0. Wtedy ilość zer wielomianu f(x) w przedziale (a,/s) wynosi N(a) N((}), lub jest od tej liczby mniejsza o liczbę parzystą. Rozważ ając M(a x ) zauważ amy, że / jest dwukrotnym pierwiastkiem tego wielomianu (gdyż M(l) = 0 i M'(l) = 0). Wielomian M(c x ) moż na więc rozłoż yć na czynniki:, 1 4, i<? 0, 3, \ M( aj = ( a i / ) ^ ^ ] + ^ + T P. Wystarczy teraz zbadać zera drugiego czynnika w przedziale (0, /); opierając się na twierdzeniu Budana Fouriera mamy: /J'(«I) = a t 14 l, Mamy więc N(0) =. A"(«i) =, л (о) = 4^+4- / >. 5к а п 5 "... Л '(0) = ~i < о, 5 Л "(0) = > 0. 4 h"(l) = > 0.

9 л OPTYMALNE KSZTAŁTOWANIE BELKI NA PODŁOŻU SPRĘ Ż YSTY M 367 Jeż eli /?(/) bę dzie ujemne, wtedy N(l) = 1 i zgodnie z twierdzeniem Budana Fouriera ilość zer h(ai) w przedziale (0, /) wynosić bę dzie N(0) N(l) = 1. Otrzymaliś my więc WKW na to, aby równanie (4.0) miało dokładnie jeden pierwiastek leż ąy c w przedziale (0, /) w postaci lub po przekształceniu 5 5ka0 (4.1) q o ~a o F <0. Rozwią zując równanie kwadratowe 1, 14, 1<7o 3 a\ z la.+ = 1 ± + z l = 0, A:cr 0 5 otrzymujemy dokładnie jeden pierwiastek leż ąy c w przedziale (0,/) (4 ) = / 'l/ ^ l 5 у 5 5ka 0 Jeż eli rozważ ymy przypadek ogólny, gdy obcią ż eni e jest dowolną funkcją q(j) i założ ymy, że x" zmienia znak w przedziale (0, /) n razy w punktach a l,a, a, to dochodzimy do nastę pują ceg o układu równań: / л jq(u) (u a n )du ke 0 ^V (_ Щ Li JL Ш a fc 1 " '..., 7 P I" a{\ +K( 1 ) l + 4 y y«,+y = «, * i " i +( iy i 4 a 0 ( 4 fl «+ 4 ' L+ 4r) +? / а а \ J 9(«)(««)^ ^ 0( «+ а ) ( f l f l 3 _JL ^ +, k I <4 a* a%\,, Jej a? a \

10 368 M. MAKOWSKI, G. SZEFER \ / Ci u \ q(u) (u a^du kctoi a ) (OjOz ~ ч Г + к I al a\ a\ \, + cr 0 l ^ Oj + ~ + k a 0 a Ł ( = 0. Jeż eli istnieje rozwią zanie tego układu równań spełniają ce warunek 0 < a x < a <,<...< a < l, to daje ono poszukiwane punkty zmian krzywizny parabol. 5. Zakoń czeni e W pracy wykazano, że optymalne kształtowanie belek na podłożu sprę ż ystym, z uwagi na minimum obję tośi cprzy ograniczeniu naprę żń enormalnych, prowadzi do belek równomiernej wytrzymałoś ci. W odróż nieniu od znanych rozwią zań układów statycznie wyznaczalnych wyznaczenie kształtu belki na podłożu winklerowskim nastrę cza poważ ne trudnoś ci. W pracy ograniczono się jedynie do przypadku belki jednoprzę słowej, otrzymując ś cisłe analityczne rozwią zanie. Poszukiwanie optymalnego rozwią zania dla belki cią głej pa podłożu Winklera wymagałoby już odpowiedniej procedury numerycznej. Literatura cytowana w tekś cie 1. R. BELLMAN, S. DREYFUS, Programowanie dynamiczne, PWE, Warszawa A. FELDBAUM, Podstawy teorii optymalnych układów sterowania automatycznego, PWN, Warszawa 1 3. J. Tou, Nowoczesna teoria sterowania, WNT, Warszawa A. TUROWICZ, Geometria zer wielomianów, PWN, Warszawa Р е з ю ме О П Т И М А Л Ь Е Н ПО Р О Е К Т И Р О В Е А НБ ИА Л КИ Н А У П Р У Г М О О С Н О В А НИ И П РИ О Г Р А Н И Ч Е И Н ИВ Е Л И Ч И Ы Н Н О Р М А Л Ь НХ Ы Н А П Р Я Ж Е Й Н И В р а б ое т р а с с м о т а р ез на д аа ч о б о п т и м а л й ь нф о о р ме б а л к, ил е ж а щй ен а у п р у м г о о с н о в а и н и В и н к л е. р Иа с к о м м ы я в л я е я т см и н и м у о б ъ еа м п ри о г р а н и ч и е нв ие л и ч ы и н н о р м а л ь х н ны а п р я ж е н и. й П ри п о м о и щ д и н а м и ч е со кп ор г о г р а м м и р оя в па он ли у ч о е нр е ш е не ив в и де р а в н о п р о й ч н о б а л к. ид ан м е т д о п о с т р о ея н т иа к й о б а л к, ил е ж а щй ен а у п р у м г о о с н о в а н. и и Summary OPTIMUM SHAPE DESIGN OF A BEAM RESTING ON ELASTIC FOUNDATION WITH NORMAL STRESS RESTRICTIONS In the paper the problem of shape optimization of a beam resting on elastic foundation is formulated. The problem of minimum weight is considered, under the condition of limited normal stresses. The solution is obtained by means of dynamic programming. The problem of a beam resting on a Winkler type elastic foundation of uniform strength is considered in detail. POLITECHNIKA KRAKOWSKA Praca została złoż ona w Redakcji dnia 15 listopada 1976 r.

ECHANIKA METODA ELEMENTÓW DRZEGOWYCH W WTBRANTCH ZAGADNIENIACH ANALIZT I OPTYMALIZACJI OKŁADOW ODKSZTAŁCALNYCH NAUKOWE POLITECHNIKI ŚLĄSKIEJ

ECHANIKA METODA ELEMENTÓW DRZEGOWYCH W WTBRANTCH ZAGADNIENIACH ANALIZT I OPTYMALIZACJI OKŁADOW ODKSZTAŁCALNYCH NAUKOWE POLITECHNIKI ŚLĄSKIEJ Z E S Z Y T Y NAUKOWE POLITECHNIKI ŚLĄSKIEJ TADEUSZ BURCZYŃSKI METODA ELEMENTÓW DRZEGOWYCH W WTBRANTCH ZAGADNIENIACH ANALIZT I OPTYMALIZACJI OKŁADOW ODKSZTAŁCALNYCH ECHANIKA Z. 97 GLIWICE 1989 POLITECHNIKA

Bardziej szczegółowo

WYZNACZANIE ZMIAN STAŁYCH SPRĘ Ż YSTOŚI CMATERIAŁU WYSTĘ PUJĄ CYC H GRUBOŚ CI MODELU GIPSOWEGO. JÓZEF W R A N i к (GLIWICE) 1.

WYZNACZANIE ZMIAN STAŁYCH SPRĘ Ż YSTOŚI CMATERIAŁU WYSTĘ PUJĄ CYC H GRUBOŚ CI MODELU GIPSOWEGO. JÓZEF W R A N i к (GLIWICE) 1. MECHANIKA TEORETYCZNA I STOSOWANA 1, 11 (1973) WYZNACZANIE ZMIAN STAŁYCH SPRĘ Ż YSTOŚI CMATERIAŁU WYSTĘ PUJĄ CYC H GRUBOŚ CI MODELU GIPSOWEGO NA JÓZEF W R A N i к (GLIWICE) 1. Wstęp Wartoś ci naprę żń

Bardziej szczegółowo

GRANICZNA MOC DWUFAZOWEGO TERMOSYFONU RUROWEGO ZE WZGLĘ DU NA KRYTERIUM ODRYWANIA KONDENSATU BOGUMIŁ BIENIASZ (RZESZÓW) Oznaczenia

GRANICZNA MOC DWUFAZOWEGO TERMOSYFONU RUROWEGO ZE WZGLĘ DU NA KRYTERIUM ODRYWANIA KONDENSATU BOGUMIŁ BIENIASZ (RZESZÓW) Oznaczenia MECHANIKA TEORETYCZNA I STOSOWANA 1, 14 (1976) GRANICZNA MOC DWUFAZOWEGO TERMOSYFONU RUROWEGO ZE WZGLĘ DU NA KRYTERIUM ODRYWANIA KONDENSATU BOGUMIŁ BIENIASZ (RZESZÓW) Oznaczenia A pole powierzchni poprzecznego

Bardziej szczegółowo

ANDRZEJ MŁOTKOWSKI (ŁÓDŹ)

ANDRZEJ MŁOTKOWSKI (ŁÓDŹ) MECHANIKA TEORETYCZNA I STOSOWANA 2, (1970) PRZYBLIŻ ONE OBLICZANIE PŁYTY KOŁOWEJ, UŻ EBROWANEJ JEDNOSTRONNIE, OBCIĄ Ż ONE J ANTYSYMETRYCZNIE ANDRZEJ MŁOTKOWSKI (ŁÓDŹ) Oznaczenia stale, a promień zewnę

Bardziej szczegółowo

INWERSYJNA METODA BADANIA MODELI ELASTOOPTYCZNYCH Z WIĘ ZAMI SZTYWNYMI ROMAN DOROSZKIEWICZ, JERZY LIETZ, BOGDAN MICHALSKI (WARSZAWA)

INWERSYJNA METODA BADANIA MODELI ELASTOOPTYCZNYCH Z WIĘ ZAMI SZTYWNYMI ROMAN DOROSZKIEWICZ, JERZY LIETZ, BOGDAN MICHALSKI (WARSZAWA) MECHANIKA TEORETYCZNA I STOSOWANA 3, 15 (1977) i INWERSYJNA METODA BADANIA MODELI ELASTOOPTYCZNYCH Z WIĘ ZAMI SZTYWNYMI ROMAN DOROSZKIEWICZ, JERZY LIETZ, BOGDAN MICHALSKI (WARSZAWA) W artykule tym przedstawimy

Bardziej szczegółowo

DRGANIA. PRĘ TÓW O LINIOWO ZMIENNEJ WYSOKOŚ CI POPRZECZNEGO

DRGANIA. PRĘ TÓW O LINIOWO ZMIENNEJ WYSOKOŚ CI POPRZECZNEGO MECHANIKA TEORETYCZNA I STOSOWANA 2/3, 21 (1983) DRGANIA. PRĘ TÓW O LINIOWO ZMIENNEJ WYSOKOŚ CI POPRZECZNEGO PRZEKROJU EDWARD J. K R Y N I C K I Departament of Civil Engineering University of Manitoba

Bardziej szczegółowo

WYTRZYMAŁOŚĆ STALOWYCH PRĘ TÓW Z KARBEM PRZY ROZCIĄ W PODWYŻ SZONYCH TEMPERATURACH KAROL T U R S K I (WARSZAWA) 1. Wstęp

WYTRZYMAŁOŚĆ STALOWYCH PRĘ TÓW Z KARBEM PRZY ROZCIĄ W PODWYŻ SZONYCH TEMPERATURACH KAROL T U R S K I (WARSZAWA) 1. Wstęp MECHANIKA TEORETYCZNA I STOSOWANA 4. 15 (1977) WYTRZYMAŁOŚĆ STALOWYCH PRĘ TÓW Z KARBEM PRZY ROZCIĄ W PODWYŻ SZONYCH TEMPERATURACH GANIU KAROL T U R S K I (WARSZAWA) 1. Wstęp Teoretyczne rozwią zanie uzyskane

Bardziej szczegółowo

CAŁKA RÓWNANIA RÓŻ NICZKOWEGO CZĄ STKOWEGO ROZWIĄ ZUJĄ CEG O WALCOWE. 1. Wstęp

CAŁKA RÓWNANIA RÓŻ NICZKOWEGO CZĄ STKOWEGO ROZWIĄ ZUJĄ CEG O WALCOWE. 1. Wstęp MECHANIKA TEORETYCZNA I STOSOWANA 2,14 (1976) CAŁKA RÓWNANIA RÓŻ NICZKOWEGO CZĄ STKOWEGO ROZWIĄ ZUJĄ CEG O POWŁOKI WALCOWE STANISŁAW BIELAK (GLIWICE) 1 Wstęp W pracach autora [1, 2, 3, 4] rozwią zanie

Bardziej szczegółowo

STATYKA POWŁOKI WALCOWEJ ZAMKNIĘ TEJ PRACUJĄ CEJ W STANIE ZGIĘ CIOWYM. 1. Wstęp

STATYKA POWŁOKI WALCOWEJ ZAMKNIĘ TEJ PRACUJĄ CEJ W STANIE ZGIĘ CIOWYM. 1. Wstęp MECHANIKA TEORETYCZNA I STOSOWANA 3, 14 (1976) STATYKA POWŁOKI WALCOWEJ ZAMKNIĘ TEJ PRACUJĄ CEJ W STANIE ZGIĘ CIOWYM STANISŁAW BIELAK (OPOLE) 1. Wstęp Przedstawione w tym opracowaniu rozwią zanie, ilustrowane

Bardziej szczegółowo

NOŚ NOŚ Ć GRANICZNA ROZCIĄ GANYCH PRĘ TÓW Z KARBAMI KĄ TOWYMI O DOWOLNYCH WYMIARACH CZĘ Ś CI NAD KARBAMI. 1. Wprowadzenie

NOŚ NOŚ Ć GRANICZNA ROZCIĄ GANYCH PRĘ TÓW Z KARBAMI KĄ TOWYMI O DOWOLNYCH WYMIARACH CZĘ Ś CI NAD KARBAMI. 1. Wprowadzenie MECHANIKA TEORETYCZNA I STOSOWANA 1, 7 (1969) NOŚ NOŚ Ć GRANICZNA ROZCIĄ GANYCH PRĘ TÓW Z KARBAMI KĄ TOWYMI O DOWOLNYCH WYMIARACH CZĘ Ś CI NAD KARBAMI JÓZEF MlASTKOWSKI (WARSZAWA) 1. Wprowadzenie Nagłe

Bardziej szczegółowo

STATECZNOŚĆ POWŁOKI CYLINDRYCZNEJ Z OBWODOWYM ZAŁOMEM PRZY Ś CISKANIU OSIOWYM. 1. Wprowadzenie

STATECZNOŚĆ POWŁOKI CYLINDRYCZNEJ Z OBWODOWYM ZAŁOMEM PRZY Ś CISKANIU OSIOWYM. 1. Wprowadzenie MECHANIKA TEORETYCZNA I STOSOWANA 4. 15 (1977) STATECZNOŚĆ POWŁOKI CYLINDRYCZNEJ Z OBWODOWYM ZAŁOMEM PRZY Ś CISKANIU OSIOWYM STANISŁAW ŁUKASIEWICZ, JERZY TUMIŁOWICZ (WARSZAWA) 1. Wprowadzenie Celem pracy

Bardziej szczegółowo

STAN SPRĘ Ż YSTO PLASTYCZNY I PEŁZANIE GEOMETRYCZNIE NIELINIOWEJ POWŁOKI STOŻ KOWEJ HENRYK К О P E С К I (RZESZÓW) 1. Wstę p

STAN SPRĘ Ż YSTO PLASTYCZNY I PEŁZANIE GEOMETRYCZNIE NIELINIOWEJ POWŁOKI STOŻ KOWEJ HENRYK К О P E С К I (RZESZÓW) 1. Wstę p MECHANIKA TEORETYCZNA I STOSOWANA I, 7 (1969) STAN SPRĘ Ż YSTO PLASTYCZNY I PEŁZANIE GEOMETRYCZNIE NIELINIOWEJ POWŁOKI STOŻ KOWEJ HENRYK К О P E С К I (RZESZÓW) 1. Wstę p Reologiczne zagadnienia geometrycznie

Bardziej szczegółowo

UGIĘ CIE OSIOWO SYMETRYCZNE PŁYTY REISSNERA O ZMIENNEJ GRUBOŚ CI ANDRZEJ G A W Ę C KI (POZNAŃ) 1. Wstęp

UGIĘ CIE OSIOWO SYMETRYCZNE PŁYTY REISSNERA O ZMIENNEJ GRUBOŚ CI ANDRZEJ G A W Ę C KI (POZNAŃ) 1. Wstęp MECHANIKA TEORETYCZNA I STOSOWANA 3, 11 (1973) UGIĘ CIE OSIOWO SYMETRYCZNE PŁYTY REISSNERA O ZMIENNEJ GRUBOŚ CI ANDRZEJ G A W Ę C KI (POZNAŃ) 1. Wstęp Celem niniejszej pracy jest wyprowadzenie równań podstawowych

Bardziej szczegółowo

DRGANIA GRUBOŚ CIENNEJ RURY PRZY WEWNĘ TRZNYM I ZEWNĘ TRZNYM PRZEPŁYWIE CIECZY (WARSZAWA) Waż niejsze oznaczenia

DRGANIA GRUBOŚ CIENNEJ RURY PRZY WEWNĘ TRZNYM I ZEWNĘ TRZNYM PRZEPŁYWIE CIECZY (WARSZAWA) Waż niejsze oznaczenia MECHANIKA TEORETYCZNA I STOSOWANA 1, 7 (1969) DRGANIA GRUBOŚ CIENNEJ RURY PRZY WEWNĘ TRZNYM I ZEWNĘ TRZNYM PRZEPŁYWIE CIECZY JACEK SAMBORSKI (WARSZAWA) Waż niejsze oznaczenia a,b e Qw, Qz uw, uz Cw, Cz

Bardziej szczegółowo

WPŁYW CZĘ STOTLIWOŚ I CWIBRACJI NA PROCES WIBROPEŁZANIA 1 ) ANATOLIUSZ JAKOWLUK (BIAŁYSTOK) 1. Wstęp

WPŁYW CZĘ STOTLIWOŚ I CWIBRACJI NA PROCES WIBROPEŁZANIA 1 ) ANATOLIUSZ JAKOWLUK (BIAŁYSTOK) 1. Wstęp MECHANIKA TEORETYCZNA 1 STOSOWANA 4, 7 (1969) WPŁYW CZĘ STOTLIWOŚ I CWIBRACJI NA PROCES WIBROPEŁZANIA 1 ) ANATOLIUSZ JAKOWLUK (BIAŁYSTOK) 1. Wstęp W pracy [1] autor przedstawił wyniki badań nad wpływem

Bardziej szczegółowo

ELEKTRYCZNY UKŁAD ANALOGOWY DLA GEOMETRYCZNIE NIELINIOWYCH ZAGADNIEŃ PŁYT O DOWOLNEJ GEOMETRII MIECZYSŁAW JANOWSKI, HENRYK К О P E С К I (RZESZÓW)

ELEKTRYCZNY UKŁAD ANALOGOWY DLA GEOMETRYCZNIE NIELINIOWYCH ZAGADNIEŃ PŁYT O DOWOLNEJ GEOMETRII MIECZYSŁAW JANOWSKI, HENRYK К О P E С К I (RZESZÓW) I MECHANIKA TEORETYCZNA I STOSOWANA 2, 14 (1976) ELEKTRYCZNY UKŁAD ANALOGOWY DLA GEOMETRYCZNIE NIELINIOWYCH ZAGADNIEŃ PŁYT O DOWOLNEJ GEOMETRII MIECZYSŁAW JANOWSKI, HENRYK К О P E С К I (RZESZÓW) Modelowanie

Bardziej szczegółowo

OPTYMALNE KSZTAŁTOWANIE PRĘ TA Ś CISKANEGO PRZY DUŻ YCH UGIĘ CIACH METODĄ PROGRAMOWANIA DYNAMICZNEGO*) 1. Wstęp

OPTYMALNE KSZTAŁTOWANIE PRĘ TA Ś CISKANEGO PRZY DUŻ YCH UGIĘ CIACH METODĄ PROGRAMOWANIA DYNAMICZNEGO*) 1. Wstęp ' ' 1 t I ) MECHANIKA TEORETYCZNA I STOSOWANA 3, 15 (1977) i OPTYMALNE KSZTAŁTOWANIE PRĘ TA Ś CISKANEGO PRZY DUŻ YCH UGIĘ CIACH METODĄ PROGRAMOWANIA DYNAMICZNEGO*) ' JAN TATJ BBi.Ar.H4T Ł A C H U T fkuatrń

Bardziej szczegółowo

IN ŻYNIE R IA S R O D O W IS K A

IN ŻYNIE R IA S R O D O W IS K A ZESZYTY NAUKOWE POLITECHNIKI ŚLISKIEJ JANUARY BIEŃ KONWENCJONALNE I NIEKONWENCJONALNE PRZYGOTOWANIE OSADÓW ŚCIEKOWYCH DO ODWADNIANIA IN ŻYNIE R IA S R O D O W IS K A Z. 27 A GLIWICE 1986 POLITECHNIKA ŚLĄSKA

Bardziej szczegółowo

WPŁYW WARUNKÓW ZRZUTU NA RUCH ZASOBNIKA W POBLIŻU NOSICIELA I PARAMETRY UPADKU. 1. Wstęp

WPŁYW WARUNKÓW ZRZUTU NA RUCH ZASOBNIKA W POBLIŻU NOSICIELA I PARAMETRY UPADKU. 1. Wstęp MECHANIKA TEORETYCZNA I STOSOWANA 3 4 22 (1984) WPŁYW WARUNKÓW ZRZUTU NA RUCH ZASOBNIKA W POBLIŻU NOSICIELA I PARAMETRY UPADKU JERZY MARYNIAK KAZIMIERZ MICHALEWICZ ZYGMUNT WINCZURA Politechnika Warszawska

Bardziej szczegółowo

WPŁYW SZCZELINY PROSTOPADŁEJ DO BRZEGU NA ROZKŁAD NACISKÓW I STAN NAPRĘ Ż Ń E W KONTAKCIE. Wstęp

WPŁYW SZCZELINY PROSTOPADŁEJ DO BRZEGU NA ROZKŁAD NACISKÓW I STAN NAPRĘ Ż Ń E W KONTAKCIE. Wstęp MECHAN1 К A TEORETYCZNA I STOSOWANA 2/3, 21 (1983) WPŁYW SZCZELINY PROSTOPADŁEJ DO BRZEGU NA ROZKŁAD NACISKÓW I STAN NAPRĘ Ż Ń E W KONTAKCIE RYSZARD W Ó J C I K Politechnika Warszawska \ JACEK S T U P

Bardziej szczegółowo

NUMERYCZNE ROZWIĄ ZANIE ZAGADNIENIA STATECZNOŚ CI ORTOTROPOWEJ PŁYTY PIERŚ CIENIOWEJ*' 1. Wstęp

NUMERYCZNE ROZWIĄ ZANIE ZAGADNIENIA STATECZNOŚ CI ORTOTROPOWEJ PŁYTY PIERŚ CIENIOWEJ*' 1. Wstęp MECHANIKA TEORETYCZNA I STOSOWANA, (9) NUMERYCZNE ROZWIĄ ZANIE ZAGADNIENIA STATECZNOŚ CI ORTOTROPOWEJ PŁYTY PIERŚ CIENIOWEJ*' ANDRZEJ STRZELCZYK, STANISŁAW WOJCIECH (BIELSKO BIAŁA). Wstęp Problem statecznoś

Bardziej szczegółowo

CZONE ODKSZTAŁCENIA SPRĘ Ż YSTEG O KLINA I STOŻ KA

CZONE ODKSZTAŁCENIA SPRĘ Ż YSTEG O KLINA I STOŻ KA MECHANIKA TEORETYCZNA I STOSOWANA, 7 (1969) SKOŃ CZONE ODKSZTAŁCENIA SPRĘ Ż YSTEG O KLINA I STOŻ KA ZBIGNIEW WESOŁOWSKI (WARSZAWA) W nieliniowej teorii sprę ż ystoś i znanych c jest dotychczas zaledwie

Bardziej szczegółowo

Funkcja kwadratowa. f(x) = ax 2 + bx + c = a

Funkcja kwadratowa. f(x) = ax 2 + bx + c = a Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax, a R \ {0}.

Bardziej szczegółowo

Funkcja kwadratowa. f(x) = ax 2 + bx + c,

Funkcja kwadratowa. f(x) = ax 2 + bx + c, Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax 2 + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax 2, a R \

Bardziej szczegółowo

NUMERYCZNA ANALIZA PRZEPŁYWU MHD W KANALE Z NIESYMETRYCZNYM ROZSZERZENIEM. 1. Wstęp

NUMERYCZNA ANALIZA PRZEPŁYWU MHD W KANALE Z NIESYMETRYCZNYM ROZSZERZENIEM. 1. Wstęp MECHANIKA TEORETYCZNA I STOSOWANA 3 4, 22 (1984) NUMERYCZNA ANALIZA PRZEPŁYWU MHD W KANALE Z NIESYMETRYCZNYM ROZSZERZENIEM EDWARD WALICKI, JERZY SAWICKI 1. Wstęp Przepływy MHD w kanałach płaskich i okrą

Bardziej szczegółowo

ZREDUKOWANE LINIOWE RÓWNANIA POWŁOK O WOLNO ZMIENNYCH KRZYWIZNACH. 1. Wstęp

ZREDUKOWANE LINIOWE RÓWNANIA POWŁOK O WOLNO ZMIENNYCH KRZYWIZNACH. 1. Wstęp MECHANIKA TEORETYCZNA I STOSOWANA 3 4, 22 (1984) ZREDUKOWANE LINIOWE RÓWNANIA POWŁOK O WOLNO ZMIENNYCH KRZYWIZNACH ZENON RYCHTER (BIAŁYSTOK) 1. Wstęp Zginanie sprę ż ystych, izotropowych powłok o małej

Bardziej szczegółowo

JERZY MARYNIAK, WACŁAW MIERZEJEWSKI, JÓZEF KRUTUL. 1. Wstęp

JERZY MARYNIAK, WACŁAW MIERZEJEWSKI, JÓZEF KRUTUL. 1. Wstęp MECHANIKA TEORETYCZNA I STOSOWANA 3, 11 (1973) DRGANIA ŁOPAT Ś MIGŁA* JERZY MARYNIAK, WACŁAW MIERZEJEWSKI, JÓZEF KRUTUL (WARSZAWA) 1. Wstęp Na przykładzie łopaty ś migła ogonowego ś migłowca (rys. 1) przedstawiono

Bardziej szczegółowo

ZDERZENIE W UKŁADZIE O WIELU STOPNIACH. 1. Wstęp

ZDERZENIE W UKŁADZIE O WIELU STOPNIACH. 1. Wstęp MEC;HAN I KA TEORETYCZNA I STOSOWANA 2/3, 21 (1983) ZDERZENIE W UKŁADZIE O WIELU STOPNIACH SWOBODY WIESŁAW G R Z E S I K I E W I C Z Politechnika Warszawska ANDRZEJ W А К U L I С Z Instytut Matematyczny

Bardziej szczegółowo

Znaki alfabetu białoruskiego Znaki alfabetu polskiego

Znaki alfabetu białoruskiego Znaki alfabetu polskiego ROZPORZĄDZENIE MINISTRA SPRAW WEWNĘTRZNYCH I ADMINISTRACJI z dnia 30 maja 2005 r. w sprawie sposobu transliteracji imion i nazwisk osób należących do mniejszości narodowych i etnicznych zapisanych w alfabecie

Bardziej szczegółowo

ANALIZA UKŁADU W1BRO UDERZENIOWEGO Z NIELINIOWA CHARAKTERYSTYKĄ SPRĘ Ż YST Ą ZBIGNIEW WIŚ NIEWSKI (GDAŃ SK) Wykaz waż niejszych oznaczeń

ANALIZA UKŁADU W1BRO UDERZENIOWEGO Z NIELINIOWA CHARAKTERYSTYKĄ SPRĘ Ż YST Ą ZBIGNIEW WIŚ NIEWSKI (GDAŃ SK) Wykaz waż niejszych oznaczeń MECHANIKA TEORETYCZNA I STOSOWANA 2, 7 (1969) ANALIZA UKŁADU W1BRO UDERZENIOWEGO Z NIELINIOWA CHARAKTERYSTYKĄ SPRĘ Ż YST Ą ZBIGNIEW WIŚ NIEWSKI (GDAŃ SK) Wykaz waż niejszych oznaczeń 5 pole powierzchni

Bardziej szczegółowo

DOŚ WIADCZALNA ANALIZA EFEKTU PAMIĘ CI MATERIAŁU PODDANEGO PLASTYCZNEMU ODKSZTAŁCENIU*) JÓZEF MlASTKOWSKI (WARSZAWA) 1. Wstęp

DOŚ WIADCZALNA ANALIZA EFEKTU PAMIĘ CI MATERIAŁU PODDANEGO PLASTYCZNEMU ODKSZTAŁCENIU*) JÓZEF MlASTKOWSKI (WARSZAWA) 1. Wstęp MECHANIKA TEORETYCZNA I STOSOWANA 3, 11 (1973) DOŚ WIADCZALNA ANALIZA EFEKTU PAMIĘ CI MATERIAŁU PODDANEGO PLASTYCZNEMU ODKSZTAŁCENIU*) JÓZEF MlASTKOWSKI (WARSZAWA) 1. Wstęp Rozwój techniki, zwłaszcza w

Bardziej szczegółowo

PODSTAWY MECHANIKI CIAŁ DYSKRETYZOWANYCH CZESŁAW WOŹ NIAK (WARSZAWA) 1. Ciała dyskretyzowane

PODSTAWY MECHANIKI CIAŁ DYSKRETYZOWANYCH CZESŁAW WOŹ NIAK (WARSZAWA) 1. Ciała dyskretyzowane MECHANIKA TEORETYCZNA I STOSOWANA 1, 11 (1973) PODSTAWY MECHANIKI CIAŁ DYSKRETYZOWANYCH CZESŁAW WOŹ NIAK (WARSZAWA) 1. Ciała dyskretyzowane Spotykane w przyrodzie odksztalcalne ciała stałe opisujemy w

Bardziej szczegółowo

Fonetyka kaszubska na tle fonetyki słowiańskiej

Fonetyka kaszubska na tle fonetyki słowiańskiej Fonetyka kaszubska na tle fonetyki słowiańskiej (szkic i podpowiedzi dla nauczycieli) prof. UG dr hab. Dušan-Vladislav Paždjerski Instytut Slawistyki Uniwersytetu Gdańskiego Gdańsk, 21 marca 2016 r. Fonetyka

Bardziej szczegółowo

IDEALNIE SPRĘ Ż YSTO PLASTYCZN A TARCZA O PROFILU HIPERBOLICZNYM. 1. Wstęp

IDEALNIE SPRĘ Ż YSTO PLASTYCZN A TARCZA O PROFILU HIPERBOLICZNYM. 1. Wstęp MECHANIKA TEORETYCZNA I STOSOWANA 3 4, 22 (1984) IDEALNIE SPRĘ Ż YSTO PLASTYCZN A TARCZA O PROFILU HIPERBOLICZNYM KRZYSZTOF SZUWALSKI (KRAKÓW) 1. Wstęp Ogólne zagadnienie teorii plastycznoś ci polega na

Bardziej szczegółowo

ANALIZA OBROTU POWIERZCHNI PŁYNIĘ CIA Z UWZGLĘ DNIENIEM PAMIĘ CI MATERIAŁU. 1. Wstęp

ANALIZA OBROTU POWIERZCHNI PŁYNIĘ CIA Z UWZGLĘ DNIENIEM PAMIĘ CI MATERIAŁU. 1. Wstęp MECHANIK A TEORETYCZNA t STOSOWANA 2/3, 21 (1983) ANALIZA OBROTU POWIERZCHNI PŁYNIĘ CIA Z UWZGLĘ DNIENIEM PAMIĘ CI MATERIAŁU HENRYK S К R О С К I Uniwersytet Warszawski Filia w Białymstoku 1. Wstęp Materiały

Bardziej szczegółowo

MACIERZOWY ZAPIS NIELINIOWYCH RÓWNAŃ RUCHU GENEROWANYCH FORMALIZMEM LAGRANGE'A ZDOBYSŁAW G O R A J (WARSZAWA) 1. Wprowadzenie

MACIERZOWY ZAPIS NIELINIOWYCH RÓWNAŃ RUCHU GENEROWANYCH FORMALIZMEM LAGRANGE'A ZDOBYSŁAW G O R A J (WARSZAWA) 1. Wprowadzenie MECHANIKA TEORETYCZNA I STOSOWANA 2, 14 (1976) MACIERZOWY ZAPIS NIELINIOWYCH RÓWNAŃ RUCHU GENEROWANYCH FORMALIZMEM LAGRANGE'A ZDOBYSŁAW G O R A J (WARSZAWA) 1. Wprowadzenie W wielu zagadnieniach mechaniki

Bardziej szczegółowo

ITERACYJNA METODA WYZNACZANIA CZĘ STOŚ I C DRGAŃ WŁASNYCH I AMPLITUD BOHDAN KOWALCZYK, TADEUSZ RATAJCZAK (GDAŃ SK) 1. Uwagi ogólne

ITERACYJNA METODA WYZNACZANIA CZĘ STOŚ I C DRGAŃ WŁASNYCH I AMPLITUD BOHDAN KOWALCZYK, TADEUSZ RATAJCZAK (GDAŃ SK) 1. Uwagi ogólne MECHANIKA TEORETYCZNA I STOSOWANA 2 14 (197Й ) ITERACYJNA METODA WYZNACZANIA CZĘ STOŚ I C DRGAŃ WŁASNYCH I AMPLITUD UKŁADU O SKOŃ CZONEJ LICZBIE STOPNI SWOBODY BOHDAN KOWALCZYK TADEUSZ RATAJCZAK (GDAŃ

Bardziej szczegółowo

JERZY MARYNIAK, MARWAN LOSTAN (WARSZAWA)

JERZY MARYNIAK, MARWAN LOSTAN (WARSZAWA) MECHANIKA TEORETYCZNA I STOSOWANA 2, 8 (1970) WPŁYW ODKSZTAŁCALNOŚ CI GIĘ TNEJ SKRZYDŁA NA STATECZNOŚĆ PODŁUŻ NĄ SZYBOWCA JERZY MARYNIAK, MARWAN LOSTAN (WARSZAWA) 1. Wstęp Przedmiotem niniejszej pracy

Bardziej szczegółowo

1. Rozwiązać układ równań { x 2 = 2y 1

1. Rozwiązać układ równań { x 2 = 2y 1 Dzień Dziecka z Matematyką Tomasz Szymczyk Piotrków Trybunalski, 4 czerwca 013 r. Układy równań szkice rozwiązań 1. Rozwiązać układ równań { x = y 1 y = x 1. Wyznaczając z pierwszego równania zmienną y,

Bardziej szczegółowo

OPTYMALIZACJA POŁOŻ ENIA PODPÓR BELKI SZTYWNO- PLASTYCZNEJ OBCIĄ Ż ONEJ IMPULSEM PRĘ DKOŚ CI. 1, Wstę p

OPTYMALIZACJA POŁOŻ ENIA PODPÓR BELKI SZTYWNO- PLASTYCZNEJ OBCIĄ Ż ONEJ IMPULSEM PRĘ DKOŚ CI. 1, Wstę p MECHANIKA TEORETYCZNA I STOSOWANA 4, lfi (978) OPTYMALIZACJA POŁOŻ ENIA PODPÓR BELKI SZTYWNO- PLASTYCZNEJ OBCIĄ Ż ONEJ IMPULSEM PRĘ DKOŚ CI JAAN LELLEP (WARSZAWA), Wstę p Optymalizacji poł oż enia podpory

Bardziej szczegółowo

OBLICZANIE CHARAKTERYSTYKI DYNAMICZNEJ KONSTRUKCJI PŁYTOWO SPRĘ Ż YNOWE J ZA POMOCĄ METODY SZTYWNYCH ELEMENTÓW SKOŃ CZONYCH* > 1.

OBLICZANIE CHARAKTERYSTYKI DYNAMICZNEJ KONSTRUKCJI PŁYTOWO SPRĘ Ż YNOWE J ZA POMOCĄ METODY SZTYWNYCH ELEMENTÓW SKOŃ CZONYCH* > 1. MECHANIKA TEORETYCZNA I STOSOWANA 1, 15 (1977) OBLICZANIE CHARAKTERYSTYKI DYNAMICZNEJ KONSTRUKCJI PŁYTOWO SPRĘ Ż YNOWE J ZA POMOCĄ METODY SZTYWNYCH ELEMENTÓW SKOŃ CZONYCH* > JERZY STELMARCZYK (ŁÓDŹ) 1.

Bardziej szczegółowo

O SFORMUŁOWANIU I POPRAWNOŚ CI PEWNEJ KLASY ZADAŃ Z NIELINIOWEJ DYNAMIKI LIN ROZCIĄ GLIWYCH ANDRZEJ BLINOWSKI (WARSZAWA) 1.

O SFORMUŁOWANIU I POPRAWNOŚ CI PEWNEJ KLASY ZADAŃ Z NIELINIOWEJ DYNAMIKI LIN ROZCIĄ GLIWYCH ANDRZEJ BLINOWSKI (WARSZAWA) 1. MECHANIKA TEORETYCZNA I STOSOWANA 2, 15 (1977) O SFORMUŁOWANIU I POPRAWNOŚ CI PEWNEJ KLASY ZADAŃ Z NIELINIOWEJ DYNAMIKI LIN ROZCIĄ GLIWYCH ANDRZEJ BLINOWSKI (WARSZAWA) 1. Wstęp i W pracy [1] autor niniejszej

Bardziej szczegółowo

PŁYTY PROSTOKĄ TNE O JEDNOKIERUNKOWO ZMIENNEJ SZTYWNOŚ CI

PŁYTY PROSTOKĄ TNE O JEDNOKIERUNKOWO ZMIENNEJ SZTYWNOŚ CI MECHANIKA TEORETYCZNA I STOSOWANA 3, 10 (1972) PŁYTY PROSTOKĄ TNE O JEDNOKIERUNKOWO ZMIENNEJ SZTYWNOŚ CI KAROL H. BOJDA (GLIWICE) W pracy wykorzystano wł asnoś ci operacji T a [1] do rozwią zania równania

Bardziej szczegółowo

PEWIEN SPOSÓB ROZWIĄ ZANIA STATYCZNYCH ZAGADNIEŃ LINIOWEJ NIESYMETRYCZNEJ SPRĘ Ż YSTOŚI JANUSZ D Y S Z L E W ICZ (WARSZAWA) 1.

PEWIEN SPOSÓB ROZWIĄ ZANIA STATYCZNYCH ZAGADNIEŃ LINIOWEJ NIESYMETRYCZNEJ SPRĘ Ż YSTOŚI JANUSZ D Y S Z L E W ICZ (WARSZAWA) 1. MECHANIKA TEORETYCZNA I STOSOWANA 2, 11 (1973) PEWIEN SPOSÓB ROZWIĄ ZANIA STATYCZNYCH ZAGADNIEŃ LINIOWEJ NIESYMETRYCZNEJ SPRĘ Ż YSTOŚI C JANUSZ D Y S Z L E W ICZ (WARSZAWA) 1. Wprowadzenie W liniowym oś

Bardziej szczegółowo

WYZNACZENIE STANU NAPRĘ Ż ENI A W OSIOWO SYMETRYCZNYM POŁĄ CZENIU KLEJONYM OBCIĄ Ż ONY M MOMENTEM SKRĘ CAJĄ CY M

WYZNACZENIE STANU NAPRĘ Ż ENI A W OSIOWO SYMETRYCZNYM POŁĄ CZENIU KLEJONYM OBCIĄ Ż ONY M MOMENTEM SKRĘ CAJĄ CY M MECHANIKA TEORETYCZNA I STOSOWANA 4, 15 (1977) WYZNACZENIE STANU NAPRĘ Ż ENI A W OSIOWO SYMETRYCZNYM POŁĄ CZENIU KLEJONYM OBCIĄ Ż ONY M MOMENTEM SKRĘ CAJĄ CY M KAROL GRUDZIŃ SKI, TADEUSZ BURDA, LEON Ł

Bardziej szczegółowo

с Ь аё ффсе о оýои р а п

с Ь аё ффсе о оýои р а п гат т ТО Л Ш Л ПЮ ОВ О С тем к лк е еп е р пу Н ОЬ оппу оь отчо пущ п л е по у е о оппу К Т ццв Ф щцшчьц ц Ро ф вф ц уш Н е о е ф ч лп е ю Н З е оёе ю п ч р по п еш ш Ф р НчЬе ро о у о ш ц оь оё рц ц цр

Bardziej szczegółowo

W pracy rozpatrzymy osobliwość naprę żń e siłowych i naprę żń e momentowych w półprzestrzeni. ): Xi ^ 0, co < x 2

W pracy rozpatrzymy osobliwość naprę żń e siłowych i naprę żń e momentowych w półprzestrzeni. ): Xi ^ 0, co < x 2 MECHANIKA TEORETYCZNA I STOSOWANA 4, 11 (1973) OSOBLIWOŚĆ NAPRĘ ŻŃ E W LINIOWYM OŚ RODKU MIKROPOLARNYM SPOWODOWANA NIECIĄ GŁYMI OBCIĄ Ż ENIAM I (II) JANUSZ DYSZLEWICZ, STANISŁAW MATYSIAK (WARSZAWA) 1.

Bardziej szczegółowo

UPROSZCZONA ANALIZA STATECZNOŚ CI BOCZNEJ SZYBOWCA HOLOWANEGO NA LINIE JERZY M A R Y N I А К (WARSZAWA) Waż niejsze oznaczenia

UPROSZCZONA ANALIZA STATECZNOŚ CI BOCZNEJ SZYBOWCA HOLOWANEGO NA LINIE JERZY M A R Y N I А К (WARSZAWA) Waż niejsze oznaczenia MECHANIKA TEORETYCZNA I STOSOWANA 1, 7 (1969) UPROSZCZONA ANALIZA STATECZNOŚ CI BOCZNEJ SZYBOWCA HOLOWANEGO NA LINIE JERZY M A R Y N I А К (WARSZAWA) Waż niejsze oznaczenia 6, [m] rozpię toś ć skrzydeł

Bardziej szczegółowo

OPTYMALIZACJA PARAMETRYCZNA UKŁADÓW DYNAMICZNYCH O NIECIĄ GŁYCH CHARAKTERYSTYKACH. 1. Wstęp

OPTYMALIZACJA PARAMETRYCZNA UKŁADÓW DYNAMICZNYCH O NIECIĄ GŁYCH CHARAKTERYSTYKACH. 1. Wstęp MECHANIК Л TEORETYCZNA I STOSOWANA 2/3, 21 (1983) OPTYMALIZACJA PARAMETRYCZNA UKŁADÓW DYNAMICZNYCH O NIECIĄ GŁYCH CHARAKTERYSTYKACH JERZY Ł U С Z К O Politechnika Krakowska 1. Wstęp Zagadnienie doboru

Bardziej szczegółowo

Wzory Viete a i ich zastosowanie do uk ladów równań wielomianów symetrycznych dwóch i trzech zmiennych

Wzory Viete a i ich zastosowanie do uk ladów równań wielomianów symetrycznych dwóch i trzech zmiennych Wzory Viete a i ich zastosowanie do uk ladów równań wielomianów symetrycznych dwóch i trzech zmiennych Pawe l Józiak 007-- Poje cia wste pne Wielomianem zmiennej rzeczywistej t nazywamy funkcje postaci:

Bardziej szczegółowo

Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne.

Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne. Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne. Funkcja homograficzna. Definicja. Funkcja homograficzna jest to funkcja określona wzorem f() = a + b c + d, () gdzie współczynniki

Bardziej szczegółowo

O pewnym zagadnieniu F. Leji dotyczącym sumowania kierunkowego macierzy

O pewnym zagadnieniu F. Leji dotyczącym sumowania kierunkowego macierzy ROCZNIKI POLSKIEGO TOWARZYSTWA MATEMATYCZNEGO Seria I: PRACE MATEMATYCZNE VI (1961) F. Barański (Kraków) O pewnym zagadnieniu F. Leji dotyczącym sumowania kierunkowego macierzy 1. F. Leja w pracy zamieszczonej

Bardziej szczegółowo

NUMERYCZNE OBLICZANIE KRZYWOLINIOWYCH Ś CIEŻ K E RÓWNOWAGI DLA JEDNOWYMIAROWYCH UKŁADÓW SPRĘ Ż YSTYC H

NUMERYCZNE OBLICZANIE KRZYWOLINIOWYCH Ś CIEŻ K E RÓWNOWAGI DLA JEDNOWYMIAROWYCH UKŁADÓW SPRĘ Ż YSTYC H MEGHAN IK Л TEORETYCZNA 1 STOSOWANA 2/3, 21 (1983) NUMERYCZNE OBLICZANIE KRZYWOLINIOWYCH Ś CIEŻ K E RÓWNOWAGI DLA JEDNOWYMIAROWYCH UKŁADÓW SPRĘ Ż YSTYC H ZYGMUNT K A S P E R S K I WSI Opole W pracy podaje

Bardziej szczegółowo

DYNAMICZNE BADANIA WŁASNOŚ CI MECHANICZNYCH POLIAMIDU TARLON X A. 1. Wstę p

DYNAMICZNE BADANIA WŁASNOŚ CI MECHANICZNYCH POLIAMIDU TARLON X A. 1. Wstę p MECHAN IKA TEORETYCZNA I STOSOWANA 1, 7 (1969) DYNAMICZNE BADANIA WŁASNOŚ CI MECHANICZNYCH POLIAMIDU TARLON X A STANISŁAW MAZURKIEWICZ (KRAKÓW) 1. Wstę p Własnoś ci mechaniczne tworzyw sztucznych zależ

Bardziej szczegółowo

SKOŃ CZONE ODKSZTAŁCENIA WIOTKICH OBROTOWO SYMETRYCZNYCH POWŁOK PRZY UWZGLĘ DNIENIU KINEMATYCZNEGO WZMOCNIENIA MATERIAŁU JÓZEF W I L K (KRAKÓW)

SKOŃ CZONE ODKSZTAŁCENIA WIOTKICH OBROTOWO SYMETRYCZNYCH POWŁOK PRZY UWZGLĘ DNIENIU KINEMATYCZNEGO WZMOCNIENIA MATERIAŁU JÓZEF W I L K (KRAKÓW) MECHANIKA TEORETYCZNA I STOSOWANA 2, 14 (1976) SKOŃ CZONE ODKSZTAŁCENIA WIOTKICH OBROTOWO SYMETRYCZNYCH POWŁOK PRZY UWZGLĘ DNIENIU KINEMATYCZNEGO WZMOCNIENIA MATERIAŁU JÓZEF W I L K (KRAKÓW) 1. Założ enia

Bardziej szczegółowo

OBSZAR KONTAKTU SZTYWNEJ KULI Z PÓŁPRZESTRZENIĄ LEPKOSPRĘ Ż YST Ą JADWIGA HALAUNBRENNER I BRONISŁAW LECHOWICZ (KRAKÓW) 1.

OBSZAR KONTAKTU SZTYWNEJ KULI Z PÓŁPRZESTRZENIĄ LEPKOSPRĘ Ż YST Ą JADWIGA HALAUNBRENNER I BRONISŁAW LECHOWICZ (KRAKÓW) 1. MECHANIKA TEORETYCZNA I STOSOWANA 3, 7 (1969) OBSZAR KONTAKTU SZTYWNEJ KULI Z PÓŁPRZESTRZENIĄ LEPKOSPRĘ Ż YST Ą JADWIGA HALAUNBRENNER I BRONISŁAW LECHOWICZ (KRAKÓW) 1. Wprowadzenie Badaniem narastania

Bardziej szczegółowo

Rozwiązywanie równań nieliniowych

Rozwiązywanie równań nieliniowych Rozwiązywanie równań nieliniowych Marcin Orchel 1 Wstęp Przykłady wyznaczania miejsc zerowych funkcji f : f(ξ) = 0. Wyszukiwanie miejsc zerowych wielomianu n-tego stopnia. Wymiar tej przestrzeni wektorowej

Bardziej szczegółowo

3. FUNKCJA LINIOWA. gdzie ; ół,.

3. FUNKCJA LINIOWA. gdzie ; ół,. 1 WYKŁAD 3 3. FUNKCJA LINIOWA FUNKCJĄ LINIOWĄ nazywamy funkcję typu : dla, gdzie ; ół,. Załóżmy na początek, że wyraz wolny. Wtedy mamy do czynienia z funkcją typu :.. Wykresem tej funkcji jest prosta

Bardziej szczegółowo

па ре по па па Ьо е Те

па ре по па па Ьо е Те ц с р г р су Ё Д чсу ю г ц ц р ус ф р с у г с рр й Ы Р с р с ц ус М т ч с Ф Сру ф Ьу с Ы Ьу р у рь м Д ц с ю ю г Ы г ч с рр р Н р у С с р ч Ф р м р уш с К ц г В з зз с у Г с у с у Д Ы ус О Ьу р ус А Ь

Bardziej szczegółowo

0 WYZNACZANIU NAPRĘ ŻŃ ECIEPLNYCH WYWOŁANYCH RUCHOMYMI OBCIĄ TERMICZNYMI. Oznaczenia

0 WYZNACZANIU NAPRĘ ŻŃ ECIEPLNYCH WYWOŁANYCH RUCHOMYMI OBCIĄ TERMICZNYMI. Oznaczenia MECHANIKA TEORETYCZNA I STOSOWANA 1, 15 (1977) 0 WYZNACZANIU NAPRĘ ŻŃ ECIEPLNYCH WYWOŁANYCH RUCHOMYMI OBCIĄ TERMICZNYMI Ż ENIAM I JÓZEF KUBIK (POZNAŃ) Oznaczenia a, współczynnik liniowej rozszerzalnoś

Bardziej szczegółowo

Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie:

Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie: Ciągi rekurencyjne Zadanie 1 Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie: w dwóch przypadkach: dla i, oraz dla i. Wskazówka Należy poszukiwać rozwiązania w postaci, gdzie

Bardziej szczegółowo

Wykład 3. Ruch w obecno ś ci wię zów

Wykład 3. Ruch w obecno ś ci wię zów Wykład 3 Ruch w obecno ś ci wię zów Wię zy Układ nieswobodnych punktów materialnych Układ punktów materialnych, których ruch podlega ograniczeniom wyraŝ onym przez pewne zadane warunki dodatkowe. Wię zy

Bardziej szczegółowo

Wyświetlacze tekstowe jednokolorowe

Wyświetlacze tekstowe jednokolorowe Wyświetlacze tekstowe jednokolorowe Wyświetlacz tekstowy służy do wyświetlania tekstu informacyjno-reklamowego w trybie jednokolorowym (monochromatycznym) z wykorzystaniem różnorodnych efektów graficznych.

Bardziej szczegółowo

PROGRAM ZAJĘĆ POZALEKCYJNYCH

PROGRAM ZAJĘĆ POZALEKCYJNYCH PROGRAM ZAJĘĆ POZALEKCYJNYCH PN: Zajęcia TEATR ROSYJSKI realizowany w roku szkolnym 2017/2018 w Szkole Podstawowej nr 43 im. Simony Kossak w Białymstoku w ramach projektu współfinansowanego z Europejskiego

Bardziej szczegółowo

- Wydział Fizyki Zestaw nr 2. Krzywe stożkowe

- Wydział Fizyki Zestaw nr 2. Krzywe stożkowe 1 Algebra Liniowa z Geometria - Wydział Fizyki Zestaw nr 2 Krzywe stożkowe 1 Znaleźć współrze dne środka i promień okre gu x 2 8x + y 2 + 6y + 20 = 0 2 Znaleźć zbiór punktów płaszczyzny R 2, których odległość

Bardziej szczegółowo

STATECZNOŚĆ BOCZNA SAMOLOTU I DRGANIA LOTEK Z UWZGLĘ DNIENIEM ODKSZTAŁCALNOŚ CI GIĘ TNEJ SKRZYDEŁ I SPRĘ Ż YSTOŚI CUKŁADU STEROWANIA

STATECZNOŚĆ BOCZNA SAMOLOTU I DRGANIA LOTEK Z UWZGLĘ DNIENIEM ODKSZTAŁCALNOŚ CI GIĘ TNEJ SKRZYDEŁ I SPRĘ Ż YSTOŚI CUKŁADU STEROWANIA MECHANIKA TEORETYCZNA I STOSOWANA 1, 14 (1976) STATECZNOŚĆ BOCZNA SAMOLOTU I DRGANIA LOTEK Z UWZGLĘ DNIENIEM ODKSZTAŁCALNOŚ CI GIĘ TNEJ SKRZYDEŁ I SPRĘ Ż YSTOŚI CUKŁADU STEROWANIA JERZY M A R Y N I A K,

Bardziej szczegółowo

WSPÓŁRZĘ DNE NORMALNE W ANALIZIE REZONANSÓW GŁÓWNYCH NIELINIOWYCH UKŁADÓW DRGAJĄ CYCH O WIELU STOPNIACH SWOBODY

WSPÓŁRZĘ DNE NORMALNE W ANALIZIE REZONANSÓW GŁÓWNYCH NIELINIOWYCH UKŁADÓW DRGAJĄ CYCH O WIELU STOPNIACH SWOBODY MECHANIKA TEORETYCZNA I STOSOWANA 1, 11 (1973) WSPÓŁRZĘ DNE NORMALNE W ANALIZIE REZONANSÓW GŁÓWNYCH NIELINIOWYCH UKŁADÓW DRGAJĄ CYCH O WIELU STOPNIACH SWOBODY WANDA SZEMPLIŃ SKA STUPNICKA (WARSZAWA) W

Bardziej szczegółowo

NIEJEDNORODNOŚĆ PLASTYCZNA STOPU PA2 W PROCESIE. 1, Wprowadzenie

NIEJEDNORODNOŚĆ PLASTYCZNA STOPU PA2 W PROCESIE. 1, Wprowadzenie MECHANIKA TEORETYCZNA I STOSOWANA 3 4, 22 (1984) NIEJEDNORODNOŚĆ PLASTYCZNA STOPU PA2 W PROCESIE WYCISKANIA JAN PIWNIK (BIAŁYSTOK) 1, Wprowadzenie Rozwój zaawansowanych metod obliczeniowych procesów obróbki

Bardziej szczegółowo

OPTYiMALNE KSZTAŁTOWANIE NIERÓWNOMIERNIE NAGRZANYCH TARCZ WIRUJĄ Z UWAGI NA NOŚ NOŚĆ SPRĘ Ż YST Ą I GRANICZNĄ

OPTYiMALNE KSZTAŁTOWANIE NIERÓWNOMIERNIE NAGRZANYCH TARCZ WIRUJĄ Z UWAGI NA NOŚ NOŚĆ SPRĘ Ż YST Ą I GRANICZNĄ MECHANIKA TEORETYCZNA I STOSOWANA 2, 14 (1976) OPTYiMALNE KSZTAŁTOWANIE NIERÓWNOMIERNIE NAGRZANYCH TARCZ WIRUJĄ Z UWAGI NA NOŚ NOŚĆ SPRĘ Ż YST Ą I GRANICZNĄ CYCH TADEUSZ LISZKA, MICHAŁ Ż Y C Z K O W S

Bardziej szczegółowo

Elementy metod numerycznych

Elementy metod numerycznych Wykład nr 5 i jej modyfikacje. i zera wielomianów Założenia metody Newtona Niech będzie dane równanie f (x) = 0 oraz przedział a, b taki, że w jego wnętrzu znajduje się dokładnie jeden pierwiastek α badanego

Bardziej szczegółowo

JAN GRABACKI, GWIDON SZEFER (KRAKÓW) 1. Wstęp

JAN GRABACKI, GWIDON SZEFER (KRAKÓW) 1. Wstęp MECHANIKA TEORETYCZNA I STOSOWANA 1 U (1973) PRZYKŁADY ULTRADYSTRYBUCYJNYCH ROZWIĄ ZAŃ PASMA PŁYTOWEGO JAN GRABACKI GWIDON SZEFER (KRAKÓW) 1. Wstęp W pracy przedstawione bę dą rozwią zania wybranych zadań

Bardziej szczegółowo

O OPERATOROWYM PODEJŚ CIU DO FORMUŁOWANIA ZASAD WARIACYJNYCH DLA OŚ RODKÓW PLASTYCZNYCH. 1. Wstęp

O OPERATOROWYM PODEJŚ CIU DO FORMUŁOWANIA ZASAD WARIACYJNYCH DLA OŚ RODKÓW PLASTYCZNYCH. 1. Wstęp MECHANIKA TEORETYCZNA I STOSOWANA 4 14 (1976) O OPERATOROWYM PODEJŚ CIU DO FORMUŁOWANIA ZASAD WARIACYJNYCH DLA OŚ RODKÓW PLASTYCZNYCH JÓZEF JOACHIM TELEGA (RADOM) 1 Wstęp W ostatnich latach ukazały się

Bardziej szczegółowo

Siły wewnętrzne - związki różniczkowe

Siły wewnętrzne - związki różniczkowe Siły wewnętrzne - związki różniczkowe Weźmy dowolny fragment belki obciążony wzdłuż osi obciążeniem n(x) oraz poprzecznie obciążeniem q(x). Na powyższym rysunku zwroty obciążeń są zgodne z dodatnimi zwrotami

Bardziej szczegółowo

ROCZNIKI BIESZCZADZKIE 22 (2014) str wskazówki dla autorów

ROCZNIKI BIESZCZADZKIE 22 (2014) str wskazówki dla autorów Wskazówki dla autorów 409 ROCZNIKI BIESZCZADZKIE 22 (2014) str. 409-414 Roczniki Bieszczadzkie wskazówki dla autorów Roczniki Bieszczadzkie wydawnictwo Bieszczadzkiego Parku Narodowego utworzono dla publikowania

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 2

RÓWNANIA RÓŻNICZKOWE WYKŁAD 2 RÓWNANIA RÓŻNICZKOWE WYKŁAD 2 Równania różniczkowe o zmiennych rozdzielonych Równania sprowadzalne do równań o zmiennych rozdzielonych Niech f będzie funkcją ciągłą na przedziale (a, b), spełniającą na

Bardziej szczegółowo

polska ludowa tom Vll PAŃSTWOWE WYDAWNICTWO NAUKOWE

polska ludowa tom Vll   PAŃSTWOWE WYDAWNICTWO NAUKOWE polska ludowa PAŃSTWOWE WYDAWNICTWO NAUKOWE tom Vll INSTYTUT HISTORII POLSKIEJ AKADEMII NAUK POLSKA LUDOWA MATERIAŁY I STU D IA TOM VII PA Ń STW O W E W YDAW NICTW O NAUKOW E W ARSZAW A 1968 1 K O M IT

Bardziej szczegółowo

VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa.

VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa. VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa. W rozdziale tym zajmiemy się dokładniej badaniem stabilności rozwiązań równania różniczkowego. Pojęcie stabilności w

Bardziej szczegółowo

WYŚWIETLACZE TEKSTOWE 15 KOLOROWE

WYŚWIETLACZE TEKSTOWE 15 KOLOROWE $ WYŚWIETLACZE TEKSTOWE 15 KOLOROWE OBSŁUGA ; W STANDARDZIE KLAWIATURA USB - PRZEWODOWO OPCJA PŁATNA - KLAWIATURA BEZPRZEWODOWA Wyświetlacze tekstowe 15-kolorowe Wyświetlacz tekstowy służy do wyświetlania

Bardziej szczegółowo

Oferta ważna od r.

Oferta ważna od r. Oferta ważna od 01.11.2016r. Wyświetlacze tekstowe 15-kolorowe Wyświetlacz tekstowy służy do wyświetlania tekstu informacyjno-reklamowego w 15 wyrazistych kolorach z wykorzystaniem różnorodnych efektów

Bardziej szczegółowo

Metody numeryczne I Równania nieliniowe

Metody numeryczne I Równania nieliniowe Metody numeryczne I Równania nieliniowe Janusz Szwabiński szwabin@ift.uni.wroc.pl Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/66 Równania nieliniowe 1. Równania nieliniowe z pojedynczym pierwiastkiem

Bardziej szczegółowo

KRZYSZTOF G R Y s A (POZNAŃ)

KRZYSZTOF G R Y s A (POZNAŃ) MECHANIKA TEORETYCZNA I STOSOWANA 2, 15 (1977) O SUMOWANIU PEWNYCH SZEREGÓW FOURIERA BESSELA KRZYSZTOF G R Y s A (POZNAŃ) Przy rozważ aniu zagadnień termosprę ż ystoś, cidotyczą cych wyznaczania pól mechanicznych

Bardziej szczegółowo

MACIERZ SZTYWNOŚ CI ELEMENTU ZGINANEJ PŁYTY

MACIERZ SZTYWNOŚ CI ELEMENTU ZGINANEJ PŁYTY MECHANIKA TEORETYCZNA I STOSOWANA 4, 11 (1973) MACIERZ SZTYWNOŚ CI ELEMENTU ZGINANEJ PŁYTY TRÓJWARSTWOWEJ HENRYK MIKOŁAJCZAK, BOGDAN W o S I E W I С Z (POZNAŃ) 1. Uwagi wstę pne Płyty trójwarstwowe, z

Bardziej szczegółowo

Matematyka A, klasówka, 24 maja zania zadań z kolokwium z matematyki A w nadziei, że pope lni lem wielu b le. rozwia

Matematyka A, klasówka, 24 maja zania zadań z kolokwium z matematyki A w nadziei, że pope lni lem wielu b le. rozwia Matematyka A, klasówka, 4 maja 5 Na prośbe jednej ze studentek podaje zania zadań z kolokwium z matematyki A w nadziei, że pope lni lem wielu b le dów Podać definicje wektora w lasnego i wartości w lasnej

Bardziej szczegółowo

- Wydział Fizyki Zestaw nr 2. Krzywe stożkowe

- Wydział Fizyki Zestaw nr 2. Krzywe stożkowe 1 Algebra Liniowa z Geometria - Wydział Fizyki Zestaw nr 2 Krzywe stożkowe 1 Znaleźć współrze dne środka i promień okre gu x 2 8x + y 2 + 6y + 20 = 0 2 Znaleźć zbiór punktów płaszczyzny R 2, których odległość

Bardziej szczegółowo

Funkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k.

Funkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k. Funkcje wymierne Jerzy Rutkowski Teoria Przypomnijmy, że przez R[x] oznaczamy zbiór wszystkich wielomianów zmiennej x i o współczynnikach rzeczywistych Definicja Funkcją wymierną jednej zmiennej nazywamy

Bardziej szczegółowo

ZAMKNIĘ TE ROZWIĄ ZANIE PROBLEMU PROPAGACJI NIESTACJONARNEJ PŁASKIEJ FALI UDERZENIOWEJ W SUCHYM GRUNCIE PIASZCZYSTYM. 1. Wstęp

ZAMKNIĘ TE ROZWIĄ ZANIE PROBLEMU PROPAGACJI NIESTACJONARNEJ PŁASKIEJ FALI UDERZENIOWEJ W SUCHYM GRUNCIE PIASZCZYSTYM. 1. Wstęp MECHANIKA TEORETYCZNA I STOSOWANA 3 4, 22 (1984) ZAMKNIĘ TE ROZWIĄ ZANIE PROBLEMU PROPAGACJI NIESTACJONARNEJ PŁASKIEJ FALI UDERZENIOWEJ W SUCHYM GRUNCIE PIASZCZYSTYM EDWARD WŁODARCZYK (WARSZAWA) Wojskowa

Bardziej szczegółowo

ZAŃ KINEMATYCZNIE DOPUSZCZALNYCH DLA ZAGADNIENIA NAPORU Ś CIAN O RÓŻ NYCH KSZTAŁTACH* WiESLAw\ TRĄ MPCZYŃ SK I. 1. Wstęp

ZAŃ KINEMATYCZNIE DOPUSZCZALNYCH DLA ZAGADNIENIA NAPORU Ś CIAN O RÓŻ NYCH KSZTAŁTACH* WiESLAw\ TRĄ MPCZYŃ SK I. 1. Wstęp MECHANIKA TEORETYCZNA I STOSOWANA I, 15 (1977) ANALIZA ROZWIĄ ZAŃ KINEMATYCZNIE DOPUSZCZALNYCH DLA ZAGADNIENIA NAPORU Ś CIAN O RÓŻ NYCH KSZTAŁTACH* WiESLAw\ TRĄ MPCZYŃ SK I (WARSZAWA) 1. Wstęp Wyraź ny

Bardziej szczegółowo

Definicja i własności wartości bezwzględnej.

Definicja i własności wartości bezwzględnej. Równania i nierówności z wartością bezwzględną. Rozwiązywanie układów dwóch (trzech) równań z dwiema (trzema) niewiadomymi. Układy równań liniowych z parametrem, analiza rozwiązań. Definicja i własności

Bardziej szczegółowo

Zagadnienia brzegowe dla równań eliptycznych

Zagadnienia brzegowe dla równań eliptycznych Temat 7 Zagadnienia brzegowe dla równań eliptycznych Rozważmy płaski obszar R 2 ograniczony krzywą. la równania Laplace a (Poissona) stawia się trzy podstawowe zagadnienia brzegowe. Zagadnienie irichleta

Bardziej szczegółowo

Wyświetlacze tekstowe jednokolorowe SERIA B

Wyświetlacze tekstowe jednokolorowe SERIA B WYŚWIETLACZE TEKSTOWE JEDNOKOLOROWE HERMETYCZNE Wyświetlacze tekstowe jednokolorowe SERIA B Wyświetlacz tekstowy służy do wyświetlania tekstu informacyjno-reklamowego w trybie jednokolorowym (monochromatycznym)

Bardziej szczegółowo

Politechnika Białostocka

Politechnika Białostocka Politechnika Białostocka WYDZIAŁ BUDOWNICTWA I INŻYNIERII ŚRODOWISKA Katedra Geotechniki i Mechaniki Konstrukcji Wytrzymałość Materiałów Instrukcja do ćwiczeń laboratoryjnych Ćwiczenie nr 6 Temat ćwiczenia:

Bardziej szczegółowo

Ruch w potencjale U(r)=-α/r. Zagadnienie Keplera Przybli Ŝ enie małych drgań. Wykład 7 i 8

Ruch w potencjale U(r)=-α/r. Zagadnienie Keplera Przybli Ŝ enie małych drgań. Wykład 7 i 8 Wykład 7 i 8 Zagadnienie Keplera Przybli Ŝ enie małych drgań Ruch w potencjale U(r)=-α/r RozwaŜ my ruch punktu materialnego w polu centralnym, o potencjale odwrotnie proporcjonalnym do odległo ś ci r od

Bardziej szczegółowo

( ) Arkusz I Zadanie 1. Wartość bezwzględna Rozwiąż równanie. Naszkicujmy wykresy funkcji f ( x) = x + 3 oraz g ( x) 2x

( ) Arkusz I Zadanie 1. Wartość bezwzględna Rozwiąż równanie. Naszkicujmy wykresy funkcji f ( x) = x + 3 oraz g ( x) 2x Arkusz I Zadanie. Wartość bezwzględna Rozwiąż równanie x + 3 x 4 x 7. Naszkicujmy wykresy funkcji f ( x) x + 3 oraz g ( x) x 4 uwzględniając tylko ich miejsca zerowe i monotoniczność w ten sposób znajdziemy

Bardziej szczegółowo

Wykład 14 i 15. Równania różniczkowe. Równanie o zmiennych rozdzielonych. Definicja 1. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie

Wykład 14 i 15. Równania różniczkowe. Równanie o zmiennych rozdzielonych. Definicja 1. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie Wykład 14 i 15 Równania różniczkowe Definicja 1. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie F (x, y, y, y,..., y (n) ) = 0 (1) gdzie: y = y(x) niewiadoma funkcja zmiennej rzeczywistej

Bardziej szczegółowo

5. Równania różniczkowe zwyczajne pierwszego rzędu

5. Równania różniczkowe zwyczajne pierwszego rzędu 5. Równania różniczkowe zwyczajne pierwszego rzędu 5.1. Wstęp. Definicja 5.1. Niech V R 3 będzie obszarem oraz F : V R. Równaniem różniczkowym zwyczajnym rzędu pierwszego nazywamy równanie postaci Równanie

Bardziej szczegółowo

Wykład z równań różnicowych

Wykład z równań różnicowych Wykład z równań różnicowych 1 Wiadomości wstępne Umówmy się, że na czas tego wykładu zrezygnujemy z oznaczania n-tego wyrazu ciągu symbolem typu x n, y n itp. Zamiast tego pisać będziemy x (n), y (n) itp.

Bardziej szczegółowo

7. WYZNACZANIE SIŁ WEWNĘTRZNYCH W BELKACH

7. WYZNACZANIE SIŁ WEWNĘTRZNYCH W BELKACH 7. WYZNCZNIE SIŁ WEWNĘTRZNYCH W ELKCH Zadanie 7.1 Dla belki jak na rysunku 7.1.1 ułożyć równania sił wewnętrznych i sporządzić ich wykresy. Dane: q, a, M =. Rys.7.1.1 Rys.7.1. W zależności od rodzaju podpór

Bardziej szczegółowo

LESZEK JARECKI (WARSZAWA)

LESZEK JARECKI (WARSZAWA) MECHANIKA TEORETYCZNA I STOSOWANA 4, 14 (1976) TERMODYNAMIKA DEFORMACJI KRYSTALITÓW POLIMERU ZANURZONYCH W NAPRĘ Ż ONYM OŚ RODKU AMORFICZNYM LESZEK JARECKI (WARSZAWA) Szeroko stosowane kalorymetryczne,

Bardziej szczegółowo

Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie

Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie Rozciąganie lub ściskanie Zginanie Skręcanie Ścinanie 1. Pręt rozciągany lub ściskany

Bardziej szczegółowo