5 lekcji o algorytmach - Co to jest algorytm?
|
|
- Sabina Sowa
- 6 lat temu
- Przeglądów:
Transkrypt
1 5 lekcji o algorytmach - Co to jest algorytm? Aby zająć się pisaniem programów, należy nabyć pewnych umiejętności, do których na pewno trzeba zaliczyć: zdolność logicznego myślenia, jasnego formułowania problemów do rozwiązania, podawanie czytelnych i jednoznacznych odpowiedzi. Chęć nabycia tych umiejętności zmusza do tego, aby starannie wykonywać swoją pracę. Widać z tego, że pewne nawyki są przydatne nie tylko w informatyce, ale również w naszym codziennym życiu. Jeżeli potrafimy rozwiązywać problemy za pomocą komputera, wykorzystując języki programowania, to znaczy, że programujemy. Zanim jednak poznamy konkretny język programowania i zaczniemy pisać jakikolwiek program, należy nauczyć się posługiwania się algorytmami. Komputer jest tylko maszyną, którą wykorzystujemy do własnych celów, bo komputer nie myśli, lecz tylko wykonuje polecenia. Dlatego krok po kroku trzeba mu podać czynności, jakie ma wykonać. Co to jest algorytm? Wydaje się, że najbardziej przystępną definicją będzie określenie algorytmu jako przepisu prowadzącego do rozwiązania zadania, problemu. W przepisie tym podaje się opis czynności, które trzeba wykonać, oraz dane, dla których algorytm będzie określony. Co w takim przepisie może się znaleźć? Może być to np. przypisanie zmiennej określonej wartości (np. za x podstaw 3), wyświetlenie w danym momencie wyniku obliczeń, pobranie danych z dostępnej bazy danych. Mówimy, że podajemy instrukcje lub że będzie wykonana operacja. Dane (stałe, zmienne, parametry), które są przetwarzane za pomocą instrukcji, nazywamy obiektami. Wyróżnia się wiele obiektów - mogą to być liczby naturalne, rzeczywiste, znaki, słowa. Rozwiązanie dowolnego problemu polega na wykonaniu w określonej kolejności akcji na obiektach. Zbiór tych akcji nazywamy algorytmem. Jakie mogą być rodzaje algorytmów? a. iteracyjne - rodzaj algorytmu i programu, w których wielokrotnie wykonuje się pewne instrukcje, dopóki nie zostanie spełniony określony warunek, b. rekurencyjne - takie procedury, które w swojej definicji posiadają wywołanie samej siebie, c. sekwencyjne - instrukcje wykonywane są w porządku, w jakim zostały wprowadzone. W jaki sposób można przedstawić algorytm? Pierwszy i najprostszy to opis słowny, np. po lekcjach pójdę do kiosku i kupię gazetę. Innymi przykładami mogą być: podyktowanie przez telefon przepisu na zaparzenie herbaty czy wyjaśnianie koledze, jak należy rozwiązać zadanie z matematyki. Przykładów takich zachowań, kiedy widzimy, że występuje jakaś kolejność przewidywalnych działań, można podawać bardzo wiele. To są przykłady opisów algorytmicznych. Inny sposób to zapis algorytmu za pomocą schematu blokowego. Aby zapisać algorytm za pomocą takiego schematu, trzeba poznać stosowane symbole i ich znaczenie. Będziemy używać tzw. skrzynki - graficznego sposobu przedstawienia czynności wykonywanych przez komputer. Skrzynki te łączone są za pomocą strzałek. W ten sposób pokazujemy kolejność wykonywania akcji. Skrzynki i wskazują po-czątek i koniec każdego algorytmu. Ze skrzynki wychodzi tylko jedna droga, do skrzynki wchodzi co najmniej jedno połączenie. W skrzynce instrukcyjnej umieszcza się polecenia do wykonania (instrukcje) - podstawienie, obliczenie, wprowadzenie wartości.
2 W skrzynce warunkowej umieszcza się warunek, który decyduje o wyborze dalszej drogi postępowania. Ze skrzynki wychodzą dwa połączenia: TAK (wybierane, gdy warunek jest spełniony), NIE (gdy warunek nie jest spełniony). W skrzynce wejścia/wyjścia umieszcza się wprowadzane dane lub wyprowadzane wyniki. Ze skrzynki wychodzi tylko jedno połączenie.
3 5 lekcji o algorytmach - Pierwsze kroki - piszemy i analizujemy Aby dobrze zrozumieć algorytmy, należy samemu spróbować ułożyć jakiś algorytm. Będzie ciekawiej, gdy zaczniemy zadawać pytania i algorytm rozbudowywać. Zacznijmy od najprostszego, książkowego algorytmu: chcę wyjść z domu i w zależności od pogody wezmę parasol lub nie. Opis słowny postępowania: przed wyjściem z domu sprawdzam jaka jest pogoda: jeżeli pada, zabieram parasol i wychodzę, jeśli nie pada, wychodzę. W tak prostym przypadku spotykamy się z sytuacją, w której występuje sprawdzenie warunku. Słowem, które będzie nas informować, że należy wprowadzić sprawdzenie warunku, jest słowo "jeśli". Opis za pomocą schematu blokowego: W algorytmie tym wykorzystujemy skrzynkę warunkową, ponieważ mamy do czynienia z sytuacją, gdy tok dalszego postępowania zależy od dokonanego wyboru (dokładnie: zależy od pogody). * * * Z innym przykładem prostego algorytmu mamy w sytuacji obliczania objętość prostopadłościanu o krawędziach długości: 3cm, 5cm, 8cm. Opis słowny postępowania: aby obliczyć objętość, należy pomnożyć przez siebie długości trzech krawędzi wychodzących z jednego wierzchołka; długości muszą mieć jednakowe miano. Z podanej treści zadania wynika, że mamy dane długości potrzebnych krawędzi w jednakowych jednostkach. Zadanie to nie sprawi nikomu żadnej trudności. Warto jednak pomyśleć, czy nie można byłoby ułożyć takiego algorytmu, za pomocą którego obliczymy objętość każdego prostopadłościanu. Opis słowny działania algorytmu: - podaj długość pierwszej krawędzi; a:= W przykładzie tym wykonywane czynności następują jedna po drugiej. Instrukcje wykonywane są w takim porządku, w jakim zostały zapisane. Jest to przykład algorytmu zapisanego w postaci sekwencji. - podaj długość drugiej krawędzi; b:=
4 - podaj długość trzeciej krawędzi; c:= - wykonaj obliczenie V:= a*b*c - podaj wynik; V:= * * * Spróbuj rozwiązać samodzielnie: 1. Zapisz drugi algorytm za pomocą schematu blokowego. 2. Jakimi cechami musi charakteryzować się dobry algorytm?
5 5 lekcji o algorytmach - Instrukcje iteracyjne - pętle Spotykamy się często z takim sytuacjami, że musimy wykonywać pewną czynność aż do momentu, gdy odniesiemy sukces np. 'zrób dziesięć pompek', 'będziesz tak długo czytać wiersz, aż nauczysz się go na pamięć' lub 'dopóki będziesz siedzieć cicho, nie zapytam cię'. Z tego wynika, że możemy spotkać się z trzema sytuacjami: gdy musimy wykonać czynność bądź zadaną ilość razy, bądź do momentu spełnienia warunku. 1. Wykonaj instrukcję r razy np. przeczytaj wiersz trzy razy. a. Opis słowny działania algorytmu: 1. Przeczytaj wiersz pierwszy raz. 2. Przeczytaj wiersz drugi raz. 3. Przeczytaj wiersz trzeci raz. W tym przypadku mamy algorytm zapisany w postaci sekwencji. b. Schemat blokowy: d. Można też wykonać to inaczej: c. Opis słowny działania algorytmu: 1. Przeczytaj wiersz trzy razy. 2. Czytaj wiersz. 3. Czy przeczytałeś wiersz trzy razy? a) jeśli tak, przejdź do kroku 4, b) jeśli nie, przejdź do kroku Przeczytałeś wiersz trzy razy. Występuje tutaj sprawdzenie warunku. Gdy warunek nie jest spełniony, czynność trzeba wykonać jeszcze raz. Schemat blokowy:
6 Powtarzaj wykonanie instrukcji aż do spełnienia warunku. 2. Przykładem takiego algorytmu może być zmienione poprzednie zadanie: Czytaj wiersz tak długo, aż nauczysz się go na pamięć. Opis słowny działania algorytmu: 1. Przeczytaj wiersz. 2. Czy umiesz wiersz na pamięć? a) jeśli tak, przejdź do kroku 3, b) jeśli nie, przejdź do kroku Gratulacje, nauczyłeś się wiersza na pamięć! Wykonywanie polecenia "przeczytaj wiersz" trwa tak długo, aż nauczysz się go na pamięć. Schemat blokowy:
7 Dopóki warunek nie jest spełniony, wykonuj podane instrukcje. Są to polecenia typu: 'dopóki jest zimno, noś czapkę', 'dopóki nie poprawisz ocen, nie pójdziesz grać w piłkę', 'dopóki nie zdasz egzaminu, nie będziesz jeździć samochodem' itd. 3. Dopóki jest czerwone światło dla pieszych, stój i czekaj. Opis słowny działania algorytmu: 0. Stój. 1. Czy świeci się czerwone światło na przejściu dla pieszych? a) jeśli tak, przejdź do kroku 1, b) jeśli nie, przejdź do kroku Możesz przejść przez ulicę, zachowując ostrożność. Stój tak długo, aż nie zapali się zielone światło! Warunkiem, który musi zostać spełniony, jest zmiana światła. Schemat blokowy:
8 Przykładów tego rodzaju algorytmów jest bardzo wiele. W zasadzie większość czynności można opisać algorytmem. Będą one mniej lub bardzie rozbudowane, a zależy to od tego, do jakiego stopnia można przewidzieć zachowanie lub wykonywanie czynności w różnych sytuacjach. Algorytmami iteracyjnymi będą te, w których stosujemy pętlę tzn. zapis, w którym nakażemy wykonanie pewnej akcji jeszcze raz po sprawdzeniu warunku, który trzeba spełnić. Spróbuj rozwiązać sam: Twoim zadaniem będzie znalezienie przykładów zachowań algorytmicznych w życiu codziennym, które można zapisać jako iteracje.
9 5 lekcji o algorytmach - Przykłady algorytmów w matematyce 1. Zbuduj algorytm, za pomocą, którego można obliczyć drugą i trzecią potęgę danej liczby. BUDOWA ALGORYTMU: - podaj liczbę a, - oblicz kwadrat liczby a, - oblicz sześcian liczby a, - podaj wartość kwadratu liczby a, - podaj sześcian liczby a. 2. Zbuduj algorytm służący do rozwiązania równania typu ax + b = 0 BUDOWA ALGORYTMU: - podaj wartość współczynnika a, - podaj wartość współczynnika b, - jeżeli a = 0, to sprawdź b, - jeżeli b = 0, to napisz, że jest to równanie tożsamościowe (nieskończenie wiele rozwiązań), - jeżeli b 0, to napisz, że jest to równanie sprzeczne (nie ma rozwiązań), - jeżeli a 0, to oblicz x - napisz rozwiązanie równania x:= Problemy do samodzielnego rozwiązania: 1. Na podstawie zadania 1 zbuduj algorytm obliczający kolejne potęgi podanej liczby (np. czwartą i piątą). 2. Zbuduj algorytm obliczający pierwiastek kwadratowy i sześcienny danej liczby. 3. Zapisz algorytm opisujący postępowanie przy poszukiwaniu pomyślanej liczby (z podanego zakresu w możliwie najmniejszej liczbie prób). 4. Zapisz algorytm rozwiązywania równania typu ax + b = c 5. Zapisz algorytm obliczający sumę pięciu liczb. 6. Zapisz algorytm obliczania średniej z pięciu liczb. 7. Zapisz algorytm obliczania średniej ocen ze świadectwa szkolnego. 8. Dane są długości trzech odcinków. Zbadaj, czy można zbudować z nich trójkąt. 9. Sprawdź, czy trójkąt o bokach a, b, c jest trójkątem prostokątnym. 10. Podaj algorytm obliczania pola figur płaskich:
10 a) kwadratu, b) prostokąta, c) dowolnego trójkąta, d) trójkąta równobocznego, e) trapezu, f) rombu, g) równoległoboku. 11. Podaj algorytm obliczający pole powierzchni całkowitej i objętość: a) sześcianu, b) graniastosłupa, c) walca.
11 5 lekcji o algorytmach - Przykłady algorytmów w fizyce 1. Przedstaw za pomocą algorytmu sposób na obliczanie gęstości ciała stałego. BUDOWA ALGORYTMU: 1. Zmierz masę ciała stałego m:= 2. Zmierz za pomocą menzurki objętość ciała V:= 3. Oblicz gęstość ciała 4. Podaj gęstość ciała (g/cm³) r:= 2. Zapisz za pomocą algorytmu sposób na rozpoznawanie rodzaju ruchu ciała ze względu na zmianę prędkości. 1. Podaj prędkość początkową V 1:= 2. Podaj prędkość końcową V 2:= 3. Oblicz przyrost prędkości ΔV := V 2 - V 1 4. Czy ΔV=0? a) jeśli tak, pisz: ruch jednostajny, b) jeśli nie, sprawdź, czy ΔV > 0 1. jeśli tak pisz: ruch jednostajnie przyspieszony, 2. jeśli nie pisz: ruch jednostajnie opóźniony. Zadania do samodzielnego rozwiązania: 1. Zapisz drugi algorytm za pomocą schematu blokowego. 2. Zapisz za pomocą algorytmu sposób obliczania ciężaru ciała na: a) Ziemi, b) Księżycu, c) Marsie, d) Wenus. 3. Zapisz za pomocą algorytmu sposób obliczania przyspieszenia ciała, gdy znamy przyrost prędkości ciała oraz czas, w którym ten przyrost nastąpił. 4. Zapisz algorytm obliczania drogi w ruchu: a) jednostajnym po linii prostej, b) jednostajnym po okręgu, c) jednostajnie przyspieszonym. 5. Zapisz za pomocą algorytmu sposób obliczania przyspieszenia ciała, gdy znamy wartość siły wypadkowej działającej na ciało oraz masę tego ciała. (II zasada dynamiki). 6. Zapisz algorytm obliczania: a) pracy, b) mocy,
12 c) energii potencjalnej ciężkości, d) energii kinetycznej ciała, e) oporu elektrycznego (prawo Ohma). 7. Zapisz algorytm opisujący własności obrazu w zależności od długości ogniskowej i odległości ciała od soczewki lub zwierciadła dla: a) zwierciadeł płaskich, b) zwierciadeł wklęsłych, c) zwierciadeł wypukłych, d) soczewek skupiających, e) soczewek rozpraszających.
Co to jest algorytm? przepis prowadzący do rozwiązania zadania, problemu,
wprowadzenie Co to jest algorytm? przepis prowadzący do rozwiązania zadania, problemu, w przepisie tym podaje się opis czynności, które trzeba wykonać, oraz dane, dla których algorytm będzie określony.
Bardziej szczegółowoKARTA PRACY UCZNIA. Klasa II
Dobrze widzi się tylko sercem. Najważniejsze jest niewidoczne dla oczu. KARTA PRACY UCZNIA Klasa II Temat: Budowanie schematu blokowego realizującego prosty algorytm. Czynności: 1. Uruchom komputer, a
Bardziej szczegółowoSTART. Wprowadź (v, t) S:=v*t. Wyprowadź (S) KONIEC
GRUPA I Co to jest algorytm, a czym jest program komputerowy? Algorytm: uporządkowany i uściślony sposób rozwiązywania problemu, zawierający szczegółowy opis wykonywanych czynności. Program komputerowy:
Bardziej szczegółowoWYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI wg podstawy programowej z VIII 2008r.
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI wg podstawy programowej z VIII 2008r. Ocena niedostateczna. Zna nazwy argumentów działań Pamięciowo i pisemnie wykonuje każde z czterech działań na liczbach
Bardziej szczegółowoWprowadzenie do algorytmiki
Wprowadzenie do algorytmiki Pojecie algorytmu Powszechnie przyjmuje się, że algorytm jest opisem krok po kroku rozwiązania postawionego problemu lub sposób osiągnięcia jakiegoś celu. Wywodzi się z matematyki
Bardziej szczegółowoWYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VII SZKOŁY PODSTAWOWEJ
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VII SZKOŁY PODSTAWOWEJ Ocenę niedostateczną otrzymuje uczeń, jeśli nie opanował wiadomości i umiejętności na ocenę dopuszczającą, nie wykazuje chęci poprawy
Bardziej szczegółowoALGORYTMY. 1. Podstawowe definicje Schemat blokowy
ALGORYTMY 1. Podstawowe definicje Algorytm (definicja nieformalna) to sposób postępowania (przepis) umożliwiający rozwiązanie określonego zadania (klasy zadań), podany w postaci skończonego zestawu czynności
Bardziej szczegółowoWYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE III GIMNAZJUM
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE III GIMNAZJUM OCENA ŚRÓDROCZNA: NIEDOSTATECZNY ocenę niedostateczny otrzymuje uczeń, który
Bardziej szczegółowoSZCZEGÓŁOWE WYMAGANIA EDUKACYJNE DLA KLAS 4-6 SP ROK SZKOLNY 2015/2016
SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE DLA KLAS 4-6 SP ROK SZKOLNY 2015/2016 Szczegółowe kryteria ocen dla klasy czwartej. 1. Ocenę dopuszczającą otrzymuje uczeń, który: Zna zależności wartości cyfry od jej
Bardziej szczegółowoAlgorytmy i schematy blokowe
Algorytmy i schematy blokowe Algorytm dokładny przepis podający sposób rozwiązania określonego zadania w skończonej liczbie kroków; zbiór poleceń odnoszących się do pewnych obiektów, ze wskazaniem porządku,
Bardziej szczegółowoDefinicje. Algorytm to:
Algorytmy Definicje Algorytm to: skończony ciąg operacji na obiektach, ze ściśle ustalonym porządkiem wykonania, dający możliwość realizacji zadania określonej klasy pewien ciąg czynności, który prowadzi
Bardziej szczegółowoWYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE IV
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE IV Zna zależności wartości cyfry od jej położenia w liczbie Zna kolejność działań bez użycia nawiasów Zna algorytmy czterech działań pisemnych
Bardziej szczegółowoALGORYTMY. 1. Podstawowe definicje Schemat blokowy
ALGORYTMY 1. Podstawowe definicje Algorytm (definicja nieformalna) to sposób postępowania (przepis) umożliwiający rozwiązanie określonego zadania (klasy zadań), podany w postaci skończonego zestawu czynności
Bardziej szczegółowoSposoby przedstawiania algorytmów
Temat 1. Sposoby przedstawiania algorytmów Realizacja podstawy programowej 5. 1) wyjaśnia pojęcie algorytmu, podaje odpowiednie przykłady algorytmów rozwiązywania różnych problemów; 2) formułuje ścisły
Bardziej szczegółowoWYMAGANIA NA POSZCZEGÓLNE OCENY MATEMATYKA KL.VII
WYMAGANIA NA POSZCZEGÓLNE OCENY MATEMATYKA KL.VII ROZDZIAŁ I LICZBY 1. rozpoznaje cyfry używane do zapisu liczb w systemie rzymskim w zakresie do 3000 2. odczytuje liczby naturalne dodatnie zapisane w
Bardziej szczegółowoWYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą
1. Statystyka odczytać informacje z tabeli odczytać informacje z diagramu 2. Mnożenie i dzielenie potęg o tych samych podstawach 3. Mnożenie i dzielenie potęg o tych samych wykładnikach 4. Potęga o wykładniku
Bardziej szczegółowoWYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE V
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE V OCENA ŚRÓDROCZNA: DOPUSZCZAJĄCY uczeń potrafi: zapisywać i odczytywać liczby w dziesiątkowym
Bardziej szczegółowo11. Blok ten jest blokiem: a. decyzyjnym b. końcowym c. operacyjnym
1. Instrukcja warunkowa a. słuŝy do wprowadzania danych oraz wprowadzania wyników b. to instrukcja decyzyjna c. to sposób przedstawienia algorytmu 2. Instrukcja, która opisuje wykonanie róŝnych czynności
Bardziej szczegółowoMatematyka z kluczem. Szkoła podstawowa nr 18 w Sosnowcu. Przedmiotowe zasady oceniania klasa 7
Matematyka z kluczem Szkoła podstawowa nr 18 w Sosnowcu Przedmiotowe zasady oceniania klasa 7 KlasaVII wymagania programowe- wymagania na poszczególne oceny ROZDZIAŁ I LICZBY 1. rozpoznaje cyfry używane
Bardziej szczegółowoPLAN WYNIKOWY Z MATEMATYKI DLA III KL. GIMNAZJUM do podręcznika GWO Matematyka z plusem. PODSTAWOWE Uczeń zna: LICZBY I WYRAŻENIA ALGEBRAICZNE
Ewa Koralewska PLAN WYNIKOWY Z MATEMATYKI DLA III KL. GIMNAZJUM do podręcznika GWO Matematyka z plusem LP.. 2. 3. 5. OGÓLNA PODST- AWA PROGRA- MOWA a a TEMATYKA LEKCJI LICZBA GODZIN Lekcja organizacyjna.
Bardziej szczegółowoWYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE II GIMNAZJUM
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE II GIMNAZJUM OCENA ŚRÓDROCZNA: NIEDOSTATECZNY ocenę niedostateczny otrzymuje uczeń, który
Bardziej szczegółowoMetody numeryczne w przykładach
Metody numeryczne w przykładach Bartosz Ziemkiewicz Wydział Matematyki i Informatyki UMK, Toruń Regionalne Koło Matematyczne 8 kwietnia 2010 r. Bartosz Ziemkiewicz (WMiI UMK) Metody numeryczne w przykładach
Bardziej szczegółowoWykład z Technologii Informacyjnych. Piotr Mika
Wykład z Technologii Informacyjnych Piotr Mika Uniwersalna forma graficznego zapisu algorytmów Schemat blokowy zbiór bloków, powiązanych ze sobą liniami zorientowanymi. Jest to rodzaj grafu, którego węzły
Bardziej szczegółowoLiczby. Wymagania programowe kl. VII. Dział
Wymagania programowe kl. VII Dział Liczby rozpoznaje cyfry używane do zapisu liczb w systemie rzymskim w zakresie do 3000 odczytuje liczby naturalne dodatnie zapisane w systemie rzymskim w zakresie do
Bardziej szczegółowoWymagania edukacyjne z matematyki w klasie VII szkoły podstawowej
Wymagania edukacyjne z matematyki w klasie VII szkoły podstawowej ROZDZIAŁ I LICZBY Uczeń otrzymuje ocenę dopuszczającą jeśli: 1. rozpoznaje cyfry używane do zapisu liczb w systemie rzymskim w zakresie
Bardziej szczegółowoWYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ W RUDKACH
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ W RUDKACH Marzena Zbrożyna DOPUSZCZAJĄCY: Uczeń potrafi: odczytać informacje z tabeli odczytać informacje z diagramu
Bardziej szczegółowoZapisywanie algorytmów w języku programowania
Temat C5 Zapisywanie algorytmów w języku programowania Cele edukacyjne Zrozumienie, na czym polega programowanie. Poznanie sposobu zapisu algorytmu w postaci programu komputerowego. Zrozumienie, na czym
Bardziej szczegółowo2. Graficzna prezentacja algorytmów
1. Uczeń: Uczeń: 2. Graficzna prezentacja algorytmów a. 1. Cele lekcji i. a) Wiadomości zna sposoby graficznego przedstawiania algorytmów, wie w jaki sposób skonstruować schemat blokowy w taki sposób aby
Bardziej szczegółowowymagania programowe z matematyki kl. II gimnazjum
wymagania programowe z matematyki kl. II gimnazjum Umie obliczyć potęgę liczby wymiernej o wykładniku naturalnym. 1. Arytmetyka występują potęgi o wykładniku naturalnym. Umie zapisać i porównać duże liczby
Bardziej szczegółowoMatematyka klasa 7 Wymagania edukacyjne na ocenę śródroczną.
Matematyka klasa 7 Wymagania edukacyjne na ocenę śródroczną. Każda wyższa ocena zawiera wymagania dotyczące ocen niższych. Wymagania na ocenę dopuszczającą obejmują wiadomości i umiejętności umożliwiające
Bardziej szczegółowoWymagania edukacyjne z matematyki dla klasy VII
Wymagania edukacyjne z matematyki dla klasy VII Szkoły Podstawowej nr 100 w Krakowie Na podstawie programu Matematyka z plusem Na ocenę dopuszczającą Uczeń: rozumie rozszerzenie osi liczbowej na liczby
Bardziej szczegółowoWymagania edukacyjne z matematyki dla uczniów klasy VII szkoły podstawowej
Wymagania edukacyjne z matematyki dla uczniów klasy VII szkoły podstawowej Ocenę dopuszczającą otrzymuje uczeń, który: rozumie rozszerzenie osi liczbowej na liczby ujemne umie porównywać liczby wymierne,
Bardziej szczegółowoWYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA VII
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA VII Ocena Dopuszczający Osiągnięcia ucznia rozpoznaje cyfry używane do zapisu liczb w systemie rzymskim w zakresie do 3000 odczytuje liczby naturalne dodatnie zapisane
Bardziej szczegółowoWYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY MATEMATYKA KLASA 8 DZIAŁ 1. LICZBY I DZIAŁANIA
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY MATEMATYKA KLASA 8 DZIAŁ 1. LICZBY I DZIAŁANIA zna znaki używane do zapisu liczb w systemie rzymskim; zna zasady zapisu liczb w systemie rzymskim; umie zapisać
Bardziej szczegółowoTemat 1: Algorytmika i Algorytmy.
Temat 1: Algorytmika i Algorytmy. Algorytm to skończony zbiór jasno zdefiniowanych czynności koniecznych do wykonania pewnego zadania w skończonej liczbie kroków. Ma on przeprowadzić system z pewnego stanu
Bardziej szczegółowoI semestr WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA VI. Wymagania na ocenę dopuszczającą. Dział programu: Liczby naturalne
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA VI Wymagania na ocenę dopuszczającą I semestr Dział programu: Liczby naturalne Oblicza różnice czasu proste Wymienia jednostki opisujące prędkość, drogę, czas. Rozwiązuje
Bardziej szczegółowoMATEMATYKA KLASY III gimnazjum LICZBY I WYRAŻENIA ALGEBRAICZNE
MATEMATYKA KLASY III gimnazjum LICZBY I WYRAŻENIA ALGEBRAICZNE - pojęcie liczby naturalnej, całkowitej, wymiernej, niewymiernej, - sposób i potrzebę zaokrąglania liczb, - pojęcie wartości bezwzględnej,
Bardziej szczegółowoWymagania edukacyjne z matematyki : Matematyka z plusem GWO
klasy Ewy Pakulskiej Wymagania edukacyjne z matematyki : Matematyka z plusem GWO KLASA IV Rozwijanie sprawności rachunkowej Wykonywanie jednodziałaniowych obliczeń pamięciowych na liczbach naturalnych.
Bardziej szczegółowoKRYTERIA OCEN DLA KLASY VI. Zespół Szkolno-Przedszkolny nr 1
KRYTERIA OCEN DLA KLASY VI Zespół Szkolno-Przedszkolny nr 1 2 3 KRYTERIA OCEN Z MATEMATYKI DLA KLASY VI LICZBY NATURALNE I UŁAMKI Na ocenę dopuszczającą uczeń powinien: - znać algorytm czterech
Bardziej szczegółowoWYMAGANIA EDUKACYJNE
SZKOŁA PODSTAWOWA W RYCZOWIE WYMAGANIA EDUKACYJNE niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z MATEMATYKI w klasie 6 Szkoły Podstawowej str. 1 Liczby naturalne
Bardziej szczegółowoSZKOŁA PODSTAWOWA NR 1 IM. ŚW. JANA KANTEGO W ŻOŁYNI. Wymagania na poszczególne oceny klasa VII Matematyka z kluczem
SZKOŁA PODSTAWOWA NR 1 IM. ŚW. JANA KANTEGO W ŻOŁYNI Wymagania na poszczególne oceny klasa VII Matematyka z kluczem I. Wymagania konieczne (na ocenę dopuszczającą) obejmują wiadomości i umiejętności umożliwiające
Bardziej szczegółowoWYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE 8 SZKOŁY PODSTAWOWEJ
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE 8 SZKOŁY PODSTAWOWEJ 1) ocenę celującą otrzymuje uczeń, który spełnił wymagania na ocenę bardzo dobrą oraz: - umie zapisać i odczytać w
Bardziej szczegółowo1. LICZBY DZIAŁ Z PODRĘCZNIKA L.P. NaCoBeZu kryteria sukcesu w języku ucznia
L.P. DZIAŁ Z PODRĘCZNIKA NaCoBeZu kryteria sukcesu w języku ucznia 1. LICZBY 1. Znam pojęcie liczby naturalne, całkowite, wymierne, dodatnie, ujemne, niedodatnie, odwrotne, przeciwne. 2. Potrafię zaznaczyć
Bardziej szczegółowoWYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE VIII
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE VIII Uczeń na ocenę dopuszczającą: - zna znaki używane do zapisu liczb w systemie rzymskim, - umie zapisać i odczytać liczby naturalne dodatnie w systemie rzymskim
Bardziej szczegółowoMatematyka. - dodawanie, odejmowanie, mnożenie i dzielenie pamięciowe
Matematyka KLASA IV 1. Liczby i działania - dodawanie, odejmowanie, mnożenie i dzielenie pamięciowe - szacowanie wyników działań - porównywanie różnicowe i ilorazowe - rozwiązywanie równań I stopnia z
Bardziej szczegółowoDopuszczający Dostateczny Dobry Bardzo dobry Celujący
Liczby i wyrażenia zna pojęcie liczby naturalnej, całkowitej, wymiernej zna pojęcie liczby niewymiernej, rzeczywistej zna sposób zaokrąglania liczb umie zapisać i odczytać liczby naturalne dodatnie w systemie
Bardziej szczegółowoWymagania edukacyjne z matematyki na poszczególne do klasy VII szkoły podstawowej na rok szkolny 2018/2019
Wymagania edukacyjne z matematyki na poszczególne do klasy VII szkoły podstawowej na rok szkolny 2018/2019 LICZBY Uczeń otrzymuje ocenę dopuszczającą, jeśli: rozpoznaje cyfry używane do zapisu liczb w
Bardziej szczegółowoWymagania edukacyjne z matematyki dla kl. VI
Wymagania edukacyjne z matematyki dla kl. VI Semestr I Wymagane wiadomości i umiejętności (uczeń zna, umie, potrafi) na ocenę: dopuszczającą: nazwy argumentów działań algorytmy czterech działań pisemnych
Bardziej szczegółowoWymagania dla klasy szóstej Treści na 2 na 3 na 4 na 5 na 6 Uczeń: Uczeń: Uczeń: Uczeń: Uczeń: Mnożenie ułamków zwykłych
Wymagania dla klasy szóstej Treści na 2 na 3 na 4 na 5 na 6 Uczeń: Uczeń: Uczeń: Uczeń: Uczeń: Mnożenie ułamków zwykłych Dzielenie ułamków zwykłych Liczby całkowite na osi liczbowej Dodawanie liczb całkowitych
Bardziej szczegółowoTemat 20. Techniki algorytmiczne
Realizacja podstawy programowej 5. 1) wyjaśnia pojęcie algorytmu, podaje odpowiednie przykłady algorytmów rozwiązywania różnych problemów; 2) formułuje ścisły opis prostej sytuacji problemowej, analizuje
Bardziej szczegółowoWYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY 7SP. V. Obliczenia procentowe. Uczeń: 1) przedstawia część wielkości jako procent tej wielkości;
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY 7SP Liczby. TEMAT Rozwinięcia dziesiętne liczb wymiernych. Zaokrąglanie liczb. Szacowanie wyników. Dodawanie i odejmowanie liczb dodatnich. Mnożenie i dzielenie
Bardziej szczegółowoNaCoBeZU z matematyki dla klasy 7
NaCoBeZU z matematyki dla klasy 7 I. LICZBY I DZIAŁANIA 1. Znam pojęcia: liczby naturalne, całkowite, wymierne, dodatnie, ujemne, niedodatnie, odwrotne, przeciwne. 2. Zaznaczam i odczytuję położenie liczby
Bardziej szczegółowoKRYTERIA OCEN Z MATEMATYKI DLA KLASY I GIMNAZJUM
KRYTERIA OCEN Z MATEMATYKI DLA KLASY I GIMNAZJUM DZIAŁ: LICZBY WYMIERNE (DODATNIE I UJEMNE) Otrzymuje uczeń, który nie spełnia kryteriów oceny dopuszczającej, nie jest w stanie na pojęcie liczby naturalnej,
Bardziej szczegółowo1 Wprowadzenie do algorytmiki
Teoretyczne podstawy informatyki - ćwiczenia: Prowadzący: dr inż. Dariusz W Brzeziński 1 Wprowadzenie do algorytmiki 1.1 Algorytm 1. Skończony, uporządkowany ciąg precyzyjnie i zrozumiale opisanych czynności
Bardziej szczegółowoEGZAMIN WSTĘPNY Z MATEMATYKI
EGZAMIN WSTĘPNY Z MATEMATYKI 1. Przed sobą masz egzamin z matematyki, który składa się z dwóch części. Osoby, które chcą się dostać do klasy matematycznej muszą napisać obie części poniższego egzaminu
Bardziej szczegółowoPrzedmiotowe zasady oceniania i wymagania edukacyjne z matematyki dla klasy drugiej gimnazjum
Przedmiotowe zasady oceniania i wymagania edukacyjne z matematyki dla klasy drugiej gimnazjum I. POTĘGI I PIERWIASTKI oblicza wartości potęg o wykładnikach całkowitych liczb różnych od zera zapisuje liczbę
Bardziej szczegółowoWYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH OCEN Z MATEMATYKI W KLASIE VI
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH OCEN Z MATEMATYKI W KLASIE VI OCENA ŚRÓDROCZNA: NIEDOSTATECZNY ocenę niedostateczny otrzymuje uczeń, który nie spełnia poniższych wymagań edukacyjnych
Bardziej szczegółowoWymagania edukacyjne z matematyki w klasie III gimnazjum
Wymagania edukacyjne z matematyki w klasie III gimnazjum - nie potrafi konstrukcyjnie podzielić odcinka - nie potrafi konstruować figur jednokładnych - nie zna pojęcia skali - nie rozpoznaje figur jednokładnych
Bardziej szczegółowoAnaliza wyników egzaminu gimnazjalnego 2013 r. Test matematyczno-przyrodniczy (matematyka) Test GM-M1-132
Analiza wyników egzaminu gimnazjalnego 2013 r. Test matematyczno-przyrodniczy (matematyka) Test GM-M1-132 Zestaw zadań z zakresu matematyki posłużył w dniu 24 kwietnia 2013 roku do sprawdzenia u uczniów
Bardziej szczegółowoMATEMATYKA. klasa VII. Podstawa programowa przedmiotu SZKOŁY BENEDYKTA
2017-09-01 MATEMATYKA klasa VII Podstawa programowa przedmiotu SZKOŁY BENEDYKTA Cele kształcenia wymagania ogólne I. Sprawność rachunkowa. 1. Wykonywanie nieskomplikowanych obliczeń w pamięci lub w działaniach
Bardziej szczegółowoSZKOŁA PODSTAWOWA NR 1 IM. ŚW. JANA KANTEGO W ŻOŁYNI. Wymagania na poszczególne oceny klasa VII Matematyka z kluczem
SZKOŁA PODSTAWOWA NR 1 IM. ŚW. JANA KANTEGO W ŻOŁYNI Wymagania na poszczególne oceny klasa VII Matematyka z kluczem I. Wymagania konieczne (na ocenę dopuszczającą) obejmują wiadomości i umiejętności umożliwiające
Bardziej szczegółowoPrzedmiotowy system oceniania Wymagania na poszczególne oceny,,liczy się matematyka
Przedmiotowy system oceniania Wymagania na poszczególne oceny,,liczy się matematyka I. Potęgi i pierwiastki. Klasa II 1. Zapisuje w postaci potęgi iloczyn tych samych czynników i odwrotnie. 2. Oblicza
Bardziej szczegółowowymagania programowe z matematyki kl. III gimnazjum
wymagania programowe z matematyki kl. III gimnazjum 1. Liczby i wyrażenia algebraiczne Zna pojęcie notacji wykładniczej. Umie zapisać liczbę w notacji wykładniczej. Umie porównywać liczy zapisane w różny
Bardziej szczegółowoWymagania szczegółowe z matematyki klasa 7
Wymagania szczegółowe z matematyki klasa 7 Dział Szczegółowe wymagania Liczby całkowite (liczby dodatnie, ujemne i zero) - wyróżnia wśród liczb wymiernych liczby naturalne i całkowite oraz liczby pierwsze,
Bardziej szczegółowoMATEMATYKA Z PLUSEM DLA KLASY VII W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ. programowej dla klas IV-VI. programowej dla klas IV-VI.
MATEMATYKA Z PLUSEM DLA KLASY VII W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ TEMAT LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ UWAGI. LICZBY I DZIAŁANIA 6 h Liczby. Rozwinięcia
Bardziej szczegółowoWymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych ocen klasyfikacyjnych z matematyki klasa 2 (oddział gimnazjalny)
edukacyjne niezbędne do uzyskania poszczególnych śródrocznych ocen klasyfikacyjnych z matematyki klasa 2 (oddział gimnazjalny) Stopień Rozdział 1. Potęgi i pierwiastki zapisuje w postaci potęgi iloczyn
Bardziej szczegółowoWymagania edukacyjne z matematyki w klasie IV
Wymagania edukacyjne z matematyki w klasie IV Na ocenę dopuszczającą uczeń potrafi: Dodawać i odejmować w pamięci liczby dwucyfrowe. Obliczyć wartości wyrażeń arytmetycznych z zachowaniem kolejności wykonywania
Bardziej szczegółowoI Liceum Ogólnokształcące w Warszawie
I Liceum Ogólnokształcące w Warszawie Imię i Nazwisko Klasa Nauczyciel PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Liczba punktów Wynik procentowy Informacje dla ucznia 1 Sprawdź, czy zestaw
Bardziej szczegółowoDydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2016/2017 Ćwiczenia nr 9
Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2016/2017 Ćwiczenia nr 9 Karta pracy: podzielność przez 9 Niektóre są dobre, z drobnymi usterkami. Największy błąd: nie ma sformułowanej
Bardziej szczegółowoARKUSZ II
www.galileusz.com.pl ARKUSZ II W każdym z zadań 1.-24. wybierz i zaznacz jedną poprawną odpowiedź. Zadanie 1. (0-1 pkt) Liczba 30 to p% liczby 80, zatem A) p = 44,(4)% B) p > 44,(4)% C) p = 43,(4)% D)
Bardziej szczegółowoOBLICZANIE PÓL I OBWODÓW FIGUR PŁASKICH
OBLICZANIE PÓL I OBWODÓW FIGUR PŁASKICH Zadanie 1 Jeden z boków prostokąta ma 5 cm, a drugi jest 3 razy dłuższy. Oblicz pole prostokąta. Zadanie 2 Oblicz pole kwadratu, którego obwód wynosi 6 dm. Zadanie
Bardziej szczegółowoKurs ZDAJ MATURĘ Z MATEMATYKI - MODUŁ 13 Teoria stereometria
1 GRANIASTOSŁUPY i OSTROSŁUPY wiadomości ogólne Aby tworzyć wzory na OBJĘTOŚĆ i POLE CAŁKOWITE graniastosłupów musimy znać pola figur płaskich a następnie na ich bazie stosować się do zasady: Objętość
Bardziej szczegółowoRuch jednostajnie zmienny prostoliniowy
Ruch jednostajnie zmienny prostoliniowy Przyspieszenie w ruchu jednostajnie zmiennym prostoliniowym Jest to taki ruch, w którym wektor przyspieszenia jest stały, co do wartości (niezerowej), kierunku i
Bardziej szczegółowoWymagania na poszczególne oceny w klasie II gimnazjum do programu nauczania MATEMATYKA NA CZASIE
Wymagania na poszczególne oceny w klasie II gimnazjum do programu nauczania MATEMATYKA NA CZASIE Wymagania konieczne K dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, powinien je
Bardziej szczegółowoPYTANIA TEORETYCZNE Z MATEMATYKI
Zbiory liczbowe: 1. Wymień znane Ci zbiory liczbowe. 2. Co to są liczby rzeczywiste? 3. Co to są liczby naturalne? 4. Co to są liczby całkowite? 5. Co to są liczby wymierne? 6. Co to są liczby niewymierne?
Bardziej szczegółowoAlgorytm. Krótka historia algorytmów
Algorytm znaczenie cybernetyczne Jest to dokładny przepis wykonania w określonym porządku skończonej liczby operacji, pozwalający na rozwiązanie zbliżonych do siebie klas problemów. znaczenie matematyczne
Bardziej szczegółowoSprowadzanie ułamków do wspólnego mianownika(
STOPIEŃ BARDZO WYMAGANIA NA OCENY ŚRÓDROCZNE: LICZBY NATURALNE - POWTÓRZENIE WIADOMOŚCI I OSIĄGNIĘCIA Zapisywanie i odczytywanie liczb w dziesiątkowym systemie pozycyjnym. Obliczanie wartości wyrażeń arytmetycznych
Bardziej szczegółowoWymagania edukacyjne niezbędne do otrzymania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z matematyki dla klasy VIII
Wymagania edukacyjne niezbędne do otrzymania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z matematyki dla klasy VIII Temat 1. System rzymski. 2. Własności liczb naturalnych. 3. Porównywanie
Bardziej szczegółowoWYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA KL. 5
WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA KL. 5 Na ocenę niedostateczną (1) uczeń nie spełnia wymagań koniecznych. Na ocenę dopuszczającą (2) uczeń spełnia wymagania konieczne tzn.: 1. posiada i
Bardziej szczegółowoProgramowanie i techniki algorytmiczne
Temat 2. Programowanie i techniki algorytmiczne Realizacja podstawy programowej 1) wyjaśnia pojęcie algorytmu, podaje odpowiednie przykłady algorytmów rozwiązywania różnych 2) formułuje ścisły opis prostej
Bardziej szczegółowoKatalog wymagań programowych na poszczególne stopnie szkolne
rozpoznaje figury podobne zna własności figur podobnych rozpoznaje trójkąty prostokątne podobne Rozdział 6. Figury podobne zna cechy podobieństwa trójkątów prostokątnych podobnych podaje skalę podobieństwa
Bardziej szczegółowoKRYTERIA OCENIANIA W KLASACH SZÓSTYCH - Matematyka
KRYTERIA OCENIANIA W KLASACH SZÓSTYCH - Matematyka 1. Ocenę niedostateczną otrzymuje uczeń, który nie spełnia kryteriów na ocenę dopuszczającą. 2. Ocenę dopuszczającą otrzymuje uczeń, który: 2.1 Liczby
Bardziej szczegółowoKRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. III GIMNAZJUM LICZBY I WYRAŻENIA ALGEBRAICZNE
KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. III GIMNAZJUM OCENA DOPUSZCZAJĄCA LICZBY I WYRAŻENIA ALGEBRAICZNE - pojęcie liczby naturalnej, całkowitej, wymiernej, niewymiernej, rzeczywistej; - sposób zaokrąglania
Bardziej szczegółowoROK SZKOLNY 2017/2018 WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY:
ROK SZKOLNY 2017/2018 WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY: KLASA II GIMNAZJUM Wymagania konieczne K dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, powinien je zatem opanować
Bardziej szczegółowoKońcoworoczne kryteria oceniania dla klasy II z matematyki przygotowały mgr Magdalena Murawska i mgr Iwona Śliczner
Końcoworoczne kryteria oceniania dla klasy II z matematyki przygotowały mgr Magdalena Murawska i mgr Iwona Śliczner Semestr I Rozdział: Potęgi i pierwiastki zapisuje w postaci potęgi iloczyn tych samych
Bardziej szczegółowo1. FUNKCJE DZIAŁ Z PODRĘCZNIKA L.P. NaCoBeZu kryteria sukcesu w języku ucznia
L.P. DZIAŁ Z PODRĘCZNIKA 1. FUNKCJE 2. POTĘGI I PIERWIASTKI NaCoBeZu kryteria sukcesu w języku ucznia 1. Wiem, co to jest układ współrzędnych, potrafię nazwać osie układu. 2. Rysuję układ współrzędnych
Bardziej szczegółowoPLAN REALIZACJI MATERIAŁU NAUCZANIA FIZYKI W GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH
PLAN REALIZACJI MATERIAŁU NAUCZANIA FIZYKI W GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH Krzysztof Horodecki, Artur Ludwikowski, Fizyka 1. Podręcznik dla gimnazjum, Gdańskie Wydawnictwo Oświatowe
Bardziej szczegółowoSZKOŁA PODSTAWOWA NR 1 IM. ŚW. JANA KANTEGO W ŻOŁYNI. Wymagania na poszczególne oceny klasa VIII Matematyka z kluczem
SZKOŁA PODSTAWOWA NR 1 IM. ŚW. JANA KANTEGO W ŻOŁYNI Wymagania na poszczególne oceny klasa VIII Matematyka z kluczem I. Wymagania konieczne (na ocenę dopuszczającą) obejmują wiadomości i umiejętności umożliwiające
Bardziej szczegółowoWymagania edukacyjne niezbędne do uzyskania rocznych ocen klasyfikacyjnych z matematyki w klasie VII.
Przedmiotowy system oceniania z matematyki w klasie VII. Ocena roczna Wyróżniono następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające poza
Bardziej szczegółowoKatalog wymagań programowych na poszczególne stopnie szkolne
rozpoznaje figury podobne zna własności figur podobnych rozpoznaje trójkąty prostokątne podobne Rozdział 6. Figury podobne zna cechy podobieństwa trójkątów prostokątnych podobnych podaje skalę podobieństwa
Bardziej szczegółowoPodstawy Programowania Algorytmy i programowanie
Podstawy Programowania Algorytmy i programowanie Katedra Analizy Nieliniowej, WMiI UŁ Łódź, 3 października 2013 r. Algorytm Algorytm w matematyce, informatyce, fizyce, itp. lub innej dziedzinie życia,
Bardziej szczegółowoWymagania na egzamin poprawkowy z matematyki dla klasy I C LO (Rok szkolny 2015/16) Wykaz zakładanych osiągnięć ucznia klasy I liceum
Wymagania na egzamin poprawkowy z matematyki dla klasy I C LO (Rok szkolny 05/6) Wykaz zakładanych osiągnięć ucznia klasy I liceum (osiągnięcia ucznia w zakresie podstawowym) I. Liczby rzeczywiste. Język
Bardziej szczegółowoTechnologie informacyjne - wykład 12 -
Zakład Fizyki Budowli i Komputerowych Metod Projektowania Instytut Budownictwa Wydział Budownictwa Lądowego i Wodnego Politechnika Wrocławska Technologie informacyjne - wykład 12 - Prowadzący: Dmochowski
Bardziej szczegółowoEgzamin gimnazjalny z matematyki 2016 analiza
Egzamin gimnazjalny z matematyki 2016 analiza Arkusz zawierał 23 zadania: 20 zamkniętych i 3 otwarte. Dominowały zadania wyboru wielokrotnego, w których uczeń wybierał jedną z podanych odpowiedzi. W pięciu
Bardziej szczegółowoSZCZEGÓŁOWE KRYTERIA OCENIANIA UCZNIÓW W ZAKRESIE TREŚCI PROGRAMOWYCH Z MATEMATYKI W KLASACH IV i V ZESPOŁU SZKÓŁ W ŚWILCZY
SZCZEGÓŁOWE KRYTERIA OCENIANIA UCZNIÓW W ZAKRESIE TREŚCI PROGRAMOWYCH Z MATEMATYKI W KLASACH IV i V ZESPOŁU SZKÓŁ W ŚWILCZY KLASA IV Uczeń otrzymuje ocenę celującą gdy: potrafi samodzielnie wyciągać wnioski,
Bardziej szczegółowoGraniastosłupy mają dwie podstawy, a ich ściany boczne mają kształt prostokątów.
GRANIASTOSŁUPY I OSTROSŁUPY Bryły czyli figury przestrzenne dzielimy na: graniastosłupy ostrosłupy bryły obrotowe Graniastosłupy i ostrosłupy nazywamy wielościanami Graniastosłupy mają dwie podstawy, a
Bardziej szczegółowoWYMAGANIA EDUKAcYJNE Z MATEMATYKI W KL. 6 I SEMESTR. I. Liczby naturalne i ułamki. Na ocenę dopuszczającą uczeń:
WYMAGANIA EDUKAcYJNE Z MATEMATYKI W KL. 6 I SEMESTR I. Liczby naturalne i ułamki - zna nazwy argumentów działań zna kolejność wykonywania działań zna algorytmy czterech działań pisemnych potrafi pamięciowo
Bardziej szczegółowo