Analiza wyników egzaminu gimnazjalnego 2013 r. Test matematyczno-przyrodniczy (matematyka) Test GM-M1-132

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Analiza wyników egzaminu gimnazjalnego 2013 r. Test matematyczno-przyrodniczy (matematyka) Test GM-M1-132"

Transkrypt

1 Analiza wyników egzaminu gimnazjalnego 2013 r. Test matematyczno-przyrodniczy (matematyka) Test GM-M1-132 Zestaw zadań z zakresu matematyki posłużył w dniu 24 kwietnia 2013 roku do sprawdzenia u uczniów kończących trzecią klasę gimnazjum stopnia opanowania umiejętności opisanych w wymaganiach ogólnych i szczegółowych dla II i III etapu edukacyjnego podstawy programowej kształcenia ogólnego z dnia 23 grudnia 2008 roku. Arkusz egzaminacyjny GM-M1-132 przeznaczony dla uczniów bez dysfunkcji oraz uczniów ze specyficznymi trudnościami w uczeniu się składał się z 23 zadań, w tym 20 zadań zamkniętych (14 wyboru wielokrotnego i 6 typu prawda-fałsz) oraz 3 zadań otwartych. W zestawie wykorzystano diagramy słupkowe i kołowe, wykres liniowy, rysunki figur płaskich i przestrzennych. Na rozwiązanie wszystkich zadań przewidziano 90 minut, natomiast w przypadku uczniów ze specyficznymi trudnościami w uczeniu się czas ten mógł być przedłużony do 135 minut. Nr zad. Sprawdzana umiejętność wynikająca z podstawy programowej: wymaganie ogólne wymaganie szczegółowe Forma zadania Wartość wskaźnika łatwości zadania (*) Procent uczniów dla których zadanie okazało się: łatwe trudne Wnioski Zalecenie i wskazówka do pracy 1. I. Wykorzystanie i informacji. II. 9. Statystyka opisowa i wprowadzenie do rachunku prawdopodobieństwa. Uczeń: 4) wyznacza średnią arytmetyczną i medianę zestawu danych. WW 0,31 31% 69% Uczniowie mieli problem z wyznaczaniem mediany Ćwiczenie w obliczaniu mediany z zestawu danych przedstawionych w różny sposób 2. I. Wykorzystanie i informacji II. 9. Statystyka opisowa i wprowadzenie do rachunku prawdopodobieństwa. Uczeń: 1) interpretuje dane przedstawione za pomocą tabel, diagramów słupkowych i kołowych, wykresów. WW 0,92 Bardzo łatwy 92% 8% Uczniowie potrafili odczytywać diagramy procentowe Dalsze doskonalenie umiejętności interpretowania danych przedstawionych na wykresie

2 5. Procenty. Uczeń: 1) przedstawia część pewnej wielkości jako procent lub promil tej wielkości i odwrotnie. 3 III. Modelowanie 1. Liczby wymierne dodatnie. Uczeń: 7) stosuje obliczenia na liczbach wymiernych do rozwiązywania problemów w kontekście praktycznym, w tym do zamiany jednostek. WW 0,69 69% 31% Ponad połowa uczniów potrafiła zastosować obliczenia na liczbach do rozwiązywania problemów w kontekście praktycznym Ćwiczenia w doskonaleniu obliczeń na liczbach w praktyce 4 II. 5 II. IV. Użycie i strategii. 5. Procenty. Uczeń: 4) stosuje obliczenia procentowe do rozwiązywania problemów w kontekście praktycznym, np. oblicza ceny po podwyżce lub obniżce o dany procent, wykonuje obliczenia związane z VAT, oblicza odsetki dla lokaty rocznej. Uczeń porównuje ułamki (zwykle i dziesiętne) PF 0,51 WW 0,52 52% 48% Połowa uczniów potrafiła zastosować obliczenie procentowe w zadaniach związanych z podatkiem VAT 52% 48% Połowa uczniów potrafiła podać liczby spełniające podany warunek z wykorzystaniem porównywania ułamków Ćwiczenia w zastosowaniu obliczeń procentowych w zadaniach dotyczących ceny netto, ceny brutto, podatku VAT Ćwiczenia w porównywaniu ułamków 6 II. 3. Potęgi. Uczeń: 3) porównuje potęgi o różnych wykładnikach naturalnych i takich samych podstawach oraz porównuje potęgi o takich samych wykładnikach WW 0,58 58% 42% Ponad połowa uczniów umiała uporządkować potęgi Doskonalenie porównywania potęg

3 naturalnych i różnych dodatnich podstawach. 7 I. Wykorzystanie i informacji. 8 I. Wykorzystanie i informacji 9 I. Wykorzystanie i informacji 10 III. Modelowanie V. Rozumowanie i 2. Liczby wymierne (dodatnie i niedodatnie). Uczeń: 1) interpretuje liczby wymierne na osi liczbowej. Oblicza odległość między dwiema liczbami na osi liczbowej. 8. Wykresy funkcji. Uczeń: 3) odczytuje z wykresu funkcji: wartość funkcji dla danego argumentu, argumenty dla danej wartości funkcji, dla jakich argumentów funkcja przyjmuje wartości dodatnie, dla jakich ujemne, a dla jakich zero. współrzędne danych punktów. 8. Wykresy funkcji. Uczeń: 4) odczytuje i interpretuje informacje przedstawione za pomocą wykresów funkcji (w tym wykresów opisujących zjawiska występujące w przyrodzie, gospodarce, życiu codziennym). 9. Statystyka opisowa i wprowadzenie do rachunku prawdopodobieństwa. Uczeń: 5) analizuje proste doświadczenie losowe (np. rzut kostką, rzut monetą, wyciąganie losu) PF 0,50 WW 0,73 Łatwy WW 0,58 PF 0,65 50% 50% Połowa uczniów potrafiła określić położenie liczby na osi przy podanych warunkach 73% 27% Większość uczniów potrafiło odczytać z wykresu wartość funkcji dla danego argumentu 58% 42% Ponad połowa uczniów potrafiła odczytywać dane z wykresu 65% 35% Ponad połowa potrafiła określić prawdopodobieństwo zdarzenia polegającego na wylosowaniu określonych kul Ćwiczenia w interpretowaniu liczb na osi liczbowej Doskonalenie umiejętności w odczytywaniu z wykresy funkcji wartości dla danego argumentu Doskonalenie w odczytywaniu i interpretowaniu wykresów funkcji Ćwiczenia w określaniu prawdopodobieństwa danych zdarzeń

4 11 II. 12 III. Modelowanie 13 II. 14 V. Rozumowanie i i określa prawdopodobieństwo najprostszych zdarzeń w tych doświadczeniach ( ) Uczeń w sytuacji praktycznej oblicza: drogę przy danej prędkości i danym czasie, prędkość przy danej drodze i danym czasie, czas przydanej drodze i danej prędkości. 7. Równania. Uczeń: 4) zapisuje związki miedzy nieznanymi wielkościami za pomocą układu dwóch równań pierwszego stopnia z dwiema niewiadomymi. 11. Bryły. Uczeń: 2) oblicza pole powierzchni i objętość graniastosłupa prostego, ostrosłupa, walca, stożka, kuli (także w zadaniach osadzonych w kontekście praktycznym); 3) zamienia jednostki objętości. Uczeń zna najważniejsze własności kwadratu, prostokąta, rombu, równoległoboku, trapezu. 9) oblicza pola i obwody trójkątów i czworokątów. PF 0,46 WW 0,29 WW 0,48 PF 0,29 46% 54% Połowa uczniów miała problem z wykonywaniem obliczeń dotyczących prędkości średniej 29% 71% Uczniowie mieli trudność z opisaniem danej sytuacji za pomocą układu równań 48% 52% Połowa uczniów miała problem z obliczaniem objętości prostopadłościanu i zamianą jednostek 29% 71% Uczniowie mieli problem z zastosowaniem własności trójkąta i równoległoboku przy określaniu pola tych figur zadań dotyczących drogi, prędkości i czasu Ćwiczenia w zapisywaniu zależności za pomocą układów równań w odniesieniu do życia codziennego Ćwiczenia w obliczaniu objętości brył w zadaniach z życia codziennego Ćwiczenia w praktycznym zastosowaniu własności wielokątów

5 15 IV. Użycie i strategii. 16 II. III. Modelowanie 17 IV. Użycie i strategii. V. Rozumowanie i 18 IV. Użycie i strategii. V. Rozumowanie i 3) korzysta z faktu, że styczna do okręgu jest prostopadła do promienia poprowadzonego do punktu styczności: 7) stosuje twierdzenie Pitagorasa. Uczeń stosuje twierdzenie o sumie miar kątów wewnętrznych trójkąta. 7. Równania. Uczeń: 1) zapisuje związki między wielkościami za pomocą równania pierwszego stopnia z jedną niewidomą, w tym związki między wielkościami wprost proporcjonalnymi i odwrotnie proporcjonalnymi; 3) rozwiązuje równania stopnia pierwszego z jedną niewidomą. Uczeń stosuje twierdzenie o sumie miar kątów wewnętrznych trójkąta. 3) stosuje cechy przystawania trójkątów. 7) stosuje twierdzenie Pitagorasa; 8) korzysta z własności kątów i przekątnych w prostokątach, WW 0,44 WW 0,58 WW 0,58 WW 0,35 44% 56% Prawie połowa uczniów miała problem z obliczeniem długości promienia okręgu z wykorzystaniem twierdzenia Pitagorasa i własności stycznej 58% 42% Ponad połowa uczniów potrafiła przy podanych zależnościach dotyczących kątów trójkąta podać jego rodzaj 58% 42% Ponad połowa potrafiła z wykorzystaniem odpowiednich własności określić, które trójkąty nie są przystające 35% 65% Uczniowie mieli trudność w opisaniu pola rombu za pomocą odpowiedniego wzoru przy podanych warunkach Ćwiczenia w zastosowaniu własności stycznej do okręgu i twierdzenia Pitagorasa zadań dotyczących zależności w trójkątach za pomocą równań Ćwiczenia w dalszym doskonaleniu posługiwania się własnościami trójkątów przystających Ćwiczenia w zapisywaniu zależności w figurach za pomocą wyrażeń algebraicznych

6 19 V. Rozumowanie i 20 II. 21 III. Modelowanie 22 V. Rozumowanie i równoległobokach, rombach i trapezach. 6. Wyrażenia algebraiczne. Uczeń: 1) opisuje za pomocą wyrażenia algebraicznego związki między różnymi wielkościami. 11. Bryły. Uczeń: 1) rozpoznaje graniastosłupy i ostrosłupy prawidłowe. 7) stosuje twierdzenie Pitagorasa. 11. Bryły. Uczeń: 2) oblicza pole powierzchni i objętość graniastosłupa prostego, ostrosłupa, walca, stożka, kuli. 5. procenty. Uczeń: 2) oblicza procent danej liczby. 7. Równania. Uczeń: 7) za pomocą równań lub układów równań opisuje i rozwiązuje zadania osadzone w kontekście praktycznym. 9) oblicza pola i obwody trójkątów i czworokątów; 14) stosuje cechy przystawania trójkątów. PF 0,37 WW 0,40 O 0,37 O 0,16 Bardzo 37% 63% Uczniowie mieli problem z określeniem długości poszczególnych odcinków w ostrosłupie 40% 60% Uczniowie mieli problem z obliczeniem promienia kuli przy podanej jej objętości 37% 63% Większość uczniów miała trudność z rozwiązaniem sytuacji problemowej dotyczącej obliczeń procentowych za pomocą równania lub układu równań 16% 84% Większość uczniów miała problem z uzasadnieniem równości pól figur z wykorzystaniem odpowiednich własności Ćwiczenia w doskonaleniu rozpoznawania i opisywania brył Ćwiczenia w zastosowaniu objętości brył do obliczania podanych wielkości zadań dotyczących obliczeń procentowych umieszczonych w kontekście praktycznym zadań typu: uzasadnij, wykaż, że 23 IV. Użycie i strategii. 7) stosuje twierdzenie Pitagorasa; 9) oblicza pola i obwody trójkątów i czworokątów. O 0,25 25% 75% Większość uczniów miała problem z rozwiązaniem zadania problemowego dotyczącego odcinków w zadań problemowych dotyczących brył z wykorzystaniem ich własności

7 11. bryły. Uczeń: 2) oblicza pole powierzchni i objętość graniastosłupa prostego, ostrosłupa ( ). ostrosłupie z wykorzystaniem powierzchni i twierdzeniem Pitagorasa i zależności w nich występujących Forma zadania zamkniętego: PF prawda/fałsz WW wielokrotnego wyboru D na dobieranie (*) Sposób określenia łatwości zadania Wartość wskaźnika łatwości Interpretacja 0,00 0,19 Bardzo 0,20 0,49 0,50 0,69 0,70 0,89 Łatwy 0,90 1,00 Bardzo łatwy

8 Wnioski ogólne: 1. Uczniowie nie mieli trudności z: odczytywaniem diagramów procentowych, zastosowaniem obliczeń na liczbach do rozwiązywania problemów w kontekście praktycznym, zastosowaniem obliczeń procentowych w zadaniach związanych z podatkiem VAT, podaniem liczy spełniającej podany warunek z wykorzystaniem porównywania ułamków, uporządkowaniem potęgi, odczytaniem z wykresu wartości funkcji dla danego argumentu, odczytywaniem danych z wykresu, określaniem prawdopodobieństwa zdarzenia polegającego na wylosowaniu określonych kul, określaniem rodzaju trójkąta przy podanych zależnościach, określaniem trójkątów przystających 2. Uczniowie najwięcej trudności mieli z: wyznaczaniem mediany, wykonywaniem obliczeń dotyczących prędkości średniej, opisaniem danej sytuacji za pomocą układu równań, obliczaniem objętości prostopadłościanu i zamianą jednostek, zastosowaniem własności trójkąta i równoległoboku przy określaniu pola tych figur, obliczeniem długości promienia okręgu z wykorzystaniem twierdzenia Pitagorasa i własności stycznej, opisaniu pola rombu za pomocą odpowiedniego wzoru przy podanych warunkach, określeniem długości poszczególnych odcinków w ostrosłupie, rozwiązaniem sytuacji problemowej dotyczącej obliczeń procentowych za pomocą równania lub układu równań, uzasadnieniem równości pól figur z wykorzystaniem odpowiednich własności, rozwiązaniem zadania problemowego dotyczącego odcinków w ostrosłupie z wykorzystaniem powierzchni i twierdzeniem pitagorasa Analizę wyników sporządzili: Justyna Heimann Marcin Załachowski

REALIZACJA TREŚCI PODSTAWY PROGRAMOWEJ PRZEZ PROGRAM MATEMATYKA Z PLUSEM

REALIZACJA TREŚCI PODSTAWY PROGRAMOWEJ PRZEZ PROGRAM MATEMATYKA Z PLUSEM REALIZACJA TREŚCI PODSTAWY PROGRAMOWEJ PRZEZ PROGRAM MATEMATYKA Z PLUSEM Treści nauczania wg podstawy programowej Podręcznik M+ Klasa I Klasa II Klasa III 1. Liczby wymierne dodatnie. Uczeń: 1) odczytuje

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE DLA KLASY III GIMNAZJUM W ZSPiG W CZARNYM DUNAJCU NA ROK SZKOLNY 2016/2017 ROCZNE

WYMAGANIA EDUKACYJNE DLA KLASY III GIMNAZJUM W ZSPiG W CZARNYM DUNAJCU NA ROK SZKOLNY 2016/2017 ROCZNE WYMAGANIA EDUKACYJNE DLA KLASY III GIMNAZJUM W ZSPiG W CZARNYM DUNAJCU NA ROK SZKOLNY 2016/2017 ROCZNE Przekształcenia algebraiczne Równania i układy równań Pojęcie funkcji. Własności funkcji. WYRAŻENIA

Bardziej szczegółowo

Podstawa programowa przedmiotu MATEMATYKA. III etap edukacyjny (klasy I - III gimnazjum)

Podstawa programowa przedmiotu MATEMATYKA. III etap edukacyjny (klasy I - III gimnazjum) Podstawa programowa przedmiotu MATEMATYKA III etap edukacyjny (klasy I - III gimnazjum) Cele kształcenia wymagania ogólne: I. Wykorzystanie i tworzenie informacji. Uczeń interpretuje i tworzy teksty o

Bardziej szczegółowo

PG im. Tadeusza Kościuszki w Kościerzycach Przedmiot

PG im. Tadeusza Kościuszki w Kościerzycach Przedmiot KARTA MONITOROWANIA PODSTAWY PROGRAMOWEJ KSZTAŁCENIA OGÓLNEGO III etap edukacyjny PG im. Tadeusza Kościuszki w Kościerzycach Przedmiot matematyka Klasa......... Rok szkolny Imię i nazwisko nauczyciela

Bardziej szczegółowo

Wymagania przedmiotowe dla klasy 3as i 3b gimnazjum matematyka

Wymagania przedmiotowe dla klasy 3as i 3b gimnazjum matematyka Wymagania przedmiotowe dla klasy 3as i 3b gimnazjum matematyka TEMAT 5. Przekątna kwadratu. Wysokość trójkąta równobocznego 6. Trójkąty o kątach 90º, 45º, 45º oraz 90º, 30º, 60º 1. Okrąg opisany na trójkącie

Bardziej szczegółowo

Wymagania edukacyjne klasa trzecia.

Wymagania edukacyjne klasa trzecia. TEMAT Wymagania edukacyjne klasa trzecia. WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. LICZBY I WYRAŻENIA ALGEBRAICZNE Lekcja organizacyjna System dziesiątkowy System rzymski Liczby wymierne i niewymierne

Bardziej szczegółowo

ROZKŁAD MATERIAŁU DLA 3 KLASY GIMNAZJUM

ROZKŁAD MATERIAŁU DLA 3 KLASY GIMNAZJUM ROZKŁAD MATERIAŁU DLA 3 KLASY GIMNAZJUM TEMAT LICZBA GODZIN LEKCYJNYCH 1. LICZBY I WYRAŻENIA ALGEBRAICZNE (26 h) 1. Lekcja organizacyjna 1 2. System dziesiątkowy 2-4 3. System rzymski 5-6 WYMAGANIA SZCZEGÓŁOWE

Bardziej szczegółowo

EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2011/2012. CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA Matematyka WOJEWÓDZTWO KUJAWSKO-POMORSKIE

EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2011/2012. CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA Matematyka WOJEWÓDZTWO KUJAWSKO-POMORSKIE Okręgowa Komisja Egzaminacyjna w Gdańsku EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2011/2012 CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA Matematyka WOJEWÓDZTWO KUJAWSKO-POMORSKIE Osiągnięcia gimnazjalistów z zakresu matematyki

Bardziej szczegółowo

TEMAT 1. LICZBY I DZIAŁANIA 14 20. 1. Liczby 1-2. 2. Rozwinięcia dziesiętne liczb wymiernych. 3. Zaokrąglanie liczb. Szacowanie wyników 1-2

TEMAT 1. LICZBY I DZIAŁANIA 14 20. 1. Liczby 1-2. 2. Rozwinięcia dziesiętne liczb wymiernych. 3. Zaokrąglanie liczb. Szacowanie wyników 1-2 TEMAT 1. LICZBY I DZIAŁANIA 14 20 LICZBA GODZIN LEKCYJNYCH 1. Liczby 1-2 2. Rozwinięcia dziesiętne liczb wymiernych 3. Zaokrąglanie liczb. Szacowanie wyników 1 1-2 WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ

Bardziej szczegółowo

ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY III A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi

ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY III A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY III A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi Rozkład materiału nauczania został opracowany na podstawie programu

Bardziej szczegółowo

Wymagania edukacyjne klasa druga.

Wymagania edukacyjne klasa druga. Wymagania edukacyjne klasa druga. TEMAT WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. POTĘGI Potęga o wykładniku naturalnym Iloczyn i iloraz potęg o jednakowych podstawach Potęgowanie potęgi Potęgowanie

Bardziej szczegółowo

ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY II A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi

ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY II A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY II A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi Rozkład materiału nauczania został opracowany na podstawie programu

Bardziej szczegółowo

Wyniki procentowe poszczególnych uczniów

Wyniki procentowe poszczególnych uczniów K la s a IA Próbny egzamin gimnazjalny Wyniki procentowe poszczególnych uczniów 0% 80% 70% 60% 50% 40% 30% Polska (41%) % % 0% nr ucznia 1 2 3 4 5 6 7 8 16 18 1 21 22 24 25 26 27 28 wynik w % 45 65 42

Bardziej szczegółowo

Wymagania edukacyjne klasa pierwsza.

Wymagania edukacyjne klasa pierwsza. Wymagania edukacyjne klasa pierwsza. TEMAT WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. LICZBY I DZIAŁANIA Liczby Rozwinięcia dziesiętne liczb wymiernych Zaokrąglanie liczb. Szacowanie wyników Dodawanie

Bardziej szczegółowo

Tabela 1. Liczba uczniów z uwzględnieniem rodzaju arkusza i laureatów w poszczególnych klasach

Tabela 1. Liczba uczniów z uwzględnieniem rodzaju arkusza i laureatów w poszczególnych klasach Myszyniec, dnia 13.11.2013r. Analiza wyników egzaminu gimnazjalnego w części matematyczno-przyrodniczej z zakresu matematyki przeprowadzonego w roku szkolnym 2012/2013 w Publicznym Gimnazjum w Myszyńcu

Bardziej szczegółowo

Egzamin gimnazjalny z matematyki 2016 analiza

Egzamin gimnazjalny z matematyki 2016 analiza Egzamin gimnazjalny z matematyki 2016 analiza Arkusz zawierał 23 zadania: 20 zamkniętych i 3 otwarte. Dominowały zadania wyboru wielokrotnego, w których uczeń wybierał jedną z podanych odpowiedzi. W pięciu

Bardziej szczegółowo

TEMAT 1. LICZBY I DZIAŁANIA 14 20. 1. Liczby 1-2. 2. Rozwinięcia dziesiętne liczb wymiernych. 3. Zaokrąglanie liczb. Szacowanie wyników 1-2

TEMAT 1. LICZBY I DZIAŁANIA 14 20. 1. Liczby 1-2. 2. Rozwinięcia dziesiętne liczb wymiernych. 3. Zaokrąglanie liczb. Szacowanie wyników 1-2 TEMAT 1. LICZBY I DZIAŁANIA 14 0 LICZBA GODZIN LEKCYJNYCH 1. Liczby 1-. Rozwinięcia dziesiętne liczb wymiernych 3. Zaokrąglanie liczb. Szacowanie wyników 4. Dodawanie i odejmowanie liczb dodatnich 1 1-

Bardziej szczegółowo

Rozkład łatwości zadań

Rozkład łatwości zadań Klasa 3a średnia klasy: 22.52 pkt średnia szkoły: 21.93 pkt średnia ogólnopolska: 14.11 pkt Rozkład łatwości zadań 1 0.9 0.8 0.7 0.6 łatwość 0.5 0.4 0.3 0.2 0.1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Bardziej szczegółowo

MATEMATYKA - gimnazjum - cele i wymagania z podstawy programowej

MATEMATYKA - gimnazjum - cele i wymagania z podstawy programowej MATEMATYKA - gimnazjum - cele i wymagania z podstawy programowej 1. Cel: Liczby wymierne dodatnie. 1) odczytuje i zapisuje liczby naturalne dodatnie w systemie rzymskim (w zakresie do 3000); 2) dodaje,

Bardziej szczegółowo

Próbny egzamin z matematyki z WSiP w trzeciej klasie gimnazjum. Część matematyczno-przyrodnicza. LUTY 2016 Analiza wyników

Próbny egzamin z matematyki z WSiP w trzeciej klasie gimnazjum. Część matematyczno-przyrodnicza. LUTY 2016 Analiza wyników Próbny egzamin z matematyki z WSiP w trzeciej klasie gimnazjum Część matematyczno-przyrodnicza LUTY 2016 Analiza wyników Arkusz egzaminu próbnego składał się z 20 zadań zamkniętych różnego typu i 3 zadań

Bardziej szczegółowo

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2014/2015

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2014/2015 EGZAMIN W KLASIE TRZEIEJ GIMNAZJUM W ROKU SZKOLNYM 2014/2015 ZĘŚĆ 2. MATEMATYKA ZASADY OENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M7 KWIEIEŃ 2015 Zadanie 1. (0 1) I. Wykorzystanie i tworzenie informacji. Umiejętność

Bardziej szczegółowo

Wymagania edukacyjne na poszczególne oceny

Wymagania edukacyjne na poszczególne oceny Wymaganiach edukacyjne niezbędne do otrzymania przez ucznia klasy I Gimnazjum poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z matematyki, wynikające z programu nauczania: praca zbiorowa

Bardziej szczegółowo

MATEMATYKA Z PLUSEM DLA KLASY VII W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ. programowej dla klas IV-VI. programowej dla klas IV-VI.

MATEMATYKA Z PLUSEM DLA KLASY VII W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ. programowej dla klas IV-VI. programowej dla klas IV-VI. MATEMATYKA Z PLUSEM DLA KLASY VII W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ TEMAT LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ UWAGI. LICZBY I DZIAŁANIA 6 h Liczby. Rozwinięcia

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY 7SP. V. Obliczenia procentowe. Uczeń: 1) przedstawia część wielkości jako procent tej wielkości;

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY 7SP. V. Obliczenia procentowe. Uczeń: 1) przedstawia część wielkości jako procent tej wielkości; WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY 7SP Liczby. TEMAT Rozwinięcia dziesiętne liczb wymiernych. Zaokrąglanie liczb. Szacowanie wyników. Dodawanie i odejmowanie liczb dodatnich. Mnożenie i dzielenie

Bardziej szczegółowo

MATEMATYKA KLASA III GIMNAZJUM

MATEMATYKA KLASA III GIMNAZJUM Ogólne wymagania edukacyjne Ocenę celującą otrzymuje uczeń, który: MATEMATYKA KLASA III GIMNAZJUM Potrafi stosować wiadomości w sytuacjach nietypowych (problemowych) Operuje twierdzeniami i je dowodzi

Bardziej szczegółowo

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2016/2017 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2016/2017 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 016/017 CZĘŚĆ. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M7 KWIECIEŃ 017 Zadanie 1. (0 1) II. Wykorzystywanie i interpretowanie reprezentacji.

Bardziej szczegółowo

Matematyka Wymagania edukacyjne, kryteria oceniania i sposoby sprawdzania osiągnięć edukacyjnych uczniów

Matematyka Wymagania edukacyjne, kryteria oceniania i sposoby sprawdzania osiągnięć edukacyjnych uczniów Matematyka Wymagania edukacyjne, kryteria oceniania i sposoby sprawdzania osiągnięć edukacyjnych uczniów Wymagania edukacyjne ogólne 1. Uczeń interpretuje i tworzy teksty o charakterze matematycznym, używa

Bardziej szczegółowo

Egzamin gimnazjalny 2015 część matematyczna

Egzamin gimnazjalny 2015 część matematyczna Egzamin gimnazjalny 2015 część matematyczna imię i nazwisko Kalendarz gimnazjalisty Tydz. Dział start 22.09 29 26.09 Przygotowanie do pracy zapoznanie się z informacjami na temat egzaminu gimnazjalnego

Bardziej szczegółowo

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2014/2015

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2014/2015 EGZAMIN W KLASIE TRZEIEJ GIMNAZJUM W ROKU SZKOLNYM 2014/2015 ZĘŚĆ 2. MATEMATYKA ZASADY OENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M8 KWIEIEŃ 2015 Zadanie 1. (0 1) 7) stosuje obliczenia na liczbach wymiernych do

Bardziej szczegółowo

Egzamin Gimnazjalny z WSiP STYCZEŃ Analiza wyników próbnego egzaminu gimnazjalnego. Część matematyczno-przyrodnicza MATEMATYKA

Egzamin Gimnazjalny z WSiP STYCZEŃ Analiza wyników próbnego egzaminu gimnazjalnego. Część matematyczno-przyrodnicza MATEMATYKA Egzamin Gimnazjalny z WSiP STYCZEŃ 2017 Analiza wyników próbnego egzaminu gimnazjalnego Część matematyczno-przyrodnicza MATEMATYKA Arkusz egzaminu próbnego składał się z 20 zadań zamkniętych różnego typu

Bardziej szczegółowo

III etap edukacyjny MATEMATYKA

III etap edukacyjny MATEMATYKA III etap edukacyjny MATEMATYKA Cele kształcenia wymagania ogólne I. Wykorzystanie i tworzenie informacji. Uczeń interpretuje i tworzy teksty o charakterze matematycznym, używa języka matematycznego do

Bardziej szczegółowo

Egzamin Gimnazjalny z WSiP LISTOPAD Analiza wyników próbnego egzaminu gimnazjalnego Część matematyczno-przyrodnicza MATEMATYKA

Egzamin Gimnazjalny z WSiP LISTOPAD Analiza wyników próbnego egzaminu gimnazjalnego Część matematyczno-przyrodnicza MATEMATYKA Egzamin Gimnazjalny z WSiP LISTOPAD 2015 Analiza wyników próbnego egzaminu gimnazjalnego Część matematyczno-przyrodnicza MATEMATYKA Arkusz egzaminu próbnego składał się z 20 zadań zamkniętych różnego typu

Bardziej szczegółowo

Przedmiotowe zasady oceniania matematyka

Przedmiotowe zasady oceniania matematyka Gimnazjum nr 1 im. Jana Pawła II w Polkowicach Przedmiotowe zasady oceniania matematyka Ogólne cele oceniania z matematyki w gimnazjum: - informowanie ucznia o stopniu opanowania przez niego umiejętności

Bardziej szczegółowo

wymagania programowe z matematyki kl. III gimnazjum

wymagania programowe z matematyki kl. III gimnazjum wymagania programowe z matematyki kl. III gimnazjum 1. Liczby i wyrażenia algebraiczne Zna pojęcie notacji wykładniczej. Umie zapisać liczbę w notacji wykładniczej. Umie porównywać liczy zapisane w różny

Bardziej szczegółowo

KONKURSY PRZEDMIOTOWE MKO DLA UCZNIÓW WOJEWÓDZTWA MAZOWIECKIEGO

KONKURSY PRZEDMIOTOWE MKO DLA UCZNIÓW WOJEWÓDZTWA MAZOWIECKIEGO KONKURSY PRZEDMIOTOWE MKO DLA UCZNIÓW WOJEWÓDZTWA MAZOWIECKIEGO w roku szkolnym 2013/2014 Program merytoryczny konkursu z matematyki dla gimnazjum I. CELE KONKURSU 1. Wyłanianie uczniów uzdolnionych matematycznie.

Bardziej szczegółowo

Myszyniec, dnia 27.10.2014 r.

Myszyniec, dnia 27.10.2014 r. Myszyniec, dnia 27.10.2014 r. Analiza wyników egzaminu gimnazjalnego w części matematyczno-przyrodniczej z zakresu matematyki przeprowadzonego w roku szkolnym 2013/2014 w Publicznym Gimnazjum w Myszyńcu

Bardziej szczegółowo

Ułamki i działania 20 h

Ułamki i działania 20 h Propozycja rozkładu materiału Klasa I Razem h Ułamki i działania 0 h I. Ułamki zwykłe II. Ułamki dziesiętne III. Ułamki zwykłe i dziesiętne. Przypomnienie wiadomości o ułamkach zwykłych.. Dodawanie i odejmowanie

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI MATEMATYKA WOKÓŁ NAS WSiP

WYMAGANIA EDUKACYJNE Z MATEMATYKI MATEMATYKA WOKÓŁ NAS WSiP WYMAGANIA EDUKACYJNE Z MATEMATYKI MATEMATYKA WOKÓŁ NAS WSiP KLASA 1 Główne działy podstawy programowej Liczby wymierne dodatnie Liczby wymierne (dodatnie i niedodatnie) Hasła programowe Cztery działania

Bardziej szczegółowo

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2016/2017 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2016/2017 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 016/017 CZĘŚĆ. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZE: GM-MX1, GM-M, GM-M4, GM-M5, GM-M6 KWIECIEŃ 017 Zadanie 1. (0 1) II. Wykorzystywanie

Bardziej szczegółowo

GIMNAZJUM Wymagania edukacyjne z matematyki na poszczególne oceny półroczne i roczne w roku szkolnym

GIMNAZJUM Wymagania edukacyjne z matematyki na poszczególne oceny półroczne i roczne w roku szkolnym GIMNAZJUM Wymagania edukacyjne z matematyki na poszczególne oceny półroczne i roczne w roku szkolnym 2013-2014 Ocenę celującą otrzymuje uczeń, który: wykorzystuje na lekcjach matematyki wiadomości z innych

Bardziej szczegółowo

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2014/2015

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2014/2015 EGZAMIN W KLASIE TRZEIEJ GIMNAZJUM W ROKU SZKOLNYM 014/015 ZĘŚĆ. MATEMATYKA ZASADY OENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZE: GM-M1X, GM-M, GM-M4, GM-M5, GM-M1L, GM-M1U KWIEIEŃ 015 Zadanie 1. (0 1) I. Wykorzystanie

Bardziej szczegółowo

Przedmiotowe zasady oceniania i wymagania edukacyjne z matematyki dla klasy drugiej gimnazjum

Przedmiotowe zasady oceniania i wymagania edukacyjne z matematyki dla klasy drugiej gimnazjum Przedmiotowe zasady oceniania i wymagania edukacyjne z matematyki dla klasy drugiej gimnazjum I. POTĘGI I PIERWIASTKI oblicza wartości potęg o wykładnikach całkowitych liczb różnych od zera zapisuje liczbę

Bardziej szczegółowo

MATEMATYKA. WYMAGANIA EDUKACYJNE KLASA I, II, III Bożena Tarnowiecka, Arkadiusz Wolski. KLASA I Wymagania

MATEMATYKA. WYMAGANIA EDUKACYJNE KLASA I, II, III Bożena Tarnowiecka, Arkadiusz Wolski. KLASA I Wymagania MATEMATYKA WYMAGANIA EDUKACYJNE KLASA I, II, III Bożena Tarnowiecka, Arkadiusz Wolski Treści zapisane kursywą (i oznaczone gwiazdką) wykraczają poza podstawę programową. Nauczyciel może je realizować,

Bardziej szczegółowo

Przedmiotowe zasady oceniania w oddziałach gimnazjalnych matematyka

Przedmiotowe zasady oceniania w oddziałach gimnazjalnych matematyka Przedmiotowe zasady oceniania w oddziałach gimnazjalnych matematyka Ogólne cele oceniania z matematyki w gimnazjum: - informowanie ucznia o stopniu opanowania przez niego umiejętności matematycznych w

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla zasadniczej szkoły zawodowej na poszczególne oceny

Wymagania edukacyjne z matematyki dla zasadniczej szkoły zawodowej na poszczególne oceny Wymagania edukacyjne z matematyki dla zasadniczej szkoły zawodowej na poszczególne oceny Podstawa programowa z 23 grudnia 2008r. do nauczania matematyki w zasadniczych szkołach zawodowych Podręcznik: wyd.

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ 09 MARCA Kartoteka testu. Maksymalna liczba punktów. Nr zad. Matematyka dla klasy 3 poziom podstawowy

LUBELSKA PRÓBA PRZED MATURĄ 09 MARCA Kartoteka testu. Maksymalna liczba punktów. Nr zad. Matematyka dla klasy 3 poziom podstawowy Matematyka dla klasy poziom podstawowy LUBELSKA PRÓBA PRZED MATURĄ 09 MARCA 06 Kartoteka testu Nr zad Wymaganie ogólne. II. Wykorzystanie i interpretowanie reprezentacji.. II. Wykorzystanie i interpretowanie

Bardziej szczegółowo

Lista działów i tematów

Lista działów i tematów Lista działów i tematów Gimnazjum. Klasa 1 Liczby i działania Liczby Rozwinięcia dziesiętne liczb wymiernych Zaokrąglenia liczb. Szacowanie wyników Dodawanie i odejmowanie liczb dodatnich Mnożenie i dzielenie

Bardziej szczegółowo

ROK SZKOLNY 2017/2018 WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY:

ROK SZKOLNY 2017/2018 WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY: ROK SZKOLNY 2017/2018 WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY: KLASA II GIMNAZJUM Wymagania konieczne K dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, powinien je zatem opanować

Bardziej szczegółowo

PRÓBNY EGZAMIN GIMNAZJALNY Z NOWĄ ERĄ 2015/2016 MATEMATYKA

PRÓBNY EGZAMIN GIMNAZJALNY Z NOWĄ ERĄ 2015/2016 MATEMATYKA PRÓBNY EGZAMIN GIMNAZJALNY Z NOWĄ ERĄ 2015/2016 MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ Copyright by Nowa Era Sp. z o.o. Zadanie 1. (0 1) III. Modelowanie matematyczne. 2. Działania na liczbach naturalnych.

Bardziej szczegółowo

Kryteria ocen z matematyki w Gimnazjum. Klasa I. Liczby i działania

Kryteria ocen z matematyki w Gimnazjum. Klasa I. Liczby i działania Kryteria ocen z matematyki w Gimnazjum Klasa I Liczby i działania obliczać wartości wyrażeń arytmetycznych, w których występują liczby wymierne skracać i rozszerzać ułamki zwykłe porównywać dwa ułamki

Bardziej szczegółowo

Wymagania na poszczególne oceny w klasie II gimnazjum do programu nauczania MATEMATYKA NA CZASIE

Wymagania na poszczególne oceny w klasie II gimnazjum do programu nauczania MATEMATYKA NA CZASIE Wymagania na poszczególne oceny w klasie II gimnazjum do programu nauczania MATEMATYKA NA CZASIE Wymagania konieczne K dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, powinien je

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE III GIMNAZJUM

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE III GIMNAZJUM WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE III GIMNAZJUM OCENA ŚRÓDROCZNA: NIEDOSTATECZNY ocenę niedostateczny otrzymuje uczeń, który

Bardziej szczegółowo

KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM. Arytmetyka

KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM. Arytmetyka KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM Na stopień dostateczny uczeń powinien umieć: Arytmetyka - obliczać wartości wyrażeń arytmetycznych, w których występują liczby wymierne, - szacować wartości

Bardziej szczegółowo

Lista działów i tematów

Lista działów i tematów Lista działów i tematów Szkoła podstawowa. Klasa 4 Liczby i działania Rachunki pamięciowe - dodawanie i odejmowanie O ile więcej, o ile mniej Rachunki pamięciowe - mnożenie i dzielenie Mnożenie i dzielenie

Bardziej szczegółowo

Przedmiotowy system oceniania matematyka

Przedmiotowy system oceniania matematyka Gimnazjum nr 1 im. Jana Pawła II w Polkowicach Przedmiotowy system oceniania matematyka Ogólne cele oceniania z matematyki w gimnazjum: - informowanie ucznia o stopniu opanowania przez niego umiejętności

Bardziej szczegółowo

Wymagania edukacyjne z matematyki - gimnazjum

Wymagania edukacyjne z matematyki - gimnazjum Wymagania edukacyjne z matematyki - gimnazjum Skrót postanowień: III etap edukacyjny (kl. I-III gimnazjum) Cele kształcenia (wymagania ogólne): wykorzystanie i tworzenie informacji - uczeń interpretuje

Bardziej szczegółowo

Wymagania edukacyjne szczegółowe w Gimnazjum

Wymagania edukacyjne szczegółowe w Gimnazjum Wymagania edukacyjne szczegółowe w Gimnazjum Treści nauczania określone w programie Matematyka wokół nas Gimnazjum zostały rozłożone na trzy lata. Zgodnie z założeniem MEN treści programu nauczania mogą

Bardziej szczegółowo

Nie tylko wynik Plan wynikowy dla klasy 1 gimnazjum

Nie tylko wynik Plan wynikowy dla klasy 1 gimnazjum Poziomy wymagań edukacyjnych: K konieczny P podstawowy R rozszerzający D dopełniający W wykraczający Nie tylko wynik Plan wynikowy dla klasy 1 gimnazjum Ułamki i działania 20 h Nazwa modułu I. Ułamki zwykłe

Bardziej szczegółowo

Wymagania szczegółowe z matematyki klasa 7

Wymagania szczegółowe z matematyki klasa 7 Wymagania szczegółowe z matematyki klasa 7 Dział Szczegółowe wymagania Liczby całkowite (liczby dodatnie, ujemne i zero) - wyróżnia wśród liczb wymiernych liczby naturalne i całkowite oraz liczby pierwsze,

Bardziej szczegółowo

Wymagania dla klasy szóstej Treści na 2 na 3 na 4 na 5 na 6 Uczeń: Uczeń: Uczeń: Uczeń: Uczeń: Mnożenie ułamków zwykłych

Wymagania dla klasy szóstej Treści na 2 na 3 na 4 na 5 na 6 Uczeń: Uczeń: Uczeń: Uczeń: Uczeń: Mnożenie ułamków zwykłych Wymagania dla klasy szóstej Treści na 2 na 3 na 4 na 5 na 6 Uczeń: Uczeń: Uczeń: Uczeń: Uczeń: Mnożenie ułamków zwykłych Dzielenie ułamków zwykłych Liczby całkowite na osi liczbowej Dodawanie liczb całkowitych

Bardziej szczegółowo

SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE DLA KLAS 4-6 SP ROK SZKOLNY 2015/2016

SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE DLA KLAS 4-6 SP ROK SZKOLNY 2015/2016 SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE DLA KLAS 4-6 SP ROK SZKOLNY 2015/2016 Szczegółowe kryteria ocen dla klasy czwartej. 1. Ocenę dopuszczającą otrzymuje uczeń, który: Zna zależności wartości cyfry od jej

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KL I NA POSZCZEGÓLNE OCENY W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ RUDKACH Marzena Zbrożyna

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KL I NA POSZCZEGÓLNE OCENY W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ RUDKACH Marzena Zbrożyna WYMAGANIA EDUKACYJNE Z MATEMATYKI W KL I NA POSZCZEGÓLNE OCENY W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ RUDKACH Marzena Zbrożyna DOPUSZCZAJĄCY: Uczeń potrafi: odczytywać informacje przedstawione w tabelach

Bardziej szczegółowo

Karty diagnozy osiągnięć ucznia

Karty diagnozy osiągnięć ucznia Karty diagnozy osiągnięć ucznia matematyka - kl. 1-3 gimnazjum na podstawie nowej podstawy programowej kształcenia ogólnego - wyciąg rozporządzeni MEN z dnia 23 grudnia 2008r (wersja dla ucznia do wydrukowania)

Bardziej szczegółowo

Matematyka z kluczem. Układ treści w klasach 4 8 szkoły podstawowej. KLASA 4 (126 h) część 1 (59 h) część 2 (67 h)

Matematyka z kluczem. Układ treści w klasach 4 8 szkoły podstawowej. KLASA 4 (126 h) część 1 (59 h) część 2 (67 h) Matematyka z kluczem Układ treści w klasach 4 8 szkoły podstawowej KLASA 4 (126 h) część 1 (59 h) I. LICZBY NATURALNE część 1 (23) 1. Jak się uczyć matematyki (1) 2. Oś liczbowa 3. Jak zapisujemy liczby

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne Klasa 7

Wymagania na poszczególne oceny szkolne Klasa 7 1 Wymagania na poszczególne oceny szkolne Klasa 7 Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane

Bardziej szczegółowo

Lista działów i tematów

Lista działów i tematów Lista działów i tematów Szkoła podstawowa. Klasa 4 Liczby i działania Rachunki pamięciowe dodawanie i odejmowanie O ile więcej, o ile mniej Rachunki pamięciowe mnożenie i dzielenie Ile razy więcej, ile

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE IV

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE IV WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE IV Zna zależności wartości cyfry od jej położenia w liczbie Zna kolejność działań bez użycia nawiasów Zna algorytmy czterech działań pisemnych

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla klasy VII

Wymagania edukacyjne z matematyki dla klasy VII Wymagania edukacyjne z matematyki dla klasy VII Szkoły Podstawowej nr 100 w Krakowie Na podstawie programu Matematyka z plusem Na ocenę dopuszczającą Uczeń: rozumie rozszerzenie osi liczbowej na liczby

Bardziej szczegółowo

Wymagania edukacyjne z matematyki

Wymagania edukacyjne z matematyki Wymagania edukacyjne z matematyki Poziom podstawowy Klasa IIIb r.szk. 2014/2015 PLANIMETRIA(1) rozróżnia trójkąty: ostrokątne, prostokątne, rozwartokątne stosuje twierdzenie o sumie miar kątów w trójkącie

Bardziej szczegółowo

KRYTERIA OCENIANIA W KLASACH SZÓSTYCH - Matematyka

KRYTERIA OCENIANIA W KLASACH SZÓSTYCH - Matematyka KRYTERIA OCENIANIA W KLASACH SZÓSTYCH - Matematyka 1. Ocenę niedostateczną otrzymuje uczeń, który nie spełnia kryteriów na ocenę dopuszczającą. 2. Ocenę dopuszczającą otrzymuje uczeń, który: 2.1 Liczby

Bardziej szczegółowo

Okręgi i proste na płaszczyźnie

Okręgi i proste na płaszczyźnie Okręgi i proste na płaszczyźnie 1 Kąt środkowy i pole wycinka koła rozpoznawać kąty środkowe, obliczać kąt środkowy oparty na zadanym łuku, obliczać długość okręgu i łuku okręgu, obliczać pole koła, pierścienia,

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w klasie III gimnazjum

Wymagania edukacyjne z matematyki w klasie III gimnazjum Wymagania edukacyjne z matematyki w klasie III gimnazjum - nie potrafi konstrukcyjnie podzielić odcinka - nie potrafi konstruować figur jednokładnych - nie zna pojęcia skali - nie rozpoznaje figur jednokładnych

Bardziej szczegółowo

Wymagania na poszczególne stopnie szkolne

Wymagania na poszczególne stopnie szkolne Wymagania na poszczególne stopnie szkolne Dział, temat Wymagania na ocenę dopuszczającą (K) Wymagania na ocenę dostateczną (P) Wymagania na ocenę dobrą (R) Wymagania na ocenę bardzo dobrą (D) Wymagania

Bardziej szczegółowo

PRÓBNY EGZAMIN GIMNAZJALNY Z NOWĄ ERĄ 2016/2017 MATEMATYKA

PRÓBNY EGZAMIN GIMNAZJALNY Z NOWĄ ERĄ 2016/2017 MATEMATYKA PRÓBNY EGZAMIN GIMNAZJALNY Z NOWĄ ERĄ 2016/2017 MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ Copyright by Nowa Era Sp. z o.o. Zadanie 1. (0 1) 1. Liczby wymierne dodatnie. Uczeń: 7) stosuje obliczenia na

Bardziej szczegółowo

REGULAMIN WOJEWÓDZKIEGO KONKURSU MATEMATYCZNEGO DLA UCZNIÓW GIMNAZJÓW WOJEWÓDZTWA WIELKOPOLSKIEGO NA ROK SZKOLNY 2011/2012

REGULAMIN WOJEWÓDZKIEGO KONKURSU MATEMATYCZNEGO DLA UCZNIÓW GIMNAZJÓW WOJEWÓDZTWA WIELKOPOLSKIEGO NA ROK SZKOLNY 2011/2012 REGULAMIN WOJEWÓDZKIEGO KONKURSU MATEMATYCZNEGO DLA UCZNIÓW GIMNAZJÓW WOJEWÓDZTWA WIELKOPOLSKIEGO NA ROK SZKOLNY 2011/2012 1 PRZEBIEG POSZCZEGÓLNYCH ETAPÓW KONKURSU 1. INFORMACJE OGÓLNE 1) Zadania Komisji

Bardziej szczegółowo

REGULAMIN WOJEWÓDZKIEGO KONKURSU MATEMATYCZNEGO DLA UCZNIÓW GIMNAZJÓW WOJEWÓDZTWA WIELKOPOLSKIEGO NA ROK SZKOLNY 2011/2012

REGULAMIN WOJEWÓDZKIEGO KONKURSU MATEMATYCZNEGO DLA UCZNIÓW GIMNAZJÓW WOJEWÓDZTWA WIELKOPOLSKIEGO NA ROK SZKOLNY 2011/2012 REGULAMIN WOJEWÓDZKIEGO KONKURSU MATEMATYCZNEGO DLA UCZNIÓW GIMNAZJÓW WOJEWÓDZTWA WIELKOPOLSKIEGO NA ROK SZKOLNY 2011/2012 1 PRZEBIEG POSZCZEGÓLNYCH ETAPÓW KONKURSU 1. INFORMACJE OGÓLNE 1) Zadania Komisji

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI wg podstawy programowej z VIII 2008r.

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI wg podstawy programowej z VIII 2008r. WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI wg podstawy programowej z VIII 2008r. Ocena niedostateczna. Zna nazwy argumentów działań Pamięciowo i pisemnie wykonuje każde z czterech działań na liczbach

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY III

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY III WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY III Program nauczania matematyki w gimnazjum Matematyka dla przyszłości DKW 4014 162/99 Opracowała: mgr Mariola Bagińska 1. Liczby i działania Podaje rozwinięcia

Bardziej szczegółowo

PYTANIA TEORETYCZNE Z MATEMATYKI

PYTANIA TEORETYCZNE Z MATEMATYKI Zbiory liczbowe: 1. Wymień znane Ci zbiory liczbowe. 2. Co to są liczby rzeczywiste? 3. Co to są liczby naturalne? 4. Co to są liczby całkowite? 5. Co to są liczby wymierne? 6. Co to są liczby niewymierne?

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ W RUDKACH

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ W RUDKACH WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ W RUDKACH Marzena Zbrożyna DOPUSZCZAJĄCY: Uczeń potrafi: odczytać informacje z tabeli odczytać informacje z diagramu

Bardziej szczegółowo

Mgr Kornelia Uczeń. WYMAGANIA na poszczególne oceny-klasa VII-Szkoła Podstawowa

Mgr Kornelia Uczeń. WYMAGANIA na poszczególne oceny-klasa VII-Szkoła Podstawowa Mgr Kornelia Uczeń WYMAGANIA na poszczególne oceny-klasa VII-Szkoła Podstawowa Oceny z plusem lub minusem otrzymują uczniowie, których wiadomości i umiejętności znajdują się na pograniczu wymagań danej

Bardziej szczegółowo

konieczne (ocena dopuszczająca) Temat rozszerzające (ocena dobra)

konieczne (ocena dopuszczająca) Temat rozszerzające (ocena dobra) Wymagania na poszczególne oceny szkolne Klasa 7 Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane

Bardziej szczegółowo

konieczne (ocena dopuszczająca) Temat podstawowe (ocena dostateczna) rozszerzające (ocena dobra) dopełniające (ocena bardzo dobra)

konieczne (ocena dopuszczająca) Temat podstawowe (ocena dostateczna) rozszerzające (ocena dobra) dopełniające (ocena bardzo dobra) Wymagania na poszczególne oceny szkolne Klasa 7 Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane

Bardziej szczegółowo

Kryteria ocen z matematyki w klasie I gimnazjum

Kryteria ocen z matematyki w klasie I gimnazjum 1. Zbieranie, porządkowanie i prezentowanie danych 1. Liczby naturalne 1. Cechy podzielności 1. Działania na liczbach naturalnych 1. Algorytmy działań pisemnych odczytywać informacje przedstawione w tabelach

Bardziej szczegółowo

CZEŚĆ PIERWSZA. Wymagania na poszczególne oceny,,matematyka wokół nas Klasa III I. POTĘGI

CZEŚĆ PIERWSZA. Wymagania na poszczególne oceny,,matematyka wokół nas Klasa III I. POTĘGI Wymagania na poszczególne oceny,,matematyka wokół nas Klasa III CZEŚĆ PIERWSZA I. POTĘGI Zamienia potęgi o wykładniku całkowitym ujemnym na odpowiednie potęgi o wykładniku naturalnym. Oblicza wartości

Bardziej szczegółowo

Wymagania edukacyjne z matematyki do programu pracy z podręcznikiem Matematyka wokół nas

Wymagania edukacyjne z matematyki do programu pracy z podręcznikiem Matematyka wokół nas Wymagania edukacyjne z matematyki do programu pracy z podręcznikiem Matematyka wokół nas klasa I 1)Działania na liczbach: dopuszczający: uczeń potrafi poprawnie wykonać cztery podstawowe działania na ułamkach

Bardziej szczegółowo

konieczne (ocena dopuszczająca) Temat podstawowe (ocena dostateczna) dopełniające (ocena bardzo dobra) rozszerzające (ocena dobra)

konieczne (ocena dopuszczająca) Temat podstawowe (ocena dostateczna) dopełniające (ocena bardzo dobra) rozszerzające (ocena dobra) Wymagania na poszczególne oceny szkolne Klasa 7 Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE MATEMATYKA SZKOŁA BRANŻOWA I STOPNIA. rok szkolny 2017/2018. Zespół Szkół Nr1 Olkusz, ul. Górnicza 12

WYMAGANIA EDUKACYJNE MATEMATYKA SZKOŁA BRANŻOWA I STOPNIA. rok szkolny 2017/2018. Zespół Szkół Nr1 Olkusz, ul. Górnicza 12 WYMAGANIA EDUKACYJNE MATEMATYKA SZKOŁA BRANŻOWA I STOPNIA rok szkolny 2017/2018 Zespół Szkół Nr1 Olkusz, ul. Górnicza 12 1 Liczby rzeczywiste i działania na nich liczby naturalne na osi liczbowej. wykonywać

Bardziej szczegółowo

Kryteria oceniania z matematyki w klasie pierwszej w roku szkolnym 2015/2016

Kryteria oceniania z matematyki w klasie pierwszej w roku szkolnym 2015/2016 Kryteria oceniania z matematyki w klasie pierwszej w roku szkolnym 2015/2016 1) Liczby - zamienia liczby dziesiętne skończone na ułamki zwykłe i liczby mieszane, - zapisuje ułamek zwykły w postaci ułamka

Bardziej szczegółowo

Wymagania edukacyjne niezbędne do uzyskania poszczególnych ocen śródrocznych i rocznych ocen klasyfikacyjnych z matematyki klasa 1 gimnazjum

Wymagania edukacyjne niezbędne do uzyskania poszczególnych ocen śródrocznych i rocznych ocen klasyfikacyjnych z matematyki klasa 1 gimnazjum edukacyjne niezbędne do uzyskania poszczególnych ocen śródrocznych i rocznych ocen klasyfikacyjnych z matematyki klasa 1 gimnazjum Semestr I Stopień Rozdział 1. Liczby Zamienia liczby dziesiętne na ułamki

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne klasa 1

Katalog wymagań programowych na poszczególne stopnie szkolne klasa 1 Matematyka Liczy się matematyka Klasa klasa Rozdział. Liczby zamienia liczby dziesiętne skończone na ułamki zwykłe i liczby mieszane zapisuje ułamek zwykły w postaci ułamka dziesiętnego skończonego porównuje

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne klasa 1

Katalog wymagań programowych na poszczególne stopnie szkolne klasa 1 Matematyka Liczy się matematyka Klasa klasa Rozdział. Liczby zamienia liczby dziesiętne skończone na ułamki zwykłe i liczby mieszane zapisuje ułamek zwykły w postaci ułamka dziesiętnego skończonego porównuje

Bardziej szczegółowo

Kryteria ocen z matematyki w klasie 6 Matematyka z plusem DKOW /08

Kryteria ocen z matematyki w klasie 6 Matematyka z plusem DKOW /08 Matematyka z plusem DKOW-5002-37/08 DZIAŁ LICZBY NATURALNE I UŁAMKI KONIECZNE ocena dopuszczająca zna algorytm mnożenia i dzielenia ułamków przez 10, 100, 1000... zaznacza liczby naturalne oraz proste

Bardziej szczegółowo

Katalog wymagań na poszczególne stopnie szkolne klasa 3

Katalog wymagań na poszczególne stopnie szkolne klasa 3 Katalog wymagań na poszczególne stopnie szkolne klasa 3 I. GRANIASTOSŁUPY I OSTROSŁUPY 6 5 4 3 2 Wskazuje wśród wielościanów graniastosłupy proste i pochyłe. Wskazuje na modelu lub rysunku krawędzie, wierzchołki,

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne klasa 1

Katalog wymagań programowych na poszczególne stopnie szkolne klasa 1 klasa Rozdział. Liczby zamienia liczby dziesiętne skończone na ułamki zwykłe i liczby mieszane zapisuje ułamek zwykły w postaci ułamka dziesiętnego skończonego porównuje ułamki dziesiętne zna kolejność

Bardziej szczegółowo

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą 1. Statystyka odczytać informacje z tabeli odczytać informacje z diagramu 2. Mnożenie i dzielenie potęg o tych samych podstawach 3. Mnożenie i dzielenie potęg o tych samych wykładnikach 4. Potęga o wykładniku

Bardziej szczegółowo

Osiągnięcia przedmiotowe

Osiągnięcia przedmiotowe 1. Zbieranie, porządkowanie i prezentowanie danych przedstawione w tabelach przedstawione na przedstawiać dane w tabelach przedstawiać dane na przedstawione w tabelach przedstawione na porównywać informacje

Bardziej szczegółowo

1. LICZBY DZIAŁ Z PODRĘCZNIKA L.P. NaCoBeZu kryteria sukcesu w języku ucznia

1. LICZBY DZIAŁ Z PODRĘCZNIKA L.P. NaCoBeZu kryteria sukcesu w języku ucznia L.P. DZIAŁ Z PODRĘCZNIKA NaCoBeZu kryteria sukcesu w języku ucznia 1. LICZBY 1. Znam pojęcie liczby naturalne, całkowite, wymierne, dodatnie, ujemne, niedodatnie, odwrotne, przeciwne. 2. Potrafię zaznaczyć

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ 2017 poziom podstawowy

LUBELSKA PRÓBA PRZED MATURĄ 2017 poziom podstawowy LUELSK PRÓ PRZE MTURĄ 07 poziom podstawowy Schemat oceniania Uwaga: kceptowane są wszystkie odpowiedzi merytorycznie poprawne i spełniające warunki zadania (podajemy kartotekę zadań, gdyż łatwiej będzie

Bardziej szczegółowo

WYMAGANIA Z MATEMATYKI NA POSZCZEGÓLNE OCENY KLASYFIKACYJNE DLA UCZNIÓW KLAS TRZECICH. Sposoby sprawdzania wiedzy i umiejętności uczniów

WYMAGANIA Z MATEMATYKI NA POSZCZEGÓLNE OCENY KLASYFIKACYJNE DLA UCZNIÓW KLAS TRZECICH. Sposoby sprawdzania wiedzy i umiejętności uczniów WYMAGANIA Z MATEMATYKI NA POSZCZEGÓLNE OCENY KLASYFIKACYJNE DLA UCZNIÓW KLAS TRZECICH Sposoby sprawdzania wiedzy i umiejętności uczniów 1. Odpowiedzi ustne. 2. Sprawdziany pisemne. 3. Kartkówki. 4. Testy.

Bardziej szczegółowo