Komputerowa analiza danych doświadczalnych

Wielkość: px
Rozpocząć pokaz od strony:

Download "Komputerowa analiza danych doświadczalnych"

Transkrypt

1 Komputerowa analiza danych doświadczalnych Wykład dr inż. Łukasz Graczykowski lgraczyk@if.pw.edu.pl Semestr letni 2015/2016

2 Próby z odliczaniem. Próbki Metoda największej wiarygodności ierównosć informacyjna

3 Próba z odliczaniem. Próbki

4 Pobieranie próby z odliczaniem Często w praktyce pomiarowej mamy do czynienia z sytuacją, gdzie dokonujemy n obserwacji, z których tylko k ma pewną interesującą nas cechę. Resztę obserwacji, czyli n-k, odrzucamy Wybieramy (odliczamy) k z n elementów jest to zatem rozkład dwumianowy (liczby sukcesów k) z prawdopodobieństwem p wystąpienia badanej cechy q jej nie wystąpienia (nie znamy ich jednak jest to przedmiot badań) Pytanie: jakie jest prawdopodobieństwo wystąpienia badanej cechy p? można udowodnić, że estymatorem p jest: KADD 2016, Wykład 9 S( p)= k n Dlaczego? rozkład dwumianowy to rozkład całkowitej liczby sukcesów, natomiast rozkład wielkości p jest rozkładem średniej liczby sukcesów Rozważmy przykład: odbywają się wybory na Prezydenta RP, mamy dwóch kandydatów: BK i AD. Załóżmy, że p (60%) wszystkich wyborców preferuje AD. Jeśli jednak wybierzemy losowo 10 wyborców, mało prawdopodobne jest, że akurat 6 z nich wskaże AD (zależy to od tego na kogo się trafi ) - próbka to realizacja próby los. 4 / 26

5 Pobieranie próby z odliczaniem Rozważmy przykład: odbywają się wybory na Prezydenta RP, mamy dwóch kandydatów: BK i AD. Załóżmy, że p (60%) wszystkich wyborców preferuje AD. Jeśli jednak wybierzemy losowo 10 wyborców, mało prawdopodobne jest, że 6 z nich wskaże AD (zależy to od tego na kogo się trafi ) liczba wyborców AD w próbie losowej może wynieść trochę więcej lub trochę mniej niż 60%. Jeśli wielokrotnie powtórzymy tę czynnośc, otrzymamy rozkład (próbkowania) wielkości p (ang. sampling distribution) widzimy, że rozkład p jest związany z rozkładem dwumianowym rozkład dwumianowy to jednak rozkład całkowitej liczby sukcesów k (wyboru kandydata AD) a rozkład p to rozkład średniej liczby sukcesów średnia to oczywiście całość podzielona przez ilość, czyli rozmiar wybranej próby Podsumowując: rozkład dwumianowy całkowita ilość (np. 6 z 10), rozkład p średnia (0,6) operują na innych argumentach KADD 2016, Wykład 9 5 / 26

6 KADD 2016, Wykład 9 Pobieranie próby z odliczaniem 6 / 26 Rozkład dwumianowy ma wartość oczekiwaną: np Wartość oczekiwana rozkładu p to zaś wartość oczekiwana rozkładu dwumianowego podzielona przez wielkość próby n: p Rozkład dwumianowy ma wariancję: σ 2 =npq=np(1 p) Czyli odchylenie standardowe (ma wymiar średniej): σ= np(1 p) Dla rozkładu p musimy podzielić przez n, i wtedy otrzymamy odchylenie standardowe rozkładu p: Czyli wariancja rozkładu p: σ p 2 = p(1 p) n σ p = np(1 p) n Jak już wspomnieliśmy, najlepszym estymatorem parametru p jest: = p(1 p) n Jaki jest zaś estymator wariancji? S( p)= k n wstawiamy do wzoru na wariancję estymator wartości oczekiwanej, wtedy dostajemy: s(s( p))= 1 n k ( 1 k n ) s 2 (S( p))= 1 n k n ( 1 k n )

7 KADD 2016, Wykład 9 iepewność statystyczna 7 / 26 Zdefiniujmy teraz niepewność: Δ k= s 2 (S(np)) S(np)=n k n =k Wtedy otrzymamy: iepewność ta zależy tylko od odliczonych elementów k oraz liczebności próby I nazywana jest niepewnością (w starej nomenklaturze błędem) statystyczną Jeżeli k jest małe, czyli k n, wtedy możemy wprowadzić parametr λ=np Δ k= k ( 1 k n ) W takim przypadku możemy (patrz Wykład 5) możemy uważać, że k jest pojedynczym elementem próby opisywanej rozkładem Poissona, wówczas otrzymujemy: S(λ)=S(np)=k Δ λ= k W k n = ( n k) pk q n k Czyli w przybliżeniu niepewność statystyczna liczby odliczeń k można zapisać jako łatwy do zapamiętania wzór: Δ k k Przykład: niepewność zliczeń binu histogramu σ 2 np =np (1 p) s 2 (S(np))=k ( 1 k n ) lim n W n k=f (k)= λk k! e λ

8 Dokładniejsza interpretacja niep. statyst. KADD 2016, Wykład 9 8 / 26 Jak pamiętamy, dla dużych k rozkład Poissona można przybliżyć rozkładem Gaussa o parametrach: μ=λ, σ 2 =λ Dopóki liczba k nie jest zbyt mała (np. większa od 20, ale dużo mniejsza od n!) rozkład Poissona liczby k z parametrem λ możemy uważać za rozkład normalny zmiennej losowej X o powyższych parametrach czyli zmienna skokowa zastąpiona jest zmienną ciągłą. Gęstość prawdopodobieństwa wynosi wtedy: f (x; λ)= 1 λ 2 π exp ( ) (x λ)2 2 λ Za pomocą tej gęstości możemy zdefiniować granice przedziału ufności przy zadanym poziomie ufności 1 α P(λ m λ λ p )=1 α Prawdopodobieństwo wystąpienia prawdziwej wartości λ wewnątrz przedziału ograniczonego liczbami (λ m,λ p ) jest równe poziomowi ufności 1 α Odpowiada to warunkom: P(x>k λ=λ p )=1 α 2 P(x<k λ=λ m )=1 α 2

9 Dokładniejsza interpretacja niep. statyst. Odpowiada to warunkom: P(x>k λ=λ p )=1 α 2 P(x<k λ=λ m )=1 α 2 Można pokazać, że: Po dłuższych przekształceniach (Brandt) zakładająć σ 2 =k można pokazać, że na poziomie ufności 1 α=68,3 % (czyli na poziomie 1σ), prawdziwa wartość k znajduje się w przedziale: Gdy nie jest spełniony warunek o dużym k (tj. nie przybliżamy Poissona rozkładem Gaussa), badamy rozkład: f (n ;λ)= λn n! e λ Można dowieść, że: α 2 =F (k+1; λ p) 1 α 2 =F (k ;λ m) Aby wyznaczyć λ p,λ m należy rozwiązać powyższe równania (numerycznie) - obliczyć funkcję odwrotną do rozkładu Poissona przy α ustalonym k i zadanym prawdopodobieństwie (u nas i ) KADD 2016, Wykład 9 α 2 =ψ 0( k λ p σ ) 1 α 2 =ψ 0( k λ m σ ) ψ 0 F - dystrybuanta rozkładu normalnego (k k, k+ k ) - dystrybuanta rozkładu Poissona k 1 F (k ; λ)= n=0 f (n ;λ)=p(k<k) 2 1 α 2 9 / 26

10 Pobieranie próbki w obecności tła W wielu doświadczeniach spotykamy się też z sytuacją, kiedy nie możemy okreslić, czy zaobserwowane zdarzenia są tego rodzaju jakie badamy (sygnał) lub innego typu (tło) np. Badamy rozpad promieniotwórczy danego izotopu, ale mamy domieszkę innego typu, która rozpada się analogicznie Mamy więc wartość oczekiwaną liczby zdarzeń daną rozkładem Poissona w postaci sumy: λ=λ S +λ T Celem doświadczenia jest wyznaczenie ie możemy skorzystać z poprzednich rozważań w celu wyznaczenia granic przedziału ufności Prawdopodobieństwo zaobserwowania n zdarzeń: λ S n=n S +n T f (n ;λ S +λ T )= 1 n! e (λ S+λ T ) (λ S +λ T ) n Prawdopodobieństwa sygnału i tła: KADD 2016, Wykład 9 f (n S ; λ S )= 1 n S! e (λ S) (λ S ) n S f (n T ;λ T )= 1 n T! e (λ T) (λ T ) n T 10 / 26

11 KADD 2016, Wykład 9 Pobieranie próbki w obecności tła 11 / 26 Wiemy, że przy liczbie k zanotowanych przypadków, tło nie może tej liczby przewyższać. Wtedy wzór na tło zastępujemy wzorem: f ' (n T ;λ T )= f (n T ; λ T ) k n T =0 f (n T ; λ T ) W analogiczny sposób zastępujemy wzór zaobserwowania n zdarzeń: f '(n ;λ S +λ T )= f (n; λ S+λ T ) k n T =0 Możemy teraz obliczyć granice przedziału λ ms, λ psufności poszukiwanego parametru λ S na poziomie ufności 1 α: α 2 =F '(k+1; λ ps+λ T ) 1 α 2 =F ' (k ;λ ms+λ T ) f (n T ; λ T ), n T k, n T k k 1 F '(k ; λ s +λ t )= f ' (n; λ s +λ t )=P(k<k) n=0 F ' - dystrybuanta rozkładu f'

12 Metoda największej wiarygodności

13 KADD 2016, Wykład 9 Funkcja wiarygodności 13 / 26 Do tej pory zajmowaliśmy się estymacją parametrów rozkładów, wprowadziliśmy estymatory i warunki, jakie powinny spełniać. ie zajmowaliśmy się natomiast sposobem ich konstruowania (oprócz estymatora wartości oczekiwanej i wariancji) Problem ogólny: mamy zbiór p parametrów: określony gęstością prawdopodobieństwa: dla n zmiennych losowych: λ =(λ 1, λ 2,...,λ p ) Jeden pomiar wielkości X, czyli pobranie próby o liczności 1, prowadzi do uzyskania wyniku X ( j) ( =( X 1 =x j) ( 1, X 2 =x j) ( 2,..., X n =x j) n ) Takiemu doświadczeniu przypisujemy liczbę: dp ( j) =f ( X ( j) ; λ )dx X=( X 1, X 2,..., X n ) f =f (x ; λ) Która jest tzw. prawdopodobieństwem a posteriori. Mówi ona po uzyskaniu wyniku, jakie było prawdopodobieństwo jego uzyskania

14 KADD 2016, Wykład 9 Funkcja wiarygodności 14 / 26 Takiemu doświadczeniu przypisujemy liczbę: dp ( j) =f ( X ( j) ; λ )dx Która jest tzw. prawdopodobieństwem a posteriori. Mówi ona po uzyskaniu wyniku, jakie było prawdopodobieństwo jego uzyskania, czyli wartości X ( j) ( takiej, że: x j) i < x ( j) ( x j) ( i +dx j) i, (i=1,2,...,n) Dla próby o niezależnych elementach omawiane prawdopodobieńśtwo uzyskania wyniku iloczynem: dp= f (x ( j) ; λ )d x x ( j), x (1),..., x ( ) dane jest Gdy populacja jest charakteryzowana przez dwa różne zbiory parametrów,, wtedy możemy określić iloraz wiarygodności: Q= λ 1, λ 2 f (x ( j) ;λ 1 )d x f (x ( j) ;λ 2 )d x Możemy go określić: zbiór parametrów λ 1jest Q razy bardziej prawdopodobny niż zbiór parametrów λ 2

15 Funkcja wiarygodności Takiemu doświadczeniu przypisujemy liczbę: dp ( j) = f ( X ( j) ; λ ) dx Funkcją wiarygodności nazywamy iloczyn postaci: L= f ( x ( j) ; λ) Funkcja wiarygodności jest zmienną losową (jest funkcją próby) Przykład: iloraz wiarygodności rzut asymetryczną monetą na podstawie rzutu asymetryczną monetąii wyników tych rzutów chcemy ustalić, czy moneta należy do klasy A lub klasy B załóżmy, że próba to 5 rzutów: 1 orzeł i 4 reszki stąd funkcja wiarygodności: L A = 1 3 ( 2 3 ) 4 L B = 2 3 ( 1 3 ) 4 Q= L A z duzą dozą prawdopodobieństwa moneta należy do klasy A KADD 2016, Wykład 9 L B =8 A orzeł 1/3 2/3 reszka 2/3 1/3 B 15 / 26

16 KADD 2016, Wykład 9 Metoda największej wiarygodności 16 / 26 ajwiększą ufnością obdarzamy zbiór parametrów, dla którego funkcja wiarygodności osiąga maksymalną wartość Jak wyznaczyć maksimum? warunek konieczny: przyrównać pierwszą pochodną L do zera Różniczkowanie iloczynu jest jednak niewygodne, wprowadzamy więc logarytm funkcji wiarygodności L: l=ln L= ln f ( x ( j ) ;λ) Funkcją wiarygodności jest odpowiednikiem gęstości prawdopodobieństwa, tylko określona dla parametrów. Ponieważ jest funkcją próby losowej, jest również zmienną losową L(λ) L(λ) λ max λ λ 3 max λ 1 max λ 2 max λ

17 KADD 2016, Wykład 9 Metoda największej wiarygodności 17 / 26 W najprostszym przypadku wektor parametrów λ ma tylko jedną składową λ Musimy wtedy rozwiązać równanie wiarygodności: Czyli: gdzie: l '= d d λ ln f (X( j ) ;λ)= jest pochodną logarytmiczną f względem λ f ' f = φ ( x ( j) ; λ )= ( d d λ f (x( j) ;λ) ) /( f (x ( j) ;λ)) φ(x ( j) ; λ) l '= dl d λ =0 W przypadku gdy wektor λ ma p składowych, mamy układ p równań: l λ i =0, i=1,2,, p Przykład: powtarzanie pomiarów o różnej dokładności pomiar danej jednej wielkości różnymi przyrządami pomiarowymi: pomiary X ( j) będą się układały wokół wartości rzeczywistej λ niepewności bedą miały rozkład normalny X ( j) X ( j) mamy 1 wielkość, więc z wektora robi się jedna zmienna

18 Metoda największej wiarygodności Przykład: powtarzanie pomiarów o różnej dokładności pomiar danej wielkości różnymi przyrządami pomiarowymi: pomiary X ( j) będą się układały wokół wartości rzeczywistej λ niepewności bedą miały rozkład normalny Wniosek: pojedynczy pomiar to pobranie próby o liczebności 1 z rozkładu Gaussa o wartości średniej λ i wariancji σ j Prawdopodobieństwo a posteriori możemy zatem wyrazić jako: dp ( j) =f ( X ( j) ; λ)dx= 1 2 π σ j exp( ( X( j) λ) 2 ) 2 2σ dx j Zatem dla pomiarów funkcja wiarygodności wynosi: L= 1 2 π σ j exp( ( X( j) λ) 2 2 σ j 2 ) KADD 2016, Wykład 9 18 / 26

19 KADD 2016, Wykład 9 Metoda największej wiarygodności 19 / 26 Logarytmiczna funkcja wiarygodności: l= 1 2 ( X ( j) λ ) 2 σ j 2 Konstruujemy równanie wiarygodności: dl d λ = Którego rozwiązanie to: X ( j) λ σ j 2 =0 +const ~ λ= x ( j) 2 σ / j 1 σ j 2 Wniosek: wynik najbardziej wiarygodny jest średnią ważoną pomiarów, gdzie wagi są odwrotnościami wariancji poszczególnych pomiarów

20 KADD 2016, Wykład 9 ajbardziej wiarygodny wynik Logarytmiczna funkcja wiarygodności wynosi: l= 1 2 ( X ( j) λ) 2 +const 2 σ j Równanie wiarygodności przybiera postać: dl d λ = A jego rozwiązanie to: x ( j) λ σ j 2 =0 ~ λ= x ( j) 2 σ / j Czyli wynik najbardziej wiarygodny jest średnią ważoną pomiarów tej samej cechy, gdzie waga każdego pomiaru jest odwrotnością jego wariancji 1 σ j 2

21 Uśrednianie wielu pomiarów przykład S. Eidelman et al., Phys. Lett. B 592, 1 (2004) Pomiar stałej sprzężenia oddziaływań silnych szukanie najbardziej wiarygodnego wyniku uśredniamy wszystkie wyniki z różnych pomiarów ważąc je odwrotnością wariancji KADD 2016, Wykład 9

22 KADD 2016, Wykład 9 Przykład z rozkładem dyskretnym 22 / 26 Czasami nasze zjawisko opisywane jest rozkładem dyskretnym estymowany parametr może przyjać tylko dyskretne wartości Przykład: ze stawu, w którym pływa ryb wyłowiono wpierw K ryb i po ich zaznaczeniu wpuszczono je z powrotem. W krótkim odstępie czasu wyłowiono n ryb, z których k było znaczonych. Prawdopodobieństwo wynosi: W n,k =L(k ;n, K, )= ( )( K ) k n k Znaleźć musimy taką wartość, dla której funkcja L osiąga maksimum. Zbadajmy iloraz: L(k ;n, K, ) ( n)( k) = L(k ;n, k, 1) ( n K +k) ( n ) Jest on mniejszy od 1, gdy k>nk i większy od 1, gdy Czyli maksimum L osiagnie dla wart. całk. najbliższej k<nk nk /k

23 ierówność informacyjna

24 ierówność informacyjna Pytanie: jak skonstruować estymator o optymalnych własnościach? estymator jest nieobciążony, jeżeli wartość obciążenia dla każdej próby: B(λ)=E(S) λ=0 oraz (estymator zgodny) wariancja estymatora jest jak najmniejsza (dąży do 0 dla liczebności próby losowej dążacej do nieskończoności): σ 2 (S) - minimalna bardzo często istnieje jednak związek pomiędzy obciążeniem a wiarancją i musimy szukać kompromisu taki związek nazywamy nierównością informacyjną Oczywiste jest, że wariancja przybiera minimalną wartość, kiedy estymator jest stałą (wtedy wariancja wynosi po prostu 0) Rozpatrzmy estymator: Który jest funkcją próby: Łączna gęstość prawdopodobieństwa próby: f (x (1), x (2),..., x ( ) ; λ)=f (x (1) ; λ) f (x (2) ;λ)...f (x ( ) ; λ) KADD 2016, Wykład 9 S( X (1), X (2),..., X ( ) ) X=( X (1), X (2),..., X ( ) ) 24 / 26

25 KADD 2016, Wykład 9 ierówność informacyjna 25 / 26 Wartość oczekiwana estymatora S wynosi więc: E(S)= S( X (1), X (2),..., X ( ) ) f (x (1) ; λ) f ( x (2) ; λ)... f (x ( ) ;λ)dx (1) dx (2)... dx ( ) Wyrażenie E(S)=B(λ)+λ można zróżniczkować, po przekształceniu dostaniemy: 1+B ' (λ)= S( f ' ( x ( j) ; λ) ) f ( x ( j) ; λ) f (x(1) ; λ) f ( x ( ) ; λ)dx (1) dx (2) dx ( ) { =E S f ' ( x ( j) ; λ) f ( x ( j) ; λ) } =E { S astępnie po dłuższych przekształceniach nierówność: (B' (λ)+1) 2 σ 2 (S) I (λ) l '= φ(x ;λ)} ( j) =E (S l ' ) d d λ ln f (X( j ) ;λ)= f ' f = φ ( x ( j) ; λ )= ( d d λ f (x( j) ;λ) ) /( f (x ( j) ;λ)) φ(x ( j) ; λ) Gdzie informacja próby ze względu na λ: I (λ)=e(l ' 2 )=E(( f ' (x ; λ) f (x ; λ) )2)

26 KADD 2016, Wykład 9 ierówność informacyjna 26 / 26 ierówność informacyjna: (B' (λ)+1) 2 σ 2 (S) I (λ)=e(l ' 2 I (λ) )=E(( f ' (x ; λ) f (x ; λ) )2) ierówność informacyjna to związek pomiędzy obciążeniem, wariancją i informacją zawartą w próbie Jest to definicja ogólna nie wybraliśmy żadnego szczególnego estymatytora. Prawa strona jest zatem dolnym ograniczeniem dla wariancji danego (dowolnego) estymatora ograniczenie to nazywamy ograniczeniem minimalnej wariancji albo ograniczeniem Cramea-Rao Kiedy obciążenie nie zależy od λ, a w szczególności gdy znika (równa się zero), nierówność redukuje się do: σ 2 (S) 1 I (λ)

27 KOIEC

Komputerowa analiza danych doświadczalnych

Komputerowa analiza danych doświadczalnych Komputerowa analiza danych doświadczalnych Wykład 9 27.04.2018 dr inż. Łukasz Graczykowski lukasz.graczykowski@pw.edu.pl Semestr letni 2017/2018 Metoda największej wiarygodności ierównosć informacyjna

Bardziej szczegółowo

Komputerowa analiza danych doświadczalnych

Komputerowa analiza danych doświadczalnych Komputerowa analiza danych doświadczalnych Wykład 9 7.04.09 dr inż. Łukasz Graczykowski lukasz.graczykowski@pw.edu.pl Semestr letni 08/09 Metoda największej wiarygodności ierównosć informacyjna Metoda

Bardziej szczegółowo

Metoda największej wiarygodności

Metoda największej wiarygodności Metoda największej wiarygodności Próbki w obecności tła Funkcja wiarygodności Iloraz wiarygodności Pomiary o różnej dokładności Obciążenie Informacja z próby i nierówność informacyjna Wariancja minimalna

Bardziej szczegółowo

Komputerowa analiza danych doświadczalnych

Komputerowa analiza danych doświadczalnych Komputerowa analiza danych doświadczalnych Wykład 10 8.04.017 dr inż. Łukasz Graczykowski lgraczyk@if.pw.edu.pl Semestr letni 016/017 Metoda największej wiarygodności - przykład ierównosć informacyjna

Bardziej szczegółowo

Weryfikacja hipotez statystycznych

Weryfikacja hipotez statystycznych Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta

Bardziej szczegółowo

Komputerowa Analiza Danych Doświadczalnych

Komputerowa Analiza Danych Doświadczalnych Komputerowa Analiza Danych Doświadczalnych Prowadząca: dr inż. Hanna Zbroszczyk e-mail: gos@if.pw.edu.pl tel: +48 34 58 5 konsultacje: poniedziałek: 0-, środa: - www: http://www.if.pw.edu.pl/~gos/students/kadd

Bardziej szczegółowo

Ważne rozkłady i twierdzenia c.d.

Ważne rozkłady i twierdzenia c.d. Ważne rozkłady i twierdzenia c.d. Funkcja charakterystyczna rozkładu Wielowymiarowy rozkład normalny Elipsa kowariacji Sploty rozkładów Rozkłady jednostajne Sploty z rozkładem normalnym Pobieranie próby

Bardziej szczegółowo

Ważne rozkłady i twierdzenia

Ważne rozkłady i twierdzenia Ważne rozkłady i twierdzenia Rozkład dwumianowy i wielomianowy Częstość. Prawo wielkich liczb Rozkład hipergeometryczny Rozkład Poissona Rozkład normalny i rozkład Gaussa Centralne twierdzenie graniczne

Bardziej szczegółowo

Komputerowa Analiza Danych Doświadczalnych

Komputerowa Analiza Danych Doświadczalnych Komputerowa Analiza Danych Doświadczalnych Prowadząca: dr inż. Hanna Zbroszczyk e-mail: gos@if.pw.edu.pl tel: +48 22 234 58 51 konsultacje: poniedziałek, 10-11, środa: 11-12 www: http://www.if.pw.edu.pl/~gos/students/kadd

Bardziej szczegółowo

Definicja 1 Statystyką nazywamy (mierzalną) funkcję obserwowalnego wektora losowego

Definicja 1 Statystyką nazywamy (mierzalną) funkcję obserwowalnego wektora losowego Rozdział 1 Statystyki Definicja 1 Statystyką nazywamy (mierzalną) funkcję obserwowalnego wektora losowego X = (X 1,..., X n ). Uwaga 1 Statystyka jako funkcja wektora zmiennych losowych jest zmienną losową

Bardziej szczegółowo

Wykład 10 Estymacja przedziałowa - przedziały ufności dla średn

Wykład 10 Estymacja przedziałowa - przedziały ufności dla średn Wykład 10 Estymacja przedziałowa - przedziały ufności dla średniej Wrocław, 21 grudnia 2016r Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja 10.1 Przedziałem

Bardziej szczegółowo

Estymacja przedziałowa - przedziały ufności dla średnich. Wrocław, 5 grudnia 2014

Estymacja przedziałowa - przedziały ufności dla średnich. Wrocław, 5 grudnia 2014 Estymacja przedziałowa - przedziały ufności dla średnich Wrocław, 5 grudnia 2014 Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja Przedziałem ufności dla paramertu

Bardziej szczegółowo

Komputerowa analiza danych doświadczalnych

Komputerowa analiza danych doświadczalnych Komputerowa analiza danych doświadczalnych Wykład 4.03.06 dr inż. Łukasz Graczykowski lgraczyk@if.pw.edu.pl Semestr letni 05/06 Zmienne losowe, jednowymiarowe rozkłady zmiennych losowych Pomiar jako zdarzenie

Bardziej szczegółowo

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl

Bardziej szczegółowo

Metody probabilistyczne

Metody probabilistyczne Metody probabilistyczne 13. Elementy statystki matematycznej I Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 17.01.2019 1 / 30 Zagadnienia statystki Przeprowadzamy

Bardziej szczegółowo

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 7 i 8 - Efektywność estymatorów, przedziały ufności

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 7 i 8 - Efektywność estymatorów, przedziały ufności WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 7 i 8 - Efektywność estymatorów, przedziały ufności Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 7 i 8 1 / 9 EFEKTYWNOŚĆ ESTYMATORÓW, próba

Bardziej szczegółowo

Komputerowa analiza danych doświadczalnych

Komputerowa analiza danych doświadczalnych Komputerowa analiza danych doświadczalnych Wykład 5.05.07 dr inż. Łukasz Graczykowski lgraczyk@if.pw.edu.pl Semestr letni 06/07 Jednoczesna estymacja kilku parametrów - przykład Weryfikacja hipotez statystycznych

Bardziej szczegółowo

Testowanie hipotez statystycznych.

Testowanie hipotez statystycznych. Statystyka Wykład 10 Wrocław, 22 grudnia 2011 Testowanie hipotez statystycznych Definicja. Hipotezą statystyczną nazywamy stwierdzenie dotyczące parametrów populacji. Definicja. Dwie komplementarne w problemie

Bardziej szczegółowo

METODY ESTYMACJI PUNKTOWEJ. nieznanym parametrem (lub wektorem parametrów). Przez X będziemy też oznaczać zmienną losową o rozkładzie

METODY ESTYMACJI PUNKTOWEJ. nieznanym parametrem (lub wektorem parametrów). Przez X będziemy też oznaczać zmienną losową o rozkładzie METODY ESTYMACJI PUNKTOWEJ X 1,..., X n - próbka z rozkładu P θ, θ Θ, θ jest nieznanym parametrem (lub wektorem parametrów). Przez X będziemy też oznaczać zmienną losową o rozkładzie P θ. Definicja. Estymatorem

Bardziej szczegółowo

Statystyczna analiza danych w programie STATISTICA 7.1 PL (wykład 1) Dariusz Gozdowski

Statystyczna analiza danych w programie STATISTICA 7.1 PL (wykład 1) Dariusz Gozdowski Statystyczna analiza danych w programie STATISTICA 7.1 PL (wykład 1) Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW STATYSTYKA to nauka, której przedmiotem

Bardziej szczegółowo

Wykład Centralne twierdzenie graniczne. Statystyka matematyczna: Estymacja parametrów rozkładu

Wykład Centralne twierdzenie graniczne. Statystyka matematyczna: Estymacja parametrów rozkładu Wykład 11-12 Centralne twierdzenie graniczne Statystyka matematyczna: Estymacja parametrów rozkładu Centralne twierdzenie graniczne (CTG) (Central Limit Theorem - CLT) Centralne twierdzenie graniczne (Lindenberga-Levy'ego)

Bardziej szczegółowo

WSKAZÓWKI DO WYKONANIA SPRAWOZDANIA Z WYRÓWNAWCZYCH ZAJĘĆ LABORATORYJNYCH

WSKAZÓWKI DO WYKONANIA SPRAWOZDANIA Z WYRÓWNAWCZYCH ZAJĘĆ LABORATORYJNYCH WSKAZÓWKI DO WYKONANIA SPRAWOZDANIA Z WYRÓWNAWCZYCH ZAJĘĆ LABORATORYJNYCH Dobrze przygotowane sprawozdanie powinno zawierać następujące elementy: 1. Krótki wstęp - maksymalnie pół strony. W krótki i zwięzły

Bardziej szczegółowo

SMOP - wykład. Rozkład normalny zasady przenoszenia błędów. Ewa Pawelec

SMOP - wykład. Rozkład normalny zasady przenoszenia błędów. Ewa Pawelec SMOP - wykład Rozkład normalny zasady przenoszenia błędów Ewa Pawelec 1 iepewność dla rozkładu norm. Zamiast dodawania całych zakresów uwzględniamy prawdopodobieństwo trafienia dwóch wartości: P x 1, x

Bardziej szczegółowo

Rozkłady prawdopodobieństwa zmiennych losowych

Rozkłady prawdopodobieństwa zmiennych losowych Rozkłady prawdopodobieństwa zmiennych losowych Rozkład dwumianowy Rozkład normalny Marta Zalewska Zmienna losowa dyskretna (skokowa) jest to zmienna, której zbór wartości jest skończony lub przeliczalny.

Bardziej szczegółowo

Estymacja parametrów w modelu normalnym

Estymacja parametrów w modelu normalnym Estymacja parametrów w modelu normalnym dr Mariusz Grządziel 6 kwietnia 2009 Model normalny Przez model normalny będziemy rozumieć rodzine rozkładów normalnych N(µ, σ), µ R, σ > 0. Z Centralnego Twierdzenia

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki 2. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5.

Bardziej szczegółowo

Przykład 1 W przypadku jednokrotnego rzutu kostką przestrzeń zdarzeń elementarnych

Przykład 1 W przypadku jednokrotnego rzutu kostką przestrzeń zdarzeń elementarnych Rozdział 1 Zmienne losowe, ich rozkłady i charakterystyki 1.1 Definicja zmiennej losowej Niech Ω będzie przestrzenią zdarzeń elementarnych. Definicja 1 Rodzinę S zdarzeń losowych (zbiór S podzbiorów zbioru

Bardziej szczegółowo

W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych:

W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych: W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych: Zmienne losowe skokowe (dyskretne) przyjmujące co najwyżej przeliczalnie wiele wartości Zmienne losowe ciągłe

Bardziej szczegółowo

STATYSTYKA

STATYSTYKA Wykład 1 20.02.2008r. 1. ROZKŁADY PRAWDOPODOBIEŃSTWA 1.1 Rozkład dwumianowy Rozkład dwumianowy, 0 1 Uwaga: 1, rozkład zero jedynkowy. 1 ; 1,2,, Fakt: Niech,, będą niezależnymi zmiennymi losowymi o jednakowym

Bardziej szczegółowo

Matematyka z el. statystyki, # 6 /Geodezja i kartografia II/

Matematyka z el. statystyki, # 6 /Geodezja i kartografia II/ Matematyka z el. statystyki, # 6 /Geodezja i kartografia II/ Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Głęboka 28, bud. CIW, p. 221 e-mail: zdzislaw.otachel@up.lublin.pl

Bardziej szczegółowo

Oznacza to, że chcemy znaleźć minimum, a właściwie wartość najmniejszą funkcji

Oznacza to, że chcemy znaleźć minimum, a właściwie wartość najmniejszą funkcji Wykład 11. Metoda najmniejszych kwadratów Szukamy zależności Dane są wyniki pomiarów dwóch wielkości x i y: (x 1, y 1 ), (x 2, y 2 ),..., (x n, y n ). Przypuśćmy, że nanieśliśmy je na wykres w układzie

Bardziej szczegółowo

HISTOGRAM. Dr Adam Michczyński - METODY ANALIZY DANYCH POMIAROWYCH Liczba pomiarów - n. Liczba pomiarów - n k 0.5 N = N =

HISTOGRAM. Dr Adam Michczyński - METODY ANALIZY DANYCH POMIAROWYCH Liczba pomiarów - n. Liczba pomiarów - n k 0.5 N = N = HISTOGRAM W pewnych przypadkach interesuje nas nie tylko określenie prawdziwej wartości mierzonej wielkości, ale także zbadanie całego rozkład prawdopodobieństwa wyników pomiarów. W takim przypadku wyniki

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO

STATYSTYKA I DOŚWIADCZALNICTWO STATYSTYKA I DOŚWIADCZALNICTWO dla studiów magisterskich kierunku ogrodnictwo Wykład 1 Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW Słowo statystyka pochodzi

Bardziej szczegółowo

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej 7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej Definicja 1 n-elementowa losowa próba prosta nazywamy ciag n niezależnych zmiennych losowych o jednakowych rozkładach

Bardziej szczegółowo

Wnioskowanie statystyczne. Statystyka w 5

Wnioskowanie statystyczne. Statystyka w 5 Wnioskowanie statystyczne tatystyka w 5 Rozkłady statystyk z próby Próba losowa pobrana z populacji stanowi realizacje zmiennej losowej jak ciąg zmiennych losowych (X, X,... X ) niezależnych i mających

Bardziej szczegółowo

4,5. Dyskretne zmienne losowe (17.03; 31.03)

4,5. Dyskretne zmienne losowe (17.03; 31.03) 4,5. Dyskretne zmienne losowe (17.03; 31.03) Definicja 1 Zmienna losowa nazywamy dyskretna (skokowa), jeśli zbiór jej wartości x 1, x 2,..., można ustawić w ciag. Zmienna losowa X, która przyjmuje wszystkie

Bardziej szczegółowo

Rozkład normalny, niepewność standardowa typu A

Rozkład normalny, niepewność standardowa typu A Podstawy Metrologii i Technik Eksperymentu Laboratorium Rozkład normalny, niepewność standardowa typu A Instrukcja do ćwiczenia nr 1 Zakład Miernictwa i Ochrony Atmosfery Wrocław, listopad 2010 r. Podstawy

Bardziej szczegółowo

Wykład z analizy danych: powtórzenie zagadnień z rachunku prawdopodobieństwa

Wykład z analizy danych: powtórzenie zagadnień z rachunku prawdopodobieństwa Wykład z analizy danych: powtórzenie zagadnień z rachunku prawdopodobieństwa Marek Kubiak Instytut Informatyki Politechnika Poznańska Plan wykładu Podstawowe pojęcia rachunku prawdopodobieństwa Rozkład

Bardziej szczegółowo

Dyskretne zmienne losowe

Dyskretne zmienne losowe Dyskretne zmienne losowe dr Mariusz Grządziel 16 marca 2009 Definicja 1. Zmienna losowa nazywamy dyskretna (skokowa), jeśli zbiór jej wartości x 1, x 2,..., można ustawić w ciag. Zmienna losowa X, która

Bardziej szczegółowo

Komputerowa Analiza Danych Doświadczalnych

Komputerowa Analiza Danych Doświadczalnych Komputerowa Analiza Danych Doświadczalnych dr inż. Adam Kisiel kisiel@if.pw.edu.pl pokój 117b (12b) 1 Materiały do wykładu Transparencje do wykładów: http://www.if.pw.edu.pl/~kisiel/kadd/kadd.html Literatura

Bardziej szczegółowo

Zad. 4 Należy określić rodzaj testu (jedno czy dwustronny) oraz wartości krytyczne z lub t dla określonych hipotez i ich poziomów istotności:

Zad. 4 Należy określić rodzaj testu (jedno czy dwustronny) oraz wartości krytyczne z lub t dla określonych hipotez i ich poziomów istotności: Zadania ze statystyki cz. 7. Zad.1 Z populacji wyłoniono próbę wielkości 64 jednostek. Średnia arytmetyczna wartość cechy wyniosła 110, zaś odchylenie standardowe 16. Należy wyznaczyć przedział ufności

Bardziej szczegółowo

Pobieranie próby. Rozkład χ 2

Pobieranie próby. Rozkład χ 2 Graficzne przedsawianie próby Hisogram Esymaory przykład Próby z rozkładów cząskowych Próby ze skończonej populacji Próby z rozkładu normalnego Rozkład χ Pobieranie próby. Rozkład χ Posać i własności Znaczenie

Bardziej szczegółowo

Spis treści 3 SPIS TREŚCI

Spis treści 3 SPIS TREŚCI Spis treści 3 SPIS TREŚCI PRZEDMOWA... 1. WNIOSKOWANIE STATYSTYCZNE JAKO DYSCYPLINA MATEMATYCZNA... Metody statystyczne w analizie i prognozowaniu zjawisk ekonomicznych... Badania statystyczne podstawowe

Bardziej szczegółowo

Biostatystyka, # 3 /Weterynaria I/

Biostatystyka, # 3 /Weterynaria I/ Biostatystyka, # 3 /Weterynaria I/ dr n. mat. Zdzisław Otachel Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Głęboka 28, p. 221 bud. CIW, e-mail: zdzislaw.otachel@up.lublin.pl

Bardziej szczegółowo

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 3 - model statystyczny, podstawowe zadania statystyki matematycznej

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 3 - model statystyczny, podstawowe zadania statystyki matematycznej WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 3 - model statystyczny, podstawowe zadania statystyki matematycznej Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 3 1 / 8 ZADANIE z rachunku

Bardziej szczegółowo

Metody Statystyczne. Metody Statystyczne.

Metody Statystyczne. Metody Statystyczne. gkrol@wz.uw.edu.pl #4 1 Sprawdzian! 5 listopada (ok. 45-60 minut): - Skale pomiarowe - Zmienne ciągłe i dyskretne - Rozkład teoretyczny i empiryczny - Miary tendencji centralnej i rozproszenia - Standaryzacja

Bardziej szczegółowo

Literatura. Leitner R., Zacharski J., Zarys matematyki wyŝszej dla studentów, cz. III.

Literatura. Leitner R., Zacharski J., Zarys matematyki wyŝszej dla studentów, cz. III. Literatura Krysicki W., Bartos J., Dyczka W., Królikowska K, Wasilewski M., Rachunek Prawdopodobieństwa i Statystyka Matematyczna w Zadaniach, cz. I. Leitner R., Zacharski J., Zarys matematyki wyŝszej

Bardziej szczegółowo

P (A B) = P (A), P (B) = P (A), skąd P (A B) = P (A) P (B). P (A)

P (A B) = P (A), P (B) = P (A), skąd P (A B) = P (A) P (B). P (A) Wykład 3 Niezależność zdarzeń, schemat Bernoulliego Kiedy dwa zdarzenia są niezależne? Gdy wiedza o tym, czy B zaszło, czy nie, NIE MA WPŁYWU na oszacowanie prawdopodobieństwa zdarzenia A: P (A B) = P

Bardziej szczegółowo

STATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE

STATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE STATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE 1 W trakcie badania obliczono wartości średniej (15,4), mediany (13,6) oraz dominanty (10,0). Określ typ asymetrii rozkładu. 2 Wymień 3 cechy rozkładu Gauss

Bardziej szczegółowo

Prawdopodobieństwo i rozkład normalny cd.

Prawdopodobieństwo i rozkład normalny cd. # # Prawdopodobieństwo i rozkład normalny cd. Michał Daszykowski, Ivana Stanimirova Instytut Chemii Uniwersytet Śląski w Katowicach Ul. Szkolna 9 40-006 Katowice E-mail: www: mdaszyk@us.edu.pl istanimi@us.edu.pl

Bardziej szczegółowo

METODY STATYSTYCZNE W BIOLOGII

METODY STATYSTYCZNE W BIOLOGII METODY STATYSTYCZNE W BIOLOGII 1. Wykład wstępny 2. Populacje i próby danych 3. Testowanie hipotez i estymacja parametrów 4. Planowanie eksperymentów biologicznych 5. Najczęściej wykorzystywane testy statystyczne

Bardziej szczegółowo

Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r

Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r Statystyka matematyczna Testowanie hipotez i estymacja parametrów Wrocław, 18.03.2016r Plan wykładu: 1. Testowanie hipotez 2. Etapy testowania hipotez 3. Błędy 4. Testowanie wielokrotne 5. Estymacja parametrów

Bardziej szczegółowo

Rozkłady statystyk z próby

Rozkłady statystyk z próby Rozkłady statystyk z próby Rozkłady statystyk z próby Przypuśćmy, że wykonujemy serię doświadczeń polegających na 4 krotnym rzucie symetryczną kostką do gry, obserwując liczbę wyrzuconych oczek Nr kolejny

Bardziej szczegółowo

Zmienne losowe. dr Mariusz Grządziel Wykład 12; 20 maja 2014

Zmienne losowe. dr Mariusz Grządziel Wykład 12; 20 maja 2014 Zmienne losowe dr Mariusz Grządziel Wykład 2; 20 maja 204 Definicja. Zmienna losowa nazywamy dyskretna (skokowa), jeśli zbiór jej wartości x, x 2,..., można ustawić w ciag. Zmienna losowa X, która przyjmuje

Bardziej szczegółowo

Stanisław Cichocki Natalia Nehrebecka. Wykład 7

Stanisław Cichocki Natalia Nehrebecka. Wykład 7 Stanisław Cichocki Natalia Nehrebecka Wykład 7 1 1. Metoda Największej Wiarygodności MNW 2. Założenia MNW 3. Własności estymatorów MNW 4. Testowanie hipotez w MNW 2 1. Metoda Największej Wiarygodności

Bardziej szczegółowo

1 Podstawy rachunku prawdopodobieństwa

1 Podstawy rachunku prawdopodobieństwa 1 Podstawy rachunku prawdopodobieństwa Dystrybuantą zmiennej losowej X nazywamy prawdopodobieństwo przyjęcia przez zmienną losową X wartości mniejszej od x, tzn. F (x) = P [X < x]. 1. dla zmiennej losowej

Bardziej szczegółowo

zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych

zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych 1. [E.A 5.10.1996/zad.4] Funkcja gęstości dana jest wzorem { 3 x + 2xy + 1 y dla (x y) (0 1) (0 1) 4 4 P (X > 1 2 Y > 1 2 ) wynosi:

Bardziej szczegółowo

WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 2 i 3 Zmienna losowa

WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 2 i 3 Zmienna losowa WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 2 i 3 Zmienna losowa Agata Boratyńska Agata Boratyńska Rachunek prawdopodobieństwa, wykład 2 i 3 1 / 19 Zmienna losowa Definicja Dana jest przestrzeń probabilistyczna

Bardziej szczegółowo

Wstęp do teorii niepewności pomiaru. Danuta J. Michczyńska Adam Michczyński

Wstęp do teorii niepewności pomiaru. Danuta J. Michczyńska Adam Michczyński Wstęp do teorii niepewności pomiaru Danuta J. Michczyńska Adam Michczyński Podstawowe informacje: Strona Politechniki Śląskiej: www.polsl.pl Instytut Fizyki / strona własna Instytutu / Dydaktyka / I Pracownia

Bardziej szczegółowo

Wykład 3 Jednowymiarowe zmienne losowe

Wykład 3 Jednowymiarowe zmienne losowe Wykład 3 Jednowymiarowe zmienne losowe Niech (Ω, F, P ) będzie ustaloną przestrzenią probabilistyczną Definicja 1 Jednowymiarowa zmienna losowa (o wartościach rzeczywistych), określoną na przestrzeni probabilistycznej

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka

Rachunek prawdopodobieństwa i statystyka Rachunek prawdopodobieństwa i statystyka Momenty Zmienna losowa jest wystarczająco dokładnie opisana przez jej rozkład prawdopodobieństwa. Względy praktyczne dyktują jednak potrzebę znalezienia charakterystyk

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA WYKŁAD stycznia 2010

STATYSTYKA MATEMATYCZNA WYKŁAD stycznia 2010 STATYSTYKA MATEMATYCZNA WYKŁAD 14 18 stycznia 2010 Model statystyczny ROZKŁAD DWUMIANOWY ( ) {0, 1,, n}, {P θ, θ (0, 1)}, n ustalone P θ {K = k} = ( ) n θ k (1 θ) n k, k k = 0, 1,, n Geneza: Rozkład Bernoulliego

Bardziej szczegółowo

Statystyka w analizie i planowaniu eksperymentu

Statystyka w analizie i planowaniu eksperymentu 29 marca 2011 Przestrzeń statystyczna - podstawowe zadania statystyki Zdarzeniom losowym określonym na pewnej przestrzeni zdarzeń elementarnych Ω można zazwyczaj na wiele różnych sposobów przypisać jakieś

Bardziej szczegółowo

Pojęcie szeregu nieskończonego:zastosowania do rachunku prawdopodobieństwa wykład 1

Pojęcie szeregu nieskończonego:zastosowania do rachunku prawdopodobieństwa wykład 1 Pojęcie szeregu nieskończonego:zastosowania do rachunku prawdopodobieństwa wykład dr Mariusz Grządziel 5 lutego 04 Paradoks Zenona z Elei wersja uwspółcześniona Zenek goni Andrzeja; prędkość Andrzeja:

Bardziej szczegółowo

Rozkład zmiennej losowej Polega na przyporządkowaniu każdej wartości zmiennej losowej prawdopodobieństwo jej wystąpienia.

Rozkład zmiennej losowej Polega na przyporządkowaniu każdej wartości zmiennej losowej prawdopodobieństwo jej wystąpienia. Rozkład zmiennej losowej Polega na przyporządkowaniu każdej wartości zmiennej losowej prawdopodobieństwo jej wystąpienia. D A R I U S Z P I W C Z Y Ń S K I 2 2 ROZKŁAD ZMIENNEJ LOSOWEJ Polega na przyporządkowaniu

Bardziej szczegółowo

RACHUNEK PRAWDOPODOBIEŃSTWA I STATYSTYKA MATEMATYCZNA

RACHUNEK PRAWDOPODOBIEŃSTWA I STATYSTYKA MATEMATYCZNA RACHUNEK PRAWDOPODOBIEŃSTWA I STATYSTYKA MATEMATYCZNA LISTA 10 1.Dokonano 8 pomiarów pewnej odległości (w m) i otrzymano: 201, 195, 207, 203, 191, 208, 198, 210. Wiedząc,że błąd pomiaru ma rozkład normalny

Bardziej szczegółowo

Temat: Zmienna losowa. Rozkład skokowy. Rozkład ciągły. Kody kolorów: Ŝółty nowe pojęcie pomarańczowy uwaga. Anna Rajfura, Matematyka

Temat: Zmienna losowa. Rozkład skokowy. Rozkład ciągły. Kody kolorów: Ŝółty nowe pojęcie pomarańczowy uwaga. Anna Rajfura, Matematyka Temat: Zmienna losowa. Rozkład skokowy. Rozkład ciągły Kody kolorów: Ŝółty nowe pojęcie pomarańczowy uwaga 1 Zagadnienia 1. Przypomnienie wybranych pojęć rachunku prawdopodobieństwa. Zmienna losowa. Rozkład

Bardziej szczegółowo

Metoda największej wiarygodności

Metoda największej wiarygodności Rozdział Metoda największej wiarygodności Ogólnie w procesie estymacji na podstawie prób x i (każde x i może być wektorem) wyznaczamy parametr λ (w ogólnym przypadku również wektor) opisujący domniemany

Bardziej szczegółowo

Statystyki: miary opisujące rozkład! np. : średnia, frakcja (procent), odchylenie standardowe, wariancja, mediana itd.

Statystyki: miary opisujące rozkład! np. : średnia, frakcja (procent), odchylenie standardowe, wariancja, mediana itd. Wnioskowanie statystyczne obejmujące metody pozwalające na uogólnianie wyników z próby na nieznane wartości parametrów oraz szacowanie błędów tego uogólnienia. Przewidujemy nieznaną wartości parametru

Bardziej szczegółowo

Statystyka w analizie i planowaniu eksperymentu

Statystyka w analizie i planowaniu eksperymentu 31 marca 2014 Przestrzeń statystyczna - podstawowe zadania statystyki Zdarzeniom losowym określonym na pewnej przestrzeni zdarzeń elementarnych Ω można zazwyczaj na wiele różnych sposobów przypisać jakieś

Bardziej szczegółowo

LISTA 4. 7.Przy sporządzaniu skali magnetometru dokonano 10 niezależnych pomiarów

LISTA 4. 7.Przy sporządzaniu skali magnetometru dokonano 10 niezależnych pomiarów LISTA 4 1.Na pewnym obszarze dokonano 40 pomiarów grubości warstwy piasku otrzymując w m.: 54, 58, 64, 69, 61, 56, 41, 48, 56, 61, 70, 55, 46, 57, 70, 55, 47, 62, 55, 60, 54,57,65,60,53,54, 49,58,62,59,55,50,58,

Bardziej szczegółowo

Statystyki: miary opisujące rozkład! np. : średnia, frakcja (procent), odchylenie standardowe, wariancja, mediana itd.

Statystyki: miary opisujące rozkład! np. : średnia, frakcja (procent), odchylenie standardowe, wariancja, mediana itd. Wnioskowanie statystyczne obejmujące metody pozwalające na uogólnianie wyników z próby na nieznane wartości parametrów oraz szacowanie błędów tego uogólnienia. Przewidujemy nieznaną wartości parametru

Bardziej szczegółowo

Wykład 4. Plan: 1. Aproksymacja rozkładu dwumianowego rozkładem normalnym. 2. Rozkłady próbkowe. 3. Centralne twierdzenie graniczne

Wykład 4. Plan: 1. Aproksymacja rozkładu dwumianowego rozkładem normalnym. 2. Rozkłady próbkowe. 3. Centralne twierdzenie graniczne Wykład 4 Plan: 1. Aproksymacja rozkładu dwumianowego rozkładem normalnym 2. Rozkłady próbkowe 3. Centralne twierdzenie graniczne Przybliżenie rozkładu dwumianowego rozkładem normalnym Niech Y ma rozkład

Bardziej szczegółowo

Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe

Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe Nierówność Czebyszewa Niech X będzie zmienną losową o skończonej wariancji V ar(x). Wtedy wartość oczekiwana E(X) też jest skończona i

Bardziej szczegółowo

Komputerowa analiza danych doświadczalnych

Komputerowa analiza danych doświadczalnych Komputerowa analiza danych doświadczalnych Wykład 3.03.07 dr inż. Łukasz Graczykowski lgraczyk@if.pw.edu.pl Semestr letni 06/07 Zmienne losowe, jednowymiarowe rozkłady zmiennych losowych Pomiar jako zdarzenie

Bardziej szczegółowo

Pobieranie prób i rozkład z próby

Pobieranie prób i rozkład z próby Pobieranie prób i rozkład z próby Marcin Zajenkowski Marcin Zajenkowski () Pobieranie prób i rozkład z próby 1 / 15 Populacja i próba Populacja dowolnie określony zespół przedmiotów, obserwacji, osób itp.

Bardziej szczegółowo

Zagadnienia brzegowe dla równań eliptycznych

Zagadnienia brzegowe dla równań eliptycznych Temat 7 Zagadnienia brzegowe dla równań eliptycznych Rozważmy płaski obszar R 2 ograniczony krzywą. la równania Laplace a (Poissona) stawia się trzy podstawowe zagadnienia brzegowe. Zagadnienie irichleta

Bardziej szczegółowo

Wykład 3 Momenty zmiennych losowych.

Wykład 3 Momenty zmiennych losowych. Wykład 3 Momenty zmiennych losowych. Wrocław, 19 października 2016r Momenty zmiennych losowych Wartość oczekiwana - przypomnienie Definicja 3.1: 1 Niech X będzie daną zmienną losową. Jeżeli X jest zmienną

Bardziej szczegółowo

Statystyka matematyczna dla leśników

Statystyka matematyczna dla leśników Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 2013/2014 Wykład 3 Zmienna losowa i jej rozkłady Zdarzenia losowe Pojęcie prawdopodobieństwa

Bardziej szczegółowo

Komputerowa analiza danych doświadczalnych

Komputerowa analiza danych doświadczalnych Komputerowa analiza danych doświadczalnych Wykład 6 6.04.08 dr inż. Łukasz Graczykowski lgraczyk@if.pw.edu.pl Semestr letni 07/08 Własności rozkładu normalnego Centralne twierdzenie graniczne Funkcja charakterystyczna

Bardziej szczegółowo

Wykład 3 Momenty zmiennych losowych.

Wykład 3 Momenty zmiennych losowych. Wykład 3 Momenty zmiennych losowych. Wrocław, 18 października 2017r Momenty zmiennych losowych Wartość oczekiwana - przypomnienie Definicja 3.1: 1 Niech X będzie daną zmienną losową. Jeżeli X jest zmienną

Bardziej szczegółowo

Rozdział 2: Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów

Rozdział 2: Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów Rozdział : Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów W tym rozdziale omówione zostaną dwie najpopularniejsze metody estymacji parametrów w ekonometrycznych modelach nieliniowych,

Bardziej szczegółowo

Zmienna losowa. Rozkład skokowy

Zmienna losowa. Rozkład skokowy Temat: Zmienna losowa. Rozkład skokowy Kody kolorów: żółty nowe pojęcie pomarańczowy uwaga * - materiał nadobowiązkowy Anna Rajfura, Matematyka i statystyka matematyczna na kierunku Rolnictwo SGGW 1 Zagadnienia

Bardziej szczegółowo

Statystyka matematyczna. Wykład III. Estymacja przedziałowa

Statystyka matematyczna. Wykład III. Estymacja przedziałowa Statystyka matematyczna. Wykład III. e-mail:e.kozlovski@pollub.pl Spis treści Rozkłady zmiennych losowych 1 Rozkłady zmiennych losowych Rozkład χ 2 Rozkład t-studenta Rozkład Fischera 2 Przedziały ufności

Bardziej szczegółowo

WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 4 Przekształcenia zmiennej losowej, momenty

WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 4 Przekształcenia zmiennej losowej, momenty WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 4 Przekształcenia zmiennej losowej, momenty Agata Boratyńska Agata Boratyńska Rachunek prawdopodobieństwa, wykład 4 / 9 Przekształcenia zmiennej losowej X

Bardziej szczegółowo

Analiza niepewności pomiarów

Analiza niepewności pomiarów Teoria pomiarów Analiza niepewności pomiarów Zagadnienia statystyki matematycznej Dr hab. inż. Paweł Majda www.pmajda.zut.edu.pl Podstawy statystyki matematycznej Histogram oraz wielobok liczebności zmiennej

Bardziej szczegółowo

WYKŁAD 2. Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady

WYKŁAD 2. Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady WYKŁAD 2 Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady Metody statystyczne metody opisu metody wnioskowania statystycznego syntetyczny liczbowy opis właściwości zbioru danych ocena

Bardziej szczegółowo

ODRZUCANIE WYNIKÓW POJEDYNCZYCH POMIARÓW

ODRZUCANIE WYNIKÓW POJEDYNCZYCH POMIARÓW ODRZUCANIE WYNIKÓW OJEDYNCZYCH OMIARÓW W praktyce pomiarowej zdarzają się sytuacje gdy jeden z pomiarów odstaje od pozostałych. Jeżeli wykorzystamy fakt, że wyniki pomiarów są zmienną losową opisywaną

Bardziej szczegółowo

Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki

Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Przetwarzanie Sygnałów Studia Podyplomowe, Automatyka i Robotyka. Wstęp teoretyczny Zmienne losowe Zmienne losowe

Bardziej szczegółowo

Wynik pomiaru jako zmienna losowa

Wynik pomiaru jako zmienna losowa Wynik pomiaru jako zmienna losowa Wynik pomiaru jako zmienna losowa Zmienne ciągłe i dyskretne Funkcja gęstości i dystrybuanta Wartość oczekiwana Momenty rozkładów Odchylenie standardowe Estymator zmiennej

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład II: Zmienne losowe i charakterystyki ich rozkładów 13 października 2014 Zmienne losowe Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Definicja zmiennej losowej i jej

Bardziej szczegółowo

Zmienne losowe. dr Mariusz Grzadziel. rok akademicki 2016/2017 semestr letni. Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu

Zmienne losowe. dr Mariusz Grzadziel. rok akademicki 2016/2017 semestr letni. Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu Zmienne losowe dr Mariusz Grzadziel Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu rok akademicki 2016/2017 semestr letni Definicja 1 Zmienna losowa nazywamy dyskretna (skokowa), jeśli zbiór

Bardziej szczegółowo

Niech X i Y będą niezależnymi zmiennymi losowymi o rozkładach wykładniczych, przy czym Y EX = 4 i EY = 6. Rozważamy zmienną losową Z =.

Niech X i Y będą niezależnymi zmiennymi losowymi o rozkładach wykładniczych, przy czym Y EX = 4 i EY = 6. Rozważamy zmienną losową Z =. Prawdopodobieństwo i statystyka 3..00 r. Zadanie Niech X i Y będą niezależnymi zmiennymi losowymi o rozkładach wykładniczych, przy czym Y EX 4 i EY 6. Rozważamy zmienną losową Z. X + Y Wtedy (A) EZ 0,

Bardziej szczegółowo

Testowanie hipotez statystycznych.

Testowanie hipotez statystycznych. Bioinformatyka Wykład 9 Wrocław, 5 grudnia 2011 Temat. Test zgodności χ 2 Pearsona. Statystyka χ 2 Pearsona Rozpatrzmy ciąg niezależnych zmiennych losowych X 1,..., X n o jednakowym dyskretnym rozkładzie

Bardziej szczegółowo

PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA. Piotr Wiącek

PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA. Piotr Wiącek PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA Piotr Wiącek ROZKŁAD PRAWDOPODOBIEŃSTWA Jest to miara probabilistyczna określona na σ-ciele podzbiorów borelowskich pewnej przestrzeni metrycznej. σ-ciało podzbiorów

Bardziej szczegółowo

Oszacowanie i rozkład t

Oszacowanie i rozkład t Oszacowanie i rozkład t Marcin Zajenkowski Marcin Zajenkowski () Oszacowanie i rozkład t 1 / 31 Oszacowanie 1 Na podstawie danych z próby szacuje się wiele wartości w populacji, np.: jakie jest poparcie

Bardziej szczegółowo

Statystyka Opisowa z Demografią oraz Biostatystyka. Zmienne losowe. Aleksander Denisiuk. denisjuk@euh-e.edu.pl

Statystyka Opisowa z Demografią oraz Biostatystyka. Zmienne losowe. Aleksander Denisiuk. denisjuk@euh-e.edu.pl Statystyka Opisowa z Demografią oraz Biostatystyka Zmienne losowe Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2 82-300 Elblag oraz Biostatystyka p.

Bardziej szczegółowo

Komputerowa analiza danych doświadczalnych

Komputerowa analiza danych doświadczalnych Komputerowa analiza danych doświadczalnych Wykład 3 11.03.2016 dr inż. Łukasz Graczykowski lgraczyk@if.pw.edu.pl Wykłady z poprzednich lat (dr inż. H. Zbroszczyk): http://www.if.pw.edu.pl/~gos/student

Bardziej szczegółowo

Statystyka. Wydział Zarządzania Uniwersytetu Łódzkiego

Statystyka. Wydział Zarządzania Uniwersytetu Łódzkiego Statystyka Wydział Zarządzania Uniwersytetu Łódzkiego 2017 Podstawowe rozkłady zmiennych losowych Rozkłady zmiennych skokowych Rozkład zero-jedynkowy Rozpatrujemy doświadczenie, którego rezultatem może

Bardziej szczegółowo