Fizyka wczoraj, dziś, jutro. Z naszych lekcji. Astronomia dla każdego. Diagram H R układ okresowy

Wielkość: px
Rozpocząć pokaz od strony:

Download "Fizyka wczoraj, dziś, jutro. Z naszych lekcji. Astronomia dla każdego. Diagram H R układ okresowy"

Transkrypt

1 Fizyka wczoraj, dziś, jutro Wprowadzenie do magicznego 4 świata metamateriałów Piotr Wróbel Diagram H R układ okresowy 9 gwiazd Krzysztof Rochowicz Niebo Celtów 23 Janusz Rokita Wyznaczanie wysokości wzgórz 35 na powierzchni Księżyca Andrzej Branicki Co w fizyce piszczy? 0 Zbigniew Wiśniewski Rok 205 Międzynarodowym 29 Rokiem Światła Kazimierz Mikulski Żywoty fizyków Nikola Tesla 3 Tadeusz Wibig Astronomia dla każdego Pływy na Ziemi i w Kosmosie Waldemar Reńda Trójkąty sferyczne 4 Piotr Gronkowski, Marcin Wesołowski Z naszych lekcji Modelowanie stanu równowagi 33 Kazimierz Mikulski Fizyka z butelką 39 Juliusz Domański 44 Z cyklu: Przyroda w liceum Fizyka a ekologia Waldemar Reńda

2 Wyznaczanie wysokości wzgórz na powierzchni Księżyca Andrzej Branicki Na Księżycu, tak jak na Ziemi, nierówności terenu oświetlone Słońcem rzucają cienie. To dzięki nim na powierzchni Księżyca oglądanej przez lunetę widzimy różne nierówności terenu. Choć cienie wzniesień mają różne długości, to zasadniczo można stwierdzić, że im bliżej są terminatora, tym są dłuższe. Obserwowana długość cieni zależy również od fazy Księżyca. Najdłuższe cienie widzimy wtedy, gdy jasna część Księżyca ma kształt połowy okręgu gdy Księżyc jest w pierwszej lub ostatniej kwadrze. Obserwując Księżyc w pełni, nie zobaczymy żadnego cienia, jego powierzchnia będzie się wydawała płaska. Obserwacja cieni wzniesień umożliwia wyznaczenie względnej wysokości wzgórz, czyli wysokości wzgórz względem powierzchni, na którą pada ich cień. Można tego dokonać na podstawie obserwacji dokonanych samodzielnie. Można też wykorzystać do tego zdjęcia Księżyca wykonane przez innych. Rozwiązywanie problemu rozpocznijmy od przypomnienia zależności między długością łuku s okręgu o promieniu r a wartością kąta a, pod jakim łuk s jest widoczny ze środka okręgu (rys. a). Jeśli kąt a jest wyrażony w radianach, to: s = r a. Rys.. (lub niemal równoramiennych), w których kąt przy wierzchołku trójkąta jest mały. W takim przypadku długość łuku okręgu s jest bowiem niemal identyczna z długością podstawy trójkąta AB, czyli: AB s = r a. () W dalszej części tekstu często będą rozwiązywane trójkąty równoramienne lub prostokątne, w których kąt a <. W takim wypadku s AB < 0,005 AB, więc będziemy przyjmować, że AB = s = ra. W kolejnych rozważaniach Ziemia, Słońce i Księżyc będą często traktowane jako obiekty punktowe. Błędy wynikające z takiego założenia będą jednak nieporównanie mniejsze od błędów wynikających z niedokładności wykonywanych pomiarów. Tytułowe zadanie jest bardzo łatwe do rozwiązania, gdy widzimy dokładnie połowę Księżyca. W tym Rysunek b sugeruje, że zależności tej można używać do rozwiązywania trójkątów równoramiennych Rys. 2. Wysokość księżycowych wzniesień najłatwiej można wyznaczyć, gdy oświetloną część Księżyca widzimy jako połowę koła. Wszystkie wzniesienia leżące na okręgu, którego płaszczyzna jest równoległa do płaszczyzny terminatora (na rysunku jest to linia przerywana), są oświetlane przez Słońce pod tym samym kątem (h = const) Tak jest nazywana granica między oświetloną a nieoświetloną częścią Księżyca lub planety. Płaszczyzna terminatora jest prostopadła do kierunku Księżyc Słońce. Praktyczne i precyzyjne określenie jej położenia jest jednak trudne, gdyż przy zbliżaniu się do tej płaszczyzny oświetlenie powierzchni Księżyca maleje stopniowo: początkowo na skutek malejącej wysokości Słońca, a dalej jest ona oświetlana coraz to mniejszą częścią tarczy Słońca. Fizyka w Szkole /205 35

3 momencie obserwator znajduje się w płaszczyźnie terminatora. Taką właśnie sytuację przedstawia rys. 2. Płaszczyznę tego rysunku wyznaczają środki Księżyca i Słońca oraz położenie obserwatora. Przedstawia on Księżyc oraz wzniesienie W i rzucany przez nie cień. Przyjmijmy na początku, że wzniesienie W znajduje się dokładnie w płaszczyźnie rysunku. Z trójkąta, w którym jedną z przyprostokątnych jest wysokość wzgórza H (powiększony szczegół po prawej stronie rys. 2), wynika, że: H = re^ sin(h), gdzie r oznacza odległość Ziemia Księżyc; h kątową wysokość Słońca ponad horyzontem w miejscu, w którym położone jest wzniesienie; e^ obserwowaną kątową długość cienia wzniesienia. Indeks ^ przypomina o tym, że jest to kątowa długość cienia obserwowana z kierunku prostopadłego do jego rozciągłości. Związek ten można zmodyfikować, wykorzystując zależność (). Pozwala ona bowiem określić związek między odległością Księżyca od Ziemi r, promieniem Księżyca R (w dalszych rozważaniach będzie on traktowany jako znany) oraz promieniem kątowym jego tarczy d : r = R/d. Wobec tego zależność (2) można zapisać w następującej postaci: H = R e^ d sin(h). Wysokość Słońca ponad horyzontem h w miejscu, w którym znajduje się wzniesienie, jest łatwa do wyznaczenia. Z rys. 2 wynika, że jest ona równa kątowi między płaszczyzną terminatora a kierunkiem ze środka Księżyca do miejsca położenia wzniesienia. Skoro tak, to: sin(h) = WW R = a^r R = a^ d, gdzie a^ jest kątową odległością wzniesienia W od płaszczyzny terminatora. W rezultacie wysokość wzniesienia można wyrazić następująco: H = R e^ d a^ d. (2) Tak więc w chwili, gdy widzimy z Ziemi połowę tarczy Księżyca, wyznaczenie wysokości księżycowych wzniesień wymaga zmierzenia kątowej średnicy tarczy Księżyca d, kątowej długości cienia wzniesienia e^ oraz kątowej odległości tego wzniesienia od płaszczyzny terminatora a^. Otrzymane rozwiązanie ma dwa mankamenty: dotyczy ono bardzo szczególnej chwili (gdy oświetlona jest dokładnie połowa tarczy Księżyca) i bardzo szczególnego miejsca (wzniesienie powinno znajdować się w płaszczyźnie określonej przez położenia obserwatora oraz środka Słońca i Księżyca). Wystarczy jednak tylko chwila zastanowienia, by usunąć drugie z wymienionych ograniczeń. Zauważmy bowiem, że płaszczyzna horyzontu w każdym miejscu globu jest do niego styczna, czyli jest prostopadła do kierunku ku centrum globu (rys. 2). Skoro tak, to wysokość Słońca (kąt h) ponad horyzontem w dowolnym miejscu globu jest równa kątowi między kierunkiem ku centrum globu i płaszczyzną terminatora. Konsekwencją tego jest fakt, że wysokość Słońca ponad horyzontem ma jednakową wartość we wszystkich miejscach globu, które są jednakowo odległe od płaszczyzny terminatora punkty o jednakowej wartości h tworzą na powierzchni Księżyca koncentryczne okręgi równoległe do płaszczyzny terminatora, których środkiem jest prosta łącząca środek Księżyca ze Słońcem. Największym z tych okręgów jest terminator. W tych miejscach globu, przez które przechodzi terminator h = 0, kątowa wysokość Słońca h wzrasta ze wzrostem odległości od terminatora. W punkcie Z Słońce jest w zenicie. Ostateczny wniosek z tego rozumowania jest taki, że zależność (2) można stosować do wyznaczania wysokości wzniesienia położonego w dowolnym miejscu tarczy, ale tylko wtedy, gdy Księżyc jest bliski I lub III kwadry. Rozwiązanie (2) pozostaje jednak wciąż mało użyteczne ze względu na pierwsze z wymienionych ograniczeń. Chwile, w których możliwe byłoby obserwowanie dokładnie połowy tarczy, są rzadkie i mogą wypadać w dzień lub wtedy, gdy jest pochmurno. Jak się za chwilę okaże, ograniczenie to nie jest duże, a otrzymanie rozwiązania bardziej ogólnego nie jest trudne. Jeśli licznik i mianownik zależności (2) pomnożymy przez r 2, to rozwiązanie przyjmie następującą postać: H = (e^r) (a^r). R Iloczyny e^r, a^r są odcinkami (odległościami) równoległymi do kierunku Księżyc Słońce. Gdy jasną część Księżyca widzimy jako połowę okręgu, na odcinki te patrzymy prostopadle. Gdy kształt jasnej części Księżyca jest inny, patrzymy na te odcinki pod pewnym kątem 2 f. Rysunek 3 przedstawia sytuację, w której Księżyc jest w fazie między I kwadrą a pełnią. Patrząc z Ziemi, widzimy rzuty tych odcinków na kierunek prostopadły do kierunku obserwacji. Z rys. 3 wynika, że zależność między obserwowanymi w tej fazie rozmiarami kątowymi tych odcinków e, a a wartościami tych samych wielkości e^, a^, jakie obserwowalibyśmy z kierunku prostopadłego do ich rozciągłości, jest następująca: (er) (ar) (e^r) = cos( f ), (a^r) = cos( f ). Zależności te pozwalają uogólnić rozwiązanie (2) na przypadek dowolnej fazy Księżyca: 2 Od wartości tego kąta zależy kształt jasnej części Księżyca tzw. faza Księżyca: wartości f = 0 odpowiada faza nazywana I kwadrą, f = 90 pełnią, f = 80 III kwadrą, f = 270 nowiem. 36 Fizyka w Szkole /205

4 cos 2 ( f ). (3) Przede wszystkim należy zauważyć, że zależność obliczonej stąd wysokości wzgórza od kąta f jest słaba. Przyjmijmy dla przykładu, że f» 3, co odpowiada odstępowi około doby od pierwszej lub trzeciej kwadry (f = 0 lub f = 80 ). Kształt jasnej części Księżyca odpowiadający tym chwilom pokazano na rys. 4. Względna różnica wysokości wzgórza obliczana z zależności (3) i (2), czyli stosunek [H(f = 3 ) H(f = 0 )] / H(f = 3 ), wynosi zaledwie 5%. Tymczasem rozmycie granicy cienia i linii terminatora będzie skutkowało dużym błędem pomiaru kątów e i a, czego efektem będzie względny błąd wartości H nie mniejszy niż 0%. Wynika stąd, że do wyznaczania wysokości wzniesień w okresie ± doba od chwili, gdy widoczna jest połowa tarczy Księżyca, można wykorzystać zależność (2). Jeśli kształt jasnej części Księżyca będzie wyraźnie różnił się od połowy okręgu, to na podstawie rys. 5 możemy sformułować zależność umożliwiającą wyznaczenie wartości kąta f i uwzględnienie jej w zależności (3): sin( f ) = br R = b d. Zależność (3), ważna dla dowolnej fazy Księżyca (dla dowolnej wartości kąta f), będzie więc miała następującą postać: ( b/d) 2. Ponieważ w praktyce znacznie łatwiej można zmierzyć kąt g niż kąt b, powyższą zależność, po uwzględnieniu związku g = d + b, możemy zapisać jako funkcję kąta g: ( g/d) (2 g/d). (4) Rys. 3. Obserwowana kątowa długość odcinka WW (kąt a) oraz cienia (kąt e) zależą od kąta f (czyli od fazy Księżyca). Okrąg narysowany linią przerywaną jest śladem przecięcia z globem Księżyca płaszczyzny równoległej do płaszczyzny rysunku i przechodzącej przez wzniesienie. Ślad ten dla ziemskiego obserwatora będzie odcinkiem prostopadłym do prostej łączącej punkty kontaktu terminatora z tarczą Księżyca Rys. 4. Rys. 5. Kąt f można wyznaczyć, mierząc kąty b i g bądź g i d Krótkiego komentarza wymaga jeszcze problem pomiaru kąta a. Jak wynika z rys. 3, jest to kąt, pod jakim jest widoczny odcinek WW, przy czym W jest rzutem punku W na płaszczyznę terminatora (punkt W znajduje się pod powierzchnią Księżyca). Dokładny pomiar tego kąta nie jest jednak możliwy poza szczególnym przypadkiem, gdy widoczna jest dokładnie połowa tarczy Księżyca. Wtedy bowiem punkt W będzie położony na linii terminatora i skutkiem tego a = a. Jeżeli czasowa odległość momentu obserwacji od momentu wystąpienia I lub III kwadry nie jest większa (lub jest niewiele większa) niż doba, to punkt W będzie znajdował się bardzo blisko terminatora: w odległości porównywalnej z błędem określenia pozycji terminatora. Dla obserwacji wykonywanych w takim okresie można więc także przyjmować, że a a. Zauważmy jednak, że również dla dowolnej fazy Księżyca problem określenia wartości a rozwiązuje się sam. Faktem jest bowiem, że cienie dostatecznie długie, by można było je mierzyć w miarę dokładnie, widać wyłącznie blisko terminatora, a skoro tak, to niezależnie od fazy Księżyca możemy przyjmować, że a a. Przyglądając się zależnościom (2) i (4) będącym rozwiązaniem tytułowego zadania 3, warto zauważyć, że w zależnościach tych wielkości kątowe występują wyłącznie w postaci ilorazów. Dzięki temu do wyznaczenia wysokości wzniesienia nie jest potrzebna znajomość kątowej skali obrazu Księżyca obserwowanego 3 W książce Obserwacje i pomiary astronomiczne dla studentów, uczniów i miłośników astronomii (WUW, Warszawa 2006) pokazałem jeszcze inne rozwiązanie rozważanego tu problemu, zmniejszające nieco ograniczenia przy wyborze obiektów przewidzianych do pomiaru. Fizyka w Szkole /205 37

5 Rys. 6. Wielkości, które trzeba zmierzyć, by wyznaczyć wysokość wzniesienia. Linia przerywana pokazuje punkty globu Księżyca jednakowo odległe od płaszczyzny wyznaczonej przez położenia obserwatora oraz środek Księżyca i Słońca Rys. 7. Z papieru wykonać papierową rurkę o średnicy pasującej do wewnętrznej średnicy tulejki okularu, o długości nieco większej niż długość tulejki okularu. Na jedną z otwartych podstaw rurki nakleić mniej więcej równolegle kilkanaście cienkich włókien (np. najcieńsze fragmenty włókien z tkanin syntetycznych). Tak wykonaną tulejkę należy wsunąć do rurki okularu na taką głębokość, by włókna były wyraźnie widoczne po spojrzeniu w okular. Po skierowaniu okularu na jasne tło należy wykonać dokładny rysunek widocznych włókien należy narysować je dokładnie tak, jak je widzimy, zachowując skalę odstępów, ich ewentualne nierównoległości i zanieczyszczenia (ważne, by nitki widoczne przez okular i na rysunku można było identyfikować). Na rysunku tym będzie można zaznaczać położenia końców odcinków odpowiadających kątom, które trzeba zmierzyć bezpośrednio ani kątowej skali fotografii Księżyca. Jeśli bowiem s będzie oznaczało skalę obrazu (liczbę jednostek kąta przypadającą na jednostkę używaną do mierzenia obrazu), A i D zaś liczby jednostek obrazu odpowiadające kątom a, d, to a/d = (As)/(Ds) = A/D. Inne, również pocieszające spostrzeżenie jest takie, że otrzymane zależności dotyczą nie tylko cieni wzgórz na powierzchni Księżyca, ale także cieni na dowolnej kuli oświetlonej odległym, niemal punktowym źródłem światła. * Porady praktyczne. Jeśli uznamy, że R jest wielkością znaną 4, to do wyznaczenia wysokości wzniesienia konieczne będzie zmierzenie czterech wielkości: e, a, g, d (rys. 6). Można je zmierzyć podczas bezpośredniej obserwacji albo wykorzystać do tego zdjęcie Księżyca. Choć wiele efektownych zdjęć można znaleźć w różnych publikacjach lub w witrynach internetowych, to niewątpliwie najwięcej satysfakcji i dydaktycznych korzyści przyniosą bezpośrednie pomiary albo korzystanie ze zdjęcia wykonanego samodzielnie, nawet jeśli jego jakość będzie znacznie gorsza od jakości zdjęć publikowanych w sieci. Zrobienie zdjęcia Księżyca, które umożliwiałoby wykonanie niezbędnych pomiarów z rozsądną dokładnością, wymaga obiektywu o ogniskowej f m. Funkcję takiego obiektywu najlepiej spełni obiektyw lunety. Decydujący wpływ na dokładność pomiaru będzie miała wielkość i ostrość obrazu Księżyca. Ze względu na drgania układu fotografującego powodowane powiewami wiatru i turbulencją atmosferyczną czas naświetlania nie powinien przekraczać /30 sekundy. Korzystając ze zdjęcia, wystarczy mierzyć odległości liniowe odpowiadające poszczególnym kątom. Ponieważ jedną z mierzonych wielkości jest promień tarczy Księżyca, a wielkość tę można wyznaczyć najdokładniej, mierząc średnicę tarczy, zdjęcie powinno obejmować całą oświetloną część tarczy. Pomiar kątów e, a, g, d podczas bezpośredniej obserwacji wizualnej będzie wymagał użycia lunety o ogniskowej zbliżonej do tej, jaka była niezbędna do wykonania fotografii. Okular lunety musi mieć taką ogniskową, by tarcza Księżyca wypełniała niemal całe pole widzenia. By zapewnić możliwość oceny wartości poszczególnych parametrów, oglądany obraz musi być widoczny na tle jakiejkolwiek skali. W wielu typach lunet taką skalę można wykonać samodzielnie. Istota takiego zabiegu polega na wprowadzeniu siatki nitek w płaszczyznę ogniskową soczewki okularu. Można to zrobić na przykład tak, jak pokazano na rys. 7. Typując wzniesienia na powierzchni Księżyca przewidziane do pomiarów, należy wybierać takie, których otoczenie wydaje się w miarę płaskie i poziome. Jedyną wskazówką umożliwiającą ocenę stopnia spełnienia tego warunku może być tylko rysunek świateł i cieni w otoczeniu interesującego nas wzgórza. Jeśli zależy nam na zmierzeniu wysokości konkretnego wzniesienia, to należy poczekać na wieczór, w czasie którego jego cień będzie dostatecznie długi, by był możliwy do zmierzenia. Najlepszy będzie więc wieczór, podczas którego w pobliżu tego wzniesienia będzie przechodził terminator. Życzę powodzenia. Andrzej Branicki 4 Możemy oczywiście wykorzystać wartość R wyznaczoną przez innych: R = 738 km. Jednak ci, którzy chcą i lubią samodzielnie poznawać świat, mogą wyznaczyć R na podstawie własnych obserwacji opisanych w Fizyce w Szkole (nr /2006). 38 Fizyka w Szkole /205

Ćwiczenie 42 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ. Wprowadzenie teoretyczne.

Ćwiczenie 42 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ. Wprowadzenie teoretyczne. Ćwiczenie 4 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ Wprowadzenie teoretyczne. Soczewka jest obiektem izycznym wykonanym z materiału przezroczystego o zadanym kształcie i symetrii obrotowej. Interesować

Bardziej szczegółowo

Ćwiczenia z Geometrii I, czerwiec 2006 r.

Ćwiczenia z Geometrii I, czerwiec 2006 r. Waldemar ompe echy przystawania trójkątów 1. unkt leży na przekątnej kwadratu (rys. 1). unkty i R są rzutami prostokątnymi punktu odpowiednio na proste i. Wykazać, że = R. R 2. any jest trójkąt ostrokątny,

Bardziej szczegółowo

Pytania do spr / Własności figur (płaskich i przestrzennych) (waga: 0,5 lub 0,3)

Pytania do spr / Własności figur (płaskich i przestrzennych) (waga: 0,5 lub 0,3) Pytania zamknięte / TEST : Wybierz 1 odp prawidłową. 1. Punkt: A) jest aksjomatem in. pewnikiem; B) nie jest aksjomatem, bo można go zdefiniować. 2. Prosta: A) to zbiór punktów; B) to zbiór punktów współliniowych.

Bardziej szczegółowo

Trójkąty Zad. 0 W trójkącie ABC, AB=40, BC=23, wyznacz AC wiedząc że jest ono sześcianem liczby naturalnej.

Trójkąty Zad. 0 W trójkącie ABC, AB=40, BC=23, wyznacz AC wiedząc że jest ono sześcianem liczby naturalnej. C Trójkąty Zad. 0 W trójkącie ABC, AB=40, BC=23, wyznacz AC wiedząc że jest ono sześcianem liczby naturalnej. Zad. 1 Oblicz pole trójkąta o bokach 13 cm, 14 cm, 15cm. Zad. 2 W trójkącie ABC rys. 1 kąty

Bardziej szczegółowo

Klucz odpowiedzi do zadań zamkniętych i przykładowe rozwiązania zadań otwartych

Klucz odpowiedzi do zadań zamkniętych i przykładowe rozwiązania zadań otwartych Centralna Komisja Egzaminacyjna Materiał współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Próbny egzamin maturalny z matematyki listopad 009 Klucz odpowiedzi do

Bardziej szczegółowo

Planimetria VII. Wymagania egzaminacyjne:

Planimetria VII. Wymagania egzaminacyjne: Wymagania egzaminacyjne: a) korzysta ze związków między kątem środkowym, kątem wpisanym i kątem między styczną a cięciwą okręgu, b) wykorzystuje własności figur podobnych w zadaniach, w tym umieszczonych

Bardziej szczegółowo

Planimetria poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie

Planimetria poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie Planimetria poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie http://www.zadania.info/) 1. W trójkącie prostokątnym wysokość poprowadzona na przeciwprostokątną ma długość 10 cm, a promień okręgu

Bardziej szczegółowo

3. Model Kosmosu A. Einsteina

3. Model Kosmosu A. Einsteina 19 3. Model Kosmosu A. Einsteina Pierwszym rozwiązaniem równań pola grawitacyjnego w 1917 r. było równanie hiperpowierzchni kuli czterowymiarowej, przy założeniu, że materia kosmiczna tzw. substrat jest

Bardziej szczegółowo

Klasa 3. Trójkąty. 1. Trójkąt prostokątny ma przyprostokątne p i q oraz przeciwprostokątną r. Z twierdzenia Pitagorasa wynika równość:

Klasa 3. Trójkąty. 1. Trójkąt prostokątny ma przyprostokątne p i q oraz przeciwprostokątną r. Z twierdzenia Pitagorasa wynika równość: Klasa 3. Trójkąty. 1. Trójkąt prostokątny ma przyprostokątne p i q oraz przeciwprostokątną r. Z twierdzenia Pitagorasa wynika równość: A. r 2 + q 2 = p 2 B. p 2 + r 2 = q 2 C. p 2 + q 2 = r 2 D. p + q

Bardziej szczegółowo

PODSTAWOWE KONSTRUKCJE GEOMETRYCZNE

PODSTAWOWE KONSTRUKCJE GEOMETRYCZNE PODSTAWOWE KONSTRUKCJE GEOMETRYCZNE Dane będę rysował na czarno. Różne etapy konstrukcji kolorami: (w kolejności) niebieskim, zielonym, czerwonym i ewentualnie pomarańczowym i jasnozielonym. 1. Prosta

Bardziej szczegółowo

PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1

PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1 PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1 Planimetria to dział geometrii, w którym przedmiotem badań są własności figur geometrycznych leżących na płaszczyźnie (patrz określenie płaszczyzny). Pojęcia

Bardziej szczegółowo

Optyka 2012/13 powtórzenie

Optyka 2012/13 powtórzenie strona 1 Imię i nazwisko ucznia Data...... Klasa... Zadanie 1. Słońce w ciągu dnia przemieszcza się na niebie ze wschodu na zachód. W którym kierunku obraca się Ziemia? Zadanie 2. Na rysunku przedstawiono

Bardziej szczegółowo

VII Olimpiada Matematyczna Gimnazjalistów

VII Olimpiada Matematyczna Gimnazjalistów VII Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część testowa, test próbny www.omg.edu.pl (wrzesień 2011 r.) Rozwiązania zadań testowych 1. Liczba krawędzi pewnego ostrosłupa jest o

Bardziej szczegółowo

PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 3

PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 3 DEFINICJE PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 3 Czworokąt to wielokąt o 4 bokach i 4 kątach. Przekątną czworokąta nazywamy odcinek łączący przeciwległe wierzchołki. Wysokością czworokąta nazywamy

Bardziej szczegółowo

Zestaw 1. Rozmiary kątowe str. 1 / 5

Zestaw 1. Rozmiary kątowe str. 1 / 5 Materiały edukacyjne Tranzyt Wenus 2012 Zestaw 1. Rozmiary kątowe Czy zauważyliście, że drzewo, które znajduje się daleko wydaje się być dużo mniejsze od tego co jest blisko? To zjawisko nazywane jest

Bardziej szczegółowo

BADANIE MIKROSKOPU. POMIARY MAŁYCH DŁUGOŚCI

BADANIE MIKROSKOPU. POMIARY MAŁYCH DŁUGOŚCI ĆWICZENIE 43 BADANIE MIKROSKOPU. POMIARY MAŁYCH DŁUGOŚCI Układ optyczny mikroskopu składa się z obiektywu i okularu rozmieszczonych na końcach rury zwanej tubusem. Przedmiot ustawia się w odległości większej

Bardziej szczegółowo

Mini tablice matematyczne. Figury geometryczne

Mini tablice matematyczne. Figury geometryczne Mini tablice matematyczne Figury geometryczne Spis treści Własności kwadratu Ciekawostka:Kwadrat magiczny Prostokąt Własności prostokąta Trapez Własności trapezu Równoległobok Własności równoległoboku

Bardziej szczegółowo

Liceum dla Dorosłych semestr 1 FIZYKA MAŁGORZATA OLĘDZKA

Liceum dla Dorosłych semestr 1 FIZYKA MAŁGORZATA OLĘDZKA Liceum dla Dorosłych semestr 1 FIZYKA MAŁGORZATA OLĘDZKA Temat 6 : JAK ZMIERZONO ODLEGŁOŚCI DO KSIĘŻYCA, PLANET I GWIAZD? 1) Co to jest paralaksa? Eksperyment Wyciągnij rękę jak najdalej od siebie z palcem

Bardziej szczegółowo

SPRAWDZIAN NR Zaznacz poprawne dokończenie zdania. 2. Narysuj dowolny kąt rozwarty ABC, a następnie przy pomocy dwusiecznych skonstruuj kąt o

SPRAWDZIAN NR Zaznacz poprawne dokończenie zdania. 2. Narysuj dowolny kąt rozwarty ABC, a następnie przy pomocy dwusiecznych skonstruuj kąt o SPRAWDZIAN NR 1 ANNA KLAUZA IMIĘ I NAZWISKO: KLASA: GRUPA A 1. Średnica koła jest o 4 cm dłuższa od promienia. Pole tego koła jest równe 2. Narysuj dowolny kąt rozwarty ABC, a następnie przy pomocy dwusiecznych

Bardziej szczegółowo

Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących

Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt dla ucznia Planimetria: 5.

Bardziej szczegółowo

PODSTAWY > Figury płaskie (1) KĄTY. Kąt składa się z ramion i wierzchołka. Jego wielkość jest mierzona w stopniach:

PODSTAWY > Figury płaskie (1) KĄTY. Kąt składa się z ramion i wierzchołka. Jego wielkość jest mierzona w stopniach: PODSTAWY > Figury płaskie (1) KĄTY Kąt składa się z ramion i wierzchołka. Jego wielkość jest mierzona w stopniach: Kąt możemy opisać wpisując w łuk jego miarę (gdy jest znana). Gdy nie znamy miary kąta,

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI poziom rozszerzony

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI poziom rozszerzony Próbny egzamin maturalny z matematyki. Poziom rozszerzony 1 PRÓNY EGZMIN MTURLNY Z MTEMTYKI poziom rozszerzony ZNI ZMKNIĘTE W każdym z zadań 1.. wybierz i zaznacz jedną poprawną odpowiedź. Zadanie 1. (0

Bardziej szczegółowo

Podstawowe pojęcia geometryczne

Podstawowe pojęcia geometryczne PLANIMETRIA Podstawowe pojęcia geometryczne Geometria (słowo to pochodzi z języka greckiego i oznacza mierzenie ziemi) jest jednym z działów matematyki, którego przedmiotem jest badanie figur geometrycznych

Bardziej szczegółowo

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą 1. Statystyka odczytać informacje z tabeli odczytać informacje z diagramu 2. Mnożenie i dzielenie potęg o tych samych podstawach 3. Mnożenie i dzielenie potęg o tych samych wykładnikach 4. Potęga o wykładniku

Bardziej szczegółowo

MATEMATYKA KLASA II GIMNAZJUM - wymagania edukacyjne. DZIAŁ Potęgi

MATEMATYKA KLASA II GIMNAZJUM - wymagania edukacyjne. DZIAŁ Potęgi MATEMATYKA KLASA II GIMNAZJUM - wymagania edukacyjne. (Przyjmuje się, że jednym z warunków koniecznych uzyskania danej oceny jest spełnienie wymagań na wszystkie oceny niższe.) DZIAŁ Potęgi DOPUSZCZAJĄCY

Bardziej szczegółowo

LABORATORIUM ELEKTROTECHNIKI POMIAR PRZESUNIĘCIA FAZOWEGO

LABORATORIUM ELEKTROTECHNIKI POMIAR PRZESUNIĘCIA FAZOWEGO POLITECHNIKA ŚLĄSKA WYDZIAŁ TRANSPORTU KATEDRA LOGISTYKI I TRANSPORTU PRZEMYSŁOWEGO NR 1 POMIAR PRZESUNIĘCIA FAZOWEGO Katowice, październik 5r. CEL ĆWICZENIA Poznanie zjawiska przesunięcia fazowego. ZESTAW

Bardziej szczegółowo

LABORATORIUM OPTYKI GEOMETRYCZNEJ

LABORATORIUM OPTYKI GEOMETRYCZNEJ LABORATORIUM OPTYKI GEOMETRYCZNEJ POMIAR OGNISKOWYCH SOCZEWEK CIENKICH 1. Cel dwiczenia Zapoznanie z niektórymi metodami badania ogniskowych soczewek cienkich. 2. Zakres wymaganych zagadnieo: Prawa odbicia

Bardziej szczegółowo

Osiągnięcia ponadprzedmiotowe

Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego uczeń potrafi: Osiągnięcia ponadprzedmiotowe Umiejętności konieczne i podstawowe czytać teksty w stylu matematycznym wykorzystywać słownictwo wprowadzane przy okazji

Bardziej szczegółowo

Zadanie PP-GP-1 Punkty A, B, C, D i E leżą na okręgu (zob. rysunek). Wiadomo, że DBE = 10

Zadanie PP-GP-1 Punkty A, B, C, D i E leżą na okręgu (zob. rysunek). Wiadomo, że DBE = 10 Zadanie PP-GP-1 Punkty A, B, C, D i E leżą na okręgu (zob. rysunek). Wiadomo, że DBE = 10, ACE = 60, ADB = 40 i BEC = 20. Oblicz miarę kąta CAD. B C A D E Typ szkoły: LO LP T Czy jesteś w klasie z rozszerzonym

Bardziej szczegółowo

11. Znajdż równanie prostej prostopadłej do prostej k i przechodzącej przez punkt A = (2;2).

11. Znajdż równanie prostej prostopadłej do prostej k i przechodzącej przez punkt A = (2;2). 1. Narysuj poniższe figury: a), b), c) 2. Punkty A = (0;1) oraz B = (-1;0) należą do okręgu którego środek należy do prostej o równaniu x-2 = 0. Podaj równanie okręgu. 3. Znaleźć równanie okręgu przechodzącego

Bardziej szczegółowo

Piotr Targowski i Bernard Ziętek WYZNACZANIE MACIERZY [ABCD] UKŁADU OPTYCZNEGO

Piotr Targowski i Bernard Ziętek WYZNACZANIE MACIERZY [ABCD] UKŁADU OPTYCZNEGO Instytut Fizyki Uniwersytet Mikołaja Kopernika Piotr Targowski i Bernard Ziętek Pracownia Optoelektroniki Specjalność: Fizyka Medyczna WYZNAZANIE MAIERZY [ABD] UKŁADU OPTYZNEGO Zadanie II Zakład Optoelektroniki

Bardziej szczegółowo

Opis matematyczny odbicia światła od zwierciadła kulistego i przejścia światła przez soczewki.

Opis matematyczny odbicia światła od zwierciadła kulistego i przejścia światła przez soczewki. Opis matematyczny odbicia światła od zwierciadła kulistego i przejścia światła przez soczewki. 1. Równanie soczewki i zwierciadła kulistego. Z podobieństwa trójkątów ABF i LFD (patrz rysunek powyżej) wynika,

Bardziej szczegółowo

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE. Ćwiczenie nr 3 Temat: Wyznaczenie ogniskowej soczewek za pomocą ławy optycznej.

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE. Ćwiczenie nr 3 Temat: Wyznaczenie ogniskowej soczewek za pomocą ławy optycznej. LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE Ćwiczenie nr 3 Temat: Wyznaczenie ogniskowej soczewek za pomocą ławy optycznej.. Wprowadzenie Soczewką nazywamy ciało przezroczyste ograniczone

Bardziej szczegółowo

Temat ćwiczenia: Zasady stereoskopowego widzenia.

Temat ćwiczenia: Zasady stereoskopowego widzenia. Uniwersytet Rolniczy w Krakowie Wydział Inżynierii Środowiska i Geodezji Katedra Fotogrametrii i Teledetekcji Temat ćwiczenia: Zasady stereoskopowego widzenia. Zagadnienia 1. Widzenie monokularne, binokularne

Bardziej szczegółowo

Odległość kątowa. Liceum Klasy I III Doświadczenie konkursowe 1

Odległość kątowa. Liceum Klasy I III Doświadczenie konkursowe 1 Liceum Klasy I III Doświadczenie konkursowe 1 Rok 2015 1. Wstęp teoretyczny Patrząc na niebo po zachodzie Słońca mamy wrażenie, że znajdujemy się pod rozgwieżdżoną kopułą. Kopuła ta stanowi połowę tzw.

Bardziej szczegółowo

Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Publikacja jest dystrybuowana bezpłatnie Program Operacyjny Kapitał Ludzki Priorytet 9 Działanie 9.1 Poddziałanie

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATUR pola do tego przeznaczone. Błędne

LUBELSKA PRÓBA PRZED MATUR pola do tego przeznaczone. Błędne 1 MATEMATYKA - poziom podstawowy klasa 2 CZERWIEC 2015 Instrukcja dla zdaj cego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 17 stron. 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to

Bardziej szczegółowo

7. PLANIMETRIA.GEOMETRIA ANALITYCZNA

7. PLANIMETRIA.GEOMETRIA ANALITYCZNA 7. PLANIMETRIA.GEOMETRIA ANALITYCZNA ZADANIA ZAMKNIĘTE 1. Okrąg o równaniu : A) nie przecina osi, B) nie przecina osi, C) przechodzi przez początek układu współrzędnych, D) przechodzi przez punkt. 2. Stosunek

Bardziej szczegółowo

ZADANIA MATURALNE - ANALIZA MATEMATYCZNA - POZIOM ROZSZERZONY Opracowała - mgr Danuta Brzezińska. 2 3x. 2. Sformułuj odpowiedź.

ZADANIA MATURALNE - ANALIZA MATEMATYCZNA - POZIOM ROZSZERZONY Opracowała - mgr Danuta Brzezińska. 2 3x. 2. Sformułuj odpowiedź. ZADANIA MATURALNE - ANALIZA MATEMATYCZNA - POZIOM ROZSZERZONY Opracowała - mgr Danuta Brzezińska Zad.1. (5 pkt) Sprawdź, czy funkcja określona wzorem x( x 1)( x ) x 3x dla x 1 i x dla x 1 f ( x) 1 3 dla

Bardziej szczegółowo

Definicja obrotu: Definicja elementów obrotu:

Definicja obrotu: Definicja elementów obrotu: 5. Obroty i kłady Definicja obrotu: Obrotem punktu A dookoła prostej l nazywamy ruch punktu A po okręgu k zawartym w płaszczyźnie prostopadłej do prostej l w kierunku zgodnym lub przeciwnym do ruchu wskazówek

Bardziej szczegółowo

Sposób wykonania ćwiczenia. Płytka płasko-równoległa. Rys. 1. Wyznaczanie współczynnika załamania materiału płytki : A,B,C,D punkty wbicia szpilek ; s

Sposób wykonania ćwiczenia. Płytka płasko-równoległa. Rys. 1. Wyznaczanie współczynnika załamania materiału płytki : A,B,C,D punkty wbicia szpilek ; s WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA METODĄ SZPILEK I ZA POMOCĄ MIKROSKOPU Cel ćwiczenia: 1. Zapoznanie z budową i zasadą działania mikroskopu optycznego.. Wyznaczenie współczynnika załamania światła

Bardziej szczegółowo

Wielokąty i Okręgi- zagadnienia

Wielokąty i Okręgi- zagadnienia Wielokąty i Okręgi- zagadnienia 1. Okrąg opisany na trójkącie. na każdym trójkącie można opisać okrąg, środkiem okręgu opisanego na trójkącie jest punkt przecięcia symetralnych boków tego trójkąta, jeżeli

Bardziej szczegółowo

MATURA 2012. Powtórka do matury z matematyki. Część VIII: Geometria analityczna ODPOWIEDZI. Organizatorzy: MatmaNa6.pl, naszemiasto.

MATURA 2012. Powtórka do matury z matematyki. Część VIII: Geometria analityczna ODPOWIEDZI. Organizatorzy: MatmaNa6.pl, naszemiasto. MATURA 2012 Powtórka do matury z matematyki Część VIII: Geometria analityczna ODPOWIEDZI Organizatorzy: MatmaNa6.pl, naszemiasto.pl Witaj, otrzymałeś już ósmą z dziesięciu części materiałów powtórkowych

Bardziej szczegółowo

Propozycje rozwiązań zadań otwartych z próbnej matury rozszerzonej przygotowanej przez OPERON.

Propozycje rozwiązań zadań otwartych z próbnej matury rozszerzonej przygotowanej przez OPERON. Propozycje rozwiązań zadań otwartych z próbnej matury rozszerzonej przygotowanej przez OPERON. Zadanie 6. Dane są punkty A=(5; 2); B=(1; -3); C=(-2; -8). Oblicz odległość punktu A od prostej l przechodzącej

Bardziej szczegółowo

Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE. Rozwiązania. Wartość bezwzględna jest odległością na osi liczbowej.

Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE. Rozwiązania. Wartość bezwzględna jest odległością na osi liczbowej. Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE Rozwiązania Zadanie 1 Wartość bezwzględna jest odległością na osi liczbowej. Stop Istnieje wzajemnie jednoznaczne przyporządkowanie między punktami

Bardziej szczegółowo

Przykładowe rozwiązania zadań. Próbnej Matury 2014 z matematyki na poziomie rozszerzonym

Przykładowe rozwiązania zadań. Próbnej Matury 2014 z matematyki na poziomie rozszerzonym Zadania rozwiązali: Przykładowe rozwiązania zadań Próbnej Matury 014 z matematyki na poziomie rozszerzonym Małgorzata Zygora-nauczyciel matematyki w II Liceum Ogólnokształcącym w Inowrocławiu Mariusz Walkowiak-nauczyciel

Bardziej szczegółowo

MATEMATYKA DLA CIEKAWSKICH

MATEMATYKA DLA CIEKAWSKICH MATEMATYKA DLA CIEKAWSKICH Dowodzenie twierdzeń przy pomocy kartki. Część II Na rysunku przedstawiony jest obszar pewnego miasta wraz z zaznaczonymi szkołami podstawowymi. Wyobraźmy sobie, że mamy przydzielić

Bardziej szczegółowo

Wyznaczanie stałej słonecznej i mocy promieniowania Słońca

Wyznaczanie stałej słonecznej i mocy promieniowania Słońca Wyznaczanie stałej słonecznej i mocy promieniowania Słońca Jak poznać Wszechświat, jeśli nie mamy bezpośredniego dostępu do każdej jego części? Ta trudność jest codziennością dla astronomii. Obiekty astronomiczne

Bardziej szczegółowo

POMIAR ODLEGŁOŚCI OGNISKOWYCH SOCZEWEK. Instrukcja wykonawcza

POMIAR ODLEGŁOŚCI OGNISKOWYCH SOCZEWEK. Instrukcja wykonawcza ĆWICZENIE 77 POMIAR ODLEGŁOŚCI OGNISKOWYCH SOCZEWEK Instrukcja wykonawcza 1. Wykaz przyrządów Ława optyczna z podziałką, oświetlacz z zasilaczem i płytka z wyciętym wzorkiem, ekran Komplet soczewek z oprawkami

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI 5 MAJA 2016 POZIOM PODSTAWOWY. Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50

EGZAMIN MATURALNY Z MATEMATYKI 5 MAJA 2016 POZIOM PODSTAWOWY. Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 013 KOD UZUPEŁNIA ZDAJĄCY PESEL dyskalkulia miejsce na naklejkę dysleksja EGZAMIN MATURALNY Z MATEMATYKI

Bardziej szczegółowo

PF11- Dynamika bryły sztywnej.

PF11- Dynamika bryły sztywnej. Instytut Fizyki im. Mariana Smoluchowskiego Wydział Fizyki, Astronomii i Informatyki Stosowanej Uniwersytetu Jagiellońskiego Zajęcia laboratoryjne w I Pracowni Fizycznej dla uczniów szkół ponadgimnazjalych

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla klasy II gimnazjum wg programu Matematyka z plusem

Wymagania edukacyjne z matematyki dla klasy II gimnazjum wg programu Matematyka z plusem Wymagania edukacyjne z matematyki dla klasy II gimnazjum wg programu Matematyka z plusem pojęcie potęgi o wykładniku naturalnym wzór na mnożenie i dzielenie potęg o tych samych podstawach wzór na potęgowanie

Bardziej szczegółowo

Wielokąty na płaszczyźnie obliczenia z zastosowaniem trygonometrii

Wielokąty na płaszczyźnie obliczenia z zastosowaniem trygonometrii Wielokąty na płaszczyźnie obliczenia z zastosowaniem trygonometrii Obliczenia geometryczne z zastosowaniem własności funkcji trygonometrycznych w wielokątach wypukłych Wielokąt - figura płaską będąca sumą

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE IV

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE IV WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE IV Zna zależności wartości cyfry od jej położenia w liczbie Zna kolejność działań bez użycia nawiasów Zna algorytmy czterech działań pisemnych

Bardziej szczegółowo

KLUCZ PUNKTOWANIA ODPOWIEDZI

KLUCZ PUNKTOWANIA ODPOWIEDZI Egzamin maturalny maj 009 MATEMATYKA POZIOM PODSTAWOWY KLUCZ PUNKTOWANIA ODPOWIEDZI Zadanie 1. Matematyka poziom podstawowy Wyznaczanie wartości funkcji dla danych argumentów i jej miejsca zerowego. Zdający

Bardziej szczegółowo

Wstęp do fotografii. piątek, 15 października 2010. ggoralski.com

Wstęp do fotografii. piątek, 15 października 2010. ggoralski.com Wstęp do fotografii ggoralski.com element światłoczuły soczewki migawka przesłona oś optyczna f (ogniskowa) oś optyczna 1/2 f Ogniskowa - odległość od środka układu optycznego do ogniska (miejsca w którym

Bardziej szczegółowo

Notatki przygotowawcze dotyczące inwersji na warsztaty O geometrii nieeuklidesowej hiperbolicznej Wrocław, grudzień 2013

Notatki przygotowawcze dotyczące inwersji na warsztaty O geometrii nieeuklidesowej hiperbolicznej Wrocław, grudzień 2013 Notatki przygotowawcze dotyczące inwersji na warsztaty O geometrii nieeuklidesowej hiperbolicznej Wrocław, grudzień 013 3.4.1 Inwersja względem okręgu. Inwersja względem okręgu jest przekształceniem płaszczyzny

Bardziej szczegółowo

WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM

WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM Na ocenę dopuszczającą uczeń umie : WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM stosować cztery podstawowe działania na liczbach wymiernych, zna kolejność wykonywania działań

Bardziej szczegółowo

MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY V

MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY V MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY V Na ocenę wyższą uczeń powinien opanować wiedzę i umiejętności na ocenę (oceny) niższą. Dział programowy: LICZBY NATURALNE podać przykład liczby naturalnej czytać

Bardziej szczegółowo

Skrypt 30. Przygotowanie do egzaminu Okrąg wpisany i opisany na wielokącie

Skrypt 30. Przygotowanie do egzaminu Okrąg wpisany i opisany na wielokącie Projekt Innowacyjny program nauczania matematyki dla gimnazjów współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 30 Przygotowanie do egzaminu Okrąg wpisany

Bardziej szczegółowo

2. Wykaż, że dla dowolnej wartości zmiennej x wartość liczbowa wyrażenia (x 6)(x + 8) 2(x 25) jest dodatnia.

2. Wykaż, że dla dowolnej wartości zmiennej x wartość liczbowa wyrażenia (x 6)(x + 8) 2(x 25) jest dodatnia. 1. Wykaż, że liczba 2 2 jest odwrotnością liczby 1 2. 2. Wykaż, że dla dowolnej wartości zmiennej x wartość liczbowa wyrażenia (x 6)(x + 8) 2(x 25) jest dodatnia. 3. Wykaż, że dla każdej liczby całkowitej

Bardziej szczegółowo

Instrukcja dla zdającego Czas pracy: 170 minut

Instrukcja dla zdającego Czas pracy: 170 minut MATEMATYKA klasa pierwsza (pp) CZERWIEC 015 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 14 stron (zadania 1-). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego

Bardziej szczegółowo

Ruch drgający i falowy

Ruch drgający i falowy Ruch drgający i falowy 1. Ruch harmoniczny 1.1. Pojęcie ruchu harmonicznego Jednym z najbardziej rozpowszechnionych ruchów w mechanice jest ruch ciała drgającego. Przykładem takiego ruchu może być ruch

Bardziej szczegółowo

EGZAMIN MATURALNY W ROKU SZKOLNYM 2014/2015

EGZAMIN MATURALNY W ROKU SZKOLNYM 2014/2015 EGZAMIN MATURALNY W ROKU SZKOLNYM 04/0 FORMUŁA OD 0 ( NOWA MATURA ) MATEMATYKA POZIOM ROZSZERZONY ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ MMA-R CZERWIEC 0 Klucz punktowania zadań zamkniętych Nr zad. 3

Bardziej szczegółowo

17. Który z rysunków błędnie przedstawia bieg jednobarwnego promienia światła przez pryzmat? A. rysunek A, B. rysunek B, C. rysunek C, D. rysunek D.

17. Który z rysunków błędnie przedstawia bieg jednobarwnego promienia światła przez pryzmat? A. rysunek A, B. rysunek B, C. rysunek C, D. rysunek D. OPTYKA - ĆWICZENIA 1. Promień światła padł na zwierciadło tak, że odbił się od niego tworząc z powierzchnią zwierciadła kąt 30 o. Jaki był kąt padania promienia na zwierciadło? A. 15 o B. 30 o C. 60 o

Bardziej szczegółowo

M10. Własności funkcji liniowej

M10. Własności funkcji liniowej M10. Własności funkcji liniowej dr Artur Gola e-mail: a.gola@ajd.czest.pl pokój 3010 Definicja Funkcję określoną wzorem y = ax + b, dla x R, gdzie a i b są stałymi nazywamy funkcją liniową. Wykresem funkcji

Bardziej szczegółowo

Rysowanie precyzyjne. Polecenie:

Rysowanie precyzyjne. Polecenie: 7 Rysowanie precyzyjne W ćwiczeniu tym pokazane zostaną różne techniki bardzo dokładnego rysowania obiektów w programie AutoCAD 2010, między innymi wykorzystanie punktów charakterystycznych. Z uwagi na

Bardziej szczegółowo

X Olimpiada Matematyczna Gimnazjalistów

X Olimpiada Matematyczna Gimnazjalistów www.omg.edu.pl X Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część korespondencyjna (10 listopada 01 r. 15 grudnia 01 r.) Szkice rozwiązań zadań konkursowych 1. nia rozmieniła banknot

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w klasie III gimnazjum

Wymagania edukacyjne z matematyki w klasie III gimnazjum Wymagania edukacyjne z matematyki w klasie III gimnazjum - nie potrafi konstrukcyjnie podzielić odcinka - nie potrafi konstruować figur jednokładnych - nie zna pojęcia skali - nie rozpoznaje figur jednokładnych

Bardziej szczegółowo

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY LISTOPAD 011 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera 15

Bardziej szczegółowo

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 53: Soczewki

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 53: Soczewki Nazwisko i imię: Zespół: Data: Ćwiczenie nr : Soczewki Cel ćwiczenia: Wyznaczenie ogniskowych soczewki skupiającej i układu soczewek (skupiającej i rozpraszającej) oraz ogniskowej soczewki rozpraszającej

Bardziej szczegółowo

Rozwiązania zadań. Arkusz maturalny z matematyki nr 1 POZIOM PODSTAWOWY

Rozwiązania zadań. Arkusz maturalny z matematyki nr 1 POZIOM PODSTAWOWY Rozwiązania zadań Arkusz maturalny z matematyki nr POZIOM PODSTAWOWY Zadanie (pkt) Sposób I Skoro liczba jest środkiem przedziału, więc odległość punktu x od zapisujemy przy pomocy wartości bezwzględnej.

Bardziej szczegółowo

Tydzień I Liczby naturalne w dziesiątkowym systemie pozycyjnym... Tydzień II Działania na liczbach naturalnych... Tydzień III Powtórzenie...

Tydzień I Liczby naturalne w dziesiątkowym systemie pozycyjnym... Tydzień II Działania na liczbach naturalnych... Tydzień III Powtórzenie... Spis treści Liczby naturalne i działania Tydzień I Liczby naturalne w dziesiątkowym systemie pozycyjnym... Tydzień II Działania na liczbach naturalnych... Tydzień III Powtórzenie... Geometria Tydzień IV

Bardziej szczegółowo

Konspekt do lekcji matematyki w klasie II gimnazjum

Konspekt do lekcji matematyki w klasie II gimnazjum Agnieszka Raczkiewicz Konspekt do lekcji matematyki w klasie II gimnazjum Temat lekcji: Wielokąty foremne - konstrukcje i zadania. Temat poprzedniej lekcji: Wielokąt opisany na okręgu. Czas realizacji

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY CZERWIEC 2013. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY CZERWIEC 2013. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 00 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN

Bardziej szczegółowo

Elżbieta Świda Elżbieta Kurczab Marcin Kurczab. Zadania otwarte krótkiej odpowiedzi na dowodzenie na obowiązkowej maturze z matematyki

Elżbieta Świda Elżbieta Kurczab Marcin Kurczab. Zadania otwarte krótkiej odpowiedzi na dowodzenie na obowiązkowej maturze z matematyki Elżbieta Świda Elżbieta Kurczab Marcin Kurczab Zadania otwarte krótkiej odpowiedzi na dowodzenie na obowiązkowej maturze z matematyki Zadanie Trójkąt ABC jest trójkątem prostokątnym. Z punktu M, należącego

Bardziej szczegółowo

Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym

Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym Ćwiczenie E6 Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym E6.1. Cel ćwiczenia Na zamkniętą pętlę przewodnika z prądem, umieszczoną w jednorodnym polu magnetycznym, działa skręcający moment

Bardziej szczegółowo

KGGiBM GRAFIKA INŻYNIERSKA Rok III, sem. VI, sem IV SN WILiŚ Rok akademicki 2011/2012

KGGiBM GRAFIKA INŻYNIERSKA Rok III, sem. VI, sem IV SN WILiŚ Rok akademicki 2011/2012 Rysowanie precyzyjne 7 W ćwiczeniu tym pokazane zostaną wybrane techniki bardzo dokładnego rysowania obiektów w programie AutoCAD 2012, między innymi wykorzystanie punktów charakterystycznych. Narysować

Bardziej szczegółowo

Kamera internetowa: prosty instrument astronomiczny. Dr Tomasz Mrozek Instytut Astronomiczny Uniwersytet Wrocławski

Kamera internetowa: prosty instrument astronomiczny. Dr Tomasz Mrozek Instytut Astronomiczny Uniwersytet Wrocławski Kamera internetowa: prosty instrument astronomiczny Dr Tomasz Mrozek Instytut Astronomiczny Uniwersytet Wrocławski Detektory promieniowania widzialnego Detektory promieniowania widzialnego oko błona fotograficzna

Bardziej szczegółowo

Badanie przy użyciu stolika optycznego lub ławy optycznej praw odbicia i załamania światła. Wyznaczanie ogniskowej soczewki metodą Bessela.

Badanie przy użyciu stolika optycznego lub ławy optycznej praw odbicia i załamania światła. Wyznaczanie ogniskowej soczewki metodą Bessela. Badanie przy użyciu stolika optycznego lub ławy optycznej praw odbicia i załamania światła. Wyznaczanie ogniskowej soczewki metodą Bessela. I LO im. Stefana Żeromskiego w Lęborku 20 luty 2012 Stolik optyczny

Bardziej szczegółowo

Matematyka podstawowa VII Planimetria Teoria

Matematyka podstawowa VII Planimetria Teoria Matematyka podstawowa VII Planimetria Teoria 1. Rodzaje kątów: a) Kąty wierzchołkowe; tworzą je dwie przecinające się proste, mają takie same miary. b) Kąty przyległe; mają wspólne jedno ramię, ich suma

Bardziej szczegółowo

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI SPIS TREŚCI WSTĘP.................................................................. 8 1. LICZBY RZECZYWISTE Teoria............................................................ 11 Rozgrzewka 1.....................................................

Bardziej szczegółowo

KRZYŻÓWKA 2. 11. Może być np. równoboczny lub rozwartokątny. Jego pole to a b HASŁO:

KRZYŻÓWKA 2. 11. Może być np. równoboczny lub rozwartokątny. Jego pole to a b HASŁO: KRZYŻÓWKA.Wyznaczają ją dwa punkty.. Jego pole to π r² 3. Jego pole to a a 4.Figura przestrzenna, której podstawą jest dowolny wielokąt, a ściany boczne są trójkątami o wspólnym wierzchołku. 5.Prosta mająca

Bardziej szczegółowo

Przykłady zastosowań trygonometrii w sytuacjach praktycznych

Przykłady zastosowań trygonometrii w sytuacjach praktycznych Przykłady zastosowań trygonometrii w sytuacjach praktycznych Przypomnijmy najważniejsze informacje o funkcjach trygonometrycznych, które w dalszym ciągu będziemy wykorzystywać: funkcje trygonometryczne

Bardziej szczegółowo

Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne:

Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne: Prosto do matury klasa d Rok szkolny 014/015 WYMAGANIA EDUKACYJNE Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające

Bardziej szczegółowo

Czas pracy 170 minut

Czas pracy 170 minut ORGANIZATOR WSPÓŁORGANIZATOR PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI MARZEC ROK 04 POZIOM PODSTAWOWY Czas pracy 70 minut Instrukcja dla piszącego. Sprawdź, czy arkusz zawiera 6 stron.. W zadaniach od. do

Bardziej szczegółowo

Matura próbna 2014 z matematyki-poziom podstawowy

Matura próbna 2014 z matematyki-poziom podstawowy Matura próbna 2014 z matematyki-poziom podstawowy Klucz odpowiedzi do zadań zamkniętych zad 1 2 3 4 5 6 7 8 9 10 11 12 odp A C C C A A B B C B D A 13 14 15 16 17 18 19 20 21 22 23 24 25 C C A B A D C B

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY SIERPIEŃ 2014. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY SIERPIEŃ 2014. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 03 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN MATURALNY Z MATEMATYKI Instrukcja

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Biotechnologia w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era inżyniera

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ 2016 poziom podstawowy M A T E M A T Y K A 09 MARCA Instrukcja dla zdającego Czas pracy: 170 minut

LUBELSKA PRÓBA PRZED MATURĄ 2016 poziom podstawowy M A T E M A T Y K A 09 MARCA Instrukcja dla zdającego Czas pracy: 170 minut M A T E M A T Y K A 09 MARCA 016 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 14 stron (zadania 1-4). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin..

Bardziej szczegółowo

WYMAGANIA NA POSZCZEGÓLNE OCENY PO KLASIE II GIMNAZJUM

WYMAGANIA NA POSZCZEGÓLNE OCENY PO KLASIE II GIMNAZJUM WYMAGANIA NA POSZCZEGÓLNE OCENY PO KLASIE II GIMNAZJUM POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca (2) P - podstawowy ocena dostateczna (3) R - rozszerzający ocena dobra (4) D - dopełniający

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI SIERPIEŃ 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI SIERPIEŃ 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 00 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN

Bardziej szczegółowo

ZADANIA NA DOWODZENIE GEOMETRIA, cz. II Wojciech Guzicki

ZADANIA NA DOWODZENIE GEOMETRIA, cz. II Wojciech Guzicki ZNI N OWOZNI GOMTRI, cz. II Wojciech Guzicki W arkuszach maturalnych w ostatnich dwóch latach znalazły się zadania geometryczne na dowodzenie. Za poprawne rozwiązanie takiego zadania w arkuszu podstawowymzdającymógłotrzymać2pkt,warkuszurozszerzonym4pktlub3pkt.przy

Bardziej szczegółowo

SCENARIUSZ LEKCJI Temat lekcji: Soczewki i obrazy otrzymywane w soczewkach

SCENARIUSZ LEKCJI Temat lekcji: Soczewki i obrazy otrzymywane w soczewkach Scenariusz lekcji : Soczewki i obrazy otrzymywane w soczewkach Autorski konspekt lekcyjny Słowa kluczowe: soczewki, obrazy Joachim Hurek, Publiczne Liceum Ogólnokształcące z Oddziałami Dwujęzycznymi w

Bardziej szczegółowo

( W.Ogłoza, Uniwersytet Pedagogiczny w Krakowie, Pracownia Astronomiczna)

( W.Ogłoza, Uniwersytet Pedagogiczny w Krakowie, Pracownia Astronomiczna) TEMAT: Analiza zdjęć ciał niebieskich POJĘCIA: budowa i rozmiary składników Układu Słonecznego POMOCE: fotografie róŝnych ciał niebieskich, przybory kreślarskie, kalkulator ZADANIE: Wykorzystując załączone

Bardziej szczegółowo

KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. II GIMNAZJUM

KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. II GIMNAZJUM KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. II GIMNAZJUM POTĘGI I PIERWIASTKI - pojęcie potęgi o wykładniku naturalnym; - wzór na mnożenie i dzielenie potęg o tych samych podstawach; - wzór na potęgowanie

Bardziej szczegółowo

WYMAGANIA PROGRAMOWE Z MATEMATYKI KLASA II GIMNAZJUM( IIan1, IIan2, IIb) Na rok szkolny 2015/2016

WYMAGANIA PROGRAMOWE Z MATEMATYKI KLASA II GIMNAZJUM( IIan1, IIan2, IIb) Na rok szkolny 2015/2016 WYMAGANIA PROGRAMOWE Z MATEMATYKI KLASA II GIMNAZJUM( IIan1, IIan2, IIb) Na rok szkolny 2015/2016 OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM I PODRĘCZNIKA O NR DOP. 168/2/2010 POZIOMY WYMAGAŃ

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny w gimnazjum rok szkolny 2011/2012 etap rejonowy

Wojewódzki Konkurs Matematyczny w gimnazjum rok szkolny 2011/2012 etap rejonowy Kod ucznia Łączna liczba punktów Numer zadania 1 14 15 17 18 19 20 Drogi Uczniu! Liczba punktów Przed Tobą test składający się z 20 zadań. Za wszystkie zadania razem możesz zdobyć 40 punktów. Aby przejść

Bardziej szczegółowo

PODSTAWOWE FIGURY GEOMETRYCZNE

PODSTAWOWE FIGURY GEOMETRYCZNE TEST SPRAWDZAJĄCY Z MATEMATYKI dla klasy IV szkoły podstawowej z zakresu PODSTAWOWE FIGURY GEOMETRYCZNE autor: Alicja Bruska nauczyciel Szkoły Podstawowej nr 1 im. Józefa Wybickiego w Rumi WSTĘP Niniejsze

Bardziej szczegółowo

Ć W I C Z E N I E N R O-4

Ć W I C Z E N I E N R O-4 INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA OPTYKI Ć W I C Z E N I E N R O-4 BADANIE WAD SOCZEWEK I Zagadnienia do opracowania Równanie soewki,

Bardziej szczegółowo