Zmiany mikroflory jamy ustnej podczas leczenia ortodontycznego aparatami stałymi przegląd piśmiennictwa



Podobne dokumenty
Ryzyko próchnicy podczas leczenia ortodontycznego aparatem stałym*

PL B1. ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY W SZCZECINIE, Szczecin, PL BUP 08/12. EDYTA BALEJKO, Mierzyn, PL

Poziom bakterii próchnicotwórczych u użytkowników częściowych osiadających uzupełnień protetycznych akrylowych

kwestionariusze badania ankietowego, karta badania, broszura informacyjna dla pacjentek,

Mechanizm i czynniki ryzyka powstawania biofilmu bakteryjnego jamy ustnej* Mechanism and risk factors of oral biofilm formation

Czy leczenie ortodontyczne aparatami stałymi stanowi zagrożenie dla tkanek przyzębia? Przegląd literatury

ParoCheck. Oznaczanie bakterii odpowiedzialnych za chorobę przyzębia (periopatogenów)

CHOROBY PRZYZĘBIA jak zmotywować pacjenta do zmiany nawyków?

Zapraszamy do sklepu Producent: 5 Pillars Research 17,00 zł Waga: 0.08kg. Kod QR: Opis płukanki BLUEM 50ml (MAŁY)

Próchnica u osób dorosłych. Zalecenia higieniczne - informacje dla zespołów stomatologicznych

OCENA TKANKI KOSTNEJ WOKÓŁ IMPLANTÓW WSZCZEPIONYCH W OBRĘBIE KOŚCI WŁASNEJ AUGMENTOWANEJ MATERIAŁAMI KSENOGENNYMI

Choroby przyzębia. Rok IV

Monika Weber-Dubaniewicz 1, Zdzisław Bereznowski 1, Anna Kędzia 2, Jolanta Ochocińska 3

ANNALES UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA LUBLIN - POLONIA VOL.LX, SUPPL. XVI, 467 SECTIO D 2005

Głównym czynnikiem wywołującym chorobę przyzębia są bakterie znajdujące się w płytce nazębnej.

Prof. dr hab. Zbigniew Adamiak Olsztyn, Katedra Chirurgii i Rentgenologii z Kliniką Wydział Medycyny Weterynaryjnej UWM Olsztyn RECENZJA

Ze względu na brak potwierdzenia w badaniu przeprowadzonym wśród młodzieży (opisanym poniżej) wyniki zostały uznane za niedostatecznie przekonujące.

1. Demonstracja preparatów bakteryjnych barwionych metodą negatywną ukazujących kształty komórek bakteryjnych.

8 osób na 10 cierpi na choroby przyzębia! Wiemy jak Państwu pomóc

OCENA WYSTĘPOWANIA ANOMALII ZĘBOWYCH I MORFOLOGII WYROSTKA ZĘBODOŁOWEGO U PACJENTÓW Z ZATRZYMANYMI KŁAMI

Profilaktyka próchnicy u kobiet ciężarnych zalecenia dla lekarzy stomatologów

Spis treœci. 1. Wstêp... 1

Prezentacja Pracowni Ekologii Drobnoustrojów w Katedry Mikrobiologii UJCM

Ewa Czochrowska¹, Magdalena Dragan², Renata Górska². Retrospektywna ocena leczenia ortodontycznego aparatami stałymi u pacjentów z chorobą przyzębia

SCHORZENIA POCHWY I ICH ZAPOBIEGANIE. Poradnik dla pacjentki o diagnozowaniu i leczeniu chorób pochwy

OGÓLNY PLAN ĆWICZEŃ I SEMINARIÓW Z MIKROBIOLOGII OGÓLNEJ dla studentów STOMATOLOGII w roku akademickim semestr zimowy

Ocena molekularna periopatogenów z głębokich kieszonek przyzębnych w przebiegu zaawansowanych zapaleń przyzębia

SERIA PRODUKTÓW TIENS DO HIGIENY JAMY USTNEJ. Zdrowe zęby, wspaniały uśmiech!

Seria do pielęgnacji jamy ustnej TIENS

Badanie właściwości mechanicznych, korozyjnych i przeciwdrobnoustrojowych powłok na bazie ZrC

Elżbieta Arłukowicz Streszczenie rozprawy doktorskiej

Najnowsze badania kliniczne. opublikowane w wydaniu specjalnym The Journal of Clinical Dentistry

ANNALES UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA LUBLIN - POLONIA VOL.LX, SUPPL. XVI, 352 SECTIO D 2005

Magdalena Stec, Jacek Pypeć

RECENZJA. Warszawskiego Uniwersytetu Medycznego) pt. OCENA BAKTERYJNEJ FLORY GRONKOWCOWEJ UŻYTKOWNIKÓW PROTEZ

Ryzyko próchnicy? Nadwrażliwość zębów? Choroby dziąseł? Profilaktyka u dzieci. Co może dać Ci profilaktyczne dbanie o zęby?

Podstawy mikrobiologii

Leczenie stłoczeń zębowych z zastosowaniem językowych zamków samoligaturujących 2D opis przypadku

SANPROBI Super Formula

Analysis of infectious complications inf children with acute lymphoblastic leukemia treated in Voivodship Children's Hospital in Olsztyn

DO PŁUKANIA KIESZONEK DZIĄSŁOWYCH

Część I Choroba próchnicowa 1. Rozdział 1 Kliniczna kariologia i stomatologia zachowawcza w XXI wieku 3

SKUTECZNOŚĆ LECZENIA ZĘBÓW Z ZAKAŻONYMI KANAŁAMI KORZENIOWYMI I CHOROBAMI TKANEK OKOŁOWIERZCHOŁKOWYCH

Wpływ metody zamkniętego wyrzynania na tkanki przyzębia niewyrzniętych lub zatrzymanych zębów po leczeniu chirurgiczno-ortodontycznym

Kliniczna i mikrobiologiczna ocena skuteczności zmodyfikowanego protokołu odkażania jamy ustnej w leczeniu przewlekłego zapalenia przyzębia

Kierunek Lekarsko- dentystyczny Wydziału Lekarskiego Oddziału Stomatologicznego

Sylabus na rok

Z Zakładu Stomatologii Wieku Rozwojowego Uniwersytetu Medycznego w Łodzi Kierownik Katedry i Zakładu: prof. dr hab. n. med. M.

Idealnie dopasowuje się, zabija bakterie* 1, 2. Nie wszystkie opatrunki ze srebrem są tak samo zbudowane. * Jak wykazano w testach in vitro

2 RAMOWY PROGRAM STAŻU PODYPLOMOWEGO LEKARZA DENTYSTY

NZOZ CENTRUM UŚMIECHU HIGIENA JAMY USTNEJ

Kierunek Lekarsko- dentystyczny Wydziału Lekarskiego Oddziału Stomatologicznego

Ćwiczenie 1. Ekosystem jamy ustnej

Cervitec. Lakier ochronny o podwójnym działaniu. Podwójna ochrona jeden etap postępowania

Biofilm w ortodoncji cz. 1. Biofilm in orthodontics part 1

Wykaz profilaktycznych świadczeń stomatologicznych dla dzieci i młodzieży do ukończenia. do ukończenia 19. roku życia oraz warunki ich realizacji

CHOROBA PRÓCHNICOWA U DZIECI W WIEKU 0-5 LAT W POLSCE I NA ŚWIECIE.

Leki przeciwbakteryjne i przeciwgrzybicze

Skale i wskaźniki jakości leczenia w OIT

Proxyt. Profesjonalne czyszczenie i polerowanie zębów. Pasty profilaktyczne Specjalistyczne, delikatne, niezawodne

Kierunek Lekarsko- dentystyczny Wydziału Lekarskiego Oddziału Stomatologicznego

W praktyce stomatologicznej spotyka się pacjentów, którzy pomimo zaleceń lekarzy,

Spis treści Spis treści. Słowo wstępne. Podziękowania Autorzy. 1 Ocena pacjenta w wieku rozwojowym 1

Pacjenci zostali podzieleni na trzy grupy liczące po 20 osób. Grupa I i II to osoby, u których na podstawie wartości pomiaru kąta ANB oraz WITS w

labrida bioclean Szczoteczka została opracowana przez ekspertów klinicznych w norweskiej firmie Labrida AS, która powstała w 2012 roku.

WARSZAWSKI UNIWERSYTET MEDYCZNY

Stan higieny jamy ustnej i tkanek przyzębia mieszkańców Kielc w wieku lata

Terapia jednego dnia jako alternatywa dla tradycyjnego leczenia periodontologicznego przegląd piśmiennictwa

KATEDRA CHIRURGII STOMATOLOGICZNEJ I SZCZĘKOWO- TWARZOWEJ ZAKŁAD CHIRURGII STOMATOLOGICZNEJ

szczęki, objawy i sposoby Natalia Zając

STOMATOLOGIA ZACHOWAWCZA

Program profilaktyki próchnicy zębów u dzieci w wieku przedszkolnym, 3-5 lat

Wpływ higienizacji jamy ustnej na zmiany wybranych wskaźników tkanek okołozębowych i płytki nazębnej

oraz grzybów z rodzaju Candida u chorych z zespołem Sjögrena*

Powikłania leczenia ortodontycznego aparatami stałymi i ruchomymi u pacjentów w wieku rozwojowym

- podłoża transportowo wzrostowe..

Ocena występowania defensyn (HNP 1-3) w ślinie i surowicy osób z przewlekłym zapaleniem przyzębia

NZOZ CENTRUM UŚMIECHU PRÓCHNICA ZĘBÓW. lek. dent. Joanna Goraś lek. dent. Paulina Pieniążek

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 1531

LECZENIE DZIECI LAKOWANIE ZĘBÓW STAŁYCH (ZABEZPIECZENIE BRUZD)

Celem prezentowanego badania było określenie wskazań

Wydział Lekarski UM w Łodzi Kierunek lekarsko dentystyczny Kierunek Stomatologia Nazwa Przedmiotu Stomatologia dziecięca i profilaktyka

Ćwiczenie 1. Ekosystem jamy ustnej

Wykorzystanie stałych i ruchomych aparatów ortodontycznych w chirurgiczno-ortodontycznym leczeniu niewyrzniętych lub zatrzymanych zębów

ZAPOBIEGANIE CHOROBIE PRÓCHNICOWEJ

PRACA ORYGINALNA. Andrzej Siwiec. 1 mgr Iwona Kowalska, Centrum Pediatrii im. Jana Pawła II w Sosnowcu. Dyrektor dr nauk. med.

USG Power Doppler jest użytecznym narzędziem pozwalającym na uwidocznienie wzmożonego przepływu naczyniowego w synovium będącego skutkiem zapalenia.

Ocena i interpretacja obrazu mikroskopowego oraz innych czynników określających stopien czystości pochwy

Dr n. med. Dorota Żabicka, NPOA, KORLD, Zakład Epidemiologii i Mikrobiologii Klinicznej NIL

Łukasz Czupkałło Ocena systemu RANK/RANKL/OPG w płynie dziąsłowym u kobiet w ciąży fizjologicznej oraz pacjentek ciężarnych z chorobą przyzębia.

Dr hab. n. med. Prof.UR Bogumił Lewandowski

Oporność na antybiotyki w Unii Europejskiej Dane zaprezentowane poniżej zgromadzone zostały w ramach programu EARS-Net, który jest koordynowany przez

Narodowy Instytut Leków ul. Chełmska 30/34, Warszawa Tel , Fax Warszawa, dn r.

Rok akademicki 2015/2016. Dr hab. n. med. Prof.UR Bogumił Lewandowski

Kliniczne możliwości stosowania probiotyków ze szczególnym uwzględnieniem ich działania w jamie ustnej przegląd piśmiennictwa

Zalecenia w zakresie higieny jamy ustnej dla kobiet w ciąży.

Stomatologia zachowawcza

DZIENNIK PRAKTYK PRAKTYCZNE NAUCZANIE KLINICZNE KIERUNEK LEKARSKO-DENTYSTYCZNY

SZCZEGÓŁOWY OPIS PRZEDMIOTU ZAMÓWIENIA

Badanie: Badanie stomatologiczne

Transkrypt:

Prace poglądowe Dent. Med. Probl. 2012, 49, 1, 110 120 ISSN 1644-387X Copyright by Wroclaw Medical University and Polish Dental Society Tomasz Stefański 1, Aleksandra Myrda 2, Lidia Postek-Stefańska 3 Zmiany mikroflory jamy ustnej podczas leczenia ortodontycznego aparatami stałymi przegląd piśmiennictwa Changes in Oral Microbiota During Fixed Orthodontic Treatment A Literature Review 1 Studenckie Koło Naukowe przy Katedrze i Zakładzie Stomatologii Wieku Rozwojowego Śląskiego Uniwersytetu Medycznego w Katowicach 2 Studium Doktoranckie przy Wydziale Lekarskim z Oddziałem Lekarsko-Dentystycznym w Zabrzu Śląskiego Uniwersytetu Medycznego w Katowicach 3 Katedra i Zakład Stomatologii Wieku Rozwojowego Śląskiego Uniwersytetu Medycznego w Katowicach Streszczenie Elementy ortodontycznych aparatów stałych w jamie ustnej stwarzają wiele potencjalnych powierzchni dla odkładania płytki bakteryjnej i utrudniają jej usuwanie. Zwiększone gromadzenie płytki wiąże się również ze zmianami naturalnej mikroflory. Na podstawie piśmiennictwa przedstawiono zmiany jakościowe i ilościowe zachodzące podczas leczenia ortodontycznego aparatami stałymi z uwzględnieniem bakterii kariogennych, periodontopatogennych oraz drobnoustrojów oportunistycznych, w tym grzybów. Omówiono także adhezję bakterii do różnych materiałów ortodontycznych i jej zależność od właściwości powierzchniowych tych materiałów. Z przeglądu piśmiennictwa wynika, że zmiany mikroflory jamy ustnej są w większości przypadków przejściowe. Mogą jednak prowadzić do powikłań nawet przy zachowaniu dobrej higieny. Jeśli chodzi o choroby przyzębia, to przy zachowaniu właściwej higieny jamy ustnej są to powikłania doraźne w postaci zapalenia dziąseł, które w niewielkim stopniu wpływają na przyszły stan tych tkanek. Białe plamy próchnicowe natomiast mogą stać się nieusuwalnymi bliznami, a w razie braku działań zapobiegawczych przekształcić się w bardziej zaawansowane ubytki wymagające leczenia odtwórczego (Dent. Med. Probl. 2012, 49, 1, 110 120). Słowa kluczowe: leczenie ortodontyczne, aparaty stałe, bakterie, adhezja bakterii, płytka nazębna. Abstract Fixed orthodontic appliances in the mouth create a high number of plaque-retentive sites and impede plaque removal. An increased biofilm accumulation is associated with the shift of oral microbiological balance. This article reviews the qualitative and quantitative changes of cariogenic, and periodontopathogenic bacteria, as well as opportunistic microbes, including fungi. Furthermore, bacterial adhesion to different orthodontic materials is discussed with regard to their surface properties that influence microbial colonisation. On the basis of literature review it has been concluded that, in most cases, microbial changes are temporary. They may lead to complications. When a proper oral hygiene is maintained, the effect on periodontal health is transient, and gingivitis may occur. Microbial change have a little long-term detrimental impact on periodontal structures. Nevertheless, white spot lesions may remain as visible enamel scars or, if not treated, progress to cavitated lesions requiring restorative treatment (Dent. Med. Probl. 2012, 49, 1, 110 120). Key words: orthodontic treatment, fixed appliances, bacteria, bacterial adhesion, dental plaque. Elementy ortodontycznych aparatów stałych, takie jak druty, ligatury, sprężyny, pętle, a przede wszystkim zamki i pierścienie zwiększają potencjalną powierzchnię i szybkość odkładania płytki bakteryjnej w jamie ustnej [1 5]. Utrudniają ponadto jej usuwanie podczas szczotkowania zębów. Złożony kształt tych elementów osłabia również naturalne samooczyszczanie z udziałem śliny

Zmiany mikroflory jamy ustnej a leczenie aparatami stałymi 111 i mięśni jamy ustnej. Wprawdzie donoszono [6 8] o zwiększeniu wydzielania śliny u pacjentów noszących aparaty stałe, a nawet o wzroście jej ph i pojemności buforowej [8], to jednak jej przepływ jest tak zakłócony, że współczynnik oczyszczania jamy ustnej z cukru (oral sugar clearance) jest niewielki. Wzrost objętości zalegającej śliny jest głównie rezultatem stymulacji gruczołów ślinowych przez części aparatu oraz usuwania mniejszych jej ilości przy połykaniu. Z mikrobiologicznego punktu widzenia konstrukcja aparatu stałego stwarza warunki środowiskowe i nisze ekologiczne sprzyjające sukcesji allogenicznej, w wyniku której dochodzi do utworzenia nowego zbiorowiska ostatecznego. Powstanie błonki nabytej Punktem wyjścia kolonizacji bakteryjnej jest powstanie błonki nabytej. Pokrywa ona nie tylko zęby i błonę śluzową, ale również wszystkie sztuczne powierzchnie w jamie ustnej: wypełnienia, protezy, wszczepy tytanowe, aparaty ortodontyczne. Tworzenie błonki nabytej nie ogranicza się tylko do selektywnej adsorpcji protein i glikoprotein śliny oraz płynu dziąsłowego, lecz polega również na dynamicznej wymianie tych cząsteczek, np. duże mucyny są zastępowane przez mniejsze stateryny i kwaśne białka bogate w prolinę [9]. Swoisty układ i skład cząsteczkowy błonki nabytej zależy od właściwości fizykochemicznych podłoża, na którym się tworzy [10]. Przypuszcza się, że od tych cech będą zależały szybkość kolonizacji oraz skład przyszłego biofilmu [11]. Adhezja bakterii do materiałów ortodontycznych Adhezja bakterii do błonki nabytej opiera się na oddziaływaniach swoistych i nieswoistych. Interakcjami swoistymi są oddziaływania ligand receptor między komplementarnymi cząsteczkami powierzchniowymi bakterii (tzw. adhezyny) i cząsteczkami kolonizowanej powierzchni (tzw. ligandy), a więc składowymi błonki nabytej. Wśród adhezyn istotną rolę odgrywają adhezyny fimbriowe (fimbrie), obecne na powierzchni większości bakterii zasiedlających jamę ustną: paciorkowców, promieniowców, a także bakterii Gram-ujemnych z rodzaju Prevotella czy gatunku Porphyromonas gingivalis. Do mechanizmów nieswoistych należą oddziaływania fizykochemiczne, takie jak: elektrostatyczne (siły van der Waalsa, siły dyspersyjne Londona), zależne m.in. od ładunku powierzchniowego, potencjału zeta i potencjału przepływu, hydrofobowe, kwasowo-zasadowe [12]. Do najważniejszych właściwości materiałowych, obok składu chemicznego i ładunku elektrycznego, należą chropowatość powierzchni oraz swobodna energia powierzchniowa (SEP). Oba wskaźniki są dodatnio skorelowane z szybkością tworzenia i dojrzewania biofilmu. Chropowatość materiału nasila mechaniczną retencję drobnoustrojów. Swobodna energia powierzchniowa ciała jest związana z jego hydrofobowością [13]. Im większa swobodna energia powierzchniowa materiału, tym większa jego zwilżalność. Z zasad termodynamiki wynika, że największa adherencja zachodzi między materiałem i bakteriami o dużych swobodnych energiach powierzchniowych [14]. Takimi bakteriami są m.in. Streptococcus mutans, Streptococcus sanguinis (biotyp 1 i 2), Streptococcus salivarius [12]. Podaje się różne wartości SEP materiałów ortodontycznych (tab. 1). Nowsze badania autorów koreańskich [14 16] nie potwierdzają pomiarów Eliadesa et al. [17], którzy obliczyli, że największą SEP mają zamki ze stali nierdzewnej, mniejszą zamki poliwęglanowe, a najmniejszą zamki z polikrystalicznego tlenku glinu. Z badań Lee et al. [16] wynika, że to właśnie zamki ze stali nierdzewnej mają najniższą SEP. Ahn et al. [15] badali dwa rodzaje zamków metalowych różnych producentów. Wyciągnęli wniosek, że niejednakowe wartości SEP tych samych materiałów mogą wynikać z odmiennych technologii ich wytwarzania. Porównując SEP zamków z różnych materiałów stwierdzono, że większą SEP charakteryzują się materiały adhezyjne, a zatem to one są bardziej podatne na kolonizację bakterii o wysokiej SEP [16, 18]. Jeśli chodzi o chropowatość, to Lee et al. [16] oraz Ahn et al. [15] zgodnie stwierdzili, że zdecydowanie najmniejszą chropowatością charakteryzują się zamki z monokrystalicznego szafiru. Materiałem o największej chropowatości jest wg Lee et al. [16] polikrystaliczny tlenek glinu, a według Ahn et al. [15] stal nierdzewna. Kolonizacja bakteryjna poszczególnych części stałego aparatu ortodontycznego Wiele badań poświęcono kolonizacji bakteryjnej zamków ortodontycznych. Nie ma zgodności w tym, który materiał jest najliczniej zasiedla-

112 T. Stefański, A. Myrda, L. Postek-Stefańska Tabela 1. Wartości swobodnej energii powierzchniowej [mj/m 2 ] poszczególnych rodzajów zamków ortodontycznych i materiałów adhezyjnych wyznaczone przez różnych autorów Table 1. Surface-free energy values [mj/m 2 ] of different orthodontic brackets and adhesives measured by various investigators Zamek ze stali nierdzewnej (Stainless steel bracket) Zamek z monokrystalicznego tlenku glinu (Monocrystalline sapphire bracket) Zamek z polikrystalicznego tlenku glinu (Polycrystalline alumina bracket) Zamek z poliwęglanu (Polycarbonate bracket) Kompozyt uwalniający fluor (Fluoride-releasing composite) Kompozyt nieuwalniający fluoru (Nonfluoride-releasing composite) Cement szklanojonomerowy modyfikowany żywicą (Resin-modified glass ionomer) Kompomer (Compomer) nb. nie badano. * poliwęglan wzmocniony włóknem. f. firma. nb. not measured. * fibre-reinforced polycarbon. f. company. Eliades et al. (1995) 40,8 (Ormco/Sybron) nb. 35,33 (Miso) 32,8 (Ormco/Sybron) 29,0* (Ormco/Sybron) Lee et al. (2009) 32,45 (Korean Smart) 39,79 (Miso II) Ahn et al. (2009) 31,80 (f. Tomy) 36,66 (f. Biomaterials) 33,47 (Miso) 34,33 (Miso II) nb. 35,48 (f. Tomy) nb. 41,49 (Lightbond) nb. 41,73 (Transbond XT) nb. 48,28 (Fuji Ortho LC) nb. 46,77 (Transbond Plus) 38,84 (Lightbond) 38,38 (Enlight) 46,98 (Fuji Ortho LC) 47,11 (Multi-cure) 45,24 (Transbond Plus) Ahn et al. (2010) nb. nb. nb. nb. 41,50 (Lightbond) 40,74 (Enlight) 48,26 (Fuji Ortho LC) 48,74 (Multi-cure) 46,77 (Transbond Plus) ny przez bakterie S. mutans. Porównując zamki metalowe, ceramiczne i plastikowe, Ahn et al. [11] obserwowali najwięcej kolonii S. mutans na zamkach metalowych, Fournier et al. [19] na zamkach ceramicznych i plastikowych, a Papaioannou et al. [20] nie odnotowali istotnych różnic. Svanberg et al. [21] izolowali więcej S. mutans na zamkach plastikowych niż na metalowych. Anhoury et al. [22] nie zaobserwowali istotnych różnic w kolonizacji zamków metalowych i ceramicznych przez Lactobacillus acidophilus i S. mutans. Papaioannou et al. [20] zwrócili uwagę na antagonistyczny wpływ S. sanguinis na kolonizację zamków ortodontycznych przez S. mutans. Gatunek Streptococcus sobrinus, który jest drugim najbardziej próchnicotwórczym paciorkowcem po S. mutans, wykazuje wyraźnie mniejszą od niego adhezję do zamków ortodontycznych [16, 18, 23]. Streptococcus anginosus oraz Eubacterium nodatum przejawiają większą adherencję do zamków metalowych niż do ceramicznych [22]. Przyleganie zależy nie tylko od właściwości fizycznych powierzchni materiału i samej bakterii, ale również od składu i przepływu śliny oraz obecności innych gatunków bakteryjnych. Niektórzy autorzy obserwowali mniejszą adhezję S. mutans do zamków pokrytych śliną [11, 19, 20, 23, 24]. Ślina zmniejsza bowiem SEP [12], a także zawiera wiele związków przeciwbakteryjnych. Tych spostrzeżeń nie potwierdzają jednak wyniki doświadczeń innych autorów [14, 16, 18]. Sprzeczności te mogą wiązać się ze stosowaniem w badaniach pozornie tych samych materiałów, w rzeczywistości jednak pochodzących od różnych producentów, mających nieidentyczny skład chemiczny, rozmiar, kształt. Wpływ może mieć również użycie w badaniu różnych szczepów bakteryjnych tego samego gatunku, różnych czasów inkubacji lub stosowanie odmiennych technik identyfikacji mikrobiologicznej. Znaczenie wydaje się mieć też rodzaj stosowanej śliny (stymulowana vs. spoczynkowa). Kroenschild et al. [25] wykazali duże powinowactwo lipopolisacharydów (LPS) bakterii Gram- -ujemnych do zamków ortodontycznych wykonanych z różnych materiałów: metalowych, por-

Zmiany mikroflory jamy ustnej a leczenie aparatami stałymi 113 celanowych, plastikowych i złotych (największe do zamków metalowych). W porównaniu z endotoksyną Escherichia coli większą adherencję do zamków ortodontycznych wykazuje endotoksyna P. gingivalis. Anhoury et al. [22], badając zamki metalowe i ceramiczne, zauważyli, że Treponema denticola, Aggregatibacter actinomycetemcomitans, Fusobacterium nucleatum subsp. vincentii kolonizują w większym stopniu zamki metalowe, a Selenomonas noxia i Eikenella corrodens zamki ceramiczne. Kitada et al. [26] stwierdzili, że silną adhezję do zamków metalowych wykazują Pseudomonas aeruginosa, Enterobacter cloacae, Klebsiella pneumoniae, słabszym przyleganiem zaś cechują się Streptococcus pneumoniae i Staphylococcus aureus. Szukając innych miejsc sprzyjających kolonizacji bakteryjnej w obrębie stałego aparatu ortodontycznego, należy wspomnieć o połączeniu między szkliwem a materiałem adhezyjnym. Stosowany do mocowania zamków materiał kompozytowy tworzy po spolimeryzowaniu rowek od strony szkliwa o szerokości ok. 10 µm [27, 28]. Jest on wynikiem przede wszystkim skurczu polimeryzacyjnego materiału, jednak wpływ na jego powstanie może mieć też różnica rozszerzalności cieplnej szkliwa i kompozytu. Porównując zęby z przyklejonymi zamkami z zębami nieleczonymi ortodontycznie, van Gastel et al. [4] stwierdzili w pierwszej grupie 2 8 razy więcej jednostek tworzących kolonie (CFU). Do nadmiernego tworzenia płytki bakteryjnej predysponują również nadmiary bądź odpryski materiału adhezyjnego. Obserwowano nie tylko szybką kolonizację bakteryjną materiałów kompozytowych, ale także związaną z tym ich degradację. Forsberg et al. [7] wykazali większe nagromadzenie bakterii wokół zamków z ligaturami elastomerowymi niż stalowymi, a Türkkahraman et al. [29] nie odnotowali między nimi istotnych różnic mikrobiologicznych, stwierdzili za to większe krwawienie z dziąseł przy zębach z ligaturami elastomerowymi. Pandis et al. [30] porównując liczbę bakterii S. mutans w ślinie pacjentów z zamkami samoligaturującymi i pacjentów z zamkami tradycyjnymi nie stwierdzili istotnych różnic. Van Gastel et al. [4] z kolei obserwowali w warunkach in vivo po 3 i 7 dniach od założenia aparatu większą liczbę CFU na zamkach samoligaturujących (Speed ) niż na zamkach tradycyjnych. Paciorkowce i pałeczki kwasu mlekowego Po założeniu stałego aparatu ortodontycznego w większości badań obserwowano gwałtowne zwiększenie liczby bakterii kwasotwórczych i kwasolubnych zarówno w płytce nazębnej, jak i ślinie. Wzrost gatunku Streptococcus mutans stwierdzano w płytce naddziąsłowej [7, 8, 31 37], a także poddziąsłowej [28]. Wzrost ten był obserwowany nawet przy wdrożonym programie profilaktycznym [37]. Mota et al. [38] zauważyli jednak mniejszą liczbę kolonii S. mutans w płytce wokół zamków mocowanych na cemencie szklanojonomerowym niż na kompozytowym. Przypuszczalne działanie antybakteryjne trwało jednak tylko 15 dni. Podobne, lecz nieznamienne wyniki uzyskali Örtendahl et al. [39]. Większe stężenie Lactobacillus acidophilus obserwowano w ślinie [8, 37, 40 44], a także w płytce nazębnej [7, 36, 37, 45]. Niektóre badania potwierdzają jednoczesny wzrost obu gatunków po założeniu aparatu stałego [31, 37, 45] oraz spadek ich liczby do stanu pierwotnego po zakończeniu leczenia [31, 32]. Balenseifen i Madonia [45] obserwowali, że po 4 5 tygodniach od założenia aparatu stałego zwiększa się stężenie cukrów w płytce nazębnej o ok. 0,01 mg na miligram płytki. Ich metabolizm przez zwiększoną liczbę bakterii kariogennych skutkuje jeszcze większym wydzielaniem kwasów i nasileniem procesów demineralizacyjnych. Większa kariogenność płytki ortodontycznej w porównaniu ze zwykłą bakteryjną płytką nazębną przejawia się jej niższym ph o ok. 0,4 jednostki [45 47]. Objawami klinicznymi tych zmian jest powstanie białych plam próchnicowych już po miesiącu od założenia aparatu [48]. W dwóch badaniach [40, 41] nie stwierdzono statystycznie znamiennego zwiększenia liczby S. mutans, a jedynie L. acidophilus. Odwrotnie, Vizitiu i Ionescu [49] nie obserwowali wzrostu rodzaju Lactobacillus, lecz tylko Streptococcus. Ulukapi et al. [6] nie stwierdzili znamiennego wzrostu żadnego z dwóch najbardziej kariogennych gatunków bakterii. Należy dodać, że oprócz gwałtownego wzrostu paciorkowców zmiennych i pałeczek kwasu mlekowego, zanotowano również znamienny przyrost Streptococcus mitis i Streptococcus salivarius [45]. Drobnoustroje periodontopatogenne Drugim, obok białych plam próchnicowych, częstym powikłaniem leczenia ortodontycznego aparatem stałym jest zapalenie dziąseł [28, 50 56]. Nawet u pacjentów po instruktażu i z dobrą higieną jamy ustnej obserwowano wzrost wartości takich wskaźników stanu przyzębia, jak wskaźnik dziąsłowy, krwawienia dziąseł czy głębokość kieszonek dziąsłowych [1, 56 58]. Najczęściej dochodzi-

114 T. Stefański, A. Myrda, L. Postek-Stefańska ło do zapalenia dziąseł o łagodnym lub umiarkowanym nasileniu [50] i/lub przerostu dziąseł [59]. Dziąsła krwawiły nawet przy delikatnym badaniu sondą periodontologiczną. Zwiększona w tym stanie powierzchnia poddziąsłowa mogła być przyczyną wysokich wartości pomiarów głębokości kieszonek dziąsłowych (pozorne pogłębienie kieszonek) [4, 54, 59]. Oprócz nacieku zapalnego i proliferacji komórek nabłonka kieszonki obserwowano nasilony przepływ płynu dziąsłowego [4]. Stan taki może się pojawić już po 1 2 miesiącach leczenia ortodontycznego, jednak po 4 5 miesiącach od zdjęcia aparatu zdecydowanie się poprawia [50, 51], co wiąże się przede wszystkim z ograniczeniem ilości płytki nazębnej [51, 59, 61]. Płytka bakteryjna wokół i na aparatach stałych może wywołać zapalenie przyzębia brzeżnego nie tylko jako biomasa, ale także jako rezerwuar swoistych gatunków periodontopatogennych. Petti et al. [62] donoszą o zmianach w mikroflorze poddziąsłowej już po 6 8 tygodniach od założenia aparatu. W badaniach mikroskopowych w ciemnym polu widzenia Huser et al. [1] zauważyli od chwili założenia pierścieni na zębach trzonowych zwiększenie się liczby ziarenkowców, pałeczek i wrzecionowców, a po 47. dniu również znaczne zwiększenie się liczby krętków, ruchomych pałeczek, bakterii nitkowatych i wrzecionowatych oraz zmniejszenie się liczby ziarenkowców. Potwierdzają to badania Petti et al. [62], którzy również obserwowali wzrost tych bakterii (przypuszczalnie A. actinomycetemcomitans i P. gingivalis) oraz zmniejszenie się liczby ziarenkowców Gram- -dodatnich. De Jacoby i Müller [63] także wykryli więcej krętków i wrzecionowców u pacjentów leczonych aparatami stałymi. Wyniki powyższych badań świadczą o zamianie warunków tlenowych w beztlenowe. Obniżenie potencjału oksydoredukcyjnego powoduje, że bakterie tlenowe ustępują miejsca bakteriom beztlenowym. Świadczą o tym również wyniki badań Lo Bue et al. [64], którzy obserwowali zmniejszenie liczby tlenowych bakterii (Streptococcus spp.) na rzecz gatunków względnie (Capnocytophaga gingivalis, Actinomyces viscosus) i bezwzględnie beztlenowych. Stosunek bakterii tlenowych do beztlenowych jest ważnym wskaźnikiem patogenności płytki. Wyraźne zmniejszenie tego stosunku w płytce nad- i poddziąsłowej van Gastel et al. [4] zanotowali między 18. a 36. tygodniem od założenia aparatu. Najszybciej zmiana ta następowała od strony przyklejonych zamków. Diamanti-Kipioti et al. [2] stwierdzili w mikroflorze poddziąsłowej u dzieci leczonych ortodontycznie (bez wdrożonego programu profilaktycznego) znaczący wzrost czarnopigmentujących Bacteroides (w tym Prevotella intermedia) i Actinomyces odontolyticus oraz zmniejszenie liczby względnych beztlenowców. W innych badaniach Thornberg et al. [65] oceniali występowanie ośmiu gatunków bakterii uznawanych za czynniki etiologiczne chorób przyzębia: A. actinomycetemcomitans, P. gingivalis, P. intermedia, Tannerella forsythia, E. corrodens, F. nucleatum, T. denticola i Campylobacter rectus. Po 6 miesiącach od rozpoczęcia leczenia znamiennie zwiększyła się liczba sześciu z nich: P. intermedia, T. forsythia, E. corrodens, F. nucleatum, T. denticola i C. rectus. Po kolejnych 6 miesiącach ich liczba jednak zmniejszyła się i była podobna jak przed założeniem aparatu. Autorzy ci uznali, że leczenie ortodontyczne nie grozi znamiennym rozwojem czterech z badanych gatunków: F. nucleatum, E. corrodens, T. denticola, C. rectus. Po części tylko potwierdzają to wyniki Naranjo et al. [66], którzy obserwowali w płytce poddziąsłowej po 3 miesiącach leczenia aparatem stałym zwiększenie się liczby P. gingivalis, P. intermedia, Prevotella nigrescens i Fusobacterium spp., a także pojawienie się nowych gatunków, takich jak T. forsythia, które mogą mieć wpływ na rozwój chorób przyzębia w przyszłości. Wzrost P. gingivalis stwierdzili również Orru et al. [67]. Z kolei Sinclair et al. [28] nie obserwowali wzrostu Gram-ujemnych periodontopatogenów w płytce poddziąsłowej młodych pacjentów, odnotowali w niej natomiast wzrost rodzaju Streptococcus i zmniejszenie się liczby Actinomyces. Należy nadmienić, że u tych pacjentów przeprowadzono instruktaż nitkowania i szczotkowania zębów zmodyfikowaną techniką Bassa. Niektórzy autorzy obserwowali bardziej nasilone zapalenie dziąseł przy zębach trzonowych niż przy zębach przednich. Jest to najprawdopodobniej związane z założonymi pierścieniami [55, 58, 68]. Kim et al. [58] porównywali mikroflorę bakteryjną nad- i poddziąsłową z okolic pierwszych zębów trzonowych z założonymi pierścieniami oraz z okolic zębów z zamkami po 6 i więcej miesiącach od założenia aparatu. Wykazali znamienny wzrost Actinomyces israelii, Actinomyces naeslundii, S. noxia na zębach z zamkami, podczas gdy przy pierścieniach znamiennie więcej było Neisseria mucosa i E. corrodens. Demlin et al. [69] badając zęby z założonymi pierścieniami, stwierdzili mniejszą ilość dojrzałej płytki poddziąsłowej niż naddziąsłowej. Według tych autorów adhezja bakterii w okolicy poddziąsłowej może być hamowana dzięki czynnikom immunologicznym w płynie dziąsłowym. U pacjentów z agresywnym zapaleniem przyzębia często izolowanym gatunkiem jest Aggregatibacter actinomycetemcomitans. Badaniom tego gatunku w aspekcie leczenia ortodontycznego kilka prac poświęcili Paolantonio et al. W pierw-

Zmiany mikroflory jamy ustnej a leczenie aparatami stałymi 115 szym badaniu [70] stwierdzili tę bakterię u 85% młodych pacjentów z aparatem stałym i 15% osób z grupy kontrolnej. Podobne wyniki otrzymali w drugim badaniu: 86% vs. 16,6% [56]. W trzecim badaniu bakteria ta występowała u ok. 79% pacjentów po 4 tygodniach od założenia aparatu oraz u 83% po 8 tygodniach [57]. Przed leczeniem stwierdzono ją tylko u 1 osoby. Bakterię izolowano najczęściej z tych miejsc, gdzie wskaźnik krwawienia dziąseł był najwyższy, tzn. od strony założonego aparatu. Po zdjęciu aparatu liczba A. actinomycetemcomitans istotnie się zmniejszyła. We wcześniejszej pracy autorzy ci zauważyli, że podczas leczenia ortodontycznego znamiennie zwiększa się liczba miejsc, w których bakteria się znajduje: z 25% do 47,5% po dwóch latach leczenia, nie wpływając jednak na pogorszenie wskaźników przyzębia [71]. Kim et al. [58] izolowali ten gatunek z 25% miejsc, zarówno spod zamków, jak i pierścieni. Sallum et al. [61] badali występowanie A. actinomycetemcomitans w obszarze zapalnie zmienionych dziąseł i wykazali ją w 60% próbek, w płytce nad- i poddziąsłowej. Po 30 dniach od zdjęcia aparatu ortodontycznego, instruktażu higieny i wdrożeniu profilaktyki stwierdzili 50% ograniczenie A. actinomycetemcomitans. Za wzrost tej bakterii może odpowiadać obfite nagromadzenie płytki naddziąsłowej. W obserwacjach Paolantonio et al. [57, 71] oraz Sallum et al. [61] stwierdzono, że obecność A. actinomycetemcomitans nie wpływa na utratę przyczepu łącznotkankowego u pacjentów leczonych aparatami stałymi, jeśli jest zachowana bardzo dobra higiena jamy ustnej. W grupie pacjentów nieleczonych ortodontycznie obserwowano natomiast pogorszenie wskaźników przyzębia. Może to oznaczać, że płytka związana z aparatem ortodontycznym sprzyja wzrostowi innych bakterii, które zmniejszają wirulencję A. actinomycetemcomitans. W badaniach Rego et al. [72] okazało się, że płytka poddziąsłowa pacjentów z aparatami zdejmowanymi zawiera więcej A. actinomycetemcomitans, C. recus, E. corrodens, Lactobacillus fermentum, Neisseria spp. oraz krętków niż płytka pacjentów noszących aparaty stałe. Kim et al. również obserwowali wzrost tych patogenów w zależności od rodzaju aparatu (zdejmowany vs. stały), był on jednak znamienny tylko dla T. forsythia, C. rectus i P. nigrescens [73]. Odnaleziono tylko jedną pracę dotyczącą zmian mikroflory i stanu przyzębia u pacjentów, u których aparat stały był założony od strony językowej [74]. Autorzy również stwierdzili wyższe wskaźniki płytki bakteryjnej i stanu przyzębia w porównaniu z łukiem zębowym nieleczonego ortodontycznie. W płynie dziąsłowym zanotowali znamienny wzrost A. actinomycetemcomitans (z 25% do 35%), lecz nie P. gingivalis (badano tylko te dwa gatunki). Chociaż klinicznie stan przyzębia brzeżnego poprawia się po zakończeniu leczenia ortodontycznego [50, 51, 54], to jednak Van Gastel et al. [4] po 3 miesiącach nie obserwowali jeszcze całkowitej normalizacji składu mikrobiologicznego. Alstad i Zachrisson [75] nie stwierdzili znamiennych różnic w utracie przyczepu łącznotkankowego. Kloehn i Pfeifer [54] obserwowali ustępowanie przerostu dziąseł już po dwóch dniach od zwiększenia skuteczności zabiegów higienicznych. Pearson [76] natomiast badał stopień recesji dziąsła na dolnych zębach siecznych po leczeniu ortodontycznym i nie wykazał znamiennych różnic w porównaniu z grupą kontrolną. Znaczna różnorodność i liczba periodontopatogennych bakterii pojawiających się podczas terapii stałymi aparatami ortodontycznymi uzasadnia konieczność intensyfikacji lub wręcz wprowadzenia nowych strategii leczenia chorób przyzębia u tych pacjentów. Odległy wpływ leczenia ortodontycznego na przyzębie Polson et al. [77] oceniając przyzębie pacjentów leczonych ortodontycznie co najmniej 10 lat wcześniej i pacjentów w ogóle nieleczonych stwierdzili, że terapia ortodontyczna we wczesnym wieku nie wpływa zasadniczo na stan przyzębia w późniejszych latach życia. Podobne spostrzeżenia poczynili w badaniach retrospektywnych Sadowsky i BeGole [78]. Nie wykazano również różnic w wysokości kości wyrostka zębodołowego [79]. Trossello i Gianelly [53] obserwowali zwiększone ryzyko resorpcji korzeni (17 vs 2%), szczególnie zębów siecznych, a Alstad i Zachrisson [75] stwierdzili po dwóch latach u 10% z 38 dzieci obniżenie przyczepu łącznotkankowego o 1 2 mm. Autorzy większości publikacji wyciągnęli jednak wniosek, że leczenie ortodontyczne w niewielkim stopniu wpływa na przyszły stan przyzębia [62, 76, 77]. Destrukcję przyzębia należy przypisać nie tyle zmianom mikrobiologicznym, ile długotrwałemu mechanicznemu drażnieniu tkanek przyzębia przez elementy aparatu (pierścienie) lub odpryski materiałowe [2, 80]. Boyd et al. [81] nie wykazali istotnego wpływu leczenia ortodontycznego na utratę przyczepu łącznotkankowego. Lee et al. [82] oceniali skład bakteryjny płytki poddziąsłowej z obszarów zapalenia dziąseł u pacjentów leczonych i nieleczonych wcześniej aparatami stałymi. Okazało się, że u pacjentów no-

116 szących w przeszłości aparat stały występowało więcej bakterii T. forsythia, T. denticola i P. nigrescens, a u pacjentów nieleczonych ortodontycznie ze zmian zapalnych izolowano więcej P. gingivalis, P. intermedia oraz A. actinomycetemcomitans. Warto również zwrócić uwagę na różnicę w gatunkach Prevotella intermedia i Prevotella nigrescens, które dawniej były opisywane jako jeden gatunek Prevotella intermedia. Wyodrębnienie P. nigrescens pozwoliło stwierdzić, że częściej towarzyszy on zakażeniom miazgi zębowej, a gatunek P. intermedia zapaleniom przyzębia. Co ciekawe, ta obserwacja nie zyskała potwierdzenia u pacjentów poddanych leczeniu ortodontycznemu aparatami stałymi, gdyż w zmienionych zapalnie dziąsłach wykazano u nich trzykrotnie więcej P. nigrescens niż P. intermedia [82]. Zmiany mikroflory u pacjentów z przewlekłym zapaleniem przyzębia leczonych ortodontycznie Speer et al. [83] wykazali po 6 tygodniach od założenia aparatu stałego u dorosłych pacjentów z przewlekłym zapaleniem przyzębia istotne zmniejszenie się liczby gatunków zarówno wysoko periodontopatogennych (A. actinomycetemcomitans, T. forsythia, P. gingivalis, P. intermedia), jak i gatunków nieszkodliwych dla przyzębia (S. salivarius, S. sanguinis, Neisseria sp.) oraz ich wzrost po 6 tygodniach od zdjęcia aparatu. Autorzy tłumaczą to bakteriotoksycznym działaniem produktów korozji łuków i zamków (w badaniu użyto stopu NiTi): jonów chromu, kobaltu, molibdenu, a przede wszystkim jonów niklu. Mechanizm ich działania nie jest jednak do końca jasny. Wskaźniki stanu przyzębia prawie się nie zmieniły. Leczenie ortodontyczne aparatem stałym u takich pacjentów może zatem spowodować remisję przewlekłej choroby przyzębia. Jest to jednak wciąż jedynie hipoteza, która wymaga weryfikacji. Przytoczona praca jest jedynym dotąd badaniem w grupie pacjentów dorosłych (6 osób) z przewlekłym zapaleniem przyzębia prowadzonym w aspekcie zmian mikroflory podczas leczenia ortodontycznego. Folio et al. [84] stwierdzili u czterech pacjentów ze zlokalizowanym agresywnym zapaleniem przyzębia po pół roku od założenia pierścieni ortodontycznych istotny wzrost wrzecionowców i ruchomych pałeczek. T. Stefański, A. Myrda, L. Postek-Stefańska Bakterie oportunistyczne Podczas leczenia ortodontycznego aparatami stałymi pojawiają się nowe gatunki z rodziny Enterobacteraceae. Przed leczeniem Hägg et al. [5] izolowali tylko Klebsiella pneumoniae, Enterobacter sakazakii i Enterobacter cloacae, po trzech miesiącach natomiast pojawiły się ponadto: Enterobacter gergoviae, Pseudomonas aeruginosa, Enterobacter agglomerans, a także gatunki z rodzajów Acinetobacter i Yersinia. Inni autorzy izolowali także Klebsiella oxytoca, Serratia marcescens [66], a także Campylobacter showae [22]. Gatunki E. cloacae, K. pneumoniae i P. aeruginosa występują liczniej na zamkach metalowych [26], a C. showae na zamkach ceramicznych [22]. Ze względu na potencjalną patogenność bakterii oportunistycznych u osób z zaburzeniami odporności lub poddanych immunosupresji jest zasadna szczególnie wzmożona profilaktyka u tych pacjentów, a w wyjątkowych przypadkach przerwanie leczenia ortodontycznego [26]. Grzyby Grzybicze zakażenia oportunistyczne są związane przede wszystkim z nadmierną kolonizacją grzybów drożdżopodobnych z rodzaju Candida. Częściej dochodzi do niej u pacjentów użytkujących akrylowe zdejmowane aparaty ortodontyczne, gdyż organizmy te mają powinowactwo do tego materiału. Zmiany mikroflory grzybiczej u pacjentów noszących aparaty stałe są mniej poznane i nie zawsze wykrywane. Większość badań przeprowadzono pod kątem izolacji gatunku o największym znaczeniu klinicznym, tzn. Candida albicans, który występuje u 40 60% ludzi jako drobnoustrój saprofityczny. Głównym jego rezerwuarem jest grzbiet języka, a w drugiej kolejności pozostała błona śluzowa jamy ustnej i płytka nazębna [85]. Wzrostowi C. albicans u pacjentów leczonych aparatami stałymi sprzyja przede wszystkim obecność trudno oczyszczalnych przestrzeni, nadmiar płytki bakteryjnej oraz obniżenie jej ph. Brusca et al. [86] stwierdzili znamiennie większą adherencję C. albicans do zamków kompozytowych i istotnie mniejszą do zamków metalowych. Donoszono również, że kolonizacji grzybów drożdżopodobnych mogą sprzyjać niektóre bakterie z rodziny Enterobacteriacaeae, np. Klebsiella spp. (Makrides i MacFarlane cyt. wg 5). Zwiększenie liczby kolonii C. albicans obserwowało kilku autorów [5, 26, 87, 88]. Odnotowano również pojawienie się (prawdopodobnie przejściowe) tego gatunku u osób, u których wcześ-

Zmiany mikroflory jamy ustnej a leczenie aparatami stałymi 117 niej nie był on obecny [5, 87]. Truchot [89] izolował grzyby z płytki bakteryjnej wokół pierścieni ortodontycznych i stwierdził, że dzięki właściwej higienie można skutecznie zapobiec pojawieniu się zmian chorobowych. Inne gatunki Candida: C. glabrata [87], C. tropicalis, C. krusei i C. kefyr [88] obserwowano zdecydowanie rzadziej. Addy et al. [90] nie stwierdzali natomiast istotnych różnic w występowaniu C. albicans wśród trzech grup badanych nastolatków: leczonych aparatami stałymi, leczonych aparatami zdejmowanymi i nieleczonych ortodontycznie. Lee et al. [91] odnotowali zwiększenie się liczby nosicieli Candida spp. od początku leczenia aparatem stałym, wynik ten nie był jednak znamienny statystycznie. Rozbieżności między cytowanymi badaniami wynikają najprawdopodobniej ze stosowania różnych, mniej lub bardziej czułych technik izolacji i identyfikacji tych drobnoustrojów. Świadczą o tym wyniki Hägg et al. [5], którzy stosując trzy techniki pobierania materiału, tylko za pomocą jednej z nich techniki odbitkowej z języka, stwierdzili istotny wzrost Candida spp. Podsumowanie Równowaga biocenotyczna jamy ustnej podczas leczenia ortodontycznego aparatami stałymi jest zachwiana. Chociaż są to wyraźne zmiany ilościowe i jakościowe, to jednak w większości przypadków są one odwracalne. Mimo to mogą prowadzić do powikłań. W wypadku chorób przyzębia są to powikłania doraźne, które w niewielkim stopniu wpływają na przyszły stan tych tkanek. Białe plamy próchnicowe natomiast mogą, jeśli nie podejmie się działań leczniczych, stać się nieusuwalne lub przekształcić się w bardziej zaawansowane ubytki wymagające leczenia interwencyjnego, tzn. opracowania i wypełnienia materiałem odtwórczym. Piśmiennictwo [1] Huser M.C., Baehni P.C., Lang R.: Effects of orthodontic bands on microbiologic and clinical parameters. Am. J. Orthod. Dentofac. Orthop. 1990, 97, 213 218. [2] Diamanti-Kipioti A., Gusberti F.A., Lang N.P.: Clinical and microbiological effects of fixed orthodontic appliances. J. Clin. Periodontol. 1987, 14, 326 333. [3] Zachrisson B.I., Zachrisson S.: Caries incidence and oral hygiene during orthodontic treatment. Scand. J. Dent. Res. 1971, 79, 394 401. [4] Van Gastel J., Quirynen M., Teughels W., Coucke W., Carels C.: Longitudinal changes in microbiology and clinical peridontal parameters after removal fixed orthodontic appliances. Eur. J. Orthod. 2011, 33, 15 21. [5] Hägg U., Kaveewatcharanont P., Samaranayake Y.H., Samaranayake L.P.: The effect of fixed orthodontic appliances on the oral carriage of Candida species and Enterobacteriaceae. Eur. J. Orthod. 2004, 26, 623 629. [6] Ulukapi H., Koray F., Efes B.: Monitoring the caries risk of orthodontic patients. Quintes. Int. 1997, 28, 27 29. [7] Forsberg C.M., Oliverby A.: Salivary clearance of sugar before and after insertion of fixed orthodontic appliances. Am. J. Orthod. Dentofac. Orthop. 1992, 102, 527 530. [8] Chang H.S., Walsh L.J., Freer T.J.: The effect of orthodontic treatment on salivary flow, ph, buffer capacity, and levels of mutans streptococci and lactobacilli. Aust. Orthod. J. 1999, 15, 229 234. [9] Svendsen I., Lindh L., Elofsson U., Arnebrant T.: Studies on the exchange of early pellicle proteins by mucin and whole saliva. J. Colloid. Interface Sci. 2008, 321, 52 59. [10] Lee S.J., Kho H.S., Lee S.W., Jang W.S.: Experimental salivary pellicles on the surface of orthodontic materials. Am. J. Orthod. Dentofac. Orthop. 2001, 119, 59 66. [11] Ahn S.J., Ahn S.J., Kho H.S., Lee S.W., Nahm D.S.: Roles of salivary proteins in the adherence of oral streptococci to orthodontic brackets. J. Dent. Res. 2002, 81, 411 414. [12] Weerkamp A.H., van der Mei H.C., Busscher H.J.: The surface free energy of oral streptococci after being coated with saliva and its relation to adhesion in the mouth. J. Dent. Res. 1985, 64, 1204 1210. [13] Quirynen M., Bollen C.M.L.: The influence of surface roughness and surface-free energy on supra- and subgingival plaque formation in man. A review of the literature. J. Clin. Periodontol. 1985, 22, 1 14. [14] Ahn S.J., Lim B.S., Lee S.J.: Surface characteristics of orthodontic adhesives and effects on streptococcal adhesion. J. Orthod. Dentofac. Orthop. 2010, 137, 489 495. [15] Ahn H.B., Ahn S.J., Lee S.J., Kim T.W., Nahm D.S.: Analysis of surface roughness and surface free energy characteristics of various orthodontic materials. Am. J. Orthod. Dentofac. Orthop. 2009, 136, 668 674. [16] Lee S.P., Lee S.J., Lim B.S., Ahn S.J.: Surface characteristics of orthodontic materials and their effects on adhesion of mutans streptococci. Angle Orthod. 2009, 79, 353 360. [17] Eliades T., Eliades G., Brantley W.A.: Microbial attachment on orthodontic appliances: I. Wettability and early pellicle formation on bracket materials. Am. J. Orthod. Dentofac. Orthop. 1995, 108, 351 360. [18] Lim B.S., Lee S.J., Lee J.W., Ahn S.J.: Quantitative analysis of adhesion of cariogenic streptococci to orthodontic raw materials. Am. J. Orthod. Dentofac. Orthop. 2008, 133, 882 888. [19] Fournier A., Payant L., Bouclin R.: Adherence of Streptococcus mutans to orthodontic brackets. Am. J. Orthod. Dentofac. Orthop. 1998, 114, 414 417.

118 T. Stefański, A. Myrda, L. Postek-Stefańska [20] Papaioannou W., Gizani S., Nassika M., Kontou E., Nakou M.: Adhesion of Streptococcus mutans to different types of brackets. Angle Orthod. 2007, 77, 1090 1095. [21] Svanberg M., Ljunglöf S., Thilander B.: Streptococcus mutans and Streptococcus sanguis in plaque from orthodontic bands and brackets. Eur. J. Orthod. 1984, 6, 1, 132 136. [22] Anhoury P., Nathanson D., Hughes C.V., Socransky S., Feres M., Chou L.L.: Microbial profile on metallic and ceramic bracket materials. Angle Orthod. 2002, 72, 338 343. [23] Ahn S.J., Lim B.S., Yang H.C., Chang Y.I.: Quantitative analysis of the adhesion of cariogenic streptococci to orthodontic metal brackets. Angle Orthod. 2005, 75, 666 671. [24] Mei L., Busscher H.J., van der Mei H.C., Chen Y., de Vries J., Ren Y.: Oral bacterial adhesion forces to biomaterial surfaces constituting the bracket-adhesive-enamel junction in orthodontic treatment. Eur. J. Oral Sci. 2009, 117, 419 426. [25] Knoernschild K.L., Rogers H.M., Lefebvre C.A., Fortson W.M. Schuster G.S.: Endotoxin affinity for orthodontic brackets. Am. J. Orthod. Dentofac. Orthop. 1999, 115, 634 639. [26] Kitada K., de Toledo A., Oho T.: Increase in detectable opportunistic bacteria in the oral cavity of orthodontic patients. Int. J. Dent. Hyg. 2009, 7, 121 125. [27] Sukontapatipark W., El-Agroudi M.A., Selliseth N.J., Thunold K., Selvig K.A.: Bacterial colonization associated with fixed orthodontic appliances. A scanning electron microscopy study. Eur. J. Orthod. 2001, 23, 475 484. [28] Sinclair P.M., Berry C.W., Bennett C.L., Israelson H.: Changes in gingiva and gingival flora with bonding and banding. Angle Orthod. 1987, 57, 271 278. [29] Türkkahraman H., Sayin M.O., Bozkurt F.Y., Yetkin Z., Kaya S., Onal S.: Archwire ligation techniques, microbial colonization, and periodontal status in orthodontically treated patients. Angle Orthod. 2005, 72, 231 236. [30] Pandis N., Papaioannou W., Kontou E., Nakou M., Makou M., Eliades T.: Salivary Streptococcus mutans levels in patients with conventional and self-ligating brackets. Eur. J. Orthod. 2010, 32, 94 99. [31] Scheie A.A., Arneberg P., Krogstad O.: Effect of orthodontic treatment on prevalence of Streptococcus mutans in plaque and saliva. Scand. J. Dent. Res. 1984, 92, 3, 211 217. [32] Rosenbloom R.G., Tinanoff N.: Salivary Streptococcus mutans levels in patients before, during, and after orthodontic treatment. Am. J. Orthod. Dentofac. Orthop. 1991, 100, 35 37. [33] Mattingly J.A., Sauer G.J., Yancey J.M., Arnold R.R.: Enhancement of Streptococcus mutans colonization by direct bonded orthodontic appliances. J. Dent. Res. 1983, 62, 1209 1211. [34] Corbett J.A., Brown L.R., Keene H.J., Horton I.M.: Comparison of Streptococcus mutans concentrations in non-banded and banded orthodontic patients. J. Dent. Res. 1981, 60, 1936 1942. [35] Jordan C., LeBlanc D.J.: Influences of orthodontic appliances on oral populations of mutans streptococci. Oral Microbiol. Immunol. 2002, 17, 65 71. [36] Boyar R.M., Thylstrup A., Holmen L., Bowden G.H.: The microflora associated with the development of initial enamel decalcification below orthodontic bands in vivo in children living in fluoridated area. J. Dent. Res. 1989, 68, 1734 1738. [37] Lundström F., Krasse B.: Streptococcus mutans and lactobacilli frequency in orthodontic patients; the effect of chlorhexidine treatments. Eur. J. Orthod. 1987, 9, 109 116. [38] Mota S.M., Enoki C., Ito I.Y., Elias A.M., Matsumoto M.A.: Streptococcus mutans counts in plaque adjacent to orthodontic brackets bonded with resin-modified glass ionomer cement or resin-based composite. Braz. Oral Res. 2008, 22, 1, 55 60. [39] Örtendahl T., Thilander B., Svanberg M.: Mutans streptococci and incipient caries adjacent to glass ionomer cement or resin-based composite in orthodontics. Am. J. Orthod. Dentofac. Orthop. 1997, 112, 271 274. [40] Bloom R.H., Brown Jr. L.R.: Study of the effects of orthodontics appliances on the oral microbial flora. Oral Surg. 1969, 17, 658 667. [41] Jabłońska-Zrobek J., Śmiech-Słomkowska G.: Ryzyko próchnicy podczas leczenia ortodontycznego aparatem stałym. Czas. Stomatol. 2005, 58, 514 519. [42] Sakamaki S.T., Bahn A.N.: Effect of orthodontic banding on localized oral lactobacilli. J. Dent. Res. 1968, 47, 275 279. [43] Owen O.W.: A Study of bacterial count (lactobacilli) in saliva related to orthodontic appliances. A preliminary report. Am. J. Orthod. 1949, 35, 672 678. [44] Dikeman T.L.: A study of acidogenic and aciduric microorganisms in orthodontic and non-orthodontic patients. Am. J. Orthod. 1962, 48, 627 628. [45] Balenseifen J.W., Madonia J.V.: Study of dental plaque in orthodontic patients. J. Dent. Res. 1970, 49, 320 323. [46] Chatterjee R., Kleinberg I.: Effect of orthodontic band placement on the chemical composition of human incisor tooth plaque. Arch. Oral Biol. 1979, 24, 97 100. [47] Gwinnett A.J., Ceen R.F.: Plaque distribution on bonded brackets: a scanning microscope study. Am. J. Orthod. 1979, 75, 67 77. [48] O Reilly M.M., Featherstone J.D.: Demineralization and remineralization around orthodontic appliances: an in vivo study. Am. J. Orthod. Dentofac. Orthop. 1987, 92, 33 40. [49] Vizitiu Th. C., Ionescu E.: Microbiological changes in orthodontically treated patients. Ther. Pharmacol. Clin. Toxicol. 2010, 14, 283 286. [50] Zachrisson S., Zachrisson B.U.: Gingival condition associated with orthodontic treatment. Angle Orthod. 1972, 42, 26 34.

Zmiany mikroflory jamy ustnej a leczenie aparatami stałymi 119 [51] Alexander S.A.: Effects of orthodontic attachments on the gingival health of permanent second molars. Am. J. Orthod. Dentofac. Orthop. 1991, 100, 337 340. [52] Ristic M., Vlahovic Svabic M., Sasic M.: Clinical and microbiological effects of fixed orthodontic appliances on periodontal tissues in adolescents. Orthod. Craniofac. Res. 2007, 10, 187 195. [53] Trosello V.K., Gianelly A.A.: Orthodontic treatment and periodontal status. J. Periodontol. 1979, 50, 665 671. [54] Kloehn J.S., Pfeifer J.S.: The effect of orthodontic treatment on the periodontium. Angle Orthod. 1974, 44, 2, 127 134. [55] Zachrisson B.U., Alnaes L.: Periodontal condition in orthodontically treated and untreated individuals. I. Loss of attachment, gingival pocket depth and clinical crown height. Angle Orthod. 1973, 43, 402 411. [56] Paolantonio M., Festa F., di Placido G., D Attilio M., Catamo G., Piccolomini R.: Site-specific subgingival colonization by Actinobacillus actinomycetemcomitans in orthodontic patients. Am. J. Orthod. Dentofacial. Orthop. 1999, 115, 423 428. [57] Paolantonio M., Pedrazzoli V., di Murro C., di Placido G., Picciani C., Catamo G., De Luca M., Piccolomini R.: Clinical significance of Actinobacillus actinomycetemcomitans in young individuals during orthodontic treatment. A 3-year longitudinal study. J. Clin. Periodontol. 1997, 24, 610 617. [58] Kim K., Heimisdottir K., Gebauer U., Persson G.R.: Clinical and microbiological findings at sites treated with orthodontic fixed appliances in adolescents. Am. J. Orthod. Dentofac. Orthop. 2010, 137, 223 228. [59] Baer P.N., Coccaro P.J.: Gingival enlargement coincident with orthodontic therapy. J. Periodont. 1964, 35, 436 439. [60] van Gastel J.L., Quirynen M., Teughels W., Coucke W., Carels C.: Longitudinal changes in microbiology and clinical periodontal variables after placement of fixed orthodontic appliances. J. Periodontol. 2008, 79, 2078 2086. [61] Sallum E.J., Nouer D.F., Klein M.I., Gonçalves R.B., Machion L., Sallum A.W., Sallum E.A.: Clinical and microbiologic changes after removal of orthodontic appliances. Am. J. Orthod. Dentofac. Orthop. 2004, 126, 363 366. [62] Petti S., Barbato E., Simonetti D Arca A.: Effect of orthodontic therapy with fixed and removable appliances on oral microbiota: a six-month longitudinal study. New Microbiol. 1997, 20, 55 62. [63] Müller H.P., Flores de Jacoby L.: Zusammensetzung der subgingivalen Mundflora bei Trägern festsitzender kieferorthopädischer geräte. Dtsch. Zahnärztl. Z. 1982, 37, 855 860. [64] Lo Bue A.M., Di Marco R., Milazzo I., Nicolosi D., Calì B., Rossetti B., Blandino G.: Microbiological and clinical periodontal effects of fixed orthodontic appliances in pediatric patients. New Microbiolog. 2008, 31, 299 302. [65] Thornberg M.J., Riolo C.S., Bayirli B., Riolo M.L., Van Tubergen E.A., Kulbersh R.: Periodontal pathogen levels in adolescents before, during, and after fixed orthodontic appliance therapy. J. Orthod. Dentofac. Orthop. 2009, 135, 95 98. [66] Naranjo A.A., Trivino M.L., Jaramillo A., Betancourth M., Botero J.E.: Changes in the subgingival microbiota and periodontal parameters before and 3 months after bracket placement. Am. J. Orthod. Dentofac. Orthop. 2006, 130, 275 e17 e22. [67] Orru G., Caccianiga G.L., Denotti G., Montaldo C.: Porphyromonas gingivalis e carica batterica totale in pazienti pediatrici portatori di apparecchi ortodontici. Rivista Ital. Igiene Dent. 2005, 1, 10 14. [68] Hamp S.E., Lundström F., Nyman S.: Periodontal conditions in adolescents subjected to multiband orthodontic treatment with controlled oral hygiene. Eur. J. Orthod. 1982, 4, 77 86. [69] Demling A., Heuer W., Elter C., Heidenblut T., Bach F.W., Schwestka-Polly R., Stiesch-Scholz M.: Analysis of supra- and subgingival long-term biofilm formation on orthodontic bands. Eur. J. Orthod. 2009, 31, 202 206. [70] Paolantonio M., di Girolamo G., Pedrazzoli V., di Murro C., Picciani C., Catamo G., Cattabriga M., Piccolomini R.: Occurrence of Actinobacillus actinomycetemcomitans in patients wearing orthodontic appliances. A cross-sectional study. J. Clin. Periodontol. 1996, 23, 112 118. [71] Paolantonio M., Fanali S., Nuzzoli A., Di Girolamo G.: The prognostic significance of the presence of Actinobacillus actionomycetemcomitans in the subgingival plaque of young orthodontic patients. Minerva Stomatol. 1995, 44, 195 203. [72] Rego R.O., Oliveira C.A., dos Santos-Pinto A., Jordan S. F., Zambon J.J., Cirelli J.A., Haraszthy V.I.: Clinical and microbiological studies of children and adolescents receiving orthodontic treatment. Am. J. Dent. 2010, 23, 317 323. [73] Kim S.H., Choi D.S., Jang I., Cha B.K., Jost-Brinkmann P.G., Son J.S.: Microbiologic changes in subgingival plaque before and during the early period of orthodontic treatment. Angle Orthod. 2012, 82, 254 260. [74] Demling A., Demling C., Schwestka-Polly R., Stiesch M., Heuer W.: Short-term influence of lingual orthodontic therapy on microbial parameters and periodontal status. Angle Orthod. 2010, 80, 480 484. [75] Alstad S., Zachrisson B.U.: Longitudinal study of periodontal condition associated with orthodontic treatment in adolescents. Am. J. Orthod. 1979, 76, 277 286. [76] Pearson L.E.: Gingival height of lower central incisors, orthodontically treated and untreated. Angle Orthod. 1968, 38, 337 339. [77] Polson A.M., Subtelny J.D., Meitner S.W., Polson A.P., Sommers E.W., Iker H.P.: Long-term periodontal status after orthodontic treatment. Am. J. Orthod. Dentofac. Orthop. 1988, 93, 51 58. [78] Sadowsky C., BeGole E.A.: Long-term effects of orthodontic treatment on periodontal health. Am. J. Orthod. 1981, 80, 156 172. [79] Polson A.M., Reed B.E.: Long term effect of orthodontic treatment on crestal alveolar bone levels. J. Periodontol. 1984, 55, 28 34.

120 T. Stefański, A. Myrda, L. Postek-Stefańska [80] Diedrich P., Rudzki-Janson I., Wehrbein H., Fritz U.: Effect of orthodontic bands on marginal periodontal tissues. A histologic study on two human specimens. J. Orofac. Orthop. 2001, 62, 146 156. [81] Boyd R.L., Leggott P.J., Quinn R.S., Eakle W.S., Chambers D.: Periodontal implcations of orthodontic treatment in adults with reduced or normal periodontal tissues versus those of adolescents. Am. J. Orthod. Dentofac. Orthop. 1989, 96, 191 198. [82] Lee S.M., Yoo S.Y., Kim H.S., Kim K. W., Yoon Y.J., Lim S.H., Shin H.Y., Kook J.K.: Prevalence of putative periodontopathogenes in subgingival dental plaques from gingivitis lesions in Korean orthodontic patients. J. Microbiol. 2005, 43, 260 265. [83] Speer C., Pelz K., Hopfenmüller W., Holtgrave E.A.: Investigation on the influencing of the subgingival microflora in chronic periodontitis. J. Orofac. Orthop. 2004, 65, 34 47. [84] Folio J., Rams T.E., Keyes P.H.: Orthodontic therapy in patients with juvenile periodontitis: Clinical and microbiologic effect. Am. J. Orthod. 1985, 71, 421 431. [85] Arendorf T.M., Walker D.M.: Oral candidal populations in health and disease. Br. Dent. J. 1979, 147, 267 272. [86] Brusca M.I., Chara O., Sterin-Borda L., Rosa A.C.: Influence of different orthodontic brackets on adherence of microorganisms in vitro. Angle Orthod. 2007, 77, 2, 331 336. [87] Darwazeh A.M.G., Al-Nasser N.M.: The effect of fixed orthodontic appliance therapy on oral Candida carriage. The Saudi Dent. J. 2003, 15, 141 144. [88] Arslan S.G., Akpolat N., Kama J. D., Ozer T., Hamamci O.: One-year follow-up of the effect of fixed orthodontic treatment on colonization by oral Candida. J. Oral Pathol. Med. 2008, 37, 26 29. [89] Truchot G.: Do multi-bracket orthodontic appliances favor the development of parasites and fungi in the oral environment? Pathological and therapeutic consequences. Orthod Fr. 1991, 62, 1019 1023. [90] Addy M., Shaw W.C., Hansford P., Hopkins M.: The effect of orthodontic appliances on the distribution of Candida and plaque in adolescents. Br. J. Orthod. 1982, 159, 158 163. [91] Lee W., Low B.K., Samaranayake L.P., Hägg U.: Genotypic variation of Candida albicans during orthodontic therapy. Front Biosci. 2008, 13, 3814 3824. Adres do korespondencji: Lidia Postek-Stefańska Katedra i Zakład Stomatologii Wieku Rozwojowego ŚUM pl. Traugutta 2 41-800 Zabrze tel./faks: +48 32 271 36 12 e-mail: swrzab@sum.edu.pl Praca wpłynęła do Redakcji: 10.10.2011 r. Po recenzji: 4.01.2012 r. Zaakceptowano do druku: 24.01.2012 r. Received: 10.10.2011 Revised: 4.01.2012 Accepted: 24.01.2012