INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Nr ćwiczenia : 7 Kierunek: Mechanika i Budowa Maszyn



Podobne dokumenty
INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Nr ćwiczenia : 8

L a b o r a t o r i u m ( h a l a 2 0 Z O S )

ZAAWANSOWANE TECHNIKI WYTWARZANIA W MECHATRONICE

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Nr ćwiczenia : 7

LASEROWA OBRÓBKA MATERIAŁÓW

LASEROWA OBRÓBKA MATERIAŁÓW

KATEDRA TECHNIK WYTWARZANIA I AUTOMATYZACJI

Spis treści. Wstęp... 9

KATEDRA TECHNIK WYTWARZANIA I AUTOMATYZACJI

ZAAWANSOWANE TECHNIKI WYTWARZANIA W MECHATRONICE

L a b o r a t o r i u m ( h a l a 2 0 Z O S )

L a b o r a t o r i u m ( h a l a H 20 Z O S )

TMALASER Teresa Malinowska

L a b o r a t o r i u m ( h a l a 2 0 Z O S )

Eliminacja odkształceń termicznych w procesach spawalniczych metodą wstępnych odkształceń plastycznych z wykorzystaniem analizy MES

Technologia elementów optycznych

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Nr ćwiczenia : 3

Przetwórstwo tworzyw sztucznych i gumy

Obliczanie parametrów technologicznych do obróbki CNC.

PODSTAWY PRZECINANIA WYSOKOCIŚNIENIOWĄ STRUGĄ WODNO-ŚCIERNĄ

PL B1. AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE, Kraków, PL BUP 08/ WUP 09/17

SPECYFIKACJA TECHNICZNA WYKONANIA I ODBIORU MASZYNY WRAZ Z OPROGRAMOWANIEM

16.3. UCHWYTY DO CIĘCIA PLAZMĄ POWIETRZNĄ I CZĘŚCI ZAMIENNE

Wycinarka laserowa fiber z napędami liniowymi. Technologia laserowa

OFERTA. Zakład Automatyki Przemysłowej BP. Zakład Automatyki Przemysłowej B. P. 1. Ul. Młyńska Końskie fax.: tel.

Zakład Konstrukcji Spawanych

Ś W IA T Ł O W O D O W Y

T E N D E N C J E W K S Z T A Ł T O W A N I U U B Y T K O W Y M W Y R O B Ó W

LYNX FL. Laser światłowodowy LVDGROUP.COM CIĘCIE LASEROWE W ZASIĘGU RĘKI

T E C H N I K I L AS E R OWE W I N Ż Y N I E R I I W Y T W AR Z AN IA

Technologia sprzętu optoelektronicznego. dr inż. Michał Józwik pokój 507a

Karta (sylabus) przedmiotu

Obróbka i precyzyjne cięcie blach, profili i rur

Technologie laserowe w przemyśle:

Projektowanie Procesów Technologicznych

(13) B1 PL B1. fig.3. (73) Uprawniony z patentu: Przedsiębiorstwo Automatyki Przemysłowej "M ER A -P N EFA L, Warszawa, PL

OBRÓBKA SKRAWANIEM DOBÓR NARZĘDZI I PARAMETRÓW SKRAWANIA DO FREZOWANIA. Ćwiczenie nr 6

Wprowadzenie do WK1 Stan naprężenia

Karta (sylabus) przedmiotu

Moduł 2/3 Projekt procesu technologicznego obróbki przedmiotu typu bryła obrotowa

KARTA INFORMACYJNA Elektrodrążarka wgłębna Accutex AMNC43, S/N:

Tematy prac dyplomowych inżynierskich kierunek MiBM

Plazma m 3 System plazmowy trzeciej generacji UNIWERSALNY, EKONOMICZNY, PROSTY W OBSŁUDZE

WIERTARKA POZIOMA DO GŁĘBOKICH WIERCEŃ W W30-200

2. Głowica bazowa mocowana w sposób ręczny na interfejsie ER z możliwością ustawiania położenia 3 osi X, Y oraz Z firmy Erowa model ER

TOKARKO-WIERTARKA DO GŁĘBOKICH WIERCEŃ STEROWANA NUMERYCZNIE WT3B-250 CNC. Max. moment obrotowy wrzeciona. Max. długość obrabianego otworu

L a b o r a t o r i u m ( h a l a 2 0 Z O S )

T E ND ENCJE W T E CHNI K ACH K S Z T AŁTUJ ĄCY CH

Cięcie strumieniem wody umożliwia

WIERTŁA RUROWE nowa niższa cena nowa geometria (łamacz wióra)

WIERTARKA POZIOMA DO GŁĘBOKICH WIERCEŃ W80-250

KARTA PRZEDMIOTU. 1. Ma podstawową wiedzę w zakresie podstaw inżynierii materiałowej. 2. Ma podstawową wiedzę w zakresie fizyki.

ĆWICZENIE WYZNACZANIE CHARAKTERYSTYK POMPY WIROWEJ

KATEDRA TECHNIK WYTWARZANIA I AUTOMATYZACJI

Podstawy technik wytwarzania PTWII - projektowanie. Ćwiczenie 4. Instrukcja laboratoryjna

FORMULARZ OFERTOWY ... (pieczęć Dostawcy) ZAPYTANIE OFERTOWE NA:

TECHNOLOGIA MASZYN. Wykład dr inż. A. Kampa

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Nr ćwiczenia : 1

Światłowodowa wycinarka laserowa ELECTRA FL WIĘCEJ NIŻ OCZEKUJESZ LVDGROUP.COM

Elektroda grafitowa czy elektroda miedziana KTÓRA JEST LEPSZA I DLACZEGO?

Węglikowe pilniki obrotowe. Asortyment rozszerzony 2016

Frezarka uniwersalna

Światowy standard wycinarek laserowych CO2. Cięcie laserowe

Materiały pomocnicze do laboratorium z przedmiotu Metody i Narzędzia Symulacji Komputerowej

Obróbka elektrochemiczno-elektroerozyjna materiałów trudno obrabialnych

PARAMETRY TECHNICZNO UŻYTKOWE Zadanie nr 7 Ploter laserowy 1 szt.

quadra

Specyfikacja techniczna obrabiarki. wersja , wg. TEXT VMX42 U ATC40-05 VMX42 U ATC40

Opracował; Daniel Gugała

Każda z tych technologii ma swoją specyfikę

Instrukcja do ćwiczeń laboratoryjnych Napęd hydrauliczny

ZWIĘKSZONE MOŻLIWOŚCI CIĘCIA LASEREM FIBER

TERMOFORMOWANIE OTWORÓW

Temat: Układy pneumatyczno - hydrauliczne

PL B1. ECKERT TADEUSZ, Kunice, PL BUP 24/11. TADEUSZ ECKERT, Kunice, PL WUP 08/14 RZECZPOSPOLITA POLSKA

Zakład Narzędziowy EKOPLAST Roman Glazik pragnie poinformować, że realizuje projekt pt.:

ZWIĘKSZONE MOŻLIWOŚCI CIĘCIA LASEREM FIBER

Metody frezowania. Wysokowydajne frezy do gwintów. Programowanie obrabiarek CNC. Posuw na konturze narzędzia F k. Posuw w osi narzędzia F m

Powiat Ostrowiecki WYKAZ WYPOSAŻENIA

JEDNOSTRONNA FORMATYZERKO CZOPIARKA Typ DCLB Specjal 2

Temat: NAROST NA OSTRZU NARZĘDZIA

Centrum obróbcze MAKA PE 80

Transport I stopień Ogólnoakademicki. Studia stacjonarne. Kierunkowy. Obowiązkowy Polski Semestr V. Semestr Zimowy

Uchwyty do cięcia plazmą ABIPLAS CUT Chłodzone powietrzem Obciążalność do 70 A

System plazmy powietrznej 100 A TECHNOLOGIA CIĘCIA CNC

ZASADY FORMALNE PISANIA PRACY DYPLOMOWEJ EDYCJA PRACY

KATALOG SPRZEDAŻY 1. LASER IPG 6KW NUMER SERYJNY

Laboratorium techniki laserowej. Ćwiczenie 5. Modulator PLZT

Wycinarka laserowa z rezonatorem włóknowym. Technologia laserowa

KSZTAŁTOWANIE MIKROELEMENTÓW OBRÓBKĄ ELEKTROCHEMICZNĄ I ELEKTROEROZYJNĄ

3. TEMPERATURA W PROCESIE SZLIFOWANIA. 3.1 Cel ćwiczenia. 3.2 Wprowadzenie

Rajmund Rytlewski, dr inż.

TOKARKO-WIERTARKA DO GŁĘBOKICH WIERCEŃ STEROWANA NUMERYCZNIE WT2B-160 CNC WT2B-200 CNC

WPŁYW GŁÓWNYCH PARAMETRÓW OBRÓBKI WYSOKOCIŚNIENIOWĄ STRUGĄ WODNO-ŚCIERNĄ NA JAKOŚĆ POWIERZCHNI PRZECIĘCIA

Parametry: Wyposażenie standardowe:

PHOENIX FL. Światłowodowa wycinarka laserowa LVDGROUP.COM DYNAMICZNE I WIELOFUNKCYJNE CIĘCIE LASEROWE

Sposób sterowania ruchem głowic laserowego urządzenia do cięcia i znakowania/grawerowania materiałów oraz urządzenie do stosowania tego sposobu

Transkrypt:

Przedmiot : OBRÓBKA SKRAWANIEM I NARZĘDZIA Temat: Obróbka erozyjna KATEDRA TECHNIK WYTWARZANIA I AUTOMATYZACJI INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Nr ćwiczenia : 7 Kierunek: Mechanika i Budowa Maszyn 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie studenta z procesem obróbki elektroerozyjnej, laserowej i wodnościernej, zastosowaniem, parametrami procesu i sposobem ustalania i mocowania przedmiotów. 2. Wyposażenie stanowiska - Elektrodrążarka wgłębna, - Elektrodrążarka do otworów (przebijarka do otworów startowych), - Wycinarka laserowa, - Wycinarka wodna, - Oprzyrządowanie do maszyn obróbkowych. 3. Przebieg ćwiczenia - Zapoznanie się z budową elektrodrążaki wgłębnej, - Zapoznanie się z budową przebijarki do otworów startowych, - Zapoznanie się z budową wycinarki laserowej, - Zapoznanie się z budową wycinarki wodnej, - Przeprowadzenie procesu drążenia wgłębnego, - Przeprowadzenie procesu wykonania otworu, - Przeprowadzenie procesu cięcia laserowego, - Przeprowadzenie procesu cięcia strugą wodno-ścierną. Literatura: - Poradnik inżyniera Obróbka skrawaniem tom I WNT Warszawa 1991 r. - Dul Korzyńska B. Obróbka skrawaniem i narzędzia OWPR Rzeszów - Cichosz P. Techniki wytwarzania obróbka ubytkowa OWPW Wrocław 2002 r.

1. Wprowadzenie. Obróbka elektroerozyjna, laserowa i wodno-ścierna należą do grupy procesów obróbki erozyjnej, o niekonwencjonalnym sposobie kształtowania przedmiotu obrabianego. Materiał zostaje rozdzielony poprzez zjawisko fizyczne bez bezpośredniego udziału narzędzia obróbkowego, czyli np. za pomocą wyładowania elektrycznego w cieczy dielektrycznej, za pomocą skoncentrowanej wiązki laserowej z gazem ochronnym bądź za pomocą sprężonego strumienia wody i proszku ściernego. 2. Obróbka elektroerozyjna. W procesie obróbki elektroerozyjnej możemy wyróżnić następujące techniki kształtowania: Elektrodrążenie (EDM, Electric discharge Machining). Cięcie drutem (WEDM, Wire Electric discharge Machining). Wiercenie elektroerozyjne (Przebijanie otworów). Elektrodrążenie. Elektrodrążenie jest procesem obróbki elektroerozyjnej, w którym ubytek materiału odbywa się poprzez wyładowania elektryczne pomiędzy elektrodą roboczą, a przedmiotem obrabianym. Kształt i geometria uzyskana po obróbce zależy głównie od geometrii narzędzia (elektrody roboczej). Na rys. 1 przedstawiono przebieg pojedynczego wyładowania elektrycznego pomiędzy elektrodą, a przedmiotem obrabianym. Rys. 1. Przebieg pojedynczego wyładowania w czasie procesu obróbki elektroerozyjnej. Przebieg pojedynczego wyładowania jest następujący: a) Przed przebiciem: w pierwszym etapie pomiędzy elektrodą a przedmiotem obrabianym zostaje przyłożone napięcie o zadanej wartości granicznej U g. Elektroda robocza przemieszcza się w kierunku przedmiotu w wyniku tego przemieszczania pomiędzy elektrodą, a przedmiotem następuje wzrost pola elektrycznego. W

miejscach, gdzie natężenie pola elektrycznego jest największe, następuje koncentracja zanieczyszczeń występujących w cieczy, które w konsekwencji prowadzą do obniżenia wytrzymałości elektrycznej w szczelinie roboczej. b) Przebicie: w wyniku osłabienia wytrzymałości elektrycznej w szczelnie roboczej pomiędzy elektrodą, a przedmiotem obrabianym następuje przebicie elektryczne podczas którego następuje gwałtowny spadek napięcia i wzrost prądu elektrycznego. W wyniku tego zjawiska następuje jonizacja ośrodka i utworzenie kanału plazmy. c) Wyładowanie: w czasie wyładowania utrzymująca się wartość prądu zapewnia bombardowanie jonami i elektronami powierzchnię przedmiotu i elektrody roboczej. W wyniku takiego bombardowania następuje gwałtowny wzrost temperatury, topnienie, a nawet odparowanie cząstek materiału obrabianego. d) Koniec wyładowania: pod koniec wyładowania następuje gwałtowny spadek prądu przewodzenia, co prowadzi do zaniku kanału plazmy i wybuchu w wyniku zmian ciśnienia wokół wyładowania. e) Po wyładowaniu: następuje wypłukanie stopionego materiału i dejonizacja szczeliny roboczej. Proces elektrodrążenia jest najczęstszym sposobem kształtowania materiałów trudno obrabialnych, materiałów po obróbce cieplnej i cieplno-chemicznej oraz wyrobów o skomplikowanych kształtach, gdzie możliwość obróbki metodami konwencjonalnymi za pomocą frezowania, toczenia, wiercenia jest utrudniona bądź nawet niemożliwa. Na rys. 2 przedstawiono przykłady wykonywania przedmiotów metodą elektrodrążenia. Rys. 2 Przykłady wykonania przedmiotów metodą drążenia. Narzędzia Narzędziem podczas procesu drążenia jest elektroda. Kształt oraz wielkość elektrody jest uzależniona od pożądanego kształtu wyrobu. Materiałem stosowanym na elektrodę może być każdy materiał, który przewodzi prąd, natomiast do najczęstszych stosowanych materiałów na elektrody robocze zalicza się: miedź elektrolityczna, grafit, mosiądz, żeliwo, stopy cyny lub kompozyty. Miedź elektrolityczna charakteryzuje się bardzo dobrymi właściwościami elektrycznymi oraz łatwością kształtowania, natomiast grafit jest materiałem bardzo kruchym, o bardzo dobrych właściwościach elektrycznych. Wykonywanie elektrod grafitowych odbywa się na specjalnie przystosowanych do tego centrach obróbczych wyposażonych w systemy odprowadzania pyłu

grafitowego. Największą zaletą elektrod grafitowych jest możliwość wykonania elektrod bardzo długich o małym przekroju poprzecznym. Na rys. 3 pokazano przykład wykonania elektrody miedzianej i grafitowej. Rys 3. Przykłady elektrod: z grafitu, miedzi. Generatory impulsów elektrycznych. Do wytarzania impulsów prądowych prowadzących do wyładowań elektrycznych stosuje się generatory. Sposób ich działania jest podstawą klasyfikacji odmian obróbki elektroerozyjnej na obróbkę elektroiskrową i obróbkę elektroimpulsową. Wyróżniamy dwa podstawowe typy generatorów: generator zależny RC oraz generator niezależny. Schemat generatora zależnego oraz jego przebiegi czasowe przedstawiono na rys. 4. Rys 4. Schemat generatora zależnego oraz przebiegi czasowe ładowania i rozładowania.

Głównym elementem składowym generatora jest zasobnik ładunku elektrycznego kondensator. Ładowanie kondensatora o pojemności C odbywa się aż do osiągnięcia napięcia granicznego U g, przy którym jonizacja w szczelinie umożliwia utworzenie przeskoku iskry elektrycznej. Średnia energia pojedynczego wyładowania wynosi w przybliżeniu. Objętość usuwanego materiału przy użyciu tego typu generatora wynosi 10-6 10-4 mm 3 /impuls, natomiast częstotliwość wyładowań jest w zakresie 50 500 khz. Na rys. 5. przedstawiono schemat generatora niezależnego do obróbki elektroimpulsowej. Rys. 5 Schemat generatora niezależnego oraz przebiegi czasowe wyładowania. Energia elektryczna płynąca ze źródła prądu przez opornik R ładuje kondensator C. Za pomocą urządzenia sterującego W (tranzystor) nagromadzona energia jest kierowana do szczeliny roboczej, gdzie wydzielana jest w postaci impulsu o dużej mocy. Generatory tego typu charakteryzują się możliwością sterowania czasu wyładowania t w i czasu przerwy impulsu t p. Średnią energię pojedynczego impulsu można określić z zależności:

Ciecze dielektryczne. Najczęściej stosową cieczą roboczą jest ropa naftowa, olej transformatorowy, olej wrzecionowy lub ich mieszaniny. Dobry dielektryk powinien się charakteryzować następującymi właściwościami: Dużą opornością elektryczną Zdolnością gaszenia luku elektrycznego Mała lepkością Dużą trwałością Nieszkodliwością dla obsługi W celu prawidłowego i wydajnego przebiegu obróbki stosuje się różne metody doprowadzania cieczy dielektrycznej do strefy obróbki, do najczęściej spotykanych metod zalicza się: Emisję cieczy dielektrycznej przez elektrodę Wytworzenie podciśnienia i zasysanie cieczy dielektrycznej ze strefy obróbki. Budowa elektrodrążarki. Na rys. 6 pokazano budowę 4 osiowej elektrodrążaki firmy Mitsubishi EA12V ze sterownikiem CNC. Elektrodrążarka posiada możliwość drążenia wgłębnego na kierunkach podstawowych Z, X, Y oraz drążenie po zadanym wektorze kierunkowym(xy, ZX, YZ, XYZ). Wyposażenie elektrodrążaki w dodatkową oś sterowaną C, która wykonuje obrót wokół osi Z pozwala na wykonywanie uzębień wewnętrznych o linii śrubowej oraz gwintów o dowolnym zarysie. Rys. 6 Budowa elektrodrążarki wgłębnej: 1- Przestrzeń robocza, 2 elektroda robocza, 3 przedmiot obrabiany, 4 generator impulsów, 5 sterownik CNC, 6 szybko złącze zasysania cieczy dielektrycznej, 7- szybko złącze emisji cieczy dielektrycznej.

3. Obróbka laserowa. Cięcie laserowe umożliwia uzyskanie dowolnych kształtów w różnych materiałach. W procesie obróbki laserowej kształtowanie przedmiotu obrabianego odbywa się skoncentrowaną wiązką światła laserowego o zadanych parametrach takich jak: moc wiązki laserowej, częstotliwość pracy impulsowej wiązki laserowej, prędkość przemieszczania się głowicy laserowej. Skoncentrowany promień światła laserowego o danej długość fali powoduje miejscowe nagrzanie materiału do stanu płynnego, a przepływający przez dyszę gaz pomocniczy powoduje oczyszczenie i schłodzenie strefy obróbki. Na rys. 7 przedstawiono schemat obróbki laserowej. Rys. 7. Schemat cięcia laserowego. Wiązka laserowa skupiana jest za pomocą soczewki i kierowana jest na powierzchnię ciętego przedmiotu. Ponadto do strefy obróbki doprowadzany jest gaz, który koncentrowany jest za pomocą odpowiedniej dyszy. Na rys. 8 przedstawiono widok procesu cięcia laserowego. Widoczna jest głowica tnąca oraz arkusz blachy ułożony na tzw. ruszcie, który umożliwia wytracenie energii wiązki laserowej po przejściu przez przedmiot. Rys. 8. Widok cięcia laserowego.

Na rys. 8 widoczne jest centrum laserowe firmy DMG Lasertec Finecutting z laserem światłowodowym, w którym źródło światła skoncentrowanego wynika z promieniowania pierwiastka Iterbu (Yb). Moc lasera jest rzędu 200W, długość fali światła wynosi 1070 nm. Laser może pracować w trybie impulsowym o częstotliwość impulsów do 50kHz lub ciągłym. Centrum wyposażone jest w liniowe napędy osi sterowanych, które pozwalają na uzyskanie prędkości cięcia do 40 m/min. Ze względu na ograniczoną moc obrabiarka umożliwia cięcie przedmiotów o grubości do 1mm. Rys. 7 Centrum laserowe: 1 ruszt (stół), 2 głowica tnąca, 3 sterownik CNC Sinumeric 840D, 4 listwy dociskowe przedmioty obrabiane. 4. Obróbka wodno-ścierna (AWJ abrasive water jet) Proces cięcia polega na zastosowaniu sprężonego strumienia wody o dużej prędkości (3x prędkość dźwięku). Strumień wody, zawierający proszek ścierny, usuwa cięty materiał ze szczeliny cięcia w wyniku erozji i skrawania, mała średnica strugi tnącej umożliwiają precyzyjne wycinanie różnej wielkości elementów o skomplikowanych kształtach. Proces ten umożliwia: cięcie, żłobienie, przebijanie. Jako ścierniwa używa się proszków ściernych z takich minerałów jak: granat, oliwin lub krzemionka. Cięcie wodą umożliwia otrzymanie części na gotowo o dobrej jakości powierzchni, bez strefy wpływu ciepła, odkształceń cieplnych, czy naprężeń mechanicznych spowodowanych przez inne metody cięcia. Obróbka realizowana jest beziskrowo, dzięki czemu możliwe jest przecinanie materiałów łatwopalnych i zagrożonych wybuchem. Tą techniką można przecinać wszelkie typy materiałów: kompozyty, materiały wielowarstwowe, szkło, stal, ceramika, tworzywa sztuczne, elementy żelbetowe, kamień.

Podstawowe parametry cięcia wodą (AWJ): - prędkość cięcia ~ 4 [m/min], - ciśnienie wody 350 600 [MPa], - wydatek wody 4 6 [l/min], - wydajność podawania proszku 300 500 [g/min], - rodzaj i ziarnistość proszku, - odległość dyszy od przedmiotu, - średnica dyszy 0,8 1 [mm]. Na rys. 8 przedstawiono zasadę powstawania strugi wodno-ściernej oraz oddziaływanie prędkości posuwu na powierzchnię boczną materiału obrabianego. Poniżej poziomu dyszy wodnej bardzo duża prędkość wody pod wysokim ciśnieniem powoduje powstanie podciśnienia co powoduje samoczynne zasysanie ścierniwa do komory, w której następuje zmieszanie z wodą. Mieszanina wodno-ścierna jest następnie formowana w dyszy mieszającej i kierowana w miejsce obróbki (zjawisko tzw. inżektorowego zasysania ścierniwa). Czas pracy głowicy wynosi do 140 godzin. Rys. 8 Powstawanie strugi wodno-ściernej oraz ślady obróbkowe po cięciu strugą wodnościerną Na rys. 9 przedstawiono wycinarkę wodną Knuth Hydro-Jet Eco 0615 S obsługiwana przez sterownik GPlus 450Cut. Zakres roboczy maszyny wynosi 1500x600 mm. Obrabiarka umożliwia cięcie strugą wodną i wodno-ścierna. Maksymalny wydatek objętościowy wody wynosi 3,1 l/min zaś prędkość cięcia wynosi do 4 m/min.

3 1 2 4 5 Rys. 9 Wycinarka wodna: 1 dysza, 2 suport pionowy, 3 suport poprzeczny, 4 suport wzdłużny, 5 zbiornik cieczy