AMINOKWASY BUDOWA I WŁAŚCIWOŚCI BIAŁKA BUDOWA I FUNKCJE



Podobne dokumenty
AMINOKWASY. BUDOWA I WŁAŚCIWOŚCI

Reakcje charakterystyczne aminokwasów

Ćwiczenie 2 BUDOWA, WŁAŚCIWOŚCI I FUNKCJE BIAŁEK

AMINOKWASY. BUDOWA I WŁAŚCIWOŚCI

Ćwiczenie 5 Aminokwasy i białka

BADANIE WŁAŚCIWOŚCI FIZYKOCHEMICZNYCH AMINOKWASÓW

Przegląd budowy i funkcji białek

Reakcje charakterystyczne aminokwasów

protos (gr.) pierwszy protein/proteins (ang.)

21. Wstęp do chemii a-aminokwasów

46 i 47. Wstęp do chemii -aminokwasów

Analiza jakościowa wybranych aminokwasów

Materiały pochodzą z Platformy Edukacyjnej Portalu

Ćwiczenie 6 Aminokwasy

etyloamina Aminy mają właściwości zasadowe i w roztworach kwaśnych tworzą jon alkinowy

BUDOWA I WŁAŚCIWOŚCI AMINOKWASÓW Aminokwasy białkowe

1.1. AMINOKWASY BIAŁKOWE

Właściwości aminokwasów i białek

AMINOKWASY. I. Wprowadzenie teoretyczne. Aminokwasy są to związki, które w łańcuchu węglowym zawierają zarówno grupę aminową jak i grupę karboksylową.

Budowa i funkcje białek

Informacje. W sprawach organizacyjnych Slajdy z wykładów

Repetytorium z wybranych zagadnień z chemii

Ćwiczenie 4. Reakcja aminokwasów z ninhydryną. Opisz typy reakcji przebiegających w tym procesie i zaznacz ich miejsca przebiegu.

Zastosowanie metody Lowry ego do oznaczenia białka w cukrze białym

1. Właściwości białek

Chemiczne składniki komórek

Aminokwasy, peptydy i białka. Związki wielofunkcyjne

Substancje o Znaczeniu Biologicznym

Slajd 1. Slajd 2. Proteiny. Peptydy i białka są polimerami aminokwasów połączonych wiązaniem amidowym (peptydowym) Kwas α-aminokarboksylowy aminokwas

data ĆWICZENIE 7 DYSTRYBUCJA TKANKOWA AMIDOHYDROLAZ

data ĆWICZENIE 6 IZOLACJA BIAŁEK I ANALIZA WPŁYWU WYBRANYCH CZYNNIKÓW NA BIAŁKA Doświadczenie 1

spektroskopia elektronowa (UV-vis)

BADANIE WŁAŚCIWOŚCI FIZYKOCHEMICZNYCH AMINOKWASÓW

2. Produkty żywnościowe zawierające białka Mięso, nabiał (mleko, twarogi, sery), jaja, fasola, bób (rośliny strączkowe)

PRZYKŁADOWE ZADANIA ORGANICZNE ZWIĄZKI ZAWIERAJĄCE AZOT

ĆWICZENIE 1. Aminokwasy

Ćwiczenie 1. Właściwości aminokwasów i białek

Oznaczanie mocznika w płynach ustrojowych metodą hydrolizy enzymatycznej

Właściwości elektrolityczne i buforowe wodnych roztworów aminokwasów

Temat 7. Równowagi jonowe w roztworach słabych elektrolitów, stała dysocjacji, ph

Scenariusz lekcji chemii w klasie III gimnazjum. Temat lekcji: Białka skład pierwiastkowy, budowa, właściwości i reakcje charakterystyczne

WYMAGANIA EDUKACYJNE

Budowa aminokwasów i białek

ĆWICZENIE I - BIAŁKA. Celem ćwiczenia jest zapoznanie się z właściwościami fizykochemicznymi białek i ich reakcjami charakterystycznymi.

BADANIE WŁASNOŚCI KOENZYMÓW OKSYDOREDUKTAZ

data Wstęp merytoryczny

data ĆWICZENIE 12 BIOCHEMIA MOCZU Doświadczenie 1

Chemia Nowej Ery Wymagania programowe na poszczególne oceny dla klasy II

Wymagania programowe na poszczególne oceny. III. Woda i roztwory wodne. Ocena dopuszczająca [1] Uczeń: Ocena dostateczna [1 + 2]

OZNACZANIE ZAWARTOŚCI MANGANU W GLEBIE

ĆWICZENIE 1: BUFORY 1. Zapoznanie z Regulaminem BHP 2. Oznaczanie ph 2.1. metoda z zastosowaniem papierków wskaźnikowych

Wymagania programowe na poszczególne oceny CHEMII kl. II 2017/2018. III. Woda i roztwory wodne. Ocena dopuszczająca [1] Uczeń:

Aminokwasy, peptydy, białka

Współczesne metody chromatograficzne: Chromatografia cienkowarstwowa

REAKCJE CHARAKTERYSTYCZNE AMINOKWASÓW. 1. Deaminacja aminokwasów kwasem azotowym (III)

ĆWICZENIE 1 BUDOWA I WŁAŚCIWOŚCI AMINOKWASÓW

HYDROLIZA SOLI. ROZTWORY BUFOROWE

ĆWICZENIE 1. Aminokwasy

KWASY I WODOROTLENKI. 1. Poprawne nazwy kwasów H 2 S, H 2 SO 4, HNO 3, to:

Kwas HA i odpowiadająca mu zasada A stanowią sprzężoną parę (podobnie zasada B i kwas BH + ):

CHEMIA - wymagania edukacyjne

WPŁYW SUBSTANCJI TOWARZYSZĄCYCH NA ROZPUSZCZALNOŚĆ OSADÓW

Metabolizm białek. Ogólny schemat metabolizmu bialek

KREW: 1. Oznaczenie stężenia Hb. Metoda cyjanmethemoglobinowa: Zasada metody:

Obliczenia chemiczne. Zakład Chemii Medycznej Pomorski Uniwersytet Medyczny

prowadzonego w ramach projektu Uczeń OnLine

Homogenizacja. Instrukcja do ćwiczeń opracowana w Katedrze Chemii Środowiska Uniwersytetu Łódzkiego.

Chemia - B udownictwo WS TiP

Wymagania programowe na poszczególne oceny chemia kl. II Gimnazjum Rok szkolny 2015/2016 Wewnętrzna budowa materii

Wodorotlenki. n to liczba grup wodorotlenowych w cząsteczce wodorotlenku (równa wartościowości M)

Oznaczanie SO 2 w powietrzu atmosferycznym

Roztwory elekreolitów

LCH 1 Zajęcia nr 60 Diagnoza końcowa. Zaprojektuj jedno doświadczenie pozwalające na odróżnienie dwóch węglowodorów o wzorach:

Kuratorium Oświaty w Lublinie

Chemia. Wymagania programowe na poszczególne oceny dla uczniów klas II gimnazjum

Wymagania programowe z chemii w kl.2 na poszczególne oceny ; prowadzący mgr Elżbieta Wnęk. II. Wewnętrzna budowa materii

Szczegółowe wymagania edukacyjne z przedmiotu chemia dla klasy II gimnazjum, rok szkolny 2015/2016

Zadanie 2. (0 1) Uzupełnij schemat reakcji estryfikacji. Wybierz spośród podanych wzór kwasu karboksylowego A albo B oraz wzór alkoholu 1 albo 2.

KARTA PRACY DO ZADANIA 1. Pomiar widma aminokwasu na spektrometrze FTIR, model 6700.

Ćwiczenie nr 7. Aminokwasy i peptydy. Repetytorium. Repetytorium

HYDROLIZA SOLI. 1. Hydroliza soli mocnej zasady i słabego kwasu. Przykładem jest octan sodu, dla którego reakcja hydrolizy przebiega następująco:

Chemia klasa VII Wymagania edukacyjne na poszczególne oceny Semestr II

WPŁYW SUBSTANCJI TOWARZYSZĄCYCH NA ROZPUSZCZALNOŚĆ OSADÓW

CHEMIA KLASA II I PÓŁROCZE

Wymagania programowe na poszczególne oceny CHEMIA klasa II. I. Wewnętrzna budowa materii. Ocena bardzo dobra [ ]

3b 2. przedstawione na poniższych schematach. Uzupełnij obserwacje i wnioski z nich wynikające oraz równanie zachodzącej reakcji.

ĆWICZENIE 2 WSPÓŁOZNACZANIE WODOROTLENKU I WĘGLANÓW METODĄ WARDERA. DZIAŁ: Alkacymetria

Chemia nieorganiczna Zadanie Poziom: podstawowy

A. B. Co warto wiedzieć o aminokwasach?

RÓWNOWAGI W ROZTWORACH ELEKTROLITÓW.

WYKŁAD 4: MOLEKULARNE MECHANIZMY BIOSYNTEZY BIAŁEK. Prof. dr hab. n. med. Małgorzata Milkiewicz Zakład Biologii Medycznej.

Oznaczanie żelaza i miedzi metodą miareczkowania spektrofotometrycznego

KONDUKTOMETRIA. Konduktometria. Przewodnictwo elektrolityczne. Przewodnictwo elektrolityczne zaleŝy od:

POLITECHNIKA POZNAŃSKA ZAKŁAD CHEMII FIZYCZNEJ ĆWICZENIA PRACOWNI CHEMII FIZYCZNEJ

Instrukcja do ćwiczeń laboratoryjnych

Zagadnienia z chemii na egzamin wstępny kierunek Technik Farmaceutyczny Szkoła Policealna im. J. Romanowskiej

Glicyna budowa cząsteczki i właściwości

Kryteria oceniania z chemii kl VII

SPIS TREŚCI OD AUTORÓW... 5

Reakcje chemiczne. Typ reakcji Schemat Przykłady Reakcja syntezy

Transkrypt:

Ćwiczenie 1 AMINOKWASY BUDOWA I WŁAŚCIWOŚCI BIAŁKA BUDOWA I FUNKCJE Część doświadczalna obejmuje: rozdział aminokwasów metodą chromatografii podziałowej (technika chromatografii bibułowej wstępującej) wykonanie reakcji charakterystycznych dla wybranych aminokwasów ilościowe oznaczanie białek metodą biuretową WPROWADZENIE AMINOKWASY Budowa i właściwości ogólne aminokwasów Aminokwasy są kwasami organicznymi zawierającymi wolną grupą karboksylową oraz wolną grupą aminową, położoną przy α-atomie węgla. Poza tymi dwoma grupami, każdy aminokwas ma charakterystyczny dla siebie łańcuch boczny R (Ryc. 1 i 2). Ryc. 1. Schemat budowy i zróżnicowanie funkcjonalne aminokwasów (Koolman i Röhm 2005) 1

Ryc. 2. Łańcuchy boczne aminokwasów proteinogennych (Koolman i Röhm 2005) Na Ryc. 2 przedstawiono łańcuchy boczne dwudziestu aminokwasów budujących białka (aminokwasy proteinogenne), które ze względu na budowę chemiczną oraz polarność łańcuchów bocznych podzielono na siedem klas. Wartości podane na dole po lewej przedstawiają stopień polarności danego łańcucha bocznego (najmniejszy dla Phe, Cys, Met, Ala, a największy dla Arg, Lys). Przy łańcuchach bocznych zdolnych do jonizacji podane są także wartości pk (czerwone liczby). Szczególną pozycję wśród aminokwasów zajmuje prolina (Pro). Jej łańcuch boczny wraz z węglem α i grupą aminową przy tym węglu tworzą 5-członowy 2

pierścień. Atom azotu w pierścieniu jest słabo zasadowy i w warunkach fizjologicznych nie jest uprotonowany. Aminokwasy, które nie mogą być syntetyzowane w organizmach ludzkich (aminokwasy egzogenne) oznaczone są czerwoną gwiazdką. Aminokwasy są składnikami budulcowymi peptydów i białek (aminokwasy proteinogenne). Niektóre aminokwasy wchodzą w skład lipidów, np. seryna występuje w fosfolipidach, a glicyna w solach żółciowych. Glutaminian, asparaginian oraz glicyna odgrywają rolę neuroprzekaźników. Wszystkie aminokwasy, za wyjątkiem lizyny i leucyny, mogą być metabolitami pośrednimi szlaku glukoneogenezy (aminokwasy glukogenne), tzn. mogą posłużyć do biosyntezy glukozy. Niektóre aminokwasy są wykorzystywane do syntezy zasad purynowych i pirymidynowych (asparaginian, glutaminian), hemu (glicyna), amin biogennych (np. seryna, glutaminian) (Ryc. 3). Aminokwasy są też donorami grup aminowych przenoszonych na ketokwasy lub funkcjonują w cyklu mocznikowym (ornityna, cytrulina) (Ryc. 4). Ryc. 3. Aminy biogenne wywodzące się z aminokwasów (Koolman i Röhm 2005) Ryc. 4. Aminokwasy rzadkie (Koolman i Röhm 2005) Właściwości amfoteryczne aminokwasów Obecność w aminokwasach grupy karboksylowej i grupy aminowej powoduje, że są one związkami amfoterycznymi. W roztworach wodnych występują głównie w formie jo- 3

nów. W zależności od ph środowiska jony te mogą mieć charakter kwasowy bądź zasadowy, zgodnie z poniższymi równaniami reakcji: Zmiany stanu jonizacji aminokwasów w zależności od ph W środowisku kwasowym aminokwas przyłącza proton, staje się kationem i zachowuje jak + kwas, gdyż występujące w cząsteczce grupa karboksylowa COOH i grupa amoniowa NH 3 mogą być donorami protonów. W środowisku zasadowym aminokwas oddając proton staje się anionem i zachowuje się jak zasada, ponieważ zdysocjowana grupa karboksylowa COO - i grupa aminowa NH 2 mogą przyłączać protony. Jest taka wartość ph roztworu, przy której cząsteczki aminokwasów występują w formie jonu obojnaczego, w którym liczba ładunków ujemnych jest równa liczbie ładunków dodatnich, czyli sumarycznie ładunek równy jest zeru. Taka wartość ph nosi nazwę punktu izoelektrycznego (pi). Charakter amfoteryczny aminokwasów ujmuje graficznie krzywa miareczkowania roztworów aminokwasów mocnymi kwasami lub zasadami (Ryc. 5). Krzywa przedstawia zależność wartości ph miareczkowanego roztworu od liczby dodanych moli kwasu lub zasady. Zależność między wartością ph a stanem dysocjacji opisano równaniem Hendersona- Hasselbalcha, gdzie K a = stała kwasowa, a pk a = ujemny logarytm stałej kwasowej: Z powyższego równania wynika, iż w warunkach, gdy formy zdysocjowana i niezdysocjowana są w stężeniach równowagowych, to pk a = ph. Miareczkowanie roztworu aminokwasu połączone z jednoczesnym pomiarem ph roztworu pozwala na doświadczalne wyznaczenie krzywej dysocjacji aminokwasu, określenie jego wartości pi oraz wyznaczenie wartości pk a jego grup funkcyjnych. 4

Ryc. 5. Krzywa miareczkowania histydyny (Karlson 1987) Rozdział aminokwasów Jedną z metod rozdziału aminokwasów pozwalającą izolować z mieszaniny pojedyncze aminokwasy jest chromatografia podziałowa. Opiera się ona na prawie podziału solutu (substancji rozpuszczonej) między dwie fazy ciekłe ruchomą i stacjonarną. Faza stacjonarna utrzymywana jest przez porowaty nośnik słabo adsorbujący składniki solutu. Porowatym nośnikiem może być bibuła albo żel ułożony w kolumnie chromatograficznej lub wylany na płytkę. Warunkiem decydującym o rozdziale substancji są różnice w ich rozpuszczalności w fazie ruchomej i nieruchomej, tj. różnice we współczynnikach podziału między dwie nie mieszające się ze sobą fazy ciekłe. Chromatografia podziałowa opiera się więc na prawie Nernsta, które mówi, iż w układzie utworzonym przez dwie nie mieszające się ze sobą fazy ciekłe i wspólny dla nich solut, stosunek stężenia tego solutu w fazie 1 (c 1 ) do jego stężenia w fazie 2 (c 2 ) jest w stanie równowagi wielkością stałą zależną od temperatury i właściwości substancji tworzących roztwory, a niezależną od ilości substancji rozpuszczonej: c 1 /c 2 = k. Miarą selektywności rozdziału dwóch substancji A i B w danym układzie jest stopień rozdziału, którego wartość określa wzór: β = K A /K B gdzie K A określa stosunek podziału substancji A, K B stosunek podziału substancji B między fazę ruchomą i nieruchomą. Technika chromatografii bibułowej. W chromatografii bibułowej nośnikiem fazy stacjonarnej, najczęściej polarnej, jest odpowiednio spreparowana bibuła filtracyjna. Bibuła jest zbudowana z włókien celulozowych ułożonych w porowatą, żelową strukturę stanowiącą fazę 5

nieruchomą. Cząsteczki wody zaadsorbowane na bibule łączą się z włóknami celulozy wiązaniami wodorowymi. Fazę ruchomą w chromatografii bibułowej stanowią odpowiednie rozpuszczalniki organiczne pojedyncze lub zmieszane. Rozpuszczalniki muszą się częściowo mieszać z wodą, np. szeroko rozpowszechnionym układem jest mieszanina n-butanolu/kwasu octowego/wody, w zmiennych proporcjach. Szybkość wędrowania danego związku w określonych warunkach jest wartością stałą. Jej miarą jest wartość R f : R f = x/y, gdzie x oznacza odległość od linii startowej do środka plamy aminokwasu, a y odległość od linii startowej do czoła rozpuszczalnika. W Tabeli 1 podane są wartości R f dla większości aminokwasów rozdzielanych w warunkach zbliżonych do tych, w jakich będzie wykonywane ćwiczenie. Tabela 1. Wartości R f aminokwasów (faza ruchoma: n-butanol/kwas octowy/woda, 4:1:1) Lp. Nazwa aminokwasu Symbol aminokwasu Wartości R f x 100 w układzie rozpuszczalników: n-butanol/ch 3 COOH/H 2 O 1. alanina Ala A 30 2. arginina Arg R 15 3. kwas asparaginowy Asp D 22 4. asparagina Asn N 12 5. cystyna 5 6. cysteina Cys C 8 7. kwas cysteinowy CysSO 3 H 7 8. fenyloalanina Phe F 60 9. glicyna Gly G 23 10. kwas glutaminowy Glu E 28 11. glutamina Gln Q 17 12. histydyna His H 11 13. leucyna Leu L 70 14. izoleucyna Ile I 67 15. lizyna Lys K 12 16. metionina Met M 50 17. sulfonian metioniny MetSO 3 H 22 18. prolina Pro P 34 19. hydroksyprolina ProOH 22 20. seryna Ser S 22 21. treonina Thr T 26 22. tryptofan Trp W 50 23. tyrozyna Tyr Y 45 24. walina Val V 51 25. ornityna Orn 12 26. cytrulina Cytr 18 6

BIAŁKA Budowa, podział i funkcje białek Łączenie się aminokwasów wiązaniami amidowymi prowadzi do utworzenia liniowej makrocząsteczki polipeptydu. Łańcuchy polipeptydowe zawierające ponad 100 reszt aminokwasowych przyjęto określać jako białka. Wiązanie amidowe, nazywane również wiązaniem peptydowym, powstaje z grupy α-karboksylowej i grupy α-aminowej. Na Ryc. 6A przedstawiono dipeptyd (seryloalaninę) utworzony z seryny i alaniny. Wiązanie peptydowe jest stabilizowane mezomerycznie, gdyż wiązanie C N ma częściowo charakter wiązania podwójnego C=N (Ryc.6B). To usztywnienie wiązania peptydowego powoduje, że we wszystkich ułożeniach przestrzennych białek grupy amidowe pozostają płaskie. Swobodna rotacja jest możliwa tylko wokół wiązania N C α i C α C, a obroty są opisywane przez wartości kątów torsyjnych ϕ (fi) i ψ (psi) (Ryc. 6A). Ryc. 6. Właściwości wiązania amidowego (peptydowego) (Koolman i Röhm 2005) Konformacja łańcucha peptydowego utworzona przez kilka kolejnych reszt aminokwasowych i stabilizowana wiązaniami wodorowymi pomiędzy atomami tlenu i azotu z ugrupowań peptydowych definiuje strukturę drugorzędową (Ryc. 7). 7

Ryc. 7. Struktury drugorzędowe białek (α-helisa, helisa kolagenu, pofałdowanej kartki, β-pętla) (Koolman i Röhm 2005) 8

Białka, ze względu na skład, dzieli się na białka proste i złożone. Białka proste zbudowane są tylko z aminokwasów, natomiast białka złożone zawierają szereg różnych komponentów nieaminokwasowych, których rodzaj jest podstawą podziału białek na: glikoproteiny białka zawierające cukry obojętne (galaktoza, mannoza, fukoza), aminocukry (N-acetyloglukozamina, N-acetylogalaktozamina) lub kwasy pochodne monosacharydów (kwas uronowy, kwas sjalowy) lipoproteiny zawierają fosfolipidy, cholesterol i inne związki lipidowe metaloproteiny zawierają jony metali związane jonowo lub koordynacyjnie fosfoproteiny reszty tyrozyny, treoniny lub seryny są zestryfikowane kwasem fosforowym nukleoproteiny zawierają RNA lub DNA chromoproteiny zawierają grupę prostetyczną, którą stanowią różne związki barwne Na Ryc. 8 pokazano potencjalne miejsca modyfikacji łańcucha polipeptydowego. Modyfikacjom ulegają zwykle polarne reszty aminokwasów, stanowiąc ważne źródło różnorodności białek. Ryc. 8. Potranslacyjne modyfikacje łańcucha polipeptydowego (Koolman i Röhm 2005) 9

Białka ze względu na pełnione funkcje można podzielić na: enzymatyczne najliczniejsza grupa białek (ponad 2000) o zróżnicowanej masie cząsteczkowej strukturalne są odpowiedzialne za mechaniczną stabilność narządów i tkanek (kolagen, elastyna, tubulina, aktyna, α-keratyna); do białek strukturalnych zalicza się także histony pełniące kluczową rolę w upakowaniu DNA w chromatynie transportujące np. hemoglobina uczestniczy w transporcie tlenu i CO 2, niektóre białka osocza (prealbumina) transportujące hormony, transferyna przenosząca żelazo, niektóre białka błonowe np. kanały jonowe pośredniczące w transporcie jonów, nośniki w transporcie metabolitów i jonów, pompy funkcjonujące w transporcie aktywnym jonów i metabolitów regulacyjne np. niektóre hormony (somatotropina, insulina), a także receptory uczestniczące w percepcji różnych cząsteczek sygnałowych; białkami regulatorowymi są także czynniki transkrypcyjne, regulujące ekspresję genów odpornościowe białka układu immunologicznego (np. immunoglobuliny) chronią organizm przed czynnikami chorobotwórczymi i ksenobiotykami (substancjami obcymi dla organizmu) motoryczne uczestniczą w procesach związanych z ruchem (aktyna, miozyna); kinezyna funkcjonuje w przemieszczaniu organelli w komórce zapasowe np. owoalbumina w białku jaja stanowi źródło aminokwasów dla rozwijającego się zarodka, ferrytyna wiąże żelazo w wątrobie, kazeina jest białkiem zapasowym mleka, niektóre białka budujące mięśnie mogą być wykorzystywane jako materiał energetyczny; także wiele białek roślinnych pełni funkcję zapasową Ze względu na rozpuszczalność i kształt, białka dzielą się na globularne (kuliste) i fibrylarne (włókienkowate, skleroproteiny). Do białek fibrylarnych należą: α-keratyny włosów, wełny, piór, paznokci, kolageny zawarte głównie w tkance łącznej, elastyny, fibroina jedwabiu. Białka globularne obejmują: białka obojętne (albuminy, globuliny), białka kwaśne (prolaminy, gluteiny) oraz białka zasadowe (histony, protaminy). Na Ryc. 9 przedstawiono schematycznie, w około 1,5-milionowym powiększeniu, struktury kilku wewnątrz- i pozakomórkowych białek. 10

Ryc. 9. Strukturalne i funkcjonalne zróżnicowanie białek (schematyczne struktury w około 1,5 mln powiększeniu; długość kolagenu w tym powiększeniu wynosi około 30 cm) (Koolman i Röhm 2005) 11

WYKONANIE Chromatografia bibułowa aminokwasów (wstępująca) Na arkusz bibuły o wymiarach 15 x 20 cm z zaznaczoną linią startową, nanieść w 2 cm odstępach po kilka µl roztworu wzorcowych aminokwasów (glicyna, alanina, tyrozyna, leucyna) oraz taką samą objętość roztworu zawierającego mieszaninę aminokwasów (próba badana). Każdy aminokwas wzorcowy oraz próbę badaną nanieść na bibułę dwukrotnie w celu wyeliminowania ewentualnych artefaktów. W czasie nanoszenia próbek miejsce nanoszenia należy suszyć suszarką do włosów, tak by wielkość plamek była możliwie jak najmniejsza. Arkusz bibuły z naniesionymi próbkami zwinąć w cylinder, spiąć zszywkami i umieścić do rozwinięcia w komorze chromatograficznej. Rozdział przerwać, gdy rozpuszczalnik dotrze na wysokość około 1,5 cm od górnego brzegu bibuły. Po wyjęciu bibuły z komory, zaznaczyć ołówkiem czoło rozpuszczalnika, bibułę wysuszyć w strumieniu ciepłego powietrza (ok. 50 0 C), spryskać roztworem ninhydryny, a następnie wysuszyć w suszarce w temperaturze 80 0 C w celu zlokalizowania miejsca położenia rozdzielonych aminokwasów. Pomierzyć odległości od linii startu do środka wybarwionych plamek oraz odległość do czoła rozpuszczalnika, a następnie obliczyć wartości współczynnika R f. Porównując wartości R f aminokwasów wzorcowych i aminokwasów zawartych w próbce zidentyfikować aminokwasy występujące w otrzymanej do analizy mieszaninie. Należy również porównać wyliczone wartości R f z wartościami zamieszczonymi w Tabeli 1. Reakcje charakterystyczne aminokwasów A. Reakcje ogólne: Reakcja z ninhydryną Do 0,1 ml 1% roztworu aminokwasu dodać 1 kroplę 0,1% roztworu ninhydryny i ogrzać do wrzenia. Pojawia się fioletowo-niebieskie zabarwienie. Aminokwasy pod wpływem ninhydryny ulegają utlenieniu do iminokwasów (reakcja poniżej). Kolejne etapy przemian to deaminacja i dekarboksylacja oraz wytworzenie aldehydu skróconego o 1 atom węgla. W wyniku kondensacji utlenionej i zredukowanej w powyższym procesie cząsteczki ninhydryny oraz amoniaku powstaje kompleks o fioletowo-niebieskiej barwie (maksimum absorpcji przy λ = 570 nm), którego natężenie jest proporcjonalne do zawartości azotu aminowego aminokwasu. Reakcja z ninhydryną może służyć do ilościowego oznaczania aminokwasów metodą spektrofotometryczną. Dodatni odczyn ninhydrynowy dają obok aminokwasów, peptydów i białek także sole amonowe, aminocukry i amoniak. 12

Reakcja aminokwasów z ninhydryną B. Reakcje charakterystyczne dla wybranych aminokwasów Reakcja ksantoproteinowa Do 0,5 ml 1% roztworu aminokwasu dodać 0,25 ml stężonego HNO 3 i kroplę stężonego H 2 SO 4. Roztwór barwi się na żółto. Po zalkalizowaniu 30% roztworem NaOH, zabarwienie przechodzi w pomarańczowe. Reakcja ta jest charakterystyczna dla aminokwasów aromatycznych i fenoli. W wyniku działania stężonego HNO 3 pierścień benzenowy ulega nitrowaniu, a powstałe żółte pochodne wielonitrowe dają w roztworze zasadowym pomarańczowe aniony nitrofenolanowe. Reakcja cystynowa Do 0,5 ml 1% roztworu aminokwasu dodać 0,5 ml 10% roztworu NaOH i kilka kropel nasyconego roztworu octanu ołowiu. Podczas ogrzewania ze stężonym NaOH, z cystyny i cysteiny wydziela się siarkowodór, który w reakcji z Pb 2+ daje siarczek ołowiu. Po dłuższym gotowaniu roztwór staje się brunatny, a następnie wytrąca się osad PbS. NaOH NaOH Pb(OOC-CH 3 ) 2 Pb(OH) 2 Pb(OH) 3- H 2 S PbS 13

Kolorymetryczne oznaczanie białek metodą biuretową Zasada metody: Metoda polega na oznaczaniu natężenia barwy powstałej w wyniku wytworzenia związków kompleksowych białek z jonami miedzi (II) w środowisku zasadowym, z maksimum absorbancji przy λ = 540 nm. Intensywność barwy w reakcji biuretowej jest proporcjonalna do liczby wiązań peptydowych. Zależność ta jest wykorzystywana do ilościowego oznaczania białek. Czułość metody 0,1 mg/ml. Nazwa reakcji pochodzi od biuretu, związku powstającego w wyniku kondensacji dwóch cząsteczek mocznika, zawierającego w swej cząsteczce wiązania amidowe: Metoda biuretowa nie nadaje się do oznaczania białek w obecności soli amonowych, gdyż jon amonu daje również barwne kompleksy z jonami miedzi (II). W reakcji przeszkadza także 14

siarczan (VI) magnezu, ponieważ wytrącający się w środowisku nierozpuszczalny wodorotlenek magnezu maskuje właściwy odczyn. Odczynniki: 1. Standardowy roztwór albuminy 10 mg/ml w 0,9% NaCl 2. Odczynnik biuretowy 1,5 g 5hydratu CuSO4 i 6,0 g winianu sodu i potasu rozpuścić w 500 ml wody dest. w kolbie miarowej na 1000 ml. Następnie małymi porcjami stale mieszając dodać 300 ml 10% NaOH i uzupełnić objętość wodą dest. do 1 l. Dodać 2g KJ. Odczynnik jest stabilny. Wykonanie krzywej standardowej i oznaczenie stężenia białek w surowicy krwi Do suchych probówek odmierzyć kolejno pipetą podane w tabeli objętości standardowego roztworu albuminy, wody i odczynnika biuretowego. Każdą próbę wykonać w dwóch powtórzeniach. Nr próby 1 2 3 4 5 6 Stężenie albuminy (mg/próbę) 1 2 3 4 5 0 Roztwór standardowy (ml) 0,1 0,2 0,3 0,4 0,5 0 Woda destylowana (ml) 0,4 0,3 0,2 0,1 0 0,5 Odczynnik biuretowy (ml) 2,0 2,0 2,0 2,0 2,0 2,0 A 1 A 540nm A 2 A śr K = mg albuminy w próbie A 540 nm Równocześnie należy oznaczyć zawartość białka w 10-krotnie rozcieńczonej surowicy krwi. Do oznaczeń pobrać 0,5 ml surowicy (w dwóch powtórzeniach) i dodać 2 ml odczynnika biuretowego. Po upływie 30 minut zmierzyć absorbancję wszystkich prób przy długości fali λ = 540 nm w 1 cm kuwetach. Pomiaru dokonać względem próby zerowej nie zawierającej białka 15

(próba 6). Zapisać wyniki w tabeli i obliczyć współczynnik kierunkowy K. Narysować krzywą wzorcową (zależność wartości absorbancji od stężenia białka w próbie). Przy obliczaniu ilości białka w próbie stosować obliczony współczynnik K. Z oznaczonej w próbie zawartości białka obliczyć stężenie białka w surowicy. Zagadnienia do przygotowania: wzory, symbole trzy- i jednoliterowe aminokwasów proteinogennych oraz aminokwasów cyklu mocznikowego (ornityna, cytrulina) klasyfikacja aminokwasów oparta na budowie chemicznej łańcucha bocznego oraz jego polarności podstawowe funkcje aminokwasów (przykłady) ogólne zasady chromatografii podziałowej; technika chromatografii bibułowej wstępującej reakcje ogólne na aminokwasy (znajomość reakcji z ninhydryną) wybrane reakcje charakterystyczne dla aminokwasów budowa i właściwości wiązania amidowego (peptydowego) struktury drugorzędowe białek (wiązania stabilizujące strukturę) wiązania stabilizujące III- i IV- rzędową strukturę białek podział białek ze względu na funkcję (przykłady) kolorymetria (zasada ilościowego oznaczania białek metodą biuretową) Literatura: Biochemia JM Berg, JL Tymoczko, L Stryer PWN, Warszawa, 2005 Zarys biochemii P Karlson PWN, Warszawa, 1987 Ćwiczenia z biochemii pod redakcją L. Kłyszejko-Stefanowicz PWN, Warszawa, 2005 Biochemia. Ilustrowany przewodnik J Koolman, K-H Röhm, PZWL, Warszawa 2005 16