AMINOKWASY. BUDOWA I WŁAŚCIWOŚCI
|
|
- Oskar Pietrzyk
- 8 lat temu
- Przeglądów:
Transkrypt
1 Ćwiczenie 1 AMINOKWASY. BUDOWA I WŁAŚCIWOŚCI Część doświadczalna obejmuje: rozdział aminokwasów metodą chromatografii podziałowej (technika chromatografii bibułowej wstępującej) wykonanie reakcji charakterystycznych dla wybranych aminokwasów WPROWADZENIE Budowa i właściwości ogólne aminokwasów Aminokwasy są kwasami organicznymi zawierającymi wolną grupą karboksylową oraz wolną grupą aminową, położoną przy α-atomie węgla. Poza tymi dwoma grupami, każdy aminokwas ma charakterystyczny dla siebie łańcuch boczny R (Ryc. 1 i 2). Ryc. 1. Schemat budowy i zróżnicowanie funkcjonalne aminokwasów (Koolman i Röhm 2005) Aminokwasy są składnikami budulcowymi peptydów i białek (aminokwasy proteinogenne). Niektóre aminokwasy wchodzą w skład lipidów, np. seryna występuje w fosfolipidach, a glicyna w solach żółciowych. Glutaminian, asparaginian oraz glicyna odgrywają rolę neuroprzekaźników. Wszystkie aminokwasy, za wyjątkiem lizyny i leucyny, mogą być metaboli- 1
2 tami pośrednimi szlaku glukoneogenezy (aminokwasy glukogenne), tzn. mogą posłużyć do biosyntezy glukozy. Niektóre aminokwasy są wykorzystywane do syntezy zasad purynowych i pirymidynowych (asparaginian, glutaminian), hemu (glicyna), amin biogennych (np. seryna, glutaminian) (Ryc. 3). Aminokwasy są też donorami grup aminowych przenoszonych na ketokwasy lub funkcjonują w cyklu mocznikowym (ornityna, cytrulina) (Ryc. 4). Ryc. 2. Łańcuchy boczne aminokwasów proteinogennych (Koolman i Röhm 2005) 2
3 Ryc. 3. Aminy biogenne wywodzące się z aminokwasów (Koolman i Röhm 2005) Ryc. 4. Aminokwasy rzadkie (Koolman i Röhm 2005) Na Ryc. 2 przedstawiono łańcuchy boczne dwudziestu aminokwasów budujących białka (aminokwasy proteinogenne), które ze względu na budowę chemiczną oraz polarność łańcuchów bocznych podzielono na siedem klas. Wartości podane na dole po lewej przedstawiają stopień polarności danego łańcucha bocznego (najmniejszy dla Phe, Cys, Met, Ala, a największy dla Arg, Lys). Przy łańcuchach bocznych zdolnych do jonizacji podane są także wartości pk (czerwone liczby). Szczególną pozycję wśród aminokwasów zajmuje prolina (Pro). Jej łańcuch boczny wraz z węglem α i grupą aminową przy tym węglu tworzą 5-członowy pierścień. Atom azotu w pierścieniu jest słabo zasadowy i w warunkach fizjologicznych nie jest uprotonowany. Aminokwasy, które nie mogą być syntetyzowane w organizmach ludzkich (aminokwasy egzogenne) oznaczone są czerwoną gwiazdką. Właściwości amfoteryczne aminokwasów Obecność w aminokwasach grupy karboksylowej i grupy aminowej powoduje, że są one związkami amfoterycznymi. W roztworach wodnych występują głównie w formie jonów. W zależności od ph środowiska jony te mogą mieć charakter kwasowy bądź zasadowy (patrz: równanie reakcji, poniżej). 3
4 Zmiany stanu jonizacji aminokwasów w zależności od ph W środowisku kwasowym aminokwas przyłącza proton, staje się kationem i zachowuje jak + kwas, gdyż występujące w cząsteczce grupa karboksylowa COOH i grupa amoniowa NH 3 mogą być donorami protonów. W środowisku zasadowym aminokwas oddając proton staje się anionem i zachowuje się jak zasada, ponieważ zdysocjowana grupa karboksylowa COO - i grupa aminowa NH 2 mogą przyłączać protony. Jest taka wartość ph roztworu, przy której cząsteczki aminokwasów występują w formie jonu obojnaczego, w którym liczba ładunków ujemnych jest równa liczbie ładunków dodatnich, czyli sumarycznie ładunek równy jest zeru. Taka wartość ph nosi nazwę punktu izoelektrycznego (pi). Charakter amfoteryczny aminokwasów ujmuje graficznie krzywa miareczkowania roztworów aminokwasów mocnymi kwasami lub zasadami (Ryc. 5). Krzywa przedstawia zależność wartości ph miareczkowanego roztworu od liczby dodanych moli kwasu lub zasady. Zależność między wartością ph a stanem dysocjacji opisano równaniem Hendersona- Hasselbalcha, gdzie K a = stała kwasowa, a pk a = ujemny logarytm stałej kwasowej: Z powyższego równania wynika, iż w warunkach, gdy formy zdysocjowana i niezdysocjowana są w stężeniach równowagowych, to pk a = ph. Miareczkowanie roztworu aminokwasu połączone z jednoczesnym pomiarem ph roztworu pozwala na doświadczalne wyznaczenie krzywej dysocjacji aminokwasu, określenie jego wartości pi oraz wyznaczenie wartości pk a jego grup funkcyjnych. 4
5 Ryc. 5. Krzywa miareczkowania histydyny (Karlson 1987) Rozdział aminokwasów Jedną z metod rozdziału aminokwasów pozwalającą izolować z mieszaniny pojedyncze aminokwasy jest chromatografia podziałowa. Opiera się ona na prawie podziału solutu (substancji rozpuszczonej) między dwie fazy ciekłe ruchomą i stacjonarną. Faza stacjonarna utrzymywana jest przez porowaty nośnik słabo adsorbujący składniki solutu. Porowatym nośnikiem może być bibuła albo żel ułożony w kolumnie chromatograficznej lub wylany na płytkę. Warunkiem decydującym o rozdziale substancji są różnice w ich rozpuszczalności w fazie ruchomej i nieruchomej, tj. różnice we współczynnikach podziału między dwie nie mieszające się ze sobą fazy ciekłe. Chromatografia podziałowa opiera się więc na prawie Nernsta, które mówi, iż w układzie utworzonym przez dwie nie mieszające się ze sobą fazy ciekłe i wspólny dla nich solut, stosunek stężenia tego solutu w fazie 1 (c1) do jego stężenia w fazie 2 (c2) jest w stanie równowagi wielkością stałą zależną od temperatury i właściwości substancji tworzących roztwory, a niezależną od ilości substancji rozpuszczonej: c1/c2 = k. Miarą selektywności rozdziału dwóch substancji A i B w danym układzie jest stopień rozdziału, którego wartość określa wzór: β = KA/KB gdzie KA określa stosunek podziału substancji A, KB stosunek podziału substancji B między fazę ruchomą i nieruchomą. Technika chromatografii bibułowej. W chromatografii bibułowej nośnikiem fazy stacjonarnej, najczęściej polarnej, jest odpowiednio spreparowana bibuła filtracyjna. Bibuła jest zbudowana z włókien celulozowych ułożonych w porowatą, żelową strukturę stanowiącą fazę 5
6 nieruchomą. Cząsteczki wody zaadsorbowane na bibule łączą się z włóknami celulozy wiązaniami wodorowymi. Fazę ruchomą w chromatografii bibułowej stanowią odpowiednie rozpuszczalniki organiczne pojedyncze lub zmieszane. Rozpuszczalniki muszą się częściowo mieszać z wodą, np. szeroko rozpowszechnionym układem jest mieszanina n-butanolu/kwasu octowego/wody, w zmiennych proporcjach. Szybkość wędrowania danego związku w określonych warunkach jest wartością stałą. Jej miarą jest wartość R f : R f = x/y, gdzie x oznacza odległość od linii startowej do środka plamy aminokwasu, a y odległość od linii startowej do czoła rozpuszczalnika. W Tabeli 1 podane są wartości R f dla większości aminokwasów rozdzielanych w warunkach zbliżonych do tych, w jakich będzie wykonywane ćwiczenie. Tabela 1. Wartości R f aminokwasów (faza ruchoma: n-butanol/kwas octowy/woda, 4:1:1) Lp. Nazwa aminokwasu Symbol aminokwasu Wartości R f x 100 w układzie rozpuszczalników: n-butanol/ch 3 COOH/H 2 O 1. alanina Ala A arginina Arg R kwas asparaginowy Asp D asparagina Asn N cystyna 5 6. cysteina Cys C 8 7. kwas cysteinowy CysSO 3 H 7 8. fenyloalanina Phe F glicyna Gly G kwas glutaminowy Glu E glutamina Gln Q histydyna His H leucyna Leu L izoleucyna Ile I lizyna Lys K metionina Met M sulfonian metioniny MetSO 3 H prolina Pro P hydroksyprolina ProOH seryna Ser S treonina Thr T tryptofan Trp W tyrozyna Tyr Y walina Val V ornityna Orn cytrulina Cytr 18 6
7 WYKONANIE Chromatografia bibułowa aminokwasów (wstępująca) Na arkusz bibuły o wymiarach 15 x 20 cm z zaznaczoną linią startową, nanieść w 2 cm odstępach po kilka µl roztworu wzorcowych aminokwasów (glicyna, alanina, tyrozyna, leucyna) oraz taką samą objętość roztworu zawierającego mieszaninę aminokwasów (próba badana). Każdy aminokwas wzorcowy oraz próbę badaną nanieść na bibułę dwukrotnie w celu wyeliminowania ewentualnych artefaktów. W czasie nanoszenia próbek miejsce nanoszenia należy suszyć suszarką do włosów, tak by wielkość plamek była możliwie jak najmniejsza. Arkusz bibuły z naniesionymi próbkami zwinąć w cylinder, spiąć zszywkami i umieścić do rozwinięcia w komorze chromatograficznej. Rozdział przerwać, gdy rozpuszczalnik dotrze na wysokość około 1,5 cm od górnego brzegu bibuły. Po wyjęciu bibuły z komory, zaznaczyć ołówkiem czoło rozpuszczalnika, bibułę wysuszyć w strumieniu ciepłego powietrza (ok C), spryskać roztworem ninhydryny, a następnie wysuszyć w suszarce w temperaturze 80 0 C w celu zlokalizowania miejsca położenia rozdzielonych aminokwasów. Pomierzyć odległości od linii startu do środka wybarwionych plamek oraz odległość do czoła rozpuszczalnika, a następnie obliczyć wartości współczynnika R f. Porównując wartości R f aminokwasów wzorcowych i aminokwasów zawartych w próbce zidentyfikować aminokwasy występujące w otrzymanej do analizy mieszaninie. Należy również porównać wyliczone wartości R f z wartościami zamieszczonymi w Tabeli 1. Reakcje charakterystyczne aminokwasów A. Reakcje ogólne: Reakcja z ninhydryną Do 0,1 ml 1% roztworu aminokwasu dodać 1 kroplę 0,1% roztworu ninhydryny i ogrzać do wrzenia. Pojawia się fioletowo-niebieskie zabarwienie. Aminokwasy pod wpływem ninhydryny ulegają utlenieniu do iminokwasów (reakcja poniżej). Kolejne etapy przemian to deaminacja i dekarboksylacja oraz wytworzenie aldehydu skróconego o 1 atom węgla. W wyniku kondensacji utlenionej i zredukowanej w powyższym procesie cząsteczki ninhydryny oraz amoniaku powstaje kompleks o fioletowo-niebieskiej barwie (maksimum absorpcji przy λ = 570 nm), którego natężenie jest proporcjonalne do zawartości azotu aminowego aminokwasu. Reakcja z ninhydryną może służyć do ilościowego oznaczania aminokwa- 7
8 sów metodą spektrofotometryczną. Dodatni odczyn ninhydrynowy dają obok aminokwasów, peptydów i białek także sole amonowe, aminocukry i amoniak. Reakcja aminokwasów z ninhydryną Reakcja z kwasem azotawym (kwasem azotowym(iii)) Do 1 ml ochłodzonego w lodzie, świeżo przyrządzonego 10% azotanu (III) sodu (azotyn sodu) dodać taką samą objętość 2M kwasu octowego. W wyniku reakcji powstaje kwas azotawy HNO 2. Po zmieszaniu obu roztworów zaczekać do momentu zakończenia wydzielania się pęcherzyków tlenków azotu, a następnie dodać 2 ml 1% roztworu aminokwasu. Wydziela się burzliwie azot. HOOC-CH 2 -NH 2 + O=N-OH HOOC-CH 2 OH + H 2 O + N 2 Reakcja z kwasem azotawym umożliwia manometryczne oznaczanie azotu grup aminowych polegające na mierzeniu objętości wydzielającego się azotu (reakcja Van Slyke a). 8
9 Tworzenie związków chelatowych Do 3 ml 1% roztworu aminokwasu dodać szczyptę węglanu miedzi (II). Ogrzać próby do wrzenia. Po minucie, intensywnie niebieski roztwór przesączyć na gorąco. Po ochłodzeniu przesączu wykrystalizowuje kompleks aminokwasu z miedzią w postaci delikatnych igieł. 2 H 2 N-CH 2 -COOH + CuCO 3 Cu(OOC-CH 2 -NH 2 ) 2 + CO 2 + H 2 O COO H 2 N Kompleks glicyna miedź H 2 C Cu CH 2 NH 2 OOC B. Reakcje charakterystyczne dla wybranych aminokwasów Reakcja ksantoproteinowa Do 0,5 ml 1% roztworu aminokwasu dodać 0,25 ml stężonego HNO 3 i kroplę stężonego H 2 SO 4. Roztwór barwi się na żółto. Po zalkalizowaniu 30% roztworem NaOH, zabarwienie przechodzi w pomarańczowe. Reakcja ta jest charakterystyczna dla aminokwasów aromatycznych i fenoli. W wyniku działania stężonego HNO 3 pierścień benzenowy ulega nitrowaniu, a powstałe żółte pochodne wielonitrowe dają w roztworze zasadowym pomarańczowe aniony nitrofenolanowe. Reakcja na tyrozynę reakcja Millona Do 0,5 ml 1% roztworu aminokwasu dodać kilka kropel odczynnika Millona (10 g azotanu (V) rtęci (I) rozpuścić w 100 ml 3,6 M kwasu azotowego (V), uzupełnić wodą destylowaną do 200 ml i lekko podgrzać (do 40 0 C). Roztwór barwi się na kolor ceglasto różowy, następnie na czerwony. Reakcja ta jest charakterystyczna dla monofenoli, a więc z aminokwasów tylko dla tyrozyny. Służy ona do ilościowego oznaczania tyrozyny metodą kolorymetryczną. 9
10 Reakcja na tryptofan reakcja Cole-Hopkinsa Do 0,5 ml 1% roztworu aminokwasu dodać kilka kropel kwasu glioksalowego. Po wymieszaniu, roztwór należy ostrożnie podwarstwić stężonym roztworem H 2 SO 4. Na granicy cieczy powstaje fioletowy pierścień. Jest to reakcja charakterystyczna dla tryptofanu, aminokwasu zawierającego pierścień indolowy. W obecności kwasu siarkowego (VI) i aldehydu (kwas glioksalowy), dwa ugrupowania indolowe ulegają kondensacji tworząc barwny fioletowy związek. tryptofan kwas glioksalowy związek barwny Reakcja na argininę reakcja Sakaguchi Do 1 ml 1% roztworu aminokwasu dodać 0,25 ml 5% roztworu NaOH, 2 krople 1% roztworu α-naftolu i jedną kroplę roztworu chloranu (I) sodu. Po wymieszaniu pojawia się powoli czerwone zabarwienie. Pochodne guanidyny, takie jak metyloguanidyna i arginina z 10
11 utlenionym przez chloran (I) α-naftolem dają barwny związek i amoniak. Amoniak pod wpływem chloranu (I) utlenia się. Z jednego mola guanidyny uwalnia się 1/2 mola N 2. α naftol arginina związek barwny + 3 NaClO 2 NH 3 N H 2 O + 3 NaCl Reakcja cystynowa Do 0,5 ml 1% roztworu aminokwasu dodać 0,5 ml 10% roztworu NaOH i kilka kropel nasyconego roztworu octanu ołowiu. Podczas ogrzewania ze stężonym NaOH, z cystyny i cysteiny wydziela się siarkowodór, który w reakcji z Pb 2+ daje siarczek ołowiu. Po dłuższym gotowaniu roztwór staje się brunatny, a następnie wytrąca się osad PbS. NaOH NaOH Pb(OOC-CH 3 ) 2 Pb(OH) 2 Pb(OH) 3- H 2 S PbS Zagadnienia do przygotowania: wzory, symbole trzy- i jednoliterowe aminokwasów proteinogennych oraz aminokwasów cyklu mocznikowego (ornityna, cytrulina) klasyfikacja aminokwasów oparta na budowie chemicznej łańcucha bocznego oraz jego polarności podstawowe funkcje aminokwasów (przykłady) ogólne zasady chromatografii podziałowej; technika chromatografii bibułowej wstępującej reakcje ogólne na aminokwasy (znajomość reakcji z ninhydryną) wybrane reakcje charakterystyczne dla aminokwasów 11
12 Literatura: Biochemia JM Berg, JL Tymoczko, L Stryer PWN, Warszawa, 2005 Zarys biochemii P Karlson PWN, Warszawa, 1987 Ćwiczenia z biochemii pod redakcją L. Kłyszejko-Stefanowicz PWN, Warszawa, 2005 Biochemia. Ilustrowany przewodnik J Koolman, K-H Röhm, PZWL, Warszawa
AMINOKWASY. BUDOWA I WŁAŚCIWOŚCI
Ćwiczenie 1 AMINOKWASY. BUDOWA I WŁAŚCIWOŚCI Część doświadczalna obejmuje: - rozdział aminokwasów metodą chromatografii podziałowej (technika chromatografii bibułowej wstępującej) - miareczkowanie alaniny
Bardziej szczegółowoReakcje charakterystyczne aminokwasów
KATEDRA BIOCHEMII Wydział Biologii i Ochrony Środowiska Reakcje charakterystyczne aminokwasów BIOCHEMIA STRUKTURALNA ĆWICZENIE 1 REAKCJE CHARAKTERYSTYCZNE AMINOKWASÓW A) REAKCJE OGÓLNE ZADANIE 1 WYKRYWANIE
Bardziej szczegółowoReakcje charakterystyczne aminokwasów
KATEDRA BIOCHEMII Wydział Biologii i Ochrony Środowiska Reakcje charakterystyczne aminokwasów BIOCHEMIA STRUKTURALNA ĆWICZENIE 1 REAKCJE CHARAKTERYSTYCZNE AMINOKWASÓW A) REAKCJE OGÓLNE ZADANIE 1 WYKRYWANIE
Bardziej szczegółowoBADANIE WŁAŚCIWOŚCI FIZYKOCHEMICZNYCH AMINOKWASÓW
BADANIE WŁAŚIWŚI FIZYKEMIZNY AMINKWASÓW IDENTYFIKAJA AMINKWASÓW BIAŁKA, JAK I WLNE AMINKWASY REAGUJĄ ZA PŚREDNITWEM GRUP: -N 2 I Z NINYDRYNĄ, DINITRFLURBENZENEM I KWASEM AZTWYM (III). WYSTĘPWANIE W STRUKTURZE
Bardziej szczegółowoAMINOKWASY BUDOWA I WŁAŚCIWOŚCI BIAŁKA BUDOWA I FUNKCJE
Ćwiczenie 1 AMINOKWASY BUDOWA I WŁAŚCIWOŚCI BIAŁKA BUDOWA I FUNKCJE Część doświadczalna obejmuje: rozdział aminokwasów metodą chromatografii podziałowej (technika chromatografii bibułowej wstępującej)
Bardziej szczegółowoBUDOWA I WŁAŚCIWOŚCI AMINOKWASÓW. 1.1. Aminokwasy białkowe
BUDOWA I WŁAŚCIWOŚCI AMINOKWASÓW 1.1. Aminokwasy białkowe Aminokwasy są związkami organicznymi, zawierającymi co najmniej jedną grupę karboksylową COOH oraz co najmniej jedną grupę aminową NH 2. W zależności
Bardziej szczegółowoAnaliza jakościowa wybranych aminokwasów
Ćwiczenie 14 Analiza jakościowa wybranych aminokwasów I. Aminokwasy Aminokwasy są jednostkami strukturalnymi peptydów i białek. W swojej cząsteczce mają co najmniej 2 grupy funkcyjne: grupę aminową NH
Bardziej szczegółowo1.1. AMINOKWASY BIAŁKOWE
1 ĆWICZENIE 1 BUDOWA I WŁAŚCIWOŚCI AMINOKWASÓW 1.1. AMINOKWASY BIAŁKOWE Aminokwasy są związkami organicznymi zawierającymi co najmniej jedną grupę karboksylową -COOH oraz co najmniej jedną grupę aminową
Bardziej szczegółowoĆwiczenie 6 Aminokwasy
Ćwiczenie 6 Aminokwasy Aminokwasy są to związki dwufunkcyjne, których cząsteczki zawierają grupy karboksylowe i aminowe: grupa aminowa:nh 2 grupa karboksylowa COOH Nomenklatura aminokwasów: Naturalne aminokwasy
Bardziej szczegółowo21. Wstęp do chemii a-aminokwasów
21. Wstęp do chemii a-aminokwasów Chemia rganiczna, dr hab. inż. Mariola Koszytkowska-Stawińska, WChem PW; 2016/2017 1 21.1. Budowa ogólna a-aminokwasów i klasyfikacja peptydów H 2 N H kwas 2-aminooctowy
Bardziej szczegółowo46 i 47. Wstęp do chemii -aminokwasów
46 i 47. Wstęp do chemii -aminokwasów Chemia rganiczna, dr hab. inż. Mariola Koszytkowska-Stawińska, WChem PW; 2017/2018 1 21.1. Budowa ogólna -aminokwasów i klasyfikacja peptydów H 2 H H 2 R H R R 1 H
Bardziej szczegółowoWłaściwości aminokwasów i białek
Właściwości aminokwasów i białek el ćwiczenia Ćwiczenie ma na celu poznanie niektórych typowych reakcji aminokwasów i białek. Reakcje te pozwalają odróżnić wolne aminokwasy od białek i innych związków
Bardziej szczegółowoRepetytorium z wybranych zagadnień z chemii
Repetytorium z wybranych zagadnień z chemii Mol jest to liczebność materii występująca, gdy liczba cząstek (elementów) układu jest równa liczbie atomów zawartych w masie 12 g węgla 12 C (równa liczbie
Bardziej szczegółowodata Wstęp merytoryczny
Imię i nazwisko Uzyskane punkty Nr albumu data /3 podpis asystenta ĆWICZENIE 4 ANALIZA JAKOŚCIOWA AMINOKWASÓW Wstęp merytoryczny Aminokwasy (kwasy aminowe) to grupa organicznych związków zawierających
Bardziej szczegółowoĆWICZENIE 1. Aminokwasy
ĆWICZENIE 1 Aminokwasy Przygotować 5 (lub więcej) 1% roztworów poszczególnych aminokwasów i białka jaja kurzego i dla każdego z nich wykonać wszystkie reakcje charakterystyczne. Reakcja ksantoproteinowa
Bardziej szczegółowoAMINOKWASY. I. Wprowadzenie teoretyczne. Aminokwasy są to związki, które w łańcuchu węglowym zawierają zarówno grupę aminową jak i grupę karboksylową.
AMIKWASY I. Wprowadzenie teoretyczne Aminokwasy są to związki, które w łańcuchu węglowym zawierają zarówno grupę aminową jak i grupę karboksylową. 2 3 WZY GÓLE ATUALY AMIKWASÓW WYSTĘPUJĄY W BIAŁKA Zalicza
Bardziej szczegółowoĆWICZENIE 1 BUDOWA I WŁAŚCIWOŚCI AMINOKWASÓW
ĆWICZENIE 1 BUDWA I WŁAŚCIWŚCI AMINKWASÓW 1.1. CEL ĆWICZENIA Zapoznanie się z budową i właściwościami aminokwasów i białek. Identyfikacja aminokwasów za pomocą reakcji charakterystycznych. 1.2. AMINKWASY
Bardziej szczegółowoĆwiczenie 4. Reakcja aminokwasów z ninhydryną. Opisz typy reakcji przebiegających w tym procesie i zaznacz ich miejsca przebiegu.
azwisko i imię grupa data Protokół z ćwiczenia: eakcje chemiczne związków biologicznych: aminokwasy i peptydy. Definicja punktu izoelektrycznego pi. Formy jonowe aminokwasów w różnym ph. ph < pi ph = pi
Bardziej szczegółowoĆWICZENIE 1. Aminokwasy
ĆWICZENIE 1 Aminokwasy Przygotować 5 (lub więcej) 1% roztworów poszczególnych aminokwasów i białka jaja kurzego i dla każdego z nich wykonać wszystkie reakcje charakterystyczne. Reakcja ksantoproteinowa
Bardziej szczegółowoBADANIE WŁAŚCIWOŚCI FIZYKOCHEMICZNYCH AMINOKWASÓW
BADAIE WŁAŚIWŚI FIZYKEMIZY AMIKWASÓW IDETYFIKAJA AMIKWASÓW BIAŁKA, JAK I WLE AMIKWASY EAGUJĄ ZA PŚEDITWEM GUP: - 2 I Z IYDYĄ, DIITFLUBEZEEM I KWASEM AZTWYM (III). WYSTĘPWAIE W STUKTUZE AMIKWASÓW IY GUP
Bardziej szczegółowospektroskopia elektronowa (UV-vis)
spektroskopia elektronowa (UV-vis) rodzaje przejść elektronowych Energia σ* π* 3 n 3 π σ σ σ* daleki nadfiolet (λ max < 200 nm) π π* bliski nadfiolet jednostki energii atomowa jednostka energii = energia
Bardziej szczegółowoREAKCJE CHARAKTERYSTYCZNE AMINOKWASÓW. 1. Deaminacja aminokwasów kwasem azotowym (III)
11. REAKJE ARAKTERYSTYZE AMIKWASÓW 1. Deaminacja aminokwasów kwasem azotowym (III) Aminokwasy pod wpływem kwasu azotowego (III), tworzącego się wg reakcji pierwszej, ulegają reakcji deaminacji, której
Bardziej szczegółowoPrzegląd budowy i funkcji białek
Przegląd budowy i funkcji białek Co piszą o białkach? Wyraz wprowadzony przez Jönsa J. Berzeliusa w 1883 r. w celu podkreślenia znaczenia tej grupy związków. Termin pochodzi od greckiego słowa proteios,
Bardziej szczegółowoetyloamina Aminy mają właściwości zasadowe i w roztworach kwaśnych tworzą jon alkinowy
Temat: Białka Aminy Pochodne węglowodorów zawierające grupę NH 2 Wzór ogólny amin: R NH 2 Przykład: CH 3 -CH 2 -NH 2 etyloamina Aminy mają właściwości zasadowe i w roztworach kwaśnych tworzą jon alkinowy
Bardziej szczegółowoĆWICZENIE I - BIAŁKA. Celem ćwiczenia jest zapoznanie się z właściwościami fizykochemicznymi białek i ich reakcjami charakterystycznymi.
ĆWICZENIE I - BIAŁKA Celem ćwiczenia jest zapoznanie się z właściwościami fizykochemicznymi białek i ich reakcjami charakterystycznymi. Odczynniki: - wodny 1% roztwór siarczanu(vi) miedzi(ii), - 10% wodny
Bardziej szczegółowoSlajd 1. Slajd 2. Proteiny. Peptydy i białka są polimerami aminokwasów połączonych wiązaniem amidowym (peptydowym) Kwas α-aminokarboksylowy aminokwas
Slajd 1 Proteiny Slajd 2 Peptydy i białka są polimerami aminokwasów połączonych wiązaniem amidowym (peptydowym) wiązanie amidowe Kwas α-aminokarboksylowy aminokwas Slajd 3 Aminokwasy z alifatycznym łańcuchem
Bardziej szczegółowoWłaściwości elektrolityczne i buforowe wodnych roztworów aminokwasów
Anna Jakubowska Właściwości elektrolityczne i buforowe wodnych roztworów aminokwasów Podstawowe pojęcia: aminokwasy, hydroliza, jonizacja, jon obojnaczy, amfotery, elektrolit, protoliza, ph, stała dysocjacji,
Bardziej szczegółowoZastosowanie metody Lowry ego do oznaczenia białka w cukrze białym
Zastosowanie metody Lowry ego do oznaczenia białka w cukrze białym Dr inż. Bożena Wnuk Mgr inż. Anna Wysocka Seminarium Aktualne zagadnienia dotyczące jakości w przemyśle cukrowniczym Łódź 10 11 czerwca
Bardziej szczegółowoAminokwasy, peptydy i białka. Związki wielofunkcyjne
Aminokwasy, peptydy i białka Związki wielofunkcyjne Aminokwasy, peptydy i białka Aminokwasy, peptydy i białka: - wiadomości ogólne Aminokwasy: - ogólna charakterystyka - budowa i nazewnictwo - właściwości
Bardziej szczegółowoTemat 7. Równowagi jonowe w roztworach słabych elektrolitów, stała dysocjacji, ph
Temat 7. Równowagi jonowe w roztworach słabych elektrolitów, stała dysocjacji, ph Dysocjacja elektrolitów W drugiej połowie XIX wieku szwedzki chemik S.A. Arrhenius doświadczalnie udowodnił, że substancje
Bardziej szczegółowoInformacje. W sprawach organizacyjnych Slajdy z wykładów
Biochemia Informacje W sprawach organizacyjnych malgorzata.dutkiewicz@wum.edu.pl Slajdy z wykładów www.takao.pl W sprawach merytorycznych Takao Ishikawa (takao@biol.uw.edu.pl) Kiedy? Co? Kto? 24 lutego
Bardziej szczegółowoWspółczesne metody chromatograficzne: Chromatografia cienkowarstwowa
Ćwiczenie 2: Chromatografia dwuwymiarowa (TLC 2D) 1. Celem ćwiczenia jest zaobserwowanie rozdziału mieszaniny aminokwasów w dwóch układach rozwijających. Aminokwasy: Asp, Cys, His, Leu, Ala, Val (1% roztwory
Bardziej szczegółowoPiotr Chojnacki 1. Cel: Celem ćwiczenia jest wykrycie jonu Cl -- za pomocą reakcji charakterystycznych.
SPRAWOZDANIE: REAKCJE CHARAKTERYSTYCZNE WYBRANYCH ANIONÓW. Imię Nazwisko Klasa Data Uwagi prowadzącego 1.Wykrywanie obecności jonu chlorkowego Cl - : Cel: Celem ćwiczenia jest wykrycie jonu Cl -- za pomocą
Bardziej szczegółowoAminokwasy, peptydy, białka
Aminokwasy, peptydy, białka Aminokwasy KWAS 1-AMINOCYKLOPROPANOKARBOKSYLOWY α AMINOKWAS KWAS 3-AMINOPROPANOWY β AMINOKWAS KWAS 4-AMINOPROPANOWY γ AMINOKWAS KWAS 2-AMINOETANOSULFONOWY β AMINOKWAS Aminokwasy
Bardziej szczegółowoMateriały pochodzą z Platformy Edukacyjnej Portalu www.szkolnictwo.pl
Materiały pochodzą z Platformy Edukacyjnej Portalu www.szkolnictwo.pl Wszelkie treści i zasoby edukacyjne publikowane na łamach Portalu www.szkolnictwo.pl mogą byd wykorzystywane przez jego Użytkowników
Bardziej szczegółowoZagadnienia z chemii na egzamin wstępny kierunek Technik Farmaceutyczny Szkoła Policealna im. J. Romanowskiej
Zagadnienia z chemii na egzamin wstępny kierunek Technik Farmaceutyczny Szkoła Policealna im. J. Romanowskiej 1) Podstawowe prawa i pojęcia chemiczne 2) Roztwory (zadania rachunkowe zbiór zadań Pazdro
Bardziej szczegółowoPRZYKŁADOWE ZADANIA ORGANICZNE ZWIĄZKI ZAWIERAJĄCE AZOT
PRZYKŁADOWE ZADANIA ORGANICZNE ZWIĄZKI ZAWIERAJĄCE AZOT Zadanie 1127 (1 pkt) Uszereguj podane związki według rosnącego ph w roztworze wodnym. Właściwy porządek podaj zapisując go wzorami półstrukturalnymi.
Bardziej szczegółowo6. ph i ELEKTROLITY. 6. ph i elektrolity
6. ph i ELEKTROLITY 31 6. ph i elektrolity 6.1. Oblicz ph roztworu zawierającego 0,365 g HCl w 1,0 dm 3 roztworu. Odp 2,00 6.2. Oblicz ph 0,0050 molowego roztworu wodorotlenku baru (α = 1,00). Odp. 12,00
Bardziej szczegółowoRoztwory elekreolitów
Imię i nazwisko:... Roztwory elekreolitów Zadanie 1. (2pkt) W teorii Brönsteda sprzężoną parą kwas-zasada nazywa się układ złożony z kwasu oraz zasady, która powstaje z tego kwasu przez odłączenie protonu.
Bardziej szczegółowo- w nawiasach kwadratowych stężenia molowe.
Cz. VII Dysocjacja jonowa, moc elektrolitów, prawo rozcieńczeń Ostwalda i ph roztworów. 1. Pojęcia i definicja. Dysocjacja elektroniczna (jonowa) to samorzutny rozpad substancji na jony w wodzie lub innych
Bardziej szczegółowoChemiczne składniki komórek
Chemiczne składniki komórek Pierwiastki chemiczne w komórkach: - makroelementy (pierwiastki biogenne) H, O, C, N, S, P Ca, Mg, K, Na, Cl >1% suchej masy - mikroelementy Fe, Cu, Mn, Mo, B, Zn, Co, J, F
Bardziej szczegółowoObliczenia chemiczne. Zakład Chemii Medycznej Pomorski Uniwersytet Medyczny
Obliczenia chemiczne Zakład Chemii Medycznej Pomorski Uniwersytet Medyczny 1 STĘŻENIA ROZTWORÓW Stężenia procentowe Procent masowo-masowy (wagowo-wagowy) (% m/m) (% w/w) liczba gramów substancji rozpuszczonej
Bardziej szczegółowoĆwiczenie 1. Właściwości aminokwasów i białek
Ćwiczenie 1. Właściwości aminokwasów i białek el ćwiczenia elem ćwiczenia jest poznanie niektórych reakcji charakterystycznych stosowanych przy wykrywaniu aminokwasów i białek. eakcje te umoŝliwiają odróŝnienie
Bardziej szczegółowoHYDROLIZA SOLI. ROZTWORY BUFOROWE
Ćwiczenie 9 semestr 2 HYDROLIZA SOLI. ROZTWORY BUFOROWE Obowiązujące zagadnienia: Hydroliza soli-anionowa, kationowa, teoria jonowa Arrheniusa, moc kwasów i zasad, równania hydrolizy soli, hydroliza wieloetapowa,
Bardziej szczegółowoKwas HA i odpowiadająca mu zasada A stanowią sprzężoną parę (podobnie zasada B i kwas BH + ):
Spis treści 1 Kwasy i zasady 2 Rola rozpuszczalnika 3 Dysocjacja wody 4 Słabe kwasy i zasady 5 Skala ph 6 Oblicznie ph słabego kwasu 7 Obliczanie ph słabej zasady 8 Przykłady obliczeń 81 Zadanie 1 811
Bardziej szczegółowoReakcje utleniania i redukcji Reakcje metali z wodorotlenkiem sodu (6 mol/dm 3 )
Imię i nazwisko.. data.. Reakcje utleniania i redukcji 7.1 Reaktywność metali 7.1.1 Reakcje metali z wodą Lp Metal Warunki oczyszczania metalu Warunki reakcji Obserwacje 7.1.2 Reakcje metali z wodorotlenkiem
Bardziej szczegółowoZad: 5 Oblicz stężenie niezdysocjowanego kwasu octowego w wodnym roztworze o stężeniu 0,1 mol/dm 3, jeśli ph tego roztworu wynosi 3.
Zad: 1 Oblicz wartość ph dla 0,001 molowego roztworu HCl Zad: 2 Oblicz stężenie jonów wodorowych jeżeli wartość ph wynosi 5 Zad: 3 Oblicz stężenie jonów wodorotlenkowych w 0,05 molowym roztworze H 2 SO
Bardziej szczegółowoMetabolizm białek. Ogólny schemat metabolizmu bialek
Metabolizm białek Ogólny schemat metabolizmu bialek Trawienie białek i absorpcja aminokwasów w przewodzie pokarmowym w żołądku (niskie ph ~2, rola HCl)- hydratacja, homogenizacja, denaturacja białek i
Bardziej szczegółowoLCH 1 Zajęcia nr 60 Diagnoza końcowa. Zaprojektuj jedno doświadczenie pozwalające na odróżnienie dwóch węglowodorów o wzorach:
LCH 1 Zajęcia nr 60 Diagnoza końcowa Zadanie 1 (3 pkt) Zaprojektuj jedno doświadczenie pozwalające na odróżnienie dwóch węglowodorów o wzorach: H 3 C CH 2 CH 2 CH 2 CH 2 a) b) W tym celu: a) wybierz odpowiedni
Bardziej szczegółowodata ĆWICZENIE 12 BIOCHEMIA MOCZU Doświadczenie 1
Imię i nazwisko Uzyskane punkty Nr albumu data /3 podpis asystenta ĆWICZENIE 12 BIOCHEMIA MOCZU Doświadczenie 1 Cel: Wyznaczanie klirensu endogennej kreatyniny. Miarą zdolności nerek do usuwania i wydalania
Bardziej szczegółowoWPŁYW SUBSTANCJI TOWARZYSZĄCYCH NA ROZPUSZCZALNOŚĆ OSADÓW
WPŁYW SUBSTANCJI TOWARZYSZĄCYCH NA ROZPUSZCZALNOŚĆ OSADÓW Wstęp W przypadku trudno rozpuszczalnej soli, mimo osiągnięcia stanu nasycenia, jej stężenie w roztworze jest bardzo małe i przyjmuje się, że ta
Bardziej szczegółowoKuratorium Oświaty w Lublinie
Kuratorium Oświaty w Lublinie KOD UCZNIA ZESTAW ZADAŃ KONKURSOWYCH Z CHEMII DLA UCZNIÓW GIMNAZJÓW ROK SZKOLNY 2015/2016 ETAP WOJEWÓDZKI Instrukcja dla ucznia 1. Zestaw konkursowy zawiera 12 zadań. 2. Przed
Bardziej szczegółowoRÓWNOWAGI W ROZTWORACH ELEKTROLITÓW.
RÓWNOWAGI W ROZTWORACH ELEKTROLITÓW. Zagadnienia: Zjawisko dysocjacji: stała i stopień dysocjacji Elektrolity słabe i mocne Efekt wspólnego jonu Reakcje strącania osadów Iloczyn rozpuszczalności Odczynnik
Bardziej szczegółowoK05 Instrukcja wykonania ćwiczenia
Katedra Chemii Fizycznej Uniwersytetu Łódzkiego K05 Instrukcja wykonania ćwiczenia Wyznaczanie punktu izoelektrycznego żelatyny metodą wiskozymetryczną Zakres zagadnień obowiązujących do ćwiczenia 1. Układy
Bardziej szczegółowoReakcje charakterystyczne dla aminokwasów oraz wykrywanie białek
Ćwiczenie 2 eakcje charakterystyczne dla aminokwasów oraz wykrywanie białek Wyciąg z kart charakterystyki substancji niebezpiecznych Sodu azotan (III), T, Kwas octowy Kwas siarkowy Kwas azotowy (V) Kwas
Bardziej szczegółowoWodorotlenki. n to liczba grup wodorotlenowych w cząsteczce wodorotlenku (równa wartościowości M)
Wodorotlenki Definicja - Wodorotlenkami nazywamy związki chemiczne, zbudowane z kationu metalu (zazwyczaj) (M) i anionu wodorotlenowego (OH - ) Ogólny wzór wodorotlenków: M(OH) n M oznacza symbol metalu.
Bardziej szczegółowoScenariusz lekcji w technikum zakres podstawowy 2 godziny
Scenariusz lekcji w technikum zakres podstawowy 2 godziny Temat : Hydroliza soli. Cele dydaktyczno wychowawcze: Wyjaśnienie przyczyn różnych odczynów soli Uświadomienie różnej roli wody w procesach dysocjacji
Bardziej szczegółowoKONDUKTOMETRIA. Konduktometria. Przewodnictwo elektrolityczne. Przewodnictwo elektrolityczne zaleŝy od:
KONDUKTOMETRIA Konduktometria Metoda elektroanalityczna oparta na pomiarze przewodnictwa elektrolitycznego, którego wartość ulega zmianie wraz ze zmianą stęŝenia jonów zawartych w roztworze. Przewodnictwo
Bardziej szczegółowoHYDROLIZA SOLI. 1. Hydroliza soli mocnej zasady i słabego kwasu. Przykładem jest octan sodu, dla którego reakcja hydrolizy przebiega następująco:
HYDROLIZA SOLI Hydroliza to reakcja chemiczna zachodząca między jonami słabo zdysocjowanej wody i jonami dobrze zdysocjowanej soli słabego kwasu lub słabej zasady. Reakcji hydrolizy mogą ulegać następujące
Bardziej szczegółowoBudowa aminokwasów i białek
Biofizyka Ćwiczenia 1. E. Banachowicz Zakład Biofizyki Molekularnej IF UAM http://www.amu.edu.pl/~ewas Budowa aminokwasów i białek E.Banachowicz 1 Ogólna budowa aminokwasów α w neutralnym p α N 2 COO N
Bardziej szczegółowoScenariusz lekcji chemii w klasie III gimnazjum. Temat lekcji: Białka skład pierwiastkowy, budowa, właściwości i reakcje charakterystyczne
Scenariusz lekcji chemii w klasie III gimnazjum Temat lekcji: Białka skład pierwiastkowy, budowa, właściwości i reakcje charakterystyczne Czas trwania lekcji: 2x 45 minut Cele lekcji: 1. Ogólny zapoznanie
Bardziej szczegółowoChemia - B udownictwo WS TiP
Chemia - B udownictwo WS TiP dysocjacja elektrolityczna, reakcje w roztworach wodnych, ph wykład nr 2b Teoria dys ocjacji jonowej Elektrolity i nieelektrolity Wpływ polarnej budowy cząsteczki wody na proces
Bardziej szczegółowoIZOMERIA Izomery - związki o takim samym składzie lecz różniące się budową
IZMERIA Izomery - związki o takim samym składzie lecz różniące się budową TAK zy atomy są tak samo połączone? NIE izomery konstytucyjne stereoizomery zy odbicie lustrzane daje się nałożyć na cząsteczkę?
Bardziej szczegółowoTest kompetencji z chemii do liceum. Grupa A.
Test kompetencji z chemii do liceum. Grupa A. 1. Atomy to: A- niepodzielne cząstki pierwiastka B- ujemne cząstki materii C- dodatnie cząstki materii D- najmniejsze cząstki pierwiastka, zachowujące jego
Bardziej szczegółowoWspółczesne metody chromatograficzne : Chromatografia cienkowarstwowa
Ćwiczenie 2: Chromatografia dwuwymiarowa (TLC 2D) Celem ćwiczenia jest zaobserwowanie rozdziału mieszaniny aminokwasów w dwóch układach rozwijających. Aminokwasy: Asp, Tyr, His, Leu, Ala, Val, Gly (1%
Bardziej szczegółowoĆwiczenie 5. Badanie właściwości chemicznych aldehydów, ketonów i kwasów karboksylowych. Synteza kwasu sulfanilowego.
Ćwiczenie 5. Badanie właściwości chemicznych aldehydów, ketonów i kwasów karboksylowych. Synteza kwasu sulfanilowego. Wprowadzenie teoretyczne Cel ćwiczeń: Zapoznanie studentów z właściwościami chemicznymi
Bardziej szczegółowoKONKURS CHEMICZNY ROK PRZED MATURĄ
Wydział Chemii UMCS Polskie Towarzystwo Chemiczne Doradca metodyczny ds. nauczania chemii KONKURS CHEMICZNY ROK PRZED MATURĄ ROK SZKOLNY 2006/2007 ETAP SZKOLNY Numer kodowy Suma punktów Podpisy Komisji:
Bardziej szczegółowoĆwiczenie 50: Określanie tożsamości jonów (Farmakopea VII-IX ( )).
Ćwiczenie 50: Określanie tożsamości jonów (Farmakopea VII-IX (2008-2013)). Badanie tożsamości wg Farmakopei Polskiej należy wykonywać w probówkach. Odczynniki bezwzględnie należy dodawać w podawanej kolejności.
Bardziej szczegółowoĆwiczenie nr 7. Aminokwasy i peptydy. Repetytorium. Repetytorium
Repetytorium Ćwiczenie nr 7 dr Mariola Krawiecka Aminokwasy i peptydy 1. Podział aminokwasów. 2. Właściwości aminokwasów-aminokwasy jako jony obojnacze. 3. Reaktywność aminokwasów. 4. Biologicznie ważne
Bardziej szczegółowoWYDZIAŁ TECHNOLOGII ŻYWNOŚCI STANDARYZACJA, MONITORING I ATESTACJA ŻYWNOŚCI
CHROMATOGRAFIA CIECZOWA Zestawy do chromatografii cieczowej składają się z precyzyjnego układu pompującego, kolumny chromatograficznej, czułego układu detekcyjnego oraz rejestratora. Dodatkowo mogą być
Bardziej szczegółowoREAKCJE W CHEMII ORGANICZNEJ
Katedra Biochemii ul. Akademicka 12, 20-033 Lublin tel. 081 445 66 08 www.biochwet.up.lublin.pl REAKCJE W CHEMII ORGANICZNEJ I. Reakcje utleniania na przykładzie różnych związków organicznych. 1. Utlenienie
Bardziej szczegółowoZadanie 2. (0 1) Uzupełnij schemat reakcji estryfikacji. Wybierz spośród podanych wzór kwasu karboksylowego A albo B oraz wzór alkoholu 1 albo 2.
Zadanie 1. (0 1) W celu odróżnienia kwasu oleinowego od stopionego kwasu palmitynowego wykonano doświadczenie, którego przebieg przedstawiono na schemacie. W probówce I wybrany odczynnik zmienił zabarwienie.
Bardziej szczegółowoReakcje chemiczne. Typ reakcji Schemat Przykłady Reakcja syntezy
Reakcje chemiczne Literatura: L. Jones, P. Atkins Chemia ogólna. Cząsteczki, materia, reakcje. Lesław Huppenthal, Alicja Kościelecka, Zbigniew Wojtczak Chemia ogólna i analityczna dla studentów biologii.
Bardziej szczegółowoMODEL ODPOWIEDZI I SCHEMAT PUNKTOWANIA
MODEL ODPOWIEDZI I SCHEMAT PUNKTOWANIA Zadanie Odpowiedzi Uwagi a) za uzupełnienie tabeli: Symbol pierwiastka Konfiguracja elektronowa w stanie podstawowym Liczba elektronów walencyjnych S b) za uzupełnienie
Bardziej szczegółowoZadanie: 2 Zbadano odczyn wodnych roztworów następujących soli: I chlorku baru II octanu amonu III siarczku sodu
Zadanie: 1 Sporządzono dwa wodne roztwory soli: siarczanu (VI) sodu i azotanu (III) sodu Który z wyżej wymienionych roztworów soli nie będzie miał odczynu obojętnego? Uzasadnij odpowiedź i napisz równanie
Bardziej szczegółowoKWASY I WODOROTLENKI. 1. Poprawne nazwy kwasów H 2 S, H 2 SO 4, HNO 3, to:
KWASY I WODOROTLENKI 1. Poprawne nazwy kwasów H 2 S, H 2 SO 4, HNO 3, to: 1. kwas siarkowy (IV), kwas siarkowy (VI), kwas azotowy, 2. kwas siarkowy (VI), kwas siarkowy (IV), kwas azotowy (V), 3. kwas siarkowodorowy,
Bardziej szczegółowodla której jest spełniony warunek równowagi: [H + ] [X ] / [HX] = K
RÓWNOWAGI W ROZTWORACH Szwedzki chemik Svante Arrhenius w 1887 roku jako pierwszy wykazał, że procesowi rozpuszczania wielu substancji towarzyszy dysocjacja, czyli rozpad cząsteczek na jony naładowane
Bardziej szczegółowoMODEL ODPOWIEDZI I SCHEMAT OCENIANIA ARKUSZA EGZAMINACYJNEGO II
MODEL ODPOWIEDZI I SCEMAT OCENIANIA ARKUSZA EGZAMINACYJNEGO II Zdający otrzymuje punkty tylko za poprawne rozwiązania, precyzyjnie odpowiadające poleceniom zawartym w zadaniach. Gdy do jednego polecenia
Bardziej szczegółowoProtokół: Reakcje charakterystyczne cukrowców
Protokół: Reakcje charakterystyczne cukrowców 1. Rekcja na obecność cukrów: próba Molischa z -naftolem Jest to najbardziej ogólna reakcja na cukrowce, tak wolne jak i związane. Ujemny jej wynik wyklucza
Bardziej szczegółowoIdentyfikacja wybranych kationów i anionów
Identyfikacja wybranych kationów i anionów ZACHOWAĆ SZCZEGÓLNĄ OSTRORZNOŚĆ NIE ZATYKAĆ PROBÓWKI PALCEM Zadanie 1 Celem zadania jest wykrycie jonów Ca 2+ a. Próba z jonami C 2 O 4 ZACHOWAĆ SZCZEGÓLNĄ OSTRORZNOŚĆ
Bardziej szczegółowoHYDROLIZA SOLI. Przykładem jest octan sodu, dla którego reakcja hydrolizy przebiega następująco:
HYDROLIZA SOLI Hydroliza to reakcja chemiczna zachodząca między jonami słabo zdysocjowanej wody i jonami dobrze zdysocjowanej soli słabego kwasu lub słabej zasady. Reakcji hydrolizy mogą ulegać następujące
Bardziej szczegółowoWPŁYW SUBSTANCJI TOWARZYSZĄCYCH NA ROZPUSZCZALNOŚĆ OSADÓW
WPŁYW SUBSTANCJI TOWARZYSZĄCYCH NA ROZPUSZCZALNOŚĆ OSADÓW Wstęp Mianem rozpuszczalności określamy maksymalną ilość danej substancji (w gramach lub molach), jaką w danej temperaturze można rozpuścić w określonej
Bardziej szczegółowoRoztwory buforowe (bufory) (opracowanie: dr Katarzyna Makyła-Juzak)
Roztwory buforowe (bufory) (opracowanie: dr Katarzyna Makyła-Juzak) 1. Właściwości roztworów buforowych Dodatek nieznacznej ilości mocnego kwasu lub mocnej zasady do czystej wody powoduje stosunkowo dużą
Bardziej szczegółowoOznaczanie mocznika w płynach ustrojowych metodą hydrolizy enzymatycznej
Oznaczanie mocznika w płynach ustrojowych metodą hydrolizy enzymatycznej Wprowadzenie: Większość lądowych organizmów kręgowych część jonów amonowych NH + 4, produktu rozpadu białek, wykorzystuje w biosyntezie
Bardziej szczegółowoĆWICZENIA LABORATORYJNE WYKRYWANIE WYBRANYCH ANIONÓW I KATIONÓW.
ĆWICZENIA LABORATORYJNE WYKRYWANIE WYBRANYCH ANIONÓW I KATIONÓW. Chemia analityczna jest działem chemii zajmującym się ustalaniem składu jakościowego i ilościowego badanych substancji chemicznych. Analiza
Bardziej szczegółowo1. Stechiometria 1.1. Obliczenia składu substancji na podstawie wzoru
1. Stechiometria 1.1. Obliczenia składu substancji na podstawie wzoru Wzór związku chemicznego podaje jakościowy jego skład z jakich pierwiastków jest zbudowany oraz liczbę atomów poszczególnych pierwiastków
Bardziej szczegółowoKonkurs przedmiotowy z chemii dla uczniów gimnazjów 6 marca 2015 r. zawody III stopnia (wojewódzkie)
Konkurs przedmiotowy z chemii dla uczniów gimnazjów 6 marca 2015 r. zawody III stopnia (wojewódzkie) Kod ucznia Suma punktów Witamy Cię na trzecim etapie konkursu chemicznego. Podczas konkursu możesz korzystać
Bardziej szczegółowo3b 2. przedstawione na poniższych schematach. Uzupełnij obserwacje i wnioski z nich wynikające oraz równanie zachodzącej reakcji.
3b 2 PAWEŁ ZYCH IMIĘ I NAZWISKO: KLASA: GRUPA A 1. W celu zbadania właściwości sacharozy wykonano dwa doświadczenia, które zostały przedstawione na poniższych schematach. Uzupełnij obserwacje i wnioski
Bardziej szczegółowoĆwiczenie 1. Ćwiczenie Temat: Podstawowe reakcje nieorganiczne. Obliczenia stechiometryczne.
PROGRAM ĆWICZEŃ LABORATORYJNYCH Z CHEMII (SEMESTR LETNI) OCHRONA ŚRODOWISKA Literatura zalecana 1. P. Szlachcic, J. Szymońska, B. Jarosz, E. Drozdek, O. Michalski, A. Wisła-Świder, Chemia I: Skrypt do
Bardziej szczegółowoĆWICZENIE 1: BUFORY 1. Zapoznanie z Regulaminem BHP 2. Oznaczanie ph 2.1. metoda z zastosowaniem papierków wskaźnikowych
ĆWICZENIE 1: BUFORY 1. Zapoznanie z Regulaminem BHP 2. Oznaczanie ph 2.1. metoda z zastosowaniem papierków wskaźnikowych Zasada metody Wykrywanie stęŝenia jonów wodorowych przy zastosowaniu papierków wskaźnikowych
Bardziej szczegółowoOznaczanie SO 2 w powietrzu atmosferycznym
Ćwiczenie 6 Oznaczanie SO w powietrzu atmosferycznym Dwutlenek siarki bezwodnik kwasu siarkowego jest najbardziej rozpowszechnionym zanieczyszczeniem gazowym, występującym w powietrzu atmosferycznym. Głównym
Bardziej szczegółowoMATERIAŁ DIAGNOSTYCZNY Z CHEMII
dysleksja MATERIAŁ DIAGNOSTYCZNY Z CHEMII Arkusz II POZIOM ROZSZERZONY Czas pracy 120 minut Instrukcja dla ucznia 1. Sprawdź, czy arkusz zawiera 9 ponumerowanych stron. Ewentualny brak zgłoś przewodniczącemu
Bardziej szczegółoworoztwory elektrolitów KWASY i ZASADY
roztwory elektrolitów KWASY i ZASADY nieelektrolit słaby elektrolit mocny elektrolit Przewodnictwo właściwe elektrolitów < 10-2 Ω -1 m -1 dla metali 10 6-10 8 Ω -1 m -1 Pomiar przewodnictwa elektrycznego
Bardziej szczegółowoprotos (gr.) pierwszy protein/proteins (ang.)
Białka 1 protos (gr.) pierwszy protein/proteins (ang.) cząsteczki życia materiał budulcowy materii ożywionej oraz wirusów wielkocząsteczkowe biopolimery o masie od kilku tysięcy do kilku milionów jednostek
Bardziej szczegółowoMODEL ODPOWIEDZI I SCHEMAT PUNKTOWANIA
Z am K or Copyright by ZamKor P. Sagnowski i Wspólnicy spółka jawna, Kraków 0 MODEL ODPOWIEDZI I SCHEMAT PUNKTOWANIA Poziom rozszerzony Zadanie Odpowiedzi Uwagi za prawidłowe uzupełnienie schematu: Punktacja
Bardziej szczegółowoWYMAGANIA EDUKACYJNE
GIMNAZJUM NR 2 W RYCZOWIE WYMAGANIA EDUKACYJNE niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z CHEMII w klasie II gimnazjum str. 1 Wymagania edukacyjne niezbędne do
Bardziej szczegółowoRÓWNOWAGI KWASOWO-ZASADOWE W ROZTWORACH WODNYCH
RÓWNOWAGI KWASOWO-ZASADOWE W ROZTWORACH WODNYCH Większość reakcji chemicznych (w tym również procesy zachodzące w środowisku naturalnym) przebiegają w roztworach wodnych. Jednym z ważnych typów reakcji
Bardziej szczegółowoPodstawowe pojęcia i prawa chemiczne
Podstawowe pojęcia i prawa chemiczne Pierwiastki, nazewnictwo i symbole. Budowa atomu, izotopy. Przemiany promieniotwórcze, okres półtrwania. Układ okresowy. Właściwości pierwiastków a ich położenie w
Bardziej szczegółowo11) Stan energetyczny elektronu w atomie kwantowanym jest zespołem : a dwóch liczb kwantowych b + czterech liczb kwantowych c nie jest kwantowany
PYTANIA EGZAMINACYJNE Z CHEMII OGÓLNEJ I Podstawowe pojęcia chemiczne 1) Pierwiastkiem nazywamy : a zbiór atomów o tej samej liczbie masowej b + zbiór atomów o tej samej liczbie atomowej c zbiór atomów
Bardziej szczegółowoANALIZA MOCZU FIZJOLOGICZNEGO I PATOLOGICZNEGO I. WYKRYWANIE NAJWAŻNIEJSZYCH SKŁADNIKÓW NIEORGANICZNYCH I ORGANICZNYCH MOCZU PRAWIDŁOWEGO.
ANALIZA MOCZU FIZJOLOGICZNEGO I PATOLOGICZNEGO Wymagane zagadnienia teoretyczne 1. Równowaga kwasowo-zasadowa organizmu. 2. Funkcje nerek. 3. Mechanizm wytwarzania moczu. 4. Skład moczu fizjologicznego.
Bardziej szczegółowo