PRZYRZĄDY OPTOMETRYCZNE [01] Dr Jacek Pniewski, kod w USOS: 1100-2BO07 Sezon 2017/2018, semestr zimowy, środy 10.15-12.00
Zupełnie orientacyjny plan działania Wstęp historyczny i fizyczny Akcesoria do podmiotowego pomiaru refrakcji i innych parametrów widzenia: foroptery, kasety okulistyczne soczewek, rzutniki/wyświetlacze optotypów, stereo testy, testy barwne, skrzyżowane cylindry, okulary polaryzacyjne, flippery Skiaskopia statyczna i dynamiczna Refraktometria (różne konstrukcje, w tym autorefraktometry) Przyrządy do pomiaru topografii rogówki: keratoskopy (Placido, komercyjne keratoskopy) i keratometry (Scheiner, konstrukcje Javala-Schiøtza i Bauscha and Lomba, urządzenia typu wavefront detection: obiekty fazowe, interferometria, detektory Shacka-Hartmanna itp.) Mikroskopia konfokalna i skaningowa (laserowa) Gonioskopia bezpośrednia i pośrednia (soczewki gonioskopowe, trójlustro Goldmanna itp.) Funduskopia (soczewka Koeppego, Goldmanna, Hruby ego, Volka itp.) i funduskamery Angiografia fluoresceinowa Perymetria (kinetyczna i statyczna, progowa i nadprogowa, kampimetria, wzgórze widzenia, test Amslera itp.) Tonometria (tonometry impresyjne Schiotza, aplanacyjne Goldmanna, air-puff, przez powiekowe itp.) Pachymetria (kontaktowa, bezkontaktowa, OLCR Optical Low Coherence Reflectometry, USG) Tomograf OCT i SOCT Oftalmoskopy (bezpośrednie, pośrednie, wizuskopy, stereoskopowe, konfokalne) Biomikroskopia, lampa szczelinowa (typu Zeissa i Haagstreita) Optometry (m.in. Badala, barwne, Scheinera itp.) Przyrządy do pomiaru okularów (sferomierze, dioptromierze frontofokometry lunetowe, dioptromierze elektroniczne, polaryskopy) Pupilometry Polaryskopy, polarymetry
Warunki zaliczenia przedmiotu Egzamin końcowy ustny wykonanie pomocy optycznej (do wyboru: patyczek fiksacyjny, kostka fiksacyjna, pręt fiksacyjny Wolffa, test Wortha, tablice optotypów dla zadanej odległości, sznurek Brocka, piłka Marsdena, ew. inne po uzgodnieniu) znajomość schematów i zasady działania omawianych urządzeń (w szczególności schematy: dioptromierza lunetowego, oftalmoskopu, skiaskopu, interferometru Michelsona, detektora Shacka-Hartmanna)
TYTUŁEM WSTĘPU
Przedmiot zainteresowania operatora przyrządów optometrycznych
Uwaga! Wbrew pozorom, przyrządy optometryczne nie służą tylko do pomiaru wady refrakcji samego oka, ale często też analizują pozostałe etapy w procesie widzenia, na przykład zdolność do akomodacji, czy widzenia stereoskopowego. Badaniu poddawane są nie tylko optyczna funkcja oka, lecz również stan narządu, na przykład kąt tęczówkoworogówkowy, tarcza nerwu wzrokowego itp. Wynik badania nie musi być powtarzalny i zależy od stanu psychofizycznego osoby badanej oraz warunków otoczenia.
Badanie zewnętrznej części oka Lupa + mikroskop (XIX wiek). Biomikroskop + Lampa szczelinowa (początek XX w.) Lampa szczelinowa, Zeiss Gullstrand, produkcja 1941 Rodenstock Slit Lamp RO 5000 EH
Dlaczego oczy zwierząt świecą? Dawniej istniał pogląd, że oczy zwierząt emitują światło, tym intensywniejsze im bardziej pobudzone jest zwierzę. Pogląd ten został obalony przez Prevosta (1818), który pokazał, że nie można zobaczyć światła pochodzącego z oka zwierzęcia, gdy zamkniemy się z nim w zaciemnionym pokoju. W tym samym czasie Gruithuisen odkrył, że oczy niektórych zwierząt (np. psów i kotów) zawierają unikalną warstwę za siatkówką, lucidum tapetum, która odbija światło i jest odpowiedzialna za pozorne świecenie oczu zwierząt.
Oko ludzkie (źrenica) wydaje się czarne Dlaczego źrenica jest czarna problem, który zwrócił uwagę już uczonych rzymskich. Purkinje (w 1823 r.) zaobserwował, że w pewnych warunkach oświetlenia ludzkiego oka można zobaczyć odblask. Zjawisko odkryte niezależnie przez Cumminga (w 1846 r.) i przez Brucke (w 1847 r.). Idea: obserwator musi znajdować się na drodze promieni padających. Brucke prawie wynalazł oftalmoskop, spoglądając przez rurkę umieszczoną w płomieniu świecy. Prawie. Podejrzewa się, że Purkinje używał jakiegoś urządzenia typu oftalmoskopu, podobnie Charles Babbage w 1847. Procent światła odbijanego przez siatkówkę oka to zależy
Budowa czopków i pręcików Pytanie: jak przebiega proces zamiany energii światła padającego na impuls nerwowy. Na to proste pytanie nie ma wyczerpującej odpowiedzi.
POWTÓRKA...
Fala elektromagnetyczna Zaburzenie rozchodzące się w przestrzeni, w postaci pola elektromagnetycznego. Elektryczna i magnetyczna składowa fali indukują się wzajemnie. Zmienne pole E indukuje pole H, a zmienne pole H indukuje pole E.
Widmo fal elektromagnetycznych Żródło: http://commons.wikimedia.org
Polaryzacja liniowa Drgania wektora pola E odbywają się w określonej płaszczyźnie, w kierunku prostopadłym do kierunku rozchodzenia się fali. Liniowo spolaryzowaną falę płaską rozchodzącą się w kierunku z można przedstawić jako złożenie (superpozycję) dwóch fal spolaryzowanych liniowo w kierunkach x i y, przy czym mogą one być zgodne lub przeciwne w fazie. Kierunek polaryzacji jest określany przez stosunek amplitud drgań w kierunkach składowych. Światło widzialne spolaryzowane można otrzymać np. poprzez wycięcie jednej ze składowych pola E (pochłanianie wzdłuż określonego kierunku), poprzez odbicie (kąt Brewstera), rozpraszanie. wikipedia.org
Prawo Malusa Natężenie światła spolaryzowanego, przepuszczonego przez polaryzator liniowy zależy od kwadratu kosinusa kąta pomiędzy płaszczyzną polaryzacji światła padającego a kierunkiem przepuszczania polaryzatora. E E 0 cos 2 I I 0 cos
Polaryzacja eliptyczna Powstaje przez złożenie dwóch fal spolaryzowanych liniowo w płaszczyznach prostopadłych do siebie. E E x y 0x E cos t 0 y E cos t x y wikipedia.org
Światło spójne (koherentne) niespójne monochromatyczne polichromatyczne Przykład????
Światło spójne (koherentne) niespójne monochromatyczne polichromatyczne Przykład Laser X Lampa gazowa Żarówka
Dwójłomność (naturalna) Zdolność ośrodków optycznych do podwójnego załamywania światła (także rozdwojenia promienia świetlnego). Zjawisko dwójłomności odkrył w 1669 roku Rasmus Bartholin a wyjaśnił Augustin J. Fresnel w pierwszej połowie XIX w wieku. Dwójłomność wykazuje wiele substancji krystalicznych, a także wszystkie ciekłe kryształy. Przykładami substancji dwójłomnych mogą być kryształy rutylu i kalcytu. Miarą dwójłomności jest różnica między współczynnikiem załamania promienia nadzwyczajnego n e, a współczynnikiem załamania promienia zwyczajnego n o. n n e n 0 wikipedia.org
Dwójłomność Zjawisko to wynika z faktu, że substancja jest anizotropowa, co oznacza, że współczynniki przenikalności elektrycznej ε i wynikająca z niego prędkość światła, a co za tym idzie współczynnik załamania światła, w krysztale zależą od kierunku drgań pola elektrycznego fali elektromagnetycznej (polaryzacji fali). W krysztale takim istnieje oś optyczna. Jest to kierunek, w którym biegnące światło nie rozdziela się na dwa promienie, ponieważ prędkość światła poruszającego się w tym kierunku nie zależy od kierunku polaryzacji. Kierunek tej osi nie zależy od kształtu kryształu. Istnieją kryształy jednoi dwuosiowe. wikipedia.org
Półfalówka Przepuszcza całe padające na nią światło zmieniając tylko stan jego polaryzacji. Nie polaryzuje światła niespolaryzowanego. Światło spolaryzowane liniowo zamienia na światło spolaryzowane liniowo w kierunku, który jest odbiciem polaryzacji światła padającego względem jednej z osi (szybkiej). Zmienia światło spolaryzowane kołowo prawoskrętnie na światło spolaryzowane kołowo lewoskrętnie i odwrotnie. 0 n n d n s d e wikipedia.org
Ćwierćfalówka Przepuszcza całe padające na nią światło i zmienia tylko stan jego polaryzacji. Nie polaryzuje światła niespolaryzowanego. Światło spolaryzowane liniowo zamienia na światło spolaryzowane eliptycznie zależnie od kąta polaryzacji względem osi szybkiej płytki i tak w szczególności: gdy oś płytki (szybka lub wolna) pokrywa się z kierunkiem polaryzacji światła, nie zmienia polaryzacji, gdy płaszczyzna polaryzacji światła tworzy kąt 45 z osią płytki, to światło zmienia polaryzację na kołową, zmienia światło spolaryzowane kołowo na światło spolaryzowane liniowo. http://www.olympusmicro.com
Pryzmat Nicola Pryzmat polaryzujący utworzony z romboedrycznego kryształu szpatu islandzkiego (kalcyt CaCO 3 ), odpowiednio oszlifowanego, przeciętego na dwie części i sklejonego balsamem kanadyjskim. Oś optyczna (na schemacie odcinek OP) jest równoległa do powierzchni na którą pada promień. Promień światła po wejściu do kryształu, rozszczepia się więc na dwa promienie spolaryzowane w kierunkach wzajemnie prostopadłych: zwyczajny. Współczynnik załamania balsamu kanadyjskiego wynosi n bk = 1,550, ma wartość pośrednia między współczynnikiem załamania dla promienia zwyczajnego n o = 1,658 i dla nadzwyczajnego n e = 1,486. Balsam jest więc dla promienia zwyczajnego optycznie rzadszy, a dla nadzwyczajnego gęstszy. Kąt przecięcia pryzmatu jest tak dobrany, aby kąt padania A na powierzchnię balsamu, był dla promienia zwyczajnego większy od kąta granicznego całkowitego wewnętrznego odbicia. wikipedia.org
Punkty główne: położenie E v E v f f e f f e E F v F e 1 1 1 df 2 F F E v F E F E df e 1 1 2 F E df e 2
Punkty główne: położenie E v E v f f e f f e F v F E e 1 1 1 df 1 F F E v F E F E df e 1 1 ' 1 F E df e 1
Przysłona aperturowa Przysłona aperturowa Promień aperturowy Kąt aperturowy
Przysłona polowa Pole widzenia układu optycznego zależy od przysłony polowej. Promień polowy przechodzi przez przedmiot i środek przesłony aperturowej. Przysłona polowa Promień polowy Pole widzenia Kąt polowy
Winietowanie Dla dużej źrenicy wejściowej apertura dla przedmiotów punktowych poza osią układu zmniejsza się. Pęk promieni traci symetrię. Efektywne pole widzenia odpowiada zwykle winietowaniu nie większemu niż 50%.
AKCESORIA
Kaseta okulistyczna soczewek Przykładowa zawartość wg normy PN-EN ISO 9801 Element Oznaczenie Kolor Soczewki sferyczne i cylindryczne dodatnie + czarny Soczewki sferyczne i cylindryczne ujemne czerwony Szkła pryzmatyczne Δ biały Cylinder Maddoxa MR Szczelina stenopeiczna I lub SS Pinhola (okluder) lub PH Zasłona lub BL Soczewka matowa FL Krzyż Lub CL Filtr czerwony/zielony RF, GF Filtr polaryzacyjny PF
Gotowe zestawy
Oprawa próbna Oprawa powinna być dobrze umocowana na głowie osoby badanej. Niezbędna jest regulacja długości zauszników, pozycji nanośnika oraz rozstawu szkieł. Konieczna jest możliwość wstawienia minimum trzech szkieł próbnych, z regulowanym obrotem.
Foropter Urządzenie, które wraz z rzutnikiem optotypów zastępuje (choć nie całkowicie) przyrządy: tablicę optotypów; kasetę okulistyczną; oprawę do szkieł próbnych; pupilomierz.
Przykład NIDEK, mod. RT-5100
Przykład NIDEK, mod. RT-5100 Measurable range Sphere Cylinder Axis PD Rotary prism Auxiliary lenses Cross cylinder lens Occluder Pinhole plate Red maddox rod Red / Green filter PD check lens Polarizing filters Fixed cross cylinder lens Spherical lenses for retinoscope Dispersion prism Visual field -29.00 to +26.75 D (0.12 / 0.25 / 0.50 to 3.00 D increments) -19.00 to +16.75 D (cross cylinder test, prism test) 0.00 to ±8.75 D (0.25 / 1.00 / 2.00 / 3.00 D increments) 0 to 180º (1 / 5 / 15º increments) 48 to 80 mm (far mode) 50 to 74 mm (near working distance of 35 cm) 54 to 80 mm (far PD possible for 100% convergence) 0 to 20Δ (0.1 / 0.5 / 2Δ increments) ±0.25, ±0.50, ±0.25 D Auto-cross ø2 mm Right eye: horizontal, Left eye: vertical Right eye: red, Left eye: green Right eye: 135º / Left eye: 45º, Right eye: 45º / Left eye: 135º ±0.50 D (fixed with the Axis set at 90º) +1.5 D / +2.0 D Right eye: 6ΔBU / Left eye: 10ΔBI, Right eye: 3ΔBD / Left eye: 3ΔBU 40º (VD = 12 mm), 39º (VD = 13.75 mm)
Przykład, Huvitz HDR-7000
Rzutniki/wyświetlacze optotypów W połączeniu z foropterem oraz okularami polaryzacyjnym i służą m.in. do określania i korekcji ostrości wzroku, a także widzenia obuocznego (forie i tropie, fiksacje)
Przykład, Huvitz CCP-3100
Kontrast próba definicji Różnica własności wizualnych obiektu w stosunku do innych elementów obrazu, umożliwiająca odróżnienie go od innych obiektów oraz od tła. Określana zwykle poprzez kolor i jasność. Wzrok jest bardziej czuły na różnicę jasności niż na jasność bezwzględną, dzięki czemu świat jest podobny niezależnie od natężenia oświetlenia. Istnieją różne definicje kontrastu, które można stosować do różnych obrazów.
Miara kontrastu Kontrast Webera V I I I b b Kontrast Michelsona V I I max max I I min min Błąd średniokwadratowy V 1 1 1 N M MN I ij I i0 j0 2
Funkcja czułości na kontrast
Ocena czułości na kontrast B. Drum, D. Calogero and E. Rorer, Assessment of visual performance in the evaluation of new medical products, Drug Discovery Today: Technologies 4(2), 2007.
FACT
Modulation Transfer Function Funkcja przenoszenia kontrastu C f I I max max I I min min ; MTF f C 100% C f 0 http://www.imatest.com http://www.microscopyu.com
Point Spread Function Funkcja rozmycia punktu Obrazuje jakość odwzorowania układu optycznego. Dla układu bezaberracyjnego większa źrenica umożliwia poprawienie zdolności rozdzielczej. Funkcja rozmycia punktu układu ludzkiego oka w funkcji średnicy źrenicy.
MTF a PSF Funkcja rozmycia punktu determinuje zakres częstości optycznych, które może przenosić układ optyczny ( gęstość modulacji). Im szersza funkcja rozmycia punktu, tym szybciej maksima modulacji nakładają się na siebie. Wpływa to bezpośrednio na zdolność rozdzielczą układu optycznego. http://www.microscopyu.com