ODDYCHANIE KOMÓRKOWE

Podobne dokumenty
Biochemia Oddychanie wewnątrzkomórkowe

Oddychanie komórkowe. Pozyskiwanie i przetwarzanie energii w komórkach roślinnych. Oddychanie zachodzi w mitochondriach Wykład 7.

ATP. Slajd 1. Slajd rok Nagroda Nobla: P.D. Boyer (USA), J.E. Walker (GB) i J.C. Skou (D) Slajd 3. BIOENERGETYKA KOMÓRKI oddychanie i energia

Bliskie spotkania z biologią METABOLIZM. dr hab. Joanna Moraczewska, prof. UKW. Instytut Biologii Eksperymetalnej, Zakład Biochemii i Biologii Komórki

BIOENERGETYKA cz. II cykl Krebsa i fosforylacja oksydacyjna

Bliskie spotkania z biologią. METABOLIZM część II. dr hab. Joanna Moraczewska, prof. UKW

Reakcje zachodzące w komórkach

Integracja metabolizmu

wielkość, kształt, typy

B) podział (aldolowy) na 2 triozy. 2) izomeryzacja do fruktozo-6-p (aldoza w ketozę, dla umoŝliwienia kolejnych przemian)

oksydacyjna ADP + Pi + (energia z utleniania zredukowanych nukleotydów ) ATP

(węglowodanów i tłuszczów) Podstawowym produktem (nośnikiem energii) - ATP

Bliskie spotkania z biologią METABOLIZM. dr hab. Joanna Moraczewska, prof. UKW. Instytut Biologii Eksperymetalnej, Zakład Biochemii i Biologii Komórki

BIOENERGETYKA cz. I METABOLIZM WĘGLOWODANÓW I LIPIDÓW. dr hab. prof. AWF Agnieszka Zembroń-Łacny

Mitochondria. siłownie komórki

Tłuszcze jako główny zapasowy substrat energetyczny

Nukleotydy w układach biologicznych

Bioenergetyka badania przemian energii zachodzących w żywych organizmach. Żywy organizm - otwarty układ termodynamiczny, - może

Zagadnienia do egzaminu z biochemii (studia niestacjonarne)

Przemiana materii i energii - Biologia.net.pl

Wydział Przyrodniczo-Techniczny UO Kierunek studiów: Biotechnologia licencjat Rok akademicki 2009/2010

prof. dr hab. Maciej Ugorski Efekty kształcenia 2 Posiada podstawowe wiadomości z zakresu enzymologii BC_1A_W04

FIZJOLOGIA WYSIŁKU FIZYCZNEGO ENERGETYKA WYSIŁKU, ROLA KRĄŻENIA I UKŁADU ODDECHOWEGO

LIPIDY. Slajd 1 WYKŁAD 5. Slajd 2. Slajd 3. LIPIDY: budowa lecytyny (fosfatydylocholina) AGNIESZKA ZEMBROŃ-ŁACNY. Struktura kwasów tłuszczowych

Spis treści. Fotosynteza. 1 Fotosynteza 1.1 WĘGLOWODANY 2 Cykl Krebsa 2.1 Acetylokoenzym A

Źródła energii dla mięśni. mgr. Joanna Misiorowska

Peroksysomy. Peroksysomy Import białek sekwencje sygnałowe: Ser-Lys-Leu C-koniec (zazwyczaj) peroksyny; białka receptorowe i kanałowe (?

AKADEMIA WYCHOWANIA FIZYCZNEGO im. JERZEGO KUKUCZKI w KATOWICACH WYDZIAŁ FIZJOTERAPII KIERUNEK FIZJOTERAPIA pięcioletnie studia magisterskie

Spis treści. 1. Wiadomości wstępne Skład chemiczny i funkcje komórki Przedmowa do wydania czternastego... 13

Plan działania opracowała Anna Gajos

Metabolizm białek. Ogólny schemat metabolizmu bialek

Spis treści. Od Autora 9. Wprowadzenie 11 CZĘŚĆ A. MOLEKULARNE MENU 13

Program zajęć z biochemii dla studentów kierunku weterynaria I roku studiów na Wydziale Lekarskim UJ CM w roku akademickim 2013/2014

Wydział Rehabilitacji Katedra Nauk Przyrodniczych Kierownik: Prof. dr hab. Andrzej Wit BIOCHEMIA. Obowiązkowy

AKADEMIA WYCHOWANIA FIZYCZNEGO im. JERZEGO KUKUCZKI w KATOWICACH Kierunek studiów: FIZJOTERAPIA poziom pierwszy Tytuł zawodowy absolwenta: licencjat

AKADEMIA WYCHOWANIA FIZYCZNEGO im. JERZEGO KUKUCZKI w KATOWICACH Kierunek studiów: FIZJOTERAPIA poziom pierwszy Tytuł zawodowy absolwenta: licencjat

CORAZ BLIŻEJ ISTOTY ŻYCIA WERSJA A. imię i nazwisko :. klasa :.. ilość punktów :.

Metabolizm komórkowy i sposoby uzyskiwania energii

Fizjologia człowieka

Aminotransferazy. Dehydrogenaza glutaminianowa. Szczawiooctan. Argininobursztynian. Inne aminokwasy. asparaginian. fumaran. Arginina.

Mitochondria - siłownie komórki

Transformatory energii (mitochondria i chloroplasty) Pochodzenie mitochondriów i chloroplastów

Podkowiańska Wyższa Szkoła Medyczna im. Z. i J. Łyko. Syllabus przedmiotowy 2016/ /2019

Biochemia SYLABUS A. Informacje ogólne

Nazwa jednostki prowadzącej kierunek: Wyższa Szkoła Medyczna w Białymstoku Wydział Ogólnomedyczny

KARTA KURSU. Kod Punktacja ECTS* 2

Bliskie spotkania z biologią METABOLIZM. dr hab. Joanna Moraczewska, prof. UKW. Instytut Biologii Eksperymetalnej, Zakład Biochemii i Biologii Komórki

METABOLIZM. Zadanie 1. (3 pkt). Uzupełnij tabelę, wpisując w wolne kratki odpowiednio produkt oddychania tlenowego i produkty fermentacji alkoholowej.

Profil metaboliczny róŝnych organów ciała

Created by Neevia Document Converter trial version

SYLABUS. DOTYCZY CYKLU KSZTAŁCENIA (skrajne daty)

Budowa i klasyfikacja lipidów

MATERIAŁY Z KURSU KWALIFIKACYJNEGO

Mitochondrium - budowa i funkcje

PODSTAWOWE PROCESY METABOLICZNE ORGANIZMÓW

SYLABUS. DOTYCZY CYKLU KSZTAŁCENIA (skrajne daty)

Spis treści. Katabolizm

Budowa i klasyfikacja lipidów

SYLABUS. DOTYCZY CYKLU KSZTAŁCENIA (skrajne daty)

Na początek przyjrzymy się więc, jak komórka rośliny produkuje ATP, korzystając z energii światła w fazie jasnej fotosyntezy.

SZCZEGÓŁOWY PROGRAM NAUCZANIA BIOCHEMII NA KIERUNKU TiR (spec. DiS) W AWFiS GDAŃSK

BIOLOGIA klasa 1 LO Wymagania edukacyjne w zakresie podstawowym od 2019 roku

Uczeń: omawia cechy organizmów wyjaśnia cele, przedmiot i metody badań naukowych w biologii omawia istotę kilku współczesnych odkryć.

BIOCHEMIA. 1. Informacje o przedmiocie (zajęciach), jednostce koordynującej przedmiot, osobie prowadzącej

Wątroba, serce i mięśnie w spoczynku (zasobne w tlen) wykorzystują kwasy tłuszczowe jako źródło energii. Mięśnie pracujące korzystają z glikolizy.

Biochemia zwierząt - A. Malinowska

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA dr inż. n. chem.agnieszka Stępień- ćwiczenia laboratoryjne

Sylabus: Biochemia. 1. Metryczka II WYDZIAŁ LEKARSKI Z ODDZIAŁEM NAUCZANIA W JĘZYKU ANGIELSKIM ORAZ ODDZIAŁEM FIZJOTERAPII.

Biochemia SYLABUS A. Informacje ogólne

DZYKOMÓRKOWA. WYKORZYSTYWANIE ENERGII ATP

Sucha masa(g. kj/g suchej masy

Metabolizm węglowodanów utlenianie glukozy w warunkach tlenowych z udziałem drożdży

Zadanie 5. (2 pkt) Schemat procesu biologicznego utleniania glukozy.

Metody badańżywych organizmów Skład chemiczny organizmów żywych (zwłaszcza aktywnych organów) cały czas się zmienia. Również martwe tkanki przez

Tlenowy metabolizm węglowodanów

Wykazanie obecności oksydoreduktaz w materiale biologicznym

WŁASNOŚCI SPEKTRALNE NUKLEOTYDÓW PIRYDYNOWYCH (NAD +, NADP + ) OZNACZANIE AKTYWNOŚCI TRANSAMINAZY ALANINOWEJ

Mechanizmy działania i regulacji enzymów

Joanna Bereta, Aleksander Ko j Zarys biochemii. Seria Wydawnicza Wydziału Bio chemii, Biofizyki i Biotechnologii Uniwersytetu Jagiellońskiego

Krakowska Akademia im. Andrzeja Frycza Modrzewskiego. Karta przedmiotu. obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2016/2017

TEORIA KOMÓRKI (dlaczego istnieją osobniki?)

Korelacje pomiędzy ekspresją genów kodujących enzymy cyklu Krebsa a kontrolą replikacji DNA w komórkach ludzkich

Czynności komórki. Biologiczne podstawy zachowania dla studentów psychologii. PŁ, KFZiE, UŚ 2009/2010. Materialne podłoŝe Ŝycia

OPTYMALNY POZIOM SPOŻYCIA BIAŁKA ZALECANY CZŁOWIEKOWI JANUSZ KELLER STUDIUM PODYPLOMOWE 2011

Ćwiczenie nr 4 Bioenergetyka Oznaczanie aktywności dehydrogenazy bursztynianowej

Proplastydy. Plastydy. Chloroplasty biogeneza. Plastydy

Akademia Wychowania Fizycznego i Sportu w Gdańsku SYLABUS w cyklu kształcenia

Akademia Wychowania Fizycznego i Sportu w Gdańsku SYLABUS w cyklu kształcenia Rodzaj zajęć wykłady 15 ćwiczenia 30

TEORIA KOMÓRKI (dlaczego istnieją osobniki?)

Sylabus - Biochemia. 1. Metryczka FARMACEUTYCZNY Z ODDZIAŁEM MEDYCYNY LABORATORYJNEJ. Nazwa Wydziału:

Wykład 1. Od atomów do komórek

Enzymy katalizatory biologiczne

SYLABUS: BIOCHEMIA. 1. Metryczka. Nazwa Wydziału:

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA Wykł. Ćw. Konw. Lab. Sem. ZP Prakt. GN Liczba pkt ECTS

WĘGLOWODANY WŁAŚCIWOŚCI I METABOLIZM

Nazwa jednostki prowadzącej kierunek: Nazwa kierunku: Poziom kształcenia: Profil kształcenia: Moduły wprowadzające / wymagania

Cukry właściwości i funkcje

Poziomy organizacji żywej materii 1. Komórkowy- obejmuje struktury komórkowe (organelle) oraz komórki 2. Organizmalny tworzą skupienia komórek

OKSYDOREDUKTAZY WPROWADZENIE

Białka Aminokwasy Przemiany

Transkrypt:

NM Gera ODDYCHANIE KOMÓRKOWE 1 A) ODDYCHANIE TLENOWE B) PROCESY BEZTLENOWEGO UZYSKIWANIA ENERGII

ZADANIE DOMOWE W FORMIE REFERATU OPRACUJ ZAGADNIENIA DOTYCZĄCE PRZEBIEGU CHEMOSYNTEZY ORAZ BEZTLENOWEGO UZYSKIWANIA ENERGII Wykonaj polecenie 2 ze strony 43 Opisz wpływ czynników zewnętrznych na intensywność oddychania komórkowego 2

PLAN ZAJĘĆ 2) POWTORZENIE WIADOMOŚCI O BUDOWIE, FUNKCJACH I POCHODZENIU MITOCHONDRIÓW 3) Historia ;) 4) PRZEBIEG ODDYCHANIA TLENOWEGO 4a) GLIKOLIZA 4b) REAKCJA POMOSTOWA 4c) CYKL KWASU CYTRYNOWEGO 4d) ŁAŃCUCH ODDECHOWY 5) BILANS ENERGETYCZNY 6) WPŁYW CZYNNIKÓW NA INTENSYWNOŚĆ ODDYCHANIA KOMÓRKOWEGO (ZADANIE DOMOWE) 3

Cykl reakcji umożliwiających utlenienie acetylo-coa opisał w roku w roku 1937 sir Hans Adolf Krebs Za odkrycie cyklu kwasów trikaboksylowych otrzymał Nagrodę Nobla w dziedzinie medycyny lub fizjologii w roku 1953 Sir Hans Adolf Krebs ur. 25 sierpnia 1900 w Hildesheim, Niemcy, zm. 22 listopada 1981 w Oksfordzie, Anglia, Wielka Brytania 4

HANS ADOLF KREBS w roku 1933 zmuszony był do emigracji do Wielkiej Brytanii. Profesor uniwersytetu w Sheffield, potem uniwersytetu w Oksfordzie, członek Towarzystwa Królewskiego w Londynie. W 1932 roku wspólnie z Kurtem Henseleitem odkrył i opisał cykl przemian reakcji chemicznych w tkankach zwierzęcych prowadzący do syntezy mocznika (tzw. cykl ornitynowy/mały cykl Krebsa/cykl Krebsa-Henseleita), opisał (1937) również cykl przemian biochemicznych produktów rozkładu sacharydów, tłuszczów i białek, zwany cyklem Krebsa (zwany również cyklem kwasu cytrynowego lub cyklem kwasów trikarboksylowych); otrzymał za te prace nagrodę Nobla w 1953 roku. Królowa Elżbieta II nadała mu w 1958 tytuł szlachecki, co wiązało się z prawem używania tytułu sir przed nazwiskiem 5

6

oddychanie tlenowe odwodorowanie substratu organicznego, wytwarzanie energii w postaci ATP macierz mitochondrialna enzymy cyklu Krebsa, błony grzebieni mitochondrialnych enzymy łańcucha oddechowego, ATP nie może być transportowane, ani magazynowane mitochondria potrafią wędrować do miejsc, gdzie występuje zapotrzebowanie na energię, w praktyce medycznej w przypadkach uszkodzenia wątroby bądź zawału mięśnia sercowego z uszkodzonych mitochondriów do krwi przedostają się specyficzne enzymy diagnostyka na podstawie badania krwi. nowe powstają przez wzrost i podział istniejących, mutacja w DNA mitochondrialnym może być związana z niektórymi chorobami ślepota w młodym wieku, postępujące zwyrodnienie mięśni, wpływają na procesy starzenia się, programowana śmierć komórki apoptoza 7

BUDOWA ATP nmg Cząsteczka ATP jest związkiem składającym się z zasady azotowej adeniny (1) połączonej z cząsteczką cukru rybozy (2) i trzech reszt fosforanowych (3). ATP powstaje w procesie fosforylacji z ADP (adenozynodwufosforanu) i Pi (fosforanu nieorganicznego). 8

ODDYCHANIE W potocznym znaczeniu pod słowem oddychanie przyjęto rozumieć wymianę gazową, czyli pobieranie tlenu i usuwanie dwutlenku węgla, jednak ma ona jedynie związek z oddychaniem. Natomiast właściwe oddychanie to wyzwalanie energii z glukozy i jest to podstawowa czynność życiowa wszystkich organizmów żywych z wyjątkiem wirusów. Oddychanie ustaje wraz ze śmiercią komórki. 9

ODDYCHANIE Oddychanie zatem polega na utlenieniu biologicznym, czyli odłączeniu atomów wodoru albo tylko elektronów od substratu przy wydzieleniu energii oraz na wychwyceniu części energii i zgromadzeniu w formie energii chemicznej w wiązaniach wysokoenergetycznych w ATP. Pozostała energia ulega rozproszeniu w postaci energii cieplnej. Powstałe w ten sposób ATP jest używane do wszystkich reakcji wymagających użycia energii. Każda komórka tworzy tyle ATP ile go potrzebuje. ATP nie może być gromadzone. Organella komórkowa na terenie której odbywają się procesy związane z oddychaniem -> mitochondrium. 10

CZYNNIKI WPŁYWAJĄCE NA ODDYCHANIE KOMÓRKOWE: Liczba mitochondriów Rodzaj komórki Dostępność tlenu Zapotrzebowanie energetyczne Wiek komórki 11

ETAPY ODDYCHANIA KOMÓRKOWEGO Glikoliza Reakcja pomostowa Cykl Krebsa Łańcuch oddechowy 12

MIEJSCE ODDYCHANIA TLENOWEGO W KOMÓRCE GLIKOLIZA cytozol REAKCJA POMOSTOWA - matrix CYKL KREBSA matrix 13 ŁAŃCUCH ODDECHOWY wewnętrzna błona mitochondrialna

WZÓR REAKCJI CHEMICZNEJ C₆H₁₂O₆ + O₂ 6CO₂ + 6H₂O + energia Proces pozaustrojowego utleniania glukozy -> taka ilość energii cieplnej może doprowadzić do denaturacji białek w komórce, dlatego oddychanie w komórkach zachodzi w etapach. 14

ETAPY ODDYCHANIA KOMÓRKOWEGO Glikoliza Reakcja pomostowa Cykl Krebsa Utlenianie końcowe 15

16

GLIKOLIZA etapy oddychania zwane glikolizą zachodzą w cytoplazmie podstawowej i nie wymagają obecności tlenu. Proces ten zarówno w warunkach tlenowych jak i beztlenowych przebiega tak samo, odmienny jest jedynie los pirogronianu, czyli produktu końcowego glikolizy oraz możliwość utlenienia zredukowanego akceptora wodoru NADH + H+. 17

Glukoza zostaje ufosforylowana przez ATP do glukozo-6- fosforanu, a następnie enzymatycznie przekształcona do fruktozo- 6-fosforanu. Ten następnie jest ponownie ufosforylowany dzięki przeniesieniu grupy fosforanowej z ATP do fruktozo-1,6-dwufosforanu. Potem następuje rozcięcie enzymatyczne na dwie cząsteczki triozofosforanu - fosfodihydroksyacetonu i aldehyd 3- fosfoglicerynowego. Grupa aldehydowa drugiego związku zostaje odwodorowana przez NAD. Reakcja ta jest silnie egzoergiczna i sprzężona z przyłączeniem nieorganicznego fosforanu. 18

GLIKOLIZA CD. Następnie grupa fosforanowa zostaje przeniesiona na ADP, przy czym powstaje 3-fosfoglicerynian i ATP. -> jest to fosforylacja substratowa. 3- fosfoglicerynian zamieniany jest w 2- fosfoglicerynian. Następnie 2- fosfoglicerynian zamieniany jest w fosfoenolopirogronian. Ostatni etap to powstanie z fosfoenolopirogronianu, pod wpływem kinazy pirogronianowej pirogronianu i cząsteczki ATP. W komórce procesy utleniania i redukcji muszą być zrównoważone. 19

20

REAKCJA POMOSTOWA 21

CYKL KREBSA Pirogronian w warunkach tlenowych zamieniany jest w acetylo- CoA, który włączany jest w cykl kwasu cytrynowego (cykl Krebsa) 22

ACETYLO - COA aktywny octan Powstały poprzez acetylowanie koenzymu A. Acetylo-CoA odgrywa kluczową rolę w metabolizmie. Składa się z grupy acetylowej ( COCH 3) związanej kowalencyjnie z koenzymem A. 23

WYKORZYSTANIE ACETYLO COA bezpośrednio wykorzystywany przez połączenie z kwasem szczawiooctowym do syntezy kwasu cytrynowego, który rozpoczyna cykl kwasu cytrynowego w metabolizmie lipidów jest prekursorem cholesterolu a następnie hormonów steroidowych łączy się także z choliną, tworząc acetylocholinę, lub z sulfonamidami 24

ŹRÓDŁA ACETYLO-COA węglowodany trawienie glikogenoliza tłuszcze trawienie lipoliza białka proteoliza cukry proste (glukoza) glikoliza pirogronian kwasy tłuszczowe + glicerol -oksydacja oksydacyjna dekarboksylacja aminokwasy acetylocoa aminokwasy deaminacja, oksydacja ciała ketonowe O // 25 CH 3 C ~ SCoA

26

CYKL KREBSA Składa się z 8 etapów. FUNKCJE rozkłada acetylocoa powstający podczas katabolizmu węglowodanów, lipidów, białek dostarcza równoważników redukcyjnych NADH+H + i FADH 2 zamienianych na ATP w ŁO oraz GTP (=ATP) dostarcza substratów do procesów syntezy różnych związków (np. glukozy, hemu, kwasów tłuszczowych) 27

ETAPY CYKLU CREBSA 1) synteza cytrynianu ( c4 + acetylo-coa) 2) Izomeracja cytrynianu do izocytrynianu 3) utlenienie izocytrynianu do alfa-ketoglutaranu 4) utlenienie alfa-ketoglutaranu do bursztynyloco-a 5) synteza ( z bursztynyloco-a do bursztynianu) 6) ulenienie bursztynianu do fumaranu 7) utlenienie fumaranu do jabłczanu 8) utlenienie jabłczanu do szczawiooctanu 28

REAKCJE CYKLU KREBSA synteza cytrynianu C = O CH 2 O // CH 3 C ~ SCoA 1 CH 2 HO C CH 2 C = O SCoA + H 2 O HSCoA CH 2 HO C CH 2 Enzym: SYNTAZA CYTRYNIANOWA klasa IV (liazy) Typ reakcji: KONDENSACJA reakcja nieodwracalna enzym regulatorowy 29

REAKCJE CYKLU KREBSA CH 2 HO C CH 2 - H 2 O CH 2 C CH Izomeracja cytrynianu do izocytrynianu + H 2 O HO CH CH 2 HC 2 2 Enzym: AKONITAZA (HYDRATAZA cisakonitanowa) klasa IV (liazy) Typ reakcji: DEHYDRATACJA/HYDRATACJA reakcja odwracalna białko zawierajace Fe-S 30

REAKCJE CYKLU KREBSA utlenienie izocytrynianu do alfa-ketoglutaranu CH 2 NAD + HC HO CH NADH+H + CH 2 HC O = CH CO 2 CH 2 CH 2 O = CH 3 Enzym: DEHYDROGENAZA IZOCYTRYNIANOWA klasa I (oksydoreduktazy) Typ reakcji: UTLENIANIE i DEKARBOKSYLACJA reakcja nieodwracalna izoenzymy enzym regulatorowy 31

REAKCJE CYKLU KREBSA utlenienie alfa-ketoglutaranu do bursztynyloco-a CH 2 CH 2 O = CH NAD +, HSCoA NADH+H + CO 2 CH 2 CH 2 C ~ SCoA O Enzym: KOMPLEKS DEHYDROGENAZY -KETOGLUTARANOWEJ klasa I (oksydoreduktazy) 4 Typ reakcji: UTLENIANIE i DEKARBOKSYLACJA reakcja nieodwracalna enzym regulatorowy 32

REAKCJE CYKLU KREBSA synteza ( z bursztynyloco-a do bursztynianu) GDP + P CH i 2 CH 2 C ~ SCoA O GTP HSCoA CH 2 CH 2 Enzym: SYNTETAZA BURSZTYNYLOCoA klasa VI (syntetazy) Typ reakcji: FOSFORYLACJA SUBSTRATOWA 5 reakcja odwracalna 33

REAKCJE CYKLU KREBSA ulenienie bursztynianu do fumaranu CH 2 CH 2 FAD FADH 2 CH CH 6 Enzym: DEHYDROGENAZA BURSZTYNIANOWA klasa I (oksydoreduktazy) Typ reakcji: UTLENIANIE jest częścią błony mitochondrialnej reakcja odwracalna białko zawierające Fe-S 34

REAKCJE CYKLU KREBSA utlenienie fumaranu do jabłczanu CH CH H 2 O HC OH CH 2 7 Enzym: HYDRATAZA FUMARANOWA (FUMARAZA) klasa IV (liazy) Typ reakcji: HYDRATACJA reakcja odwracalna 35

REAKCJE CYKLU KREBSA utlenienie jabłczanu do szczawiooctanu HC OH CH 2 NAD + NADH+H + C = O CH 2 8 Enzym: DEHYDROGENAZA JABŁCZANOWA klasa I (oksydoreduktazy) Typ reakcji: UTLENIANIE reakcja odwracalna 36

37

BILANS ENERGETYCZNY CYKLU KREBSA z jednej cząsteczki acetylocoa 3 NADH + H + 3 ATP = 9 ATP 1 FADH 2 2 ATP = 2 ATP 1 GTP (FS) = 1 ATP = 1 ATP = 12 ATP GTP + ADP GDP + ATP enzym: kinaza difosfonukleozydowa 38

POWIĄZANIA CYKLU KREBSA Z INNYMI SZLAKAMI METABOLICZNYMI Niektóre szlaki metaboliczne kończą się na metabolicie cyklu Krebsa a niektóre wywodzą się z tego cyklu. Szczególne znaczenie odgrywa w wątrobie gdzie nazywany jest cyklem otwartym : w czasie sytości ( węglowodanów) przeważa udział cyklu w procesie lipogenezy, w tworzeniu aminokwasów, w czasie głodu ( węglowodanów) w procesie glukoneogenezy. Prawie wszystkie metabolity cyklu Krebsa są potencjalnie glukogenne (najbardziej szczawiooctan), ponadto niektóre aminokwasy są glukogenne dzięki możliwości przekształcenia ich w metabolit cyklu Krebsa lub w pirogronian. 39

CYKL KREBSA POWIĄZANY JEST Z NASTĘPUJĄCYMI PRZEMIANAMI: synteza niektórych aminokwasów synteza hemu synteza ciał ketonowych synteza kwasów tłuszczowych synteza neurotransmiterów (mózg) cykl mocznikowy glukoneogeneza (ze szczawiooctanu, pirogronianu, aminokwasów) 40

ZABURZENIA METABOLIZMU ZWIĄZANE Z CYKLEM KREBSA - Beri beri - to zaburzenie, którego przyczyną jest brak tiaminy. Pirofosforan tiaminy (TPP) jest grupą prostetyczną trzech enzymów niezbędnych do zachodzenia cyklu: dehydrogenazy pirogronianowej, dehydrogenazy α-ketoglutaranowej i transketolazy. Niedobór tego związku powoduje zaburzenia neurologiczne ze względu na wykorzystanie jako substratu oddechowego w komórkach nerwowych wyłącznie glukozy 41

ZABURZENIA METABOLIZMU ZWIĄZANE Z CYKLEM KREBSA Związki rtęci i arsenu wykazują silne powinowactwo do grup hydrosulfidowych enzymów kompleksu dehydrogenazy pirogronianowej. Zahamowanie aktywności enzymu podobnie jak w przypadku beri-beri prowadzi do zaburzeń neurologicznych 42

UTLENIANIE KOŃCOWE- ŁAŃCUCH ODDECHOWY 43

ŁAŃCUCH ODDECHOWY Na łańcuch oddechowy składa się szereg przenośników błonowych na grzebieniach mitochondrialnych. Ich funkcja polega na odbieraniu protonów i elektronów od zredukowanych dinukleotydów (NADH, FADH2). Powoduje to ich utlenienie. 44

FOSFORYLACJA OKSYDACYJNA Jest to główny sposób uzyskiwania energii ze związków organicznych. W wyniku ich rozkładu elektrony są przenoszone przez łańcuch oddechowy na tlen. Jest to utlenianie, które zachodzi na błonie mitochondrialnej i może zachodzić jedynie w warunkach tlenowych. ADP + Pi + zredukowany przenośnik wodoru i elektronów + O2 -> ATP + H2O + utlenione przenośniki wodoru i elektronów. Podczas wędrówki protonów i elektronów z jednej cząsteczki NADPH na tlen, powstają 3 ATP, natomiast w przypadku FADH2 2 ATP. 45

46

ODDYCHANIE TLENOWE 1. Powstający w glikolizie pirogronian wędruje do mitochondriów, gdzie ulega oksydacyjnej dekarboksylacji do związku dwuwęglowego - aktywnego octanu, zwanego acetylokoenzymem A, wiec inaczej acetylo- Co A. 2. Acetylo-Co A zostaje włączony w cykl przemian kwasów karboksylowych zwany cyklem Krebsa lub cyklem kwasu cytrynowego. Tam zostaje utleniony do dwóch cząsteczek CO2. 3. Akceptorem aktywnego octanu w cyklu Krebsa jest 4-węglowy szczawiooctan. W wyniku reakcji kondensacji powstaje 6-węglowy cytrynian, od którego pochodzi nazwa cyklu. 4. Przez szereg produktów pośrednich zostaje odtworzony związek 4-węglowy, który przyłącza kolejną cząsteczkę acetylokoenzymu A. 5. Na czterech etapach cyklu odbywa się proces utleniania poprzez odwodorowanie z wydzieleniem trzech cząstek NADH+H+ i FADH2. Podczas jednego pełnego cyklu Krebsa dochodzi do dwukrotnej dekarboksylacji i 4-krotnego odwodorowania. 47

6. Zredukowane przenośniki przenoszą wodór na błonę grzebieni mitochondrialnych, gdzie zlokalizowany jest łańcuch oddechowy. 7. Łańcuch oddechowy to ciąg oksyreduktaz: NAD, FAD, ubichinon, cytochrom b, cytochrom c, oksydaza cytochromowa. 8. Na początku łańcucha płynie strumień atomów wodoru, a następnie przez wyższy potencjał oksydoredukcyjny strumień elektronów. 9. W łańcuchu oddechowym produkowane jest ATP. Ostatecznym akceptorem elektronów i protonów wodorowych jest tlen w związku z czym produkcję ATP w łańcuchu oddechowym określamy jako fosforylację oksydacyjną. 48

PODSUMOWANIE Oddychanie komórkowe jest to proces utleniania glukozy do dwutlenku węgla. Składa się z etapów. Polega na odbieraniu protonów i elektronów przez dinukleotydy. Przemiany te katalizują odpowiednie enzymy. Do całkowitego utlenienia glukozy dochodzi w pierwszych trzech etapach, a więc glikolizie, oksydacyjnej dekarboksylacji kwasu pirogronowego i cyklu Krebsa. W łańcuchu oddechowym ma miejsce przeniesienie wodoru na tlen, w skutek, czego powstaje woda. Transportowi elektronów i protonów towarzyszy powstawanie energii magazynowanej w ATP (fosforylacja oksydacyjna). 49 Bilans energetyczny oddychania komórkowego

Na następnej lekcji sprawdzian za 10 punktów z oddychania komórkowego 50

LITERATURA Robert K Murray, Daryl K Granner, Victor William Rodwell, Franciszek Kokot, Zenon Aleksandrowicz: Biochemia Harpera ilustrowana. Warszawa: Wydawnictwo Lekarskie PZWL, 2008. Luberta Stryera, Jeremy ego Berga i Johna Tymoczko Biochemia PWN 1986 Dubert i inni Biologia na czasie 2 Nowa Era 2013 51