Opracowała: Joanna Kisielińska ZMIENNE LOSOWE Zmienna losowa (ZL) X( ) jest funkcją przekształcającą przestrzeń zdarzeń elementarnych w zbiór liczb rzeczywistych R tzn. X: R. Realizacją zmiennej losowej nazywamy wartość jaką przyjmuje ZL w wyniku przeprowadzonego doświadczenia. Rodzaje zmiennych losowych: zmienne losowe dyskretne zmienne losowe ciągłe ZMIENNE LOSOWE DYSKRETNE Zbiór realizacji zmiennej losowej dyskretnej: {,,.} Rozkład prawdopodobieństwa zmiennej losowej dyskretnej: { p i : p i =P(X= i ), i=,, } gdzie p i i Dystrybuanta zmiennej losowej dyskretnej: F X( ) P( X ) i, i p i Przykład: Rzut kostką. Y zmienna losowa, której wartość jest równa liczbie oczek uzyskanej w wyniku rzutu kostką Zbiór realizacji Y: {,, 3, 4, 5, 6} Rozkład prawdopodobieństwa Y: p i =/6, dla i=,, 6. 0,8 0,6 0,4 0, 0, 0,08 0,06 0,04 0,0 0 0 3 4 5 6 7
Opracowała: Joanna Kisielińska Parametry: n E ( X ) i i n i p i V ( X ) [ D ( X ) V ( X ) i E( X )] p i Dystrybuanta zmiennej losowej Y: i (-,) <,) <,3) <3,4) <4,5) <5,6) <6, ) 0 0,6666 0,33333 0.83333 F( i ) 0,5 0,66667 7 3 3
Opracowała: Joanna Kisielińska 3 ZMIENNE LOSOWE CIĄGŁE Zmienna losowa jest typu ciągłego, jeżeli istnieje nieujemna funkcja f zwana funkcją gęstości rozkładu prawdopodobieństwa określona i całkowalna na całej osi i taka, że dla każdego przedziału a,b : b P ( a X b) f ( ) d, oraz f ( ) d a Dystrybuanta F zmiennej losowej typu ciągłego wyraża się wzorem: F( ) P( X ) f ( )d. O dystrybuancie zmiennej losowej ciągłej zakłada się, że jest ciągła i różniczkowalna (z wyjątkiem co najwyżej przeliczalnej liczby punktów). We wszystkich punktach, w których dystrybuanta jest różniczkowalna zachodzi: f ( ) df( ) d Słuszne są następujące zależności: P ( a X b) F( b) F( a) F ( ) 0, F( ) Związek między dystrybuantą a gęstością
Opracowała: Joanna Kisielińska 4 PODSTAWOWE ROZKŁADY ZMIENNYCH LOSOWYCH CIĄGŁYCH Rozkład normalny Zmienna losowa X ma rozkład normalny z parametrami µ i standardowe), jeśli jej funkcja gęstości określona jest wzorem: f ( ) e, dla To, że zmienna losowa X ma rozkład normalny zapisujemy jako X N(, ). Dystrybuanta dla rozkładu normalnego dana jest wzorem: F ( ) e d. Rozkład normalny N(, ) Funkcja gęstości. Dystrybuanta (średnia i odchylenie Funkcje Ecela (stary i nowy) ROZKŁAD.NORMALNY(X; Średnia; Odchylenie_std; Skumulowany) Zwraca dystrybuantę (gdy Skumulowany=) lub funkcję gęstości (gdy Skumulowany=0) zmiennej losowej N(Średnia, Odchylenie_std) ROZKŁAD.NORMALNY.ODW(Prawdopodobieństwo; Średnia; Odchylenie_std) Zwraca wartość zmiennej losowej N(Średnia, Odchylenie_std), takie że P(X<)= Prawdopodobieństwo Funkcje Ecela (nowy) ROZKŁ.NORMALNY(X; Średnia; Odchylenie_std; Skumulowany) Zwraca dystrybuantę (gdy Skumulowany=) lub funkcję gęstości (gdy Skumulowany=0) zmiennej losowej N(Średnia, Odchylenie_std) ROZKŁ.NORMALNY.ODW(Prawdopodobieństwo; Średnia; Odchylenie_std) Zwraca wartość zmiennej losowej N(Średnia, Odchylenie_std), takie że P(X<)= Prawdopodobieństwo
Opracowała: Joanna Kisielińska 5 Rozkład t-studenta Wzór na funkcje gęstości i dystrybuantę rozkładu t -Studenta jest bardzo skomplikowany (wykres funkcji gęstości jest podobny do rozkładu normalnego). Rozkład t ma jeden parametr n (oznaczający stopnie swobody). Jeżeli n jest bardzo duże, dobrym przybliżeniem rozkładu t-studenta jest rozkład normalny. Do szacowania prawdopodobieństw dla zmiennych losowych o rozkładzie t wykorzystuje się tablice, albo gotowe funkcje. Funkcja gęstości Rozkład t-studenta Dystrybuanta T(n=), T(n=0) T(n=), T(n=0) Funkcje Ecela (stary i nowy) ROZKŁAD.T(X; Stopnie_swobody; Ślady) Ślady = - ROZKŁAD.T zwraca wartość prawdopodobieństwa P( T >) Ślady = - ROZKŁAD.T zwraca P(T>) UWAGA: Dystrybuanta zmiennej losowej o rozkładzie T: F()=- ROZKŁAD.T(X; Stopnie_swobody; ) Uwaga: Funkcja ROZKŁAD.T jest określona jedynie dla dodatnich. ROZKŁAD.T.ODW(Prawdopodobieństwo; Stopnie_swobody) Zwraca wartość zmiennej losowej T(Stopnie_swobody), takie że P( T >)= Prawdopodobieństwo Jeżeli chcemy wyznaczyć wartość, takie że P(T>)= Prawdopodobieństwo należy użyć funkcji ROZKŁAD.T.ODW( Prawdopodobieństwo; Stopnie_ swobody) Funkcje Ecela (nowy) ROZKŁ.T(X; Stopnie_swobody; Skumulowany) Funkcja zwraca wartość funkcji gęstości lub dystrybuanty zmiennej losowej T ss o rozkładzie t-studenta o liczbie stopni swobody określonej przez parametr stopnie_swobody w punkcie X. Uwaga: ROZKŁ.T(X;ss;) =- ROZKŁAD.T(X;ss;) ROZKŁ.T(X;ss;) =- 0,5 ROZKŁAD.T(X;ss;) ROZKŁ.T.DS(X; Stopnie_swobody) Funkcja zwraca prawdopodobieństwo dla dwustronnego rozkładu t-studenta o liczbie stopni swobody określonej przez parametr stop-nie_swobody w punkcie X. Jest to
Opracowała: Joanna Kisielińska 6 prawdopodobieństwo, że wartość bezwzględna zmiennej losowej T ss o rozkładzie t- Studenta, jest większą niż wartość określona przez parametr X (czyli P( T ss >X). Uwaga: ROZKŁ.T.DS(X;ss) = ROZKŁAD.T(X;ss;) ROZKŁ.T.PS(X; Stopnie_swobody) Funkcja zwraca prawdopodobieństwo dla jednostronnego rozkładu t-studenta o liczbie stopni swobody określonej przez parametr stopnie_swobody w punkcie X. Jest to prawdopodobieństwo, że zmienna losowaj T ss o rozkładzie t-studenta, jest większą niż wartość określona przez parametr X (czyli P(T ss >X). Uwaga: ROZKŁ.T.PS(X;ss) = ROZKŁAD.T(X;ss;) ROZKŁ.T.ODWR(Prawdopodobieństwo; Stopnie_swobody) Funkcja zwraca wartość X zmiennej losowej T ss o rozkładzie t-studenta o liczbie stopni swobody określonej przez parametr stopnie_swobody, dla której spełniony jest warunek P(T ss <X)=Prawdopodobieństwo. Mówiąc inaczej, funkcja zwraca wartość X zmiennej losowej T ss, dla której dystrybuanta jest równa wartości parametru Prawdopodobieństwo. Uwaga: ROZKŁ.T.ODWR ( ;ss) = ROZKŁAD.T.ODW ( (- ); ss) ROZKŁ.T.ODWR.DS(Prawdopodobieństwo; Stopnie_swobody) Zwraca wartość zmiennej losowej T(Stopnie_swobody), takie że P( T >)= Prawdopodobieństwo Uwaga: ROZKŁ.T.ODWR.DS ( ;ss) = ROZKŁAD.T.ODW ( ;ss) Rozkład F Fishera Wzór na funkcje gęstości i dystrybuantę rozkładu F jest bardzo skomplikowany. Rozkład F ma dwa parametry n, n (oznaczające stopnie swobody licznika i stopnie swobody mianownika). Do szacowania prawdopodobieństw dla zmiennych losowych o rozkładzie F wykorzystuje się tablice, albo gotowe funkcje. Funkcja gęstości Rozkład F Fishera Dystrybuanta F(0,6) F(6,0) F(0,6) F(6,0) F(0,6), F(6,0) F(0,6), F(6,0)
Opracowała: Joanna Kisielińska 7 Funkcje Ecela (stary i nowy) ROZKŁAD.F(;Stopnie_swobody;Stopnie_swobody) Zwraca wartość prawdopodobieństwa P(F>) ROZKŁAD.F.ODW(Prawdopodobieństwo;Stopnie_swobody;Stopnie_swobody ) Zwraca wartość zmiennej losowej F(Stopnie_swobody;Stopnie_swobody), takie że P(F>)=Prawdopodobieństwo Dystrybuanta zmiennej losowej o rozkładzie F: F()=- ROZKŁAD.F(;Stopnie_swobody;Stopnie_swobody) Funkcje Ecela (nowy) ROZKŁ.F(X; Stopnie_swobody;Stopnie_swobody ; Skumulowany) Funkcja zwraca wartość funkcji gęstości lub dystrybuanty zmiennej losowej o rozkładzie F o liczbie stopni swobody licznika i mianownika określonych przez parametry stopnie_swobody i stopnie_swobody w punkcie X. Uwaga: ROZKŁ.F(X;ss;ss;) =- ROZKŁAD.F(X;ss;ss) ROZKŁ.F.PS(X; Stopnie_swobody;Stopnie_swobody ) Funkcja zwraca wartość prawdopodobieństwa, że zmienna losowa o roz-kładzie F o liczbie stopni swobody licznika i mianownika określonych przez parametry stopnie_swobody i stopnie_swobody (którą oznaczymy jako F ss,ss ), jest większą niż wartość określona przez parametr X (czyli P(F ss,ss >X)). Uwaga: ROZKŁ.F.PS(X;ss;ss) =ROZKŁAD.F(X;ss;ss) ROZKŁ. F.ODWR (Prawdopodobieństwo;Stopnie_swobody;Stopnie_swobody ) Funkcja zwraca wartość X zmiennej losowej F ss,ss o rozkładzie F o liczbie stopni swobody licznika i mianownika określonych przez parametry stopnie_swobody i stopnie_swobody, dla której spełniony jest warunek: P(F ss,ss <X)=Prawdopodobieństwo. Funkcja zwraca więc wartość, dla której dystrybuanta jest równa wartości parametru Prawdopodobieństwo. Uwaga: ROZKŁ.F.ODWR ( ;ss;ss) = ROZKŁAD.F.ODW (- ;ss;ss) ROZKŁ. F.ODWR.PS (Prawdopodobieństwo;Stopnie_swobody;Stopnie_swobody ) Funkcja zwraca wartość X zmiennej losowej F ss,ss o rozkładzie F o liczbie stopni swobody licznika i mianownika określonych przez parametry stopnie_swobody i stopnie_swobody, dla której spełniony jest warunek: P(F ss,ss >X)=Prawdopodobieństwo. Uwaga: ROZKŁ.F.ODWR.PS ( ;ss;ss) = ROZKŁAD.F.ODW ( ;ss;ss)
Opracowała: Joanna Kisielińska 8 TESTOWANIE HIPOTEZ STATYSTYCZNYCH Populacją jest zbiór wszystkich pomiarów, którymi zainteresowany jest badacz. Populacją jest zbiór wszystkich przedstawicieli posiadających pewną cechę. Wyniki pomiarów są realizacjami zmiennej losowej. Próba jest podzbiorem wyników pomiarów wybranych z populacji. Próba jest podzbiorem wszystkich przedstawicieli posiadających pewną cechę. Jeżeli prawdopodobieństwo wylosowania n elementowej próby z populacji jest jednakowe dla wszystkich n elementowych prób, próbę nazywamy losową. Hipotezy statystyczne - stwierdzenia dotyczące zmiennych losowych, których weryfikację przeprowadza się na podstawie próby losowej Weryfikacja hipotezy (prawdziwa czy nie) testy statystyczne. Testy parametryczne: czy parametr populacji ma określoną wartość Testy nieparametryczne: hipoteza nie dotyczy parametru -Testy zgodności: hipoteza dotyczy porównania rozkładów -Testy niezależności: hipoteza dotyczy niezależności zm. losowych Statystyczna teoria weryfikacji hipotez Dana jest statystyka testowa G (postać jej zależy od rodzaju testu) Zbiór realizacji statystyki dzieli się na dwa podzbiory K i A tak, aby zdarzenie: g K było praktycznie niemożliwe jeśli hipoteza jest prawdziwa (konieczna jest znajomość rozkładu statystyki G) Na podstawie próby obliczamy g wartość statystyki G dla próby g A brak podstaw do odrzucenia hipotezy g K hipotezę odrzucamy
Opracowała: Joanna Kisielińska 9 HIPOTEZY PARAMETRYCZNE Hipotezą statystyczną (parametryczną) jest stwierdzenie dotyczące wartości wybranych parametrów pewnej cechy w populacji, z której pobrano próbę losową. Hipoteza jest weryfikowana na podstawie wartości parametrów w próbie. Hipotezą zerową H 0 nazywamy hipotezę stwierdzającą, że parametr w populacji ma określoną wartość. Hipotezę zerową należałoby odrzucić, jeśli parametr obliczony na podstawie próby istotnie (w sensie statystycznym) odbiega od postulowanej jego wartości dla populacji. W tym celu konstruowana jest zmienna losowa reprezentująca różnicę (lub iloraz) między wartością obliczaną z próby a postulowaną dla populacji. Zakładając znajomość rozkładu tej zmiennej losowej można określić zakresy bardzo mało prawdopodobnych jej wartości. Jeżeli na podstawie próby obliczona zostanie realizacja tej zmiennej losowej i jest to wartość bardzo mało prawdopodobna przyjmujemy, że hipotezę zerową należy odrzucić. Z drugiej jednak strony możliwe jest wylosowanie bardzo mało prawdopodobnej wartości zmiennej losowej. Hipoteza zerowa zostaje odrzucona mimo, że jest prawdziwa. Dla testowanej hipotezy przyjmowane jest określone prawdopodobieństwo zajścia takiego przypadku zwane poziomem istotności. Testy dwustronne: H0: =g 0, H: g 0 Testy jednostronne: Prawostronny H0: =g 0, H: >g 0 Lewostronny H0: =g 0, H: <g 0
Opracowała: Joanna Kisielińska 0 Testy parametryczne Test dla t emp sˆ (średniej) m0 lub n u emp sˆ m0 dla dużej próby n>30 n Test dla dwóch wariancji sˆ F emp sˆ Statystyka testowa ma rozkład F z liczbą stopni swobody licznika n - oraz mianownika n -