ZMIENNE LOSOWE. Zmienna losowa (ZL) X( ) jest funkcją przekształcającą przestrzeń zdarzeń elementarnych w zbiór liczb rzeczywistych R 1 tzn. X: R 1.

Podobne dokumenty
PODSTAWOWE ROZKŁADY ZMIENNYCH LOSOWYCH CIĄGŁYCH

LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI

Wykład 3 Hipotezy statystyczne

Statystyka matematyczna dla leśników

LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI

Testowanie hipotez statystycznych. Wnioskowanie statystyczne

Błędy przy testowaniu hipotez statystycznych. Decyzja H 0 jest prawdziwa H 0 jest faszywa

Wnioskowanie statystyczne i weryfikacja hipotez statystycznych

LABORATORIUM Populacja Generalna (PG) 2. Próba (P n ) 3. Kryterium 3σ 4. Błąd Średniej Arytmetycznej 5. Estymatory 6. Teoria Estymacji (cz.

Statystyka. #5 Testowanie hipotez statystycznych. Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik. rok akademicki 2016/ / 28

VI WYKŁAD STATYSTYKA. 9/04/2014 B8 sala 0.10B Godz. 15:15

Statystyka. Rozkład prawdopodobieństwa Testowanie hipotez. Wykład III ( )

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji

TESTOWANIE HIPOTEZ Przez hipotezę statystyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas cechy.

LABORATORIUM 9 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI

STATYSTYKA MATEMATYCZNA WYKŁAD 4. WERYFIKACJA HIPOTEZ PARAMETRYCZNYCH X - cecha populacji, θ parametr rozkładu cechy X.

SIGMA KWADRAT. Weryfikacja hipotez statystycznych. Statystyka i demografia CZWARTY LUBELSKI KONKURS STATYSTYCZNO-DEMOGRAFICZNY

Temat: BADANIE ZGODNOŚCI ROZKŁADU CECHY (EMPIRYCZNEGO) Z ROZKŁADEM TEORETYCZNYM TEST CHI-KWADRAT. Anna Rajfura 1

Statystyka matematyczna. Wykład IV. Weryfikacja hipotez statystycznych

Uwaga. Decyzje brzmią różnie! Testy parametryczne dotyczące nieznanej wartości

WYKŁAD 8 TESTOWANIE HIPOTEZ STATYSTYCZNYCH

Rachunek prawdopodobieństwa i statystyka - W 9 Testy statystyczne testy zgodności. Dr Anna ADRIAN Paw B5, pok407

TESTOWANIE HIPOTEZ STATYSTYCZNYCH Hipotezą statystyczną nazywamy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas cechy.

Wstęp do probabilistyki i statystyki. Wykład 4. Statystyki i estymacja parametrów

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory

Testowanie hipotez statystycznych

Rozkłady statystyk z próby

VII WYKŁAD STATYSTYKA. 30/04/2014 B8 sala 0.10B Godz. 15:15

Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r

Weryfikacja hipotez statystycznych za pomocą testów statystycznych

weryfikacja hipotez dotyczących parametrów populacji (średnia, wariancja)

Testowanie hipotez statystycznych cd.

Zadania ze statystyki, cz.6

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI. Test zgodności i analiza wariancji Analiza wariancji

TESTOWANIE HIPOTEZ STATYSTYCZNYCH

Temat: BADANIE ZGODNOŚCI ROZKŁADU CECHY (EMPIRYCZNEGO) Z ROZKŁADEM TEORETYCZNYM TEST CHI-KWADRAT. Anna Rajfura 1

Weryfikacja hipotez statystycznych

Korzystanie z podstawowych rozkładów prawdopodobieństwa (tablice i arkusze kalkulacyjne)

TESTY NIEPARAMETRYCZNE. 1. Testy równości średnich bez założenia normalności rozkładu zmiennych: Manna-Whitney a i Kruskala-Wallisa.

Idea. θ = θ 0, Hipoteza statystyczna Obszary krytyczne Błąd pierwszego i drugiego rodzaju p-wartość

Matematyka i statystyka matematyczna dla rolników w SGGW WYKŁAD 9. TESTOWANIE HIPOTEZ STATYSTYCZNYCH cd.

Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki

Matematyka i statystyka matematyczna dla rolników w SGGW

STATYSTYKA

Testowanie hipotez statystycznych

STATYSTYKA MATEMATYCZNA

Literatura. Leitner R., Zacharski J., Zarys matematyki wyŝszej dla studentów, cz. III.

Statystyka matematyczna i ekonometria

Testowanie hipotez statystycznych

Wydział Matematyki. Testy zgodności. Wykład 03

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2

Hipotezy statystyczne

Zawartość. Zawartość

), którą będziemy uważać za prawdziwą jeżeli okaże się, że hipoteza H 0

Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x 1, x 2,...}, to mówimy, że jest to zmienna dyskretna.

TESTOWANIE HIPOTEZ STATYSTYCZNYCH Przez hipotezę statystyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas

IV WYKŁAD STATYSTYKA. 26/03/2014 B8 sala 0.10B Godz. 15:15

Dokładne i graniczne rozkłady statystyk z próby

W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych:

Statystyka i opracowanie danych- W 8 Wnioskowanie statystyczne. Testy statystyczne. Weryfikacja hipotez statystycznych.

Statystyczna analiza danych w programie STATISTICA (wykład 2) Dariusz Gozdowski

Wnioskowanie statystyczne Weryfikacja hipotez. Statystyka

Statystyka matematyczna i ekonometria

Testowanie hipotez statystycznych.

PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA. Piotr Wiącek

Hipotezy statystyczne

Wykład 1 Zmienne losowe, statystyki próbkowe - powtórzenie materiału

Z poprzedniego wykładu

Weryfikacja hipotez statystycznych za pomocą testów statystycznych

b) Niech: - wśród trzech wylosowanych opakowań jest co najwyżej jedno o dawce 15 mg. Wówczas:

Weryfikacja hipotez statystycznych testy t Studenta

Statystyka i eksploracja danych

STATYSTYKA I DOŚWIADCZALNICTWO. Wykład 2

Prawdopodobieństwo i rozkład normalny cd.

Porównanie modeli statystycznych. Monika Wawrzyniak Katarzyna Kociałkowska

166 Wstęp do statystyki matematycznej

STATYSTYKA MATEMATYCZNA WYKŁAD 4. Testowanie hipotez Estymacja parametrów

Testowanie hipotez statystycznych.

Dane dotyczące wartości zmiennej (cechy) wprowadzamy w jednej kolumnie. W przypadku większej liczby zmiennych wprowadzamy każdą w oddzielnej kolumnie.

ODRZUCANIE WYNIKÓW POJEDYNCZYCH POMIARÓW

Dr Anna ADRIAN Paw B5, pok 407

RÓWNOWAŻNOŚĆ METOD BADAWCZYCH

Metody Statystyczne. Metody Statystyczne

Analiza wariancji. dr Janusz Górczyński

Testowanie hipotez cz. I

Ćwiczenia 3 ROZKŁAD ZMIENNEJ LOSOWEJ JEDNOWYMIAROWEJ

Metody Statystyczne. Metody Statystyczne.

Zadania ze statystyki, cz.7 - hipotezy statystyczne, błąd standardowy, testowanie hipotez statystycznych

Zad. 4 Należy określić rodzaj testu (jedno czy dwustronny) oraz wartości krytyczne z lub t dla określonych hipotez i ich poziomów istotności:

Rozkłady statystyk z próby. Statystyka

Przykład 1 W przypadku jednokrotnego rzutu kostką przestrzeń zdarzeń elementarnych

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI TESTOWANIE HIPOTEZ PARAMETRYCZNYCH

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA

Wyniki badań reprezentatywnych są zawsze stwierdzeniami hipotetycznymi, o określonych granicach niepewności

Weryfikacja hipotez statystycznych

Biostatystyka, # 3 /Weterynaria I/

Testowanie hipotez. Marcin Zajenkowski. Marcin Zajenkowski () Testowanie hipotez 1 / 25

Statystyka i opracowanie danych - W 4: Wnioskowanie statystyczne. Weryfikacja hipotez statystycznych. Dr Anna ADRIAN Paw B5, pok407

Transkrypt:

Opracowała: Joanna Kisielińska ZMIENNE LOSOWE Zmienna losowa (ZL) X( ) jest funkcją przekształcającą przestrzeń zdarzeń elementarnych w zbiór liczb rzeczywistych R tzn. X: R. Realizacją zmiennej losowej nazywamy wartość jaką przyjmuje ZL w wyniku przeprowadzonego doświadczenia. Rodzaje zmiennych losowych: zmienne losowe dyskretne zmienne losowe ciągłe ZMIENNE LOSOWE DYSKRETNE Zbiór realizacji zmiennej losowej dyskretnej: {,,.} Rozkład prawdopodobieństwa zmiennej losowej dyskretnej: { p i : p i =P(X= i ), i=,, } gdzie p i i Dystrybuanta zmiennej losowej dyskretnej: F X( ) P( X ) i, i p i Przykład: Rzut kostką. Y zmienna losowa, której wartość jest równa liczbie oczek uzyskanej w wyniku rzutu kostką Zbiór realizacji Y: {,, 3, 4, 5, 6} Rozkład prawdopodobieństwa Y: p i =/6, dla i=,, 6. 0,8 0,6 0,4 0, 0, 0,08 0,06 0,04 0,0 0 0 3 4 5 6 7

Opracowała: Joanna Kisielińska Parametry: n E ( X ) i i n i p i V ( X ) [ D ( X ) V ( X ) i E( X )] p i Dystrybuanta zmiennej losowej Y: i (-,) <,) <,3) <3,4) <4,5) <5,6) <6, ) 0 0,6666 0,33333 0.83333 F( i ) 0,5 0,66667 7 3 3

Opracowała: Joanna Kisielińska 3 ZMIENNE LOSOWE CIĄGŁE Zmienna losowa jest typu ciągłego, jeżeli istnieje nieujemna funkcja f zwana funkcją gęstości rozkładu prawdopodobieństwa określona i całkowalna na całej osi i taka, że dla każdego przedziału a,b : b P ( a X b) f ( ) d, oraz f ( ) d a Dystrybuanta F zmiennej losowej typu ciągłego wyraża się wzorem: F( ) P( X ) f ( )d. O dystrybuancie zmiennej losowej ciągłej zakłada się, że jest ciągła i różniczkowalna (z wyjątkiem co najwyżej przeliczalnej liczby punktów). We wszystkich punktach, w których dystrybuanta jest różniczkowalna zachodzi: f ( ) df( ) d Słuszne są następujące zależności: P ( a X b) F( b) F( a) F ( ) 0, F( ) Związek między dystrybuantą a gęstością

Opracowała: Joanna Kisielińska 4 PODSTAWOWE ROZKŁADY ZMIENNYCH LOSOWYCH CIĄGŁYCH Rozkład normalny Zmienna losowa X ma rozkład normalny z parametrami µ i standardowe), jeśli jej funkcja gęstości określona jest wzorem: f ( ) e, dla To, że zmienna losowa X ma rozkład normalny zapisujemy jako X N(, ). Dystrybuanta dla rozkładu normalnego dana jest wzorem: F ( ) e d. Rozkład normalny N(, ) Funkcja gęstości. Dystrybuanta (średnia i odchylenie Funkcje Ecela (stary i nowy) ROZKŁAD.NORMALNY(X; Średnia; Odchylenie_std; Skumulowany) Zwraca dystrybuantę (gdy Skumulowany=) lub funkcję gęstości (gdy Skumulowany=0) zmiennej losowej N(Średnia, Odchylenie_std) ROZKŁAD.NORMALNY.ODW(Prawdopodobieństwo; Średnia; Odchylenie_std) Zwraca wartość zmiennej losowej N(Średnia, Odchylenie_std), takie że P(X<)= Prawdopodobieństwo Funkcje Ecela (nowy) ROZKŁ.NORMALNY(X; Średnia; Odchylenie_std; Skumulowany) Zwraca dystrybuantę (gdy Skumulowany=) lub funkcję gęstości (gdy Skumulowany=0) zmiennej losowej N(Średnia, Odchylenie_std) ROZKŁ.NORMALNY.ODW(Prawdopodobieństwo; Średnia; Odchylenie_std) Zwraca wartość zmiennej losowej N(Średnia, Odchylenie_std), takie że P(X<)= Prawdopodobieństwo

Opracowała: Joanna Kisielińska 5 Rozkład t-studenta Wzór na funkcje gęstości i dystrybuantę rozkładu t -Studenta jest bardzo skomplikowany (wykres funkcji gęstości jest podobny do rozkładu normalnego). Rozkład t ma jeden parametr n (oznaczający stopnie swobody). Jeżeli n jest bardzo duże, dobrym przybliżeniem rozkładu t-studenta jest rozkład normalny. Do szacowania prawdopodobieństw dla zmiennych losowych o rozkładzie t wykorzystuje się tablice, albo gotowe funkcje. Funkcja gęstości Rozkład t-studenta Dystrybuanta T(n=), T(n=0) T(n=), T(n=0) Funkcje Ecela (stary i nowy) ROZKŁAD.T(X; Stopnie_swobody; Ślady) Ślady = - ROZKŁAD.T zwraca wartość prawdopodobieństwa P( T >) Ślady = - ROZKŁAD.T zwraca P(T>) UWAGA: Dystrybuanta zmiennej losowej o rozkładzie T: F()=- ROZKŁAD.T(X; Stopnie_swobody; ) Uwaga: Funkcja ROZKŁAD.T jest określona jedynie dla dodatnich. ROZKŁAD.T.ODW(Prawdopodobieństwo; Stopnie_swobody) Zwraca wartość zmiennej losowej T(Stopnie_swobody), takie że P( T >)= Prawdopodobieństwo Jeżeli chcemy wyznaczyć wartość, takie że P(T>)= Prawdopodobieństwo należy użyć funkcji ROZKŁAD.T.ODW( Prawdopodobieństwo; Stopnie_ swobody) Funkcje Ecela (nowy) ROZKŁ.T(X; Stopnie_swobody; Skumulowany) Funkcja zwraca wartość funkcji gęstości lub dystrybuanty zmiennej losowej T ss o rozkładzie t-studenta o liczbie stopni swobody określonej przez parametr stopnie_swobody w punkcie X. Uwaga: ROZKŁ.T(X;ss;) =- ROZKŁAD.T(X;ss;) ROZKŁ.T(X;ss;) =- 0,5 ROZKŁAD.T(X;ss;) ROZKŁ.T.DS(X; Stopnie_swobody) Funkcja zwraca prawdopodobieństwo dla dwustronnego rozkładu t-studenta o liczbie stopni swobody określonej przez parametr stop-nie_swobody w punkcie X. Jest to

Opracowała: Joanna Kisielińska 6 prawdopodobieństwo, że wartość bezwzględna zmiennej losowej T ss o rozkładzie t- Studenta, jest większą niż wartość określona przez parametr X (czyli P( T ss >X). Uwaga: ROZKŁ.T.DS(X;ss) = ROZKŁAD.T(X;ss;) ROZKŁ.T.PS(X; Stopnie_swobody) Funkcja zwraca prawdopodobieństwo dla jednostronnego rozkładu t-studenta o liczbie stopni swobody określonej przez parametr stopnie_swobody w punkcie X. Jest to prawdopodobieństwo, że zmienna losowaj T ss o rozkładzie t-studenta, jest większą niż wartość określona przez parametr X (czyli P(T ss >X). Uwaga: ROZKŁ.T.PS(X;ss) = ROZKŁAD.T(X;ss;) ROZKŁ.T.ODWR(Prawdopodobieństwo; Stopnie_swobody) Funkcja zwraca wartość X zmiennej losowej T ss o rozkładzie t-studenta o liczbie stopni swobody określonej przez parametr stopnie_swobody, dla której spełniony jest warunek P(T ss <X)=Prawdopodobieństwo. Mówiąc inaczej, funkcja zwraca wartość X zmiennej losowej T ss, dla której dystrybuanta jest równa wartości parametru Prawdopodobieństwo. Uwaga: ROZKŁ.T.ODWR ( ;ss) = ROZKŁAD.T.ODW ( (- ); ss) ROZKŁ.T.ODWR.DS(Prawdopodobieństwo; Stopnie_swobody) Zwraca wartość zmiennej losowej T(Stopnie_swobody), takie że P( T >)= Prawdopodobieństwo Uwaga: ROZKŁ.T.ODWR.DS ( ;ss) = ROZKŁAD.T.ODW ( ;ss) Rozkład F Fishera Wzór na funkcje gęstości i dystrybuantę rozkładu F jest bardzo skomplikowany. Rozkład F ma dwa parametry n, n (oznaczające stopnie swobody licznika i stopnie swobody mianownika). Do szacowania prawdopodobieństw dla zmiennych losowych o rozkładzie F wykorzystuje się tablice, albo gotowe funkcje. Funkcja gęstości Rozkład F Fishera Dystrybuanta F(0,6) F(6,0) F(0,6) F(6,0) F(0,6), F(6,0) F(0,6), F(6,0)

Opracowała: Joanna Kisielińska 7 Funkcje Ecela (stary i nowy) ROZKŁAD.F(;Stopnie_swobody;Stopnie_swobody) Zwraca wartość prawdopodobieństwa P(F>) ROZKŁAD.F.ODW(Prawdopodobieństwo;Stopnie_swobody;Stopnie_swobody ) Zwraca wartość zmiennej losowej F(Stopnie_swobody;Stopnie_swobody), takie że P(F>)=Prawdopodobieństwo Dystrybuanta zmiennej losowej o rozkładzie F: F()=- ROZKŁAD.F(;Stopnie_swobody;Stopnie_swobody) Funkcje Ecela (nowy) ROZKŁ.F(X; Stopnie_swobody;Stopnie_swobody ; Skumulowany) Funkcja zwraca wartość funkcji gęstości lub dystrybuanty zmiennej losowej o rozkładzie F o liczbie stopni swobody licznika i mianownika określonych przez parametry stopnie_swobody i stopnie_swobody w punkcie X. Uwaga: ROZKŁ.F(X;ss;ss;) =- ROZKŁAD.F(X;ss;ss) ROZKŁ.F.PS(X; Stopnie_swobody;Stopnie_swobody ) Funkcja zwraca wartość prawdopodobieństwa, że zmienna losowa o roz-kładzie F o liczbie stopni swobody licznika i mianownika określonych przez parametry stopnie_swobody i stopnie_swobody (którą oznaczymy jako F ss,ss ), jest większą niż wartość określona przez parametr X (czyli P(F ss,ss >X)). Uwaga: ROZKŁ.F.PS(X;ss;ss) =ROZKŁAD.F(X;ss;ss) ROZKŁ. F.ODWR (Prawdopodobieństwo;Stopnie_swobody;Stopnie_swobody ) Funkcja zwraca wartość X zmiennej losowej F ss,ss o rozkładzie F o liczbie stopni swobody licznika i mianownika określonych przez parametry stopnie_swobody i stopnie_swobody, dla której spełniony jest warunek: P(F ss,ss <X)=Prawdopodobieństwo. Funkcja zwraca więc wartość, dla której dystrybuanta jest równa wartości parametru Prawdopodobieństwo. Uwaga: ROZKŁ.F.ODWR ( ;ss;ss) = ROZKŁAD.F.ODW (- ;ss;ss) ROZKŁ. F.ODWR.PS (Prawdopodobieństwo;Stopnie_swobody;Stopnie_swobody ) Funkcja zwraca wartość X zmiennej losowej F ss,ss o rozkładzie F o liczbie stopni swobody licznika i mianownika określonych przez parametry stopnie_swobody i stopnie_swobody, dla której spełniony jest warunek: P(F ss,ss >X)=Prawdopodobieństwo. Uwaga: ROZKŁ.F.ODWR.PS ( ;ss;ss) = ROZKŁAD.F.ODW ( ;ss;ss)

Opracowała: Joanna Kisielińska 8 TESTOWANIE HIPOTEZ STATYSTYCZNYCH Populacją jest zbiór wszystkich pomiarów, którymi zainteresowany jest badacz. Populacją jest zbiór wszystkich przedstawicieli posiadających pewną cechę. Wyniki pomiarów są realizacjami zmiennej losowej. Próba jest podzbiorem wyników pomiarów wybranych z populacji. Próba jest podzbiorem wszystkich przedstawicieli posiadających pewną cechę. Jeżeli prawdopodobieństwo wylosowania n elementowej próby z populacji jest jednakowe dla wszystkich n elementowych prób, próbę nazywamy losową. Hipotezy statystyczne - stwierdzenia dotyczące zmiennych losowych, których weryfikację przeprowadza się na podstawie próby losowej Weryfikacja hipotezy (prawdziwa czy nie) testy statystyczne. Testy parametryczne: czy parametr populacji ma określoną wartość Testy nieparametryczne: hipoteza nie dotyczy parametru -Testy zgodności: hipoteza dotyczy porównania rozkładów -Testy niezależności: hipoteza dotyczy niezależności zm. losowych Statystyczna teoria weryfikacji hipotez Dana jest statystyka testowa G (postać jej zależy od rodzaju testu) Zbiór realizacji statystyki dzieli się na dwa podzbiory K i A tak, aby zdarzenie: g K było praktycznie niemożliwe jeśli hipoteza jest prawdziwa (konieczna jest znajomość rozkładu statystyki G) Na podstawie próby obliczamy g wartość statystyki G dla próby g A brak podstaw do odrzucenia hipotezy g K hipotezę odrzucamy

Opracowała: Joanna Kisielińska 9 HIPOTEZY PARAMETRYCZNE Hipotezą statystyczną (parametryczną) jest stwierdzenie dotyczące wartości wybranych parametrów pewnej cechy w populacji, z której pobrano próbę losową. Hipoteza jest weryfikowana na podstawie wartości parametrów w próbie. Hipotezą zerową H 0 nazywamy hipotezę stwierdzającą, że parametr w populacji ma określoną wartość. Hipotezę zerową należałoby odrzucić, jeśli parametr obliczony na podstawie próby istotnie (w sensie statystycznym) odbiega od postulowanej jego wartości dla populacji. W tym celu konstruowana jest zmienna losowa reprezentująca różnicę (lub iloraz) między wartością obliczaną z próby a postulowaną dla populacji. Zakładając znajomość rozkładu tej zmiennej losowej można określić zakresy bardzo mało prawdopodobnych jej wartości. Jeżeli na podstawie próby obliczona zostanie realizacja tej zmiennej losowej i jest to wartość bardzo mało prawdopodobna przyjmujemy, że hipotezę zerową należy odrzucić. Z drugiej jednak strony możliwe jest wylosowanie bardzo mało prawdopodobnej wartości zmiennej losowej. Hipoteza zerowa zostaje odrzucona mimo, że jest prawdziwa. Dla testowanej hipotezy przyjmowane jest określone prawdopodobieństwo zajścia takiego przypadku zwane poziomem istotności. Testy dwustronne: H0: =g 0, H: g 0 Testy jednostronne: Prawostronny H0: =g 0, H: >g 0 Lewostronny H0: =g 0, H: <g 0

Opracowała: Joanna Kisielińska 0 Testy parametryczne Test dla t emp sˆ (średniej) m0 lub n u emp sˆ m0 dla dużej próby n>30 n Test dla dwóch wariancji sˆ F emp sˆ Statystyka testowa ma rozkład F z liczbą stopni swobody licznika n - oraz mianownika n -